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Abstract

Hybrid evolution protocols, composed of unitary dynamics and repeated, weak or pro-
jective measurements, give rise to new, intriguing quantum phenomena, including entan-
glement phase transitions and unconventional conformal invariance. Defying the com-
plications imposed by the non-linear and stochastic nature of the measurement process,
we introduce a scenario of measurement-induced many body evolution, which possesses
an exact analytical solution: bosonic Gaussian measurements. The evolution features a
competition between the continuous observation of linear boson operators and a free
Hamiltonian, and it is characterized by a unique and exactly solvable covariance matrix.
Within this framework, we then consider an elementary model for quantum criticality,
the free boson conformal field theory, and investigate in which way criticality is mod-
ified under measurements. Depending on the measurement protocol, we distinguish
three fundamental scenarios (a) enriched quantum criticality, characterized by a loga-
rithmic entanglement growth with a floating prefactor, or the loss of criticality, indicated
by an entanglement growth with either (b) an area-law or (c) a volume-law. For each sce-
nario, we discuss the impact of imperfect measurements, which reduce the purity of the
wavefunction and are equivalent to Markovian decoherence, and present a set of observ-
ables, e.g., real-space correlations, the relaxation time, and the entanglement structure,
to classify the measurement-induced dynamics for both pure and mixed states. Finally,
we present an experimental tomography scheme, which grants access to the density op-
erator of the system by using the continuous measurement record only.
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1 Introduction

Quantum critical behavior, emerging from the competition between a set of non-commuting
operators, is a paradigmatic and fascinating phenomenon in many-body quantum systems
[1–4]. The competition between non-commuting, local operators imprints characteristic fluc-
tuations, which leave their traces in observables up to the largest length scales. Yet, the long-
wavelength behavior of critical systems is often well-captured by effective and non-interacting
degrees of freedom [5,6]; a consequence of emergent symmetries at the critical point, includ-
ing scale (or conformal) invariance [7–12].

A new type of critical quantum states has been recently discovered in hybrid evolution
protocols, which are composed of unitary time evolution and repeated, local measurements
[13–60]. Here, the competition arises between the unitary dynamics, which lead to scrambling
of information and generate entanglement, and local measurements that extract information
from the system, and therefore reduce its entanglement over time. Under the hybrid evolution,
an initial pure state wave function remains pure, and undergoes a phase transition from an
(sub-) extensively entangled state to a disentangled, local product state when the measurement
rate exceeds a certain threshold [13,14]. When the unitary time evolution is implemented by
generic random circuits, and the entanglement entropy undergoes a transition from volume- to
area law scaling, the underlying phase transition has been identified with classical universality
classes [13,49,51,52,54,61]. However, when the time-evolution is constrained by certain sym-
metries, e.g., for Gaussian circuits or a free Hamiltonian, the measurement-induced transition
has been associated with a quantum phase transition [34,39–41,43,44,62]. This enables the
notion of quantum critical behavior, and emergent conformal invariance, in a nonequilibrium
wave function, generated by the hybrid evolution protocol [51–53,61].

In this work, we focus on quantum critical behavior, and its potential collapse, under con-
tinuous measurements. We therefore start from an paradigmatic model for quantum criticality,
the free boson conformal field theory (CFT) [12], and examine how continuous measurements
may either enrich or destroy its quantum critical behavior. To this end, we introduce an elemen-
tary, and exactly solvable setup for the measurement-induced many-body evolution of bosons,
which we term Gaussian measurements. It consists of a quadratic unitary evolution, imprinted
by the Hamiltonian of the free boson CFT, and an extensive set of continuously measured op-
erators {Ol}, which are linear in the boson operators. This setup preserves the Gaussianity of
an initial wave function (or density matrix), and enables an exact, measurement-noise free,
and analytically solvable expression for the stationary state. The exact solubility is a central
finding of our work and establishes Gaussian measurements as an elementary model for the
measurement-induced evolution of bosons.

Including both perfect and imperfect measurements [48], we characterize the measurement-
induced dynamics in terms of three essential signatures of the steady state: (i) the structure
of spatial correlations, (ii) the asymptotic relaxation time scale, i.e. the purification time in
case of perfect measurements, and (iii) the entanglement structure. Imperfect measurements
correspond to the case where only a fraction of the measurement results is collected and thus
the system evolves into a mixed state.

In order to classify the entanglement structure of mixed states, we make use of the loga-
rithmic negativity [63–66]. We demonstrate that the signatures (i)-(iii) are then readily gen-
eralized to the case of imperfect measurements. We show that the characteristic properties
of measurement-induced pure states are continuously connected to those of mixed states for
small and moderate imperfections. This demonstrates the robustness of both the measurement-
induced dynamics and their signatures in the presence of non-perfect measurements.

We then examine three elementary measurement scenarios, illustrating the fate of quantum
criticality in the presence of measurements: (a) measurements, which preserve the conformal
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Figure 1: (a) Lattice regularization of the free boson CFT. (b) Schematic picture of
measurement of operator Oi located on size i and the associated weak measurement
operator EIi,t

. The measurement outcomes are distributed following a Wiener process
around the conditioned expectation value 〈Oi〉c,t . (c) Sketch of the algorithm how to
reconstruct the conditioned density matrix ρc,t . We assume that in experiment 1 (2)

the quantities {Σt } ({I (i)t }) were measured. Given the 〈s〉(i)c,t for the present (initial)
time the conditioned covariance matrix σc,t is reconstructed according to Eq. (22)

[see dashed box (A)]. From the present 〈s〉(i)c,t andσc,t together with I (i)t , we construct

〈s〉(i)c,t+dt by numerically applying the recursion Eq. (71) for every experimental run
i [see dashed box (B)].

symmetry of the free boson CFT, and measurements which violate the conformal symmetry
and are either (b) local or (c) non-local. Consistent with the symmetries, the quantum critical
properties survive in scenario (a). It yields a nonequilibrium stationary state with scale invari-
ant correlations and relaxation behavior, and a logarithmic entanglement growth. However,
the stationary state appears no longer to be universal but rather is characterized by a floating
prefactor of the logarithmic entanglement scaling, which has been observed numerically also
for monitored fermion systems [37,43,44,67–69]. But in contrast to the fermionic setting the
wavefunction exhibiting these features, is deterministic and can be obtained analytically in the
case of bosons and Gaussian measurements. In turn, for scenarios (b) and (c), the quantum
critical signatures are destroyed by the measurements, and the violation of scale invariance
leads to the emergence of a measurement-induced mass in the spatial correlations and the
relaxation time. Interestingly, the entanglement structure of both scenarios differs strongly
from each other: in case (b) the local measurements push the system into a stationary state,
which is similar to a ground state of a gapped boson Hamiltonian, and whose entanglement
structure obeys an area law. In case (c), however, the stationary state entanglement obeys a
volume law, which is reminiscent of excited states [70]. Depending on the structure of the
measurement operators, one therefore recovers the basic scenarios that have been observed
in hybrid protocols of random circuits with projective measurements.

Finally, we discuss the experimental detectability of the hybrid dynamics for Gaussian mea-
surements. Based on the exact evolution equation, we show that a continuous recording of the
weak measurement results enables a complete reconstruction of the trajectory density matrix.
In a corresponding experiment it is not necessary to perform additional measurements or de-
coding operations on the system [71,72], but rather one processes the measurement outcomes
that are available from the measurements itself [73–76].

1.1 Perspectives on Measurement-Induced Dynamics: A Recap

Measurement-induced dynamics generally feature a competition between a scrambling evolu-
tion, which yields to the build up of entanglement in the state, and measurements. The latter
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extract information on the state and therefore successively reduce its entanglement. One way
to implement the scrambling evolution is by acting random unitary gates on the wave function.
Then the hybrid setup can be viewed as a quantum channel [77,78], and the phase transition
is understood as a type of error correction threshold in the quantum channel capacity [79].
In this picture, the unitary gates encode information non-locally in the wave function, thereby
protecting it against the local readout provided by the measurements [77, 79–81]. When in-
creasing the read-out/error rate, the encoding fails and the channel capacity goes to zero. The
transition in the quantum channel capacity can also be observed in the purification time of an
initially mixed state [77,82].

In turn, if the unitary evolution is implemented by a time-independent Hamiltonian, the
origin of the phase transition in terms of non-commuting operators becomes directly appar-
ent [35–41]. Repeatedly measuring a set of local operators {Ol} then projects the system to-
wards a shared eigenstate of all the operators Ol . The Hamiltonian, however, for [H, Ol] 6= 0 is
not compatible with the measurements, and constantly pushes the system out of the eigenstate
manifold. The wave function then displays a volume law (logarithmically growing) entangle-
ment entropy if the evolution is dominated by a generic (integrable) Hamiltonian, and an area
law if instead the measurement-induced collapse into eigenstates dominates [35–41]. While
this competition between non-commuting operators is reminiscent of a quantum phase transi-
tion in the ground state of a Hamiltonian, it also reveals a crucial difference; when measuring
L different operators Ol , and each operator has a number of nO different eigenstates, then,
due to the probabilistic nature of the measurement process, the steady state will experience a
macroscopic degeneracy of O(nL

O) compatible wave functions. This gives rise to an extensive
configurational entropy in the ensemble of time-evolved wave function trajectories.

Due to the large configurational entropy, observables that are linear in the stateρ = |ψ〉〈ψ|,
when averaged over many trajectories with different measurement outcomes, do not reveal
any information on the phase transition or the critical state. Rather they are completely fea-
tureless. In order to detect the features of a hybrid evolution protocol theoretically, one needs
access to observables that are non-linear in the state, such as the entanglement entropy or
certain types of connected correlation functions [37,40,44]. Averages of such observables still
contain non-trivial knowledge of the state, despite the presence of this large configurational
entropy. However, nonlinear observables are significantly more difficult, and mostly impossi-
ble, to detect experimentally. Quite generally, this sets a big challenge for the experimental
detection and classification of measurement-induced dynamics. For the specific choice of a
Clifford circuit-based evolution, i.e. for stabilizer codes, recent proposals [51, 82] for, and
one realization [71] of the experimental detection make use of feedback protocols, which re-
duce the configurational entropy to a minimum. However, the proposed protocols so far only
work for the particular case of Clifford circuits, while general detection schemes have yet to
be established. In terms of experimental detection, our work follows a different approach
and we propose the characterization of the correlations and the entanglement structure of the
measurement-induced quantum states based on the recorded measurement outcomes, which
is feasible for Gaussian states.

1.2 Synopsis

Before delving into the detailed analysis, we give a brief synopsis of our work. We start with
Sec. 2.1, where we provide a review of the unitary part of the evolution protocol, the free boson
CFT. We will introduce it in the language of continuous variables [83–85], with a special focus
on the covariance matrix, which hosts all the information on correlations in Gaussian systems,
and which will be at the heart of our analysis. We then move on to discuss in Sec. 2.2 a spe-
cial construction of the stochastic Schödinger equation, which describes the evolution of a state
under both continuous unitary time evolution and continuous weak measurements. This is a
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non-linear stochastic equation of motion for the quantum trajectories, describing the evolution
conditioned on the measurement outcomes. This framework is then straightforwardly gener-
alized to imperfect measurements in Sec. 2.3. Equipped with this preliminaries we then intro-
duce the notion of Gaussian measurements, which are bilinears in the bosonic field operators,
so the hybrid evolution remains in the manifold of Gaussian states. The resulting equations
of motion are found in Sec. 3.1, and they are analogous to equations well known in classical
control and estimation theory. Therefore, we will refer to them as the free boson Kalman filter.
As a key consequence, in this framework the equation of motion for the covariance matrix,
a priori non-linear and stochastic, becomes non-linear but deterministic, and is described by
a matrix Riccati differential equation. This implies that properties which inherit from the co-
variance matrix like correlations and the entanglement (see Sec. 3.2) are independent of the
measurement-noise, and their values for an individual trajectory are identical to the trajectory
average. Furthermore the steady state is obtained from solving an algebraic equation. Given
the steady state, we show in Sec. 3.3, that the asymptotic (purification) dynamics are found
from linearizing the Riccati equation, giving rise to an effective non-hermitian Hamiltonian
governing these.

We go on by constructing a first exactly solvable example of the measurement-induced
dynamics in Sec. 4.1, where the continuously measured operators are an extensive set of linear
combinations of the bosonic field operators. In Sec. 4.2 we focus on the simple limit where
the fields at every site are measured and show that this scenario breaks the underlying scale
invariance of the free boson CFT. This gives rise to an effective measurement-induced mass
and consequently to fast (system size independent) relaxation and purification, short range
correlations and area law entanglement (see Sec. 4.2.1-4.2.3). We then turn in Sec. 5.1, to
the limit where linear combinations of the canonical conjugate of the bosonic field operators
are measured in extensively many sites. In the limit where measurements are given by the
momentum operators at every site, the steady state remains conformally invariant but strongly
differs from the ground state of the free boson CFT. We coin this phenomenon measurement-
enriched criticality and introduce it in Sec. 5.2. The key signatures are algebraic real space
correlations, slow (system size dependent) relaxation and logarithmic entanglement growth;
furthermore prefactor of the logarithmic entanglement scaling is increased, in contrast to the
free boson CFT upon introducing the measurements (see Sec. 5.2.1-5.2.3). In Sec. 6.1 we
numerically explore a setting where the linear combinations of the field measurements are
highly non-local and drawn from a Gaussian random matrix ensemble. We present evidence
that the resulting correlations functions decay exponentially and relax quickly (see Sec. 6.2-
6.3). In contrast to Sec. 4 we find a volume law entanglement in the steady state.

Finally, in Sec. 7 we review the experimental difficulties of observing measurement-induced
phases and criticality in general. We discuss that the conventional approach of averaging over
many experimental runs erases many subtleties of the conditioned dynamics. For instance
several quantities, such as the entanglement entropy for a single trajectory, which are often
discussed in this context, are not accessible from such measurements. In Sec. 7.2 we then show
how, within the framework of Gaussian measurements, the full covariance matrix, conditioned
on the measurement outcomes, may be reconstructed from the measurement records only. This
enables the determination of a large set of measurement-induced characteristica, including
entanglement, from the measurment record. The detailed derivations and calculations are
provided in the Appendices A-E.
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2 Setup

2.1 Free Boson Conformal Field Theory

We consider an elementary model for quantum critical behavior in one dimension: the free
boson CFT [12]. It describes the dynamics of the massless, free Klein-Gordon field Φ(x) in
(1+ 1) dimensions via the Hamiltonian

H =
v
2

∫
L
2

− L
2

dx
�

Π2(x) + (∂xΦ(x))
2
�

. (1)

Here, we assume periodic boundary conditions, Φ(x + L) = Φ(x), and a group velocity v. The
field Π(x) is conjugate to Φ(x) and they obey the commutation relation
[Φ(x),Π(y)] = iδ(x − y), which implies Π(x) = 1

v∂tΦ. In the following, we work in dis-
crete space and consider the ultraviolet (UV) completion of the theory in Eq. (1) by putting
the field on a lattice with lattice spacing a. This maps the continuous fields onto a discrete
chain of N = L/a bosonic modes with operators Φ(x) → Φi and Π(x) → Πi/a, which sat-
isfy [Φi ,Π j] = iδi j.. The corresponding Hamiltonian describes a chain of coupled harmonic
oscillators

H =
ω

2

N
∑

j=1

Π2
j + (Φ j+1 −Φ j)

2 + r2
NΦ

2
i =

ω

2
s> hs , (2)

with the ‘spring constant’ ω = v/a. Here, we added a small effective mass, rN =
Ω
ωN , with

Ω�ω, which regularizes the zero-mode of the spectrum at momentum k = 0, enabling well-
defined inverse H−1. The regularization scales with the system size like the finite size gap
∆ε= εk1

− εk=0 = O(N−1).
The Hamiltonian is a quadratic form and can be expressed in terms of the 2N -dimensional

vector s = (Φ1, . . . ,ΦN ,Π1, . . . ,ΠN )> and the 2N × 2N Hamiltonian matrix h

h= vN ⊕ 1N , (vN )i j = (2+ r2
N )δi, j −δi−1, j −δi+1, j , (vN )1,N = (vN )N ,1 = −1 . (3)

The matrix h is a direct sum, including the lattice Laplacian (vN )i j with periodic boundary con-
ditions. In vector notation, the canonical commutation relations can be expressed in a com-
pact way by using a vector commutator (anti-commutator) defined by [A, B>] = AB> − BA>

({A, B>}= AB> + BA> ). This yields

[s , s>] = iJ , with the symplectic form J =

�

0N 1N
−1N 0N

�

. (4)

The free boson CFT is quadratic and therefore any Gaussian state remains Gaussian under time
evolution. For Gaussian states, all information about the system is encoded in the linear and
quadratic moments of the vector s , and higher moments can be derived from Wick’s theorem.
The linear moments are given by the average 〈s〉, and the quadratic moments are collected in
the symmetric covariance matrix

σ =
1
2
〈{s , s>}〉 − 〈s〉〈s〉> =

1
2
〈{(s − 〈s〉), (s − 〈s〉)>}〉=

�

σΦΦ σΦΠ
σΠΦ σΠΠ

�

, (5)

where {s , s>} is the vector anti-commutator defined above. The covariance matrix σ contains
all possible two-point correlation functions.

For a general Gaussian initial state, the time-evolution of the first and second moments is
given by the equation of motion

〈ṡ〉t = Jh〈s〉t , (6)

σ̇ t = Jhσ t +σ t(Jh)> . (7)
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For the ground state of the free boson CFT, all the linear moments vanish, 〈s〉 = 0. The
covariance matrix for the ground state is independent of the frequency ω and has a block
structure (see [86] and App. A),

σGS =
1
2
(v−1/2

N ⊕ v1/2
N ) . (8)

2.2 Stochastic Schrödinger Equation for Continuous Measurements

In order to study the effect of measurements on the free boson CFT, we subject the dynamics
to continuous, weak measurements of a set of mutually commuting observables {Ol}. These
are represented by Hermitian operators Ol = O†

l , and suitable choices shall be discussed later.
We model the measurement-induced evolution of the wave function in the quantum state
diffusion framework [87–90]. In this framework, the operators Ol are not measured directly
but coupled to an auxilliary system, a meter, which is then read out stroboscopically at time
intervals dt.

For each time interval dt, the update of the wave function d|ψt〉c ≡ |ψt+dt〉c − |ψt〉c is
described by the stochastic Schrödinger equation (SSE)

d|ψt〉c =

�

−iHdt −
∑

l

γl

2

�

Ol − 〈Ol〉c,t

�2
dt +

∑

l

p

γl(Ol − 〈Ol〉c,t)dWl,t

�

|ψt〉c . (9)

Here, γl are the measurement strengths, i.e., the rates at which the continuous readout of ob-
servable Ol changes the state over time. The nonlinear and probabilistic nature of the measure-
ment evolution appear in the quantum state diffusion via the dependence on the instantaneous
quantum mechanical expectation value 〈Ol〉c,t = 〈ψt |Ol |ψt〉c and the Wiener process dWl,t .
The latter is a δ-correlated white noise, which has zero mean, E (dWl,t) = 0, and variance
E (dWl,tdWm,t ′) = δ(t − t ′)δl,mdt.

The SSE combines the unitary Hamiltonian time evolution with the infinitesimal update
due to continuous measurements. Each term ∼ Ol−〈Ol〉c,t pushes the state closer to an eigen-
state of the measured operator Ol , and is annealed in an eigenstate with Ol |ψt〉= 〈Ol〉c,t |ψt〉c .
If the operators Ol are pairwise commuting, [Ol , Om] = 0, then there exists a set of joint
eigenstates. In the absence of a Hamiltonian, H = 0, the system continuously involves (col-
lapses) into such an eigenstate, which is compatible with the initial conditions. If, however,
H is nonzero and does not commute with the measurement operators [H, Ol] 6= 0, the unitary
evolution competes with the measurements and prevents an asymptotic collapse of the wave
function.

We will now briefly motivate the form of the SSE from a rigorous formulation of weak
measurements [73,74,76,91]. For simplicity, we focus on single observable O. Without spec-
ifying the microscopic realization of the auxiliary system, i.e., the meter, we expect that after
each measurement of the meter we receive an outcome in terms of a number It , which we call
‘current’. The measurement setup shall be designed in such a way that the overlap between
the state |ψt〉 and an eigenstate O|λO〉 = λO|λO〉 of the observable is given by a Gaussian
|〈ψt |λO〉|2 ∼ exp(−α(It −

γ
2λO)2), whose center is determined by the current It (for some

α > 0). Formally, this is expressed by a set of positive operators {EIt
} with

EIt
=
�

8dt
πγ

�
1
4

exp
�

−
4dt
γ

�

It −
γ

2
O
�2�

, (10)

with the completeness relation
∫

dIt E†
It

EIt
= 1. After measuring the outcome It , the state

is [73]

|ψt+dt〉c =
e−iHdt EIt

|ψt〉c
‖EIt
|ψt〉c‖

. (11)
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The probability for measuring a specific value It is Pr(It) = c〈ψt |E
†
It

EIt
|ψt〉c , which yields the

average E (It) =
∫

dIt ItPr(It) =
γ
2〈O〉c,t and the variance E(It − E(It))2 =

γ
16dt . Since EIt

is
Gaussian, It is equivalent to an Itō random process

Itdt =
γ

2
〈O〉c,tdt +

1
4
p
γdWt , (12)

with the Wiener increment dW 2
t = dt, see App. B.1. The SSE for the quantum state diffusion

process is obtained from Eq. (11) by sending dt → 0 and expanding EIt
up to order dt [for

details see App. B.2].
Equation (9) is the conventional form of the SSE, for the dependence on the measurement

outcomes It appears only implicitly. In order to make it explicit, one may solve Eq. (12) for the
Wiener increment dWt and then insert the solution back into Eq. (9). Reinstating the index l
this yields

d|ψt〉c = dt

�

−iH −
∑

l

γl

2

�

Ol − 〈Ol〉c,t

�2 − 4
∑

l

(Ol − 〈Ol〉c,t)
�

Il,t −
γl

2
〈Ol〉c,t

�

�

|ψt〉c . (13)

This evolution equation has the following, appealing interpretation: Given that the Hamilto-
nian H, the measurement operators Ol , the rates γl , the current state |ψt〉c and the measure-
ment results Il,t are known, then the evolution step t → t + dt in Eq. (13) is deterministic.
By recording the stream of currents Il,t and by feeding it into the SSE, one can therefore track
the evolution of the state [92, 93]. Precisely this identity is the idea behind the experimental
detection scheme, that we discuss in Sec. 7.1.

2.3 Imperfect Measurements and Unconditioned Evolution

The SSE in (9) predicts that weak continuous measurements preserve the purity of the wave
function. Indeed, a complete readout of the auxiliary system at each infinitesimal time step dt
suppresses any build-up of entanglement between the state |ψt〉c and the meter, and ensures
that the state remains pure. In reality, however, the measurement process may be imperfect,
for instance due to unwanted interactions with an external bath or an incomplete readout.
This will foster the wave function to start entangling with the environment, and the state to
become impure. Here, we revisit the description for a continuous measurement evolution with
imperfect measurements. This yields a stochastic master equation (SME), which we will use
in the following sections in order to discuss the impact of imperfect measurements on both
the measurement-induced dynamics, including the critical properties of the system, and on
potential observables.

An incomplete measurement of the operator O is commonly described by coupling O si-
multaneously to two different meters, one which is read out (i.e., subject to a perfect measure-
ment), and another one which is not read out [73–76]. No information is collected from the
latter and the state must be described by a statistical ensemble including all measurement out-
comes, i.e. the statistical average over all measurement outcomes of the second meter. To per-
form the average, we consider the conditioned density matrix ρc,t = |ψt〉c〈ψt |. Its evolution
equation is obtained from the Itō convention dρc,t = d|ψt〉c〈ψt |+ |ψt〉cd〈ψt |+ d|ψt〉cd〈ψt |
in combination with the SSE in Eq. (13). Before averaging over the second meter, the master
equation is [74]

dρc,t = −i[H,ρc,t]dt −
γ1 + γ2

2
[O, [O,ρc,t]]dt +

∑

j=1,2

p

γ jdWj,t{O− 〈O〉,ρc,t} . (14)

Here, the γ j and the dWj,t are the measurement strengths and the Wiener increments for the
perfect (unread) measurement j = 1 ( j = 2). The Wiener increments for the two different
meters are uncorrelated.
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The imperfect measurement, i.e., the average over the outcomes of the second meter, is
equivalent to the average over dW2,t , eliminating it from Eq. (14). Introducing the total mea-
surement strength γ= γ1+γ2 and the measurement efficiency η= γ1/γ, this yields the partially
averaged SME (generalized to a set of measurement operators {Ol})

dρc,t = −i[H,ρc,t]dt −
∑

l

γl

2
[Ol , [Ol ,ρc,t]]dt +

∑

l

p

ηlγl{Ol − 〈Ol〉,ρc,t}dWl,t .(15)

In the limit of a perfect measurement (η = 1) this evolution leaves ρc,t in a pure state,
while imperfect measurements (η < 1) immediately destroy the purity of the state, thereby
acting in a similar way as a regular bath. For η= 0 one finds the purely deterministic quantum
master equation of the unconditioned evolution [94]

ρ̇t = Lρt with Lρt = −i[H,ρt]−
∑

l

γl

2
[Ol , [Ol ,ρt]] , (16)

where all the jump operators Ol are hermitian and ρt = Eρc,t . This limit is then equivalent to
the coupling of the system to a Markovian dephasing bath.

3 Gaussian measurements

The SSE (9) and the SME (15) provide the theoretical description for a general continuous
measurement scenario, including an interacting Hamiltonian and arbitrary measurement op-
erators Ol . Solving for the nonlinear and stochastic measurement-induced evolution is gen-
erally demanding and in most cases analytically intractable. For this reason, exactly solvable
reference systems, for which the steady state solution is known are rare [13,51,52].

Here we introduce an analytically solvable setup, the Gaussian measurement [73, 74]. It
describes the evolution of a state under the quadratic Hamiltonian Eq. (2) and linear measure-
ment operators. The central object of the theory will be the connected two-point correlation
function, or covariance matrix, σc,t . It plays a central role for this setup because (i) for Gaus-
sian measurements it follows a closed, deterministic evolution equation, which is analytically
solvable, and (ii) due to the Gaussian nature of the evolution (enabling Wick’s theorem), all
higher order connected correlation functions can be expressed uniquely by the covariance ma-
trix. The Gaussian measurement represents an extension of Gaussian theories, existing for
both pure and mixed states, to a continuous measurement scenario. This provides a paradig-
matic model for quantum criticality in the presence of measurements, similar to Gaussian
Hamiltonians (Lindblad master equations) for closed (open) systems.

3.1 Gaussian Evolution and Linear Measurements

First, we provide the formal solution for a general Gaussian measurement scenario, which
consists of a quadratic Hamiltonian H and a general set of Nm linear measurement operators
Ol . They have unique expression in terms of the bosons via hermitian (real) matrices h (M),

H =
2N
∑

i, j=1

hi jsis j and Ol =
2N
∑

j=1

Ml js j . (17)

The SSE in Eq. (9) then is at most quadratic in the operators si , and therefore preserves the
Gaussian nature of a state under time evolution. The conditioned density matrix
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ρc,t = |ψt〉c〈ψt | of a Gaussian state is also of the Gaussian form

ρc,t = ρc,t[〈s〉c,t ,σc,t] =
1

Zc,t
exp

�

−(s− 〈s〉c,t)
>Hc,t(s− 〈s〉c,t)

�

. (18)

Here, Hc,t denotes the quadratic, modular Hamiltonian, which is connected to the conditioned
covariance matrix, via the identity σc,t =

1
2 coth(iJHc,t/2)iJ [95]. According to Eq. (5),

the covariance matrix is σc,t =
1
2Tr({s − 〈s〉c,t , (s − 〈s〉c,t)>}ρc,t), with the first moments

〈s〉c,t = Tr(sρc,t). The partition function Zc,t =
Æ

Det(σc,t + iJ/2) guarantees that
Tr(ρc,t) = 1. While the density matrix in Eq. (18) looks appealing, one should recall that
it is conditioned on a single trajectory |ψt〉c and that Zc,t , 〈s〉c,t and Hc,t are time-dependent,
stochastic quantities.

Instead of computing ρc,t , a more suitable approach for measurement-induced dynamics
is to focus directly on the connected correlation functions σc,t from Eq. (5) [40, 62, 96]. As
a key feature of Gaussian measurements, the evolution of σc,t becomes independent of the
measurement outcomes It , i.e., it is noise-free, and therefore does not depend on individual
trajectories. The time-evolution of 〈s〉c,t and σc,t is obtained by applying the SME in Eq. (15)
(see App. C.1), yielding the equations, which we will refer to as the free boson Kalman filter,

d〈s〉c,t = Jh〈s〉c,tdt + 2σc,t M
>pηΓdW t , (19)

σ̇c,t = Jhσc,t +σc,t(Jh)> + J M>ΓMJ> − 4σc,t M
>ηΓMσc,t . (20)

Here dW t = (dW1,t , . . . , dWNm,t)> is the vector of Wiener increments obeying the Itō rule
dW tdW>

t = 1Nm
dt. The measurement strength and efficiency is encoded in the diagonal

matrices Γ = Diag(γ1, . . . ,γNm
) > 0 and η = Diag(η1, . . . ,ηNm

) > 0, which we allow to be
different for each measured operator Ol , l = 1, ..., Nm. Within this general framework, the
measurement outcomes, as in Eq. (12), follow a Wiener random process

I t =
1
2
ΓM〈s〉c,t +

1
4

√

√ Γ

η
ξt , (21)

with the vector of outcomes I t = (I1,t . . . , INm,t)>, M〈s〉c,t = 〈O〉c,t and ξt =
dW t
dt .

The evolution of the first moments in Eq. (19) is stochastic, but the second moments in
Eq. (20) do not depend on dWt and thus are deterministic. We emphasize that this result is
obtained without performing a stochastic average. Rather the stochastic terms in the evolution
equation of σc,t , all appear as cubic powers of boson operators and their quantum mechanical
averages add up to zero in a Gaussian state (due to Wick’s theorem, see App. C.1). This yields
a nonlinear but closed evolution equation, which is of the Riccati form [97]. It has in general
a unique and well-defined steady state [98]. (In App. C.2 an alternative argument for the
deterministic evolution is discussed.)

The deterministic evolution of σc,t has very important consequences: as long as one re-
mains in the Gaussian manifold, Wick’s theorem can be applied to express any correlation
function, i.e., containing arbitrary powers in the boson fields, in terms of 〈s〉c,t and σc,t . How-
ever, since Eq. (20) predicts that σc,t is deterministic, the only stochastic elements entering
higher order correlations are terms ∼ 〈s〉c,t . For connected correlators, these terms, however,
appear at most to linear order. Therefore, any steady state correlation function can be ex-
pressed in terms of σc,t and, at most, a linear trajectory average of ∼ 〈s〉c,t . One consequence,
which will be crucial later on, is that for any n ∈ N,

E (σn
c,t) = σ

n
c,t . (22)
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In case of imperfect measurements the non-linear part of Eq. (20) is suppressed with de-
creasing measurement efficiency η < 1. In the extreme limit η = 0, the non-linearity disap-
pears, which yields a linear equation of motion for the covariance matrix. This is known as
the Lyupanov equation. It is equivalent to the covariance matrix for the unconditioned state,
ρt = Eρc,t , which obeys Eq. (16).

The equation of motion Eq. (20) has a unique steady state σ ≡ σc,t→∞, which is inde-
pendent of the initial conditions σc,t=0 and, importantly, is the same for each trajectory. We
therefore drop the index for the conditioned evolution in the following. The steady state obeys
time-translational invariance, σ̇ = 0, such that Eq. (20) yields

0= Jhσ +σ(Jh)> + J M>ΓMJ> − 4σM>ηΓMσ . (23)

Before we discuss the steady state solution of Eq. (20) for particular cases, we add that
a similar set of equations emerges in the Kalman filter from classical control and estimation
theory [98–101]. This connection is discussed in App. C.3-C.4. The Kalman filter has also been
applied to sensing [102–104] and measurement based feedback control in quantum optics for
single particle systems [74, 76, 92, 93, 105, 106]. Here we generalized the Riccati equation
to Gaussian measurements in a many-body framework beyond [107, 108], which enables an
analytical solution for the measured free boson CFT for different kinds of measurements.

3.2 Entanglement and Logarithmic Negativity

A convenient tool for the characterization of measurement-induced dynamics and a quantifier
for how close the state ρc,t is to a product state, is the entanglement between a (connected)
subsystem A= {1, . . . , nA < N} ⊂ L and its complement Ā= L \ A, where L denotes the list of
all sites. In case of perfect measurements (η = 1) the steady state is pure and a convenient
measure for the entanglement of the state are the n-th order Rényi entropies and the von Neu-
mann entanglement entropy [14,15,61]. We want to perform an entanglement classification
for both dynamics in the presence of perfect and imperfect measurements (η < 1). The latter
yields a mixed steady state for which the notion of entanglement is more subtle [63,109,110].
We will focus on the logarithmic negativity NA[ρ] [64,65], which is generally (besides known
exceptions [111–113]) a good measure for entanglement in mixed states. In the limit of
a pure state ρ2 = ρ, the logarithmic negativity becomes the 1

2 -Rényi entanglement entropy

NA[ρ] = S(1/2)A [ρ] = 2 lnTr(ρ1/2
A ). The logarithmic negativity with respect to the subregion A

is
NA[ρ] = ln Tr(|ρ>Ā|) , where 〈iA, jĀ|ρ>Ā|kA, lĀ〉= 〈iA, lĀ|ρ|kA, jĀ〉 (24)

denotes the partial transposition with respect to A, where we used |iA, jĀ〉 ∈ HA ⊗HĀ. For a
Gaussian density matrix ρ[〈s〉,σ], the logarithmic negativity only depends on the covariance
matrix σ [83–85].

In order to compute NA[ρ] for a Gaussian state [83,84], first the partial transposition for
the covariance matrix is performed,

σ̃ = TĀσTĀ with TĀ = 1N ⊕ (1A⊕ (−1Ā)). (25)

Then, the partially transposed covariance matrix σ̃ is diagonalized according to the Williamson
decomposition (i.e. a symplectic transformation S with S>JS = J)

σ̃ = SDS> with D = Diag(ν̃1, ν̃1, . . . , ν̃N , ν̃N ) . (26)

The logarithmic negativity then is

NA[σ] =
N
∑

n=1

ln max
§

1,
1

2ν̃n

ª

. (27)
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Here, we focus on the half-chain logarithmic negativity, i.e., the subset A = 1, . . . , N/2
with N being the length of the full system. Commonly, one distinguishes three characteristic
scenarios (neglecting a constant offset) [86,114,115]

NA[σ] =











a · N0 “area law”
c
2 ln(N) “critical”

b · N “volume law”

. (28)

The ‘critical’ scenario typically appears for the ground state wave function of a critical (confor-
mally invariant) theory. In this case the prefactor c is the central charge, which is a universal
property of the underlying CFT, and c = 1 in the case of free bosons. In the measurement-
induced dynamics, we will encounter the situation, where the entanglement entropy obeys
critical scaling even though the system is not in the ground state.

Determining the logarithmic negativity from the covariance matrix is particularly appealing
for continuous Gaussian measurements since σc,t is a deterministic quantity. The same is
true for the partially transposed covariance matrix σ̃c,t and, consequently, for the logarithmic
negativity:

ENA[σ] =NA[Eσ] =NA[σ] . (29)

This result may a priori be surprising: For a stochastic quantity, such as ρc,t (Eq. (18)), and an
arbitrary function f , one generally finds the inequality E f (ρc,t) ≤ f (Eρc,t). The logarithmic
negativity of a Gaussian state is an important example, for which the inequality is tight. The
reason is that the fluctuating first moments of the density matrix in Eq. (18) do not enter its
computation. A similar result in Eq. (29) has been derived recently also in a Gaussian replica
field theory for measurement-induced dynamics for Rényi entanglement entropies in Ref. [40].
It is a special property of Gaussian measurements and does not hold for general measurement
setups [14,51,52,61,116].

3.3 Relaxation, Riccati Spectrum and Purification

Besides the entanglement structure, measurement-induced phases can be characterized by
their relaxation towards the steady state [40,77]. In our setup, the relaxation can be inferred
from a set of conditioned observables 〈O〉c,t , e.g., from the outcomes of the continuous mea-
surements. By taking the Fourier transform, Õ(ν) =

∫

dteiνt〈O〉c,t we obtain the correspond-
ing power spectrum S(ν, O) ≡ |Õ(ν)|2, which depends on the observable O and the system
size N . The power spectrum is characterized by its poles λn ∈RN ,O, with λn = −κn± iεn, and
κn > 0 due to stability. The real part κn ≥ 0 describes the relaxation back towards the steady
state, while the imaginary part leads to coherent oscillations with frequency εn. Focusing on
finite size systems, the poles are separated by a finite size gap and there will be no branch
cuts. We consider the spectrum of the problem to be the union of the poles Rspec,N = {RN ,O}O
with respect to all possible observables. For a deterministic, Hamiltonian (Lindbladian) time
evolution, Rspec,N then coincides with the spectrum of the Hamiltonian (Lindbladian). Due to
the additional nonlinear dependence of the measurements on the state ρc,t , the measurement-
induced spectrum may in general also be state-dependent.

For the free boson Kalman filter, the relaxation is described by the Riccati equation (20),
which is generally nonlinear in the covariance matrix. However, since the steady state of
the Riccati equation is unique, the asymptotic relaxation t → ∞ becomes largely indepen-
dent of the initial state. In particular, if one considers small perturbations δσc,t = σc,t −σ
around the steady state, their relaxation is well-described by the linearized equation. For small
‖δσc,t‖ � ‖σ‖, we then expand Eq. (20) up to first order in δσc,t . This yields

δσ̇c,t ' Jheffδσc,t +δσc,t(Jheff)
>, with heff = h+ 4JσM>ηΓM . (30)
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The structure is reminiscent of the Hamiltonian evolution of Eq. (7) but now with an effective,
i.e. non-hermitian, Hamiltonian h>eff 6= heff which depends on state steady state. The eigen-
values λn ∈ RRicc,N = spec(Jheff) are complex λn = −κn ± iεn and we will refer to it as the
Riccati spectrum. At sufficiently late times, when the covariance matrix is close to the steady
state, the Riccati spectrum equals the previously defined operator spectrum RRicc,N =Rspec,N
(each operator can be expressed in terms of the covariance matrix). The asymptotic relaxation
timescale τ−1

relax = min{κn : n} is then determined by the inverse of the smallest relaxation
rate. For perfect measurements η = 1 the relaxation time will reduce to the purification time
τrelax→ τpure [77,82].

4 Measurement-Induced Loss of Criticality

The free boson CFT described by the Hamiltonian in Eq. (2) describes a critical, scale invariant
system. One potential consequence of performing weak continuous measurements is the vio-
lation of scale invariance, and the associated loss of critiality, in the dynamics. The violation of
scale invariance is then associated with the generation of a (mass) scale from measurements.
We will now discuss one possible scenario where this occurs: The continuous observation of
the fields Φi . Before we consider an explicit scenario, we start with a general measurement,
which involves the fields {Φi} but not {Πi}. It is expressed by N measurement operators of
the form Oi =

∑

j(mφ)i jΦ j , where mφ is still an arbitrary N × N matrix. We will then focus
below on a choice of mφ that breaks the discrete scale invariance of the stochastic Schrödinger
equation, and thereby generates an effective, measurement-induced mass.

4.1 Φ-Measurements

The general solution for measurements of the operators Oi defined above can be obtained
readily from the free boson Kalman filter, Eq. (20). The measurement operators above then
correspond to the matrix

M =
�

mφ 0
�

. (31)

The measurement efficiencies and rates are η = Diag(η1, . . . ,ηN ) and Γ = Diag(γ1, . . . ,γN ).
In terms of the submatrices σαβ = (σ)αβ (with α,β = Φ,Π) the Riccati equation yields the
steady state solution

(Φ,Φ) : 0 = ω(σΠΦ +σΦΠ)− 4σΦΦµmσΦΦ , (32)

(Φ,Π) : 0 = ω(σΠΠ −σΦΦvN )− 4σΦΦµmσΦΠ , (33)

(Π,Π) : 0 = γm −ω(vNσΦΠ +σΠΦvN )− 4σΠΦµmσΦΠ . (34)

Here, we defined γm = m>
φ
Γmφ and µm = m>

φ
ηΓmφ . Equation (34) contains only σΦΠ (and

σΠΦ = σ>ΦΠ) and can be solved (for details see App. D). The solution of σΦΦ and σΠΠ is then
readily obtained from the remaining equations, which yield

σΦΠ = −
ω

4
µ−1

m vN +
1
2
µ
− 1

2
m

�

γm +
ω2

4
vNµ

−1
m vN

�
1
2

, (35)

σΦΦ =
p
ω

2
µ
− 1

2
m (σΦΠ +σΠΦ)

1
2 , (36)

σΠΠ =
�

vN +
4
ω
σΠΦµm

�

σΦΦ , (37)

where the matrices µ−1
m and µ

− 1
2

m are the (pseudo-) inverse of µm and µ
1
2
m.
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4.2 Measurement-induced mass

Now we consider the specific choice Oi = Φi for the measurement operators. It breaks the
discrete scale invariance of the stochastic Schrödinger equation (9) and for identical γi = γ
and ηi = η0 it yields the matrices

mφ = 1N , η= η01N and Γ = γ1N . (38)

For this uniform distribution of measurement rates, the system still possesses discrete trans-
lational invariance, and it is convenient to express the covariance matrix in Eqs. (35-37) in
momentum space, σαβ(q, k) = δ(q+ k)σαβ(q), with q ∈Q = [−π,π]. This yields:

2η0γσΦΠ(q) =

�

η0γ
2 +
ω2

4
sin4(q/2)

�
1
2

−
ω

2
sin2(q/2) , (39)

σΦΦ(q) =

√

√ωσΦΠ(q)
2γη0

, (40)

σΠΠ(q) =
�

sin2(q/2) +
4η0γ

ω
σΦΠ(q)

�

σΦΦ(q) . (41)

This result is consistent with [107,108] where coarse grained continuous measurements of a
Bose-Einstein condensate were proposed for imaging and the backaction on the Bogoliubov
modes was analyzed in detail.

4.2.1 Purity

In order to understand the impact of monitoring on the steady state ρc,t→∞, we start with an
analysis of its purity. For a Gaussian state, the purity is computed from the covariance matrix
via [83–85]

− lnTr(ρ2
c,t→∞) = ln Det(2σ) = S2[σ], (42)

where S2[σ] is the second Rényi entropy. In the steady state described by Eqs. (40-41), each
momentum mode contributes one eigenvalue 1

η0
, and therefore

S2[σ] = −
N
2

lnη0 . (43)

For a perfect measurement setup η0 = 1 and the state remains pure under the stochastic
evolution. For η0 < 1, however, the system evolves into a mixed state and the impurity scales
extensively in the size ∼ N . For mixed steady states, the n≥ 1 Rényi entropies serve no longer
as good quantifiers for the measurement-induced dynamics [17] and we therefore make use
of the logarithmic negativity.

4.2.2 Riccati Spectrum and Relaxation

The measurement-induced evolution approaches a unique steady state σ, which is indepen-
dent of the initial state. At large times, the asymptotic relaxation towards σ is described by
the effective Hamiltonian heff in Eq. (30). The first consequence of the measurement-induced
violation of scale invariance is the generation of a relaxation scale κ > 0. It appears as a mass
(or gap) in the spectrum of heff and imposes a rapid, exponential relaxation towards the steady
state.

For the steady stateσ from Eqs. (39-41) the effective Hamiltonian does not couple different
momentum sectors and can be expressed for each momentum mode q individually,

Jheff = Jh− 4σ0M>ηΓM =

�

−4σΦΦ(q)η0γ ω

−ω sin2(q/2)− 4σΠΦ(q)η0γ 0

�

. (44)
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Figure 2: (a) Riccati spectrum RRicc,N for Φ-field measurements and for different
measurement strengths γ. Markers correspond to results obtained from a numerical
diagonalization of Eq. (30) with finite N = 30 and η0 = 1; the dashed lines corre-
spond to the analytical result from Eq. (45). The predominant feature is an emerging
gap in the imaginary part of the eigenvalues corresponding to the measurement-
induced mass. (b) Numerical simulation of the conditioned dynamics of the field
fluctuations at i = N/2 after a mass quench r = Ω/ω= 10 and η0 = 0.9 for different
system sizes N . The inset shows the power spectrum for different system sizes N ,
where a trivial ∼ δ(ν) has been omitted. (c) Steady state real space field correla-
tions σΦlΦ j

for η0 = 1 and N = 1000 with periodic boundary conditions for different
measurement strengths γ. The solid lines correspond to exact numerical results ob-
tained from the solution of Eq. (23). The dashed lines correspond to the approximate
analytical result of Eq. (48). (d) Real space correlations σΦlΦ j

under measurement
imperfections for γ/ω= 0.1 (blue line in (c)) and different η0. Solid (dashed) lines
corresponds to exact (approximate) results.

It has complex eigenvalues

λ(q) = −κ(q)± iε(q) with ε(q) =
Æ

κ2(q) + h2(q) , (45)

which are composed of the relaxation rate for momentum q, κ2(q) = 2η0γωσΠΦ(q), and the
free boson dispersion h(q) = 2ω| sin(q/2)| shown in Fig. 2(a). Here, the largest (smallest)
decay rates correspond to the long (short) wavelength modes q→ 0 (q→±π),

κ0 = lim
q→0

κ(q) =ω
q

p

η0γ/ω , (46)

κπ = lim
q→±π

κ(q) =ω
r

q

(γ/ω)2η0 + 4− 2< κ0 . (47)
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Both rates κπ and κ0 are independent of the system size N , which leads to an exponential decay
of any perturbation in the thermodynamics limit N →∞. The same measurement-induced
gap scale also enters the coherent oscillation frequency ε(q) thereby generating an effective
measurement-induced mass m0 = κ0/ω, which will have consequences for the static properties
like the correlations. The slowest relaxation time scale is size independent τrelax = κ−1

π ∼ N0.
This matches the measurement-induced purification dynamics for a system in an area law
phase described in Refs. [77, 82], where for perfect measurements a pure state is reached on
a timescale which is independent of the system size.

The gap κ(q) remains robust also for imperfect measurements 0< η0 < 1. Upon decreas-
ing the efficiency η0 both rates κ0,π are reduced and the steady state is approached slower.
The relaxation rate vanishes in the limit η0 → 0 in which a fully mixed state is approached.
Imperfect measurements thus suppress the relaxation towards the steady state.

The measurement-induced relaxation scale κ(q) can be measurement in an experiment,
for instance by monitoring the relaxation of an observable O towards its steady state value. In
general, the relaxation scale should enter any observable but for concreteness we consider the
ΦΦ-covariance, (σc,t)ΦiΦi

with i = N/2. It can be obtained from the collected measurement
outcomes {I t}, see Sec. 7.2. We implement a setup, in which we start from the ground state
σc,t=0 = σGS,r of a gapped oscillator chain in Eq. (2), with a finite mass rN → r = Ω/ω.
Then the mass is suddenly set to zero and a continuous monitoring according to Eq. (38) is
implemented. We then track the relaxation of (σc,t)ΦiΦi

over time, which is plotted in Fig. 2(b).
The power spectrum is depicted in the inset of Fig. 2(b) and shows that the relaxation is system
size independent. From the power spectrum the dominant poles λn for this special quench can
be extracted and their finite size scaling is shown in the inset of Fig. 3(d). These poles match
the predictions of the Riccati spectrum RRicc,N and demonstrate that the relaxation rate to the
steady state is system size independent, as predicted by the relaxation scales κ(q).

4.2.3 Correlation Functions and Entanglement

The measurement-induced mass not only sets a relaxation time scale but also a correlation
length, which appears, e.g., in the covariance matrix. We illustrate this for the correlation func-
tion σΦlΦ j

between the modes Φl and Φ j , for which the steady state is provided by Eq. (40).
In order to approximate its Fourier transform into real space, we provide an analogy to the
ground state of the hermitian Hamiltonian H with dispersion h(q): then the real space cor-
relation function in the ground state is (σGS)ΦlΦ j

= ω
4π

∫

Q dqe−iq|l− j|/h(q). In the presence of
measurements, the covariance matrix, instead of being a ground state, then corresponds to the
dark state of the effective Hamiltonian heff. It has a modified dispersion h(q)→ ε(q), displayed
in Eq. (45). To probe how physical this spectral information is we attempt the ansatz

σΦlΦ j
=
ω

4π

∫

Q
dq

eiq|l− j|

ε(q)
'

1
2π

K0(κ0|l − j|/ω)∼
e−κ0|l− j|/ω

p

κ0|l − j|/ω
. (48)

In the second step, we have replaced ε(q) →
q

κ2
0 +ω2q2, as relevant for |l − j| � 1. This

yields the 0-th modified Bessel function, K0(x), which decays exponentially K0(x)'
Æ

π
2

e−x
p

x for
large κ0|l− j|/ω� 1. Remarkably the solution of our ansatz in Eq. (48) is in good agreement
with the true correlation function obtained from the Fourier transformation of σΦΦ(q), shown
in Fig. 2(c). It confirms that the inverse correlation length ξ−1 ∼ κ0 is set by the relaxation
rate κ0.

For imperfect measurements, 0 < η0 < 1, we found the dependence κ0 ∼ η
1/4
0 . There-

fore the correlation length ξ = ω/κ0 increases with decreasing η0, as shown in Fig. 2(d).
This leaves us with the picture that continuous measurements of {Φl} lead to a localization
of the wave function in the real space, where the degree of localization is proportional to
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the measurement strength, i.e. ξ ∼ γ−1/2
0 . Imperfect measurements, however, water down

the localization and lead to a growth of the localization length with growing measurement
inefficiency.

Exponentially decaying correlation functions also leave their fingerprints in the entangle-
ment structure of the system. The logarithmic negativity NA[σ] grows for small subsystem
sizes A but saturates at length scales of the order of the correlation length. At sizes L > ξ∼ κ−1

0
it then obeys an area law [114,115]

NA[σ]'
1
2

ln (ω/κ0) , (49)

which is shown by the blue dashed curve in Fig. 4(a) below.
In general we find that an arbitrary weak, measurement-induced breaking of scale invari-

ance in the SSE (9) represents a relevant perturbation and generates a mass κ0, which then
dominates correlation functions and the relaxation behavior at large distances and large times.
Overall, this may not be surprising for a Gaussian theory, for which introducing an additional
scale usually corresponds to adding a relevant operator. Then the saturation of the entan-
glement entropy to an area law and an exponentially fast relaxation towards the steady state
(including exponentially fast purification in the perfect measurement limit η0 = 1 [77,82]) is
a direct consequence of the measurement-induced scale κ0.

5 Measurement-Enriched Criticality

Another possible measurement scenario arises when the measurements are compatible with
the scale invariance of the Hamiltonian in the SSE (9), and therefore with the conformal sym-
metry of the free boson CFT. In this case, we would expect, as for a ground state, that scale
invariance has an impact on the correlation functions and the entanglement structure of the
steady state. However, if the measurement operators {Ol} do not commute with the Hamil-
tonian, the steady state will neither be the ground state nor any excited eigenstate of the
Hamiltonian. Rather it corresponds to a new type of state, which gives rise to several modi-
fications of the critical properties of the theory. We term this scenario measurement-enriched
criticality. For perfect measurements, it corresponds to quantum criticality in a pure but non-
ground state. Although there exist several possible choices for measurement operators, which
preserve scale invariance, to be concrete, we consider measurements of the operators Ol = Πl .

5.1 Π-Measurements

We start again by considering a general measurement involving the operators Πl . This can be
expressed in terms of a N × N matrix mπ with

Ol =
N
∑

j=1

(mπ)l jΠ j . (50)

The measurement strength and efficiency are collected in the diagonal matrices Γ ,η, and again
we define two matrices γm = m>πΓmπ and µm = m>πηΓmπ for a compact notation. The Riccati
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equation (23) then has the steady state solution

σΦΠ =
ω

4
µm −

1
2
µ

1
2
m

�

γm +
ω2

4
µm

�
1
2

, (51)

σΠΠ =
p
ω

2
µ

1
2
m(−vNσΦΠ −σΠΦvN )

1
2 , (52)

σΦΦ =
�

1N −
4
ω
σΦΠµm

�

σΠΠv−1
N . (53)

5.2 Measurement Enriched Criticality

Now we consider the aforementioned scenario of Oi = Πi and a uniform measurement strength
and efficiency. This corresponds to

mπ = 1N , η= η01N and Γ = γ1N . (54)

In this case, the solutions from Sec. 5.1 have a very peculiar form. They can be parametrized
in terms of three real numbers A, B, C ∈ R,

σ =
1
2

 

Av
− 1

2
N B1N

B1N C v
1
2
N

!

with AC − B2 = η−1
0 . (55)

The exact dependence of the coefficients on the measurement parameter is

B =
1

2η0γ

�

�

4γ2η0 +ω
2
�

1
2 −ω

�

, C =

√

√ωB
η0γ

and A=
�

1+
2η0γ

ω
B
�

C . (56)

The parameter B ∼ γ describes a continuous deformation of the ground state covariance ma-
trix of the free boson CFT [see Eq. (8)]. The latter is recovered for B = 0 (which implies
η0 = 1). In this case, A = 1/C 6= 1, which would correspond to another variant of the free
boson CFT, namely the Luttinger liquid with a Luttinger parameter K = A [40]. For imperfect
measurements, η0 < 1, and in the limit γ→ 0 the steady state is proportional to the ground
state of the free boson CFT and we obtainσ = η−1/2

0 σGS. The determinant ofσ is then∼ η−N
0 ,

and we again obtain the steady state purity S2[σ] = −
N
2 lnη0. Furthermore, due to the second

equality in Eq. (55), this scaling of the determinant of σ and the value of the purity holds for
any γ > 0.

5.2.1 Correlation Functions

The diagonal blocks of the covariance matrix in Eq. (55) are almost identical to the correlation
functions σΦΦ and σΠΠ in the ground state. They only deviate from that by a multiplication
with the constants A and C . The correlation function σΦΦ has a divergent short-distance be-
havior for N →∞ and we therefore consider the relative covariance matrix,

σΦlΦ j
−σΦlΦl

'
A

2π
[Ci(|l − j|)− γEM − log(|l − j|)]∼ −

A
2π

log(|l − j|) . (57)

Here, Ci(x) = −
∫∞

x dt cos(t)/t ≈ x−2, which is subleading in the limit x � 1 and γEM is the
Euler-Mascheroni constant. The Πl −Π j-covariance matrix is

σΠlΠ j
' −

C
2π|l − j|2

. (58)

A qualitative modification is found, however, for the Φ − Π correlations σΦlΠ j
= δl jB. The

functions are local and vanish for |l− j|> 0, but acquire a short-distance or ultraviolet correc-
tion. As we show below, this short-range correction will have a profound consequence on the
entanglement structure at large distances.
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Figure 3: (a) Riccati spectrum for Π-measurements with different measurement
strengths γ at fixed η0 = 0.95. The markers correspond to the numerical diago-
nalization of Eq. (59) for a system of size N = 30. The dashed lines corresponds
to the analytical result in Eq. (60). (b) Inset: Quench dynamics under continuous
Π-measurements for an initial mass quench with r = Ω/ω = 10 and η0 = 0.9 for
different system sizes N . Power spectrum for the quench dynamics of the inset. In (c)
we zoom in on the region in the dashed box. The finite size scaling of the width (po-
sition), characteristic of the real (imaginary) part of the dominant pole is depicted.
(d) Finite size scaling of the poles from the relaxation dynamics reconstructed from
fitting the power spectrum of (c). The two lower blue lines depict the corresponding
poles for the Φ measurements discussed in Sec. 4.2.2.

5.2.2 Riccati Spectrum and Relaxation

Next, we address the relaxation dynamics close to the steady state, i.e., the spectrum of the
effective Hamiltonian [Eq. (30) for the steady state in Eq. (55)]

Jheff =

�

0 (ω− 2Bη0γ)1N
−ωvN −2Cη0γv

1
2
N

�

. (59)

It is diagonal in momentum space and has eigenvalues [see Fig. 3(a)]

λ(q) = −2ω| sin(q/2)| (h− ± ih+) , with h± =
�

1
2ω

Æ

4η0γ2 +ω2 ±
1
2

�
1
2

. (60)

For γ→ 0, λ(q) approaches the Hamiltonian spectrum limγ→0 h− = 0 and limγ→0 h+ = 1. For
γ > 0, the spectrum remains qualitatively similar; it is massless and linear in q for small mo-
menta. Measuring the fields Πl , then introduces an overall constant h+ ≥ 1, i.e., an effective
index of refraction, which increases the group velocity ṽ = h+v. In the limit γ � ω it ap-
proaches h+ ∼

pp
η0γ/ω, which coincides with the measurement-induced mass scale from
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the Φ-measurement. The real part of the spectrum, describing the relaxation rate towards the
steady state σ, now scales with the momentum κ(q) = 2h−ω| sin(q/2)| ' h−ω|q| for long
wavelengths |q| � 1. This transfers the common dynamical scaling behavior of quantum crit-
ical phenomena, i.e., ε(q) ∼ |q| also to the relaxation dynamics κ(q) ∼ |q|z , with a dynamical
critical exponent z = 1.

Each momentum mode then relaxes with its own, characteristic time scale,
τ(q) ∼ (ωh−|q|)−1 for small momenta, i.e. large distances. In the thermodynamic limit
N → ∞, when the momenta q are continuous, there is no upper bound for the relaxation
time and the steady state is approached algebraically in time ∼ t−1. For any finite system,
N < ∞, the largest relaxation time is set by the smallest momentum scale qmin = ±

2π
N ,

τ(q) ≤ τ(qmin) =
N

2πωh−
. Therefore, the overall relaxation time grows linearly with the sys-

tem size. For perfect measurements, η0 = 1, the steady state is again pure and the relaxation
time is identical to the purification time, which implies a purification time scale that diverges
linearly with the system size. This linear in system size scaling has also been observed at the
critical point for a measurement-induced phase transition [77, 117], and we emphasize that
the system for this type of measurements still purifies in the thermodynamic limit. Only this
purification is not associated with a characteristic scale.

In order to discuss a potential experimental probe of the relaxation dynamics, we consider
the same scenario as in Sec. 4.2.2. The system is prepared in the ground state of a gapped
boson chain and then the mass gap is switched off and the measurements are switched on.
Here, we instead monitor the half-chain momentum fluctuations (σc,t)ΠiΠi

at site i = N/2,
since this is what can be reconstructed from the measurement results [see Sec. 7.2]. The
conditioned dynamics for different system sizes N are depicted in the inset of Fig. 3(b). As
we expect from our previous analysis, the early time dynamics are system size independent,
since they correspond to small momentum modes. Close to the steady state, however, we
observe characteristic oscillations and a decay rate, which both depend on system size. In
Fig. 3(b) the power spectrum is plotted and a focus on its low-frequency part is shown in
Fig. 3(c). This confirms the system size dependence of the low frequency part. However, one
also observes that for larger system sizes, (i) the low-frequency peaks of the spectrum move
towards ν = 0 and (ii) the weight of the peaks decreases continuously. Therefore the system
size dependence is continuously decreasing. We can extract the poles leading to the peaks in
the spectrum by fitting a complex Lorentzian to the low frequency part of the spectrum. In
Fig. 3(d) the scaling of the imaginary and real part of the dominant low frequency poles with
system size is shown for Π (Φ)-measurement. It shows the characteristic scaling ∼ N (∼ N0),
matching our discussion above.

5.2.3 Entanglement and Measurement Enriched Criticality

Let us now turn to the entanglement structure of the steady state, which we characterize again
by the half-chain logarithmic negativity NA. For this measurement scenario, we observe that
NA scales logarithmically with the system size [see Fig. 4(a)]

NA[σ] =
1
2

c(1/2)γ ln(N) + const . (61)

Here, the prefactor of the log-scaling c(1/2)γ of the logarithmic negativity (1
2 -Rényi entropy),

turns out to increase monotonously with γ.
We now focus on perfect measurements, η0 = 1. Then c(1/2)γ approaches the ground state

value c(1/2)
γ→0+ = 1 in the limit of vanishing measurement strength and converges to an up-

per threshold of c(1/2)max ≈ 1.25 in the limit of infinite measurement strength. Its detailed γ-
dependence is displayed by the green line in Fig. 4(b). Although the steady state for γ > 0
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Figure 4: (a) Finite size scaling of the half system logaritmic negativity in the steady
state for Π (Φ) measurements. The steady states have been obtained analytically
for different system sizes N . For the Π (Φ)-measurements we obtain a critical (area
law) scaling. The markers with dark edges correspond to the steady state obtained
from the numerical solution of Eq. (23). The black dashed line (on top of the blue)
corresponds to the analytical result in Eq. (49). (b) Measurement enriched critical-
ity from sliding logarithmic prefactors c(α)γ with respect to the measurement strength

γ. The purple (green) line corresponds to the prefactor c(1) (c(1/2)) in the finite
size scaling of the 1-Rényi entropy (1

2 -Rényi entropy/logarithmic negativity). The
dashed green (purple) line corresponds to the maximum attainable scaling constant
c(1/2)max ≈ 1.25 (c(1)max ≈ 1.29). (c) Data collapse (non-collapse) of the mutual neg-
ativity for Π (Φ)-measurements for different γ. (d) Collapse of mutual negativity
for imperfect Φ-measurements at γ/ω= 100 and different measurement efficiencies
η0. (e) Dependence of the scaling prefactor c(1/2) in the logarithmic negativity on
the measurement efficiency η0 for a fixed measurement strength γ. The dashed line
corresponds to the linear decay of c(1/2) with η0.
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is not a ground state of any familiar free boson CFT, its entanglement structure is consistent
with a quantum critical, i.e., conformally invariant, ground state in one dimension.

In order to test the conformal symmetry of the steady state, we rely on the characteristic
form of four-point correlation functions in a conformal field theory. One possibility for such a
four-point function is the mutual (logarithmic) negativity [13,17,22,53,67]

MA,B[χ] =NA[σ] +NB[σ]−NA∪B[σ] , (62)

for the two intervals A = [i1, i2] and B = [i3, i4]. From intervals A, B one can compute the
cross ratio χ = i12i34/(i13i24), where iab = sin(π|ia − ib|/N). For a conformally invariant
state, the mutual negativity MA,B ≡M(χ) depends only on the value of the cross ratio χ for
any randomly chosen pair A and B. Indeed, as shown in Fig. 4(c), for Π measurements, the
mutual negativity shows a scaling collapse as a function of χ, indicating conformal invariance
[13,53,96]. The collapse is absent for measurements, which induced a mass [see blue markers
in Fig. 4(c)].

For ground states in (1+1)-dimensional systems, the prefactor of the entanglement entropy
(the central charge) c is intimately linked to the symmetries of the Hamiltonian. A sliding
prefactor c(1/2)γ (see also [62, 96]) as depicted in Fig. 4(b) is peculiar. When interpreted as a
central charge, it would indicate that continuous monitoring would prepare the system in the
ground state of a CFT but with a larger central charge c(1/2)γ > 1. However, we believe that

it is more likely that the modification of c(1/2)γ is rooted in the fundamentally non-equilibrium
character of the steady state, which may not correspond to a ground state of any established
CFT. This interpretation is strengthened when considering another entanglement measure,
e.g., we show the 1-Rényi entropy (or von Neumann entanglement entropy) as the purple
line in Fig. 4(b). It shows that the logarithmic scaling factor S(1)A [σ] =

1
3 c(1)γ ln(N) differs

from the one of the logarithmic negativity1. If indeed the prefactor in the log-scaling of the
entanglement measures was universal, i.e., as the central charge for a CFT in the ground state,
we would expect c(1/2)γ = c(1)γ .

We will now turn to the entanglement structure for imperfect measurements, 0 < η0 < 1.
In Fig. 4(d), we depict the mutual negativity under imperfect measurements, which indicates
that the steady state is still conformally invariant. Upon decreasing the efficiency there is
still a data collapse, however less crisp as for η0 = 1. The logarithmic negativity NA[σ] for
fixed measurement strength γ but decreasing efficiency η0 remains a logarithmic function of
the system size and we can assign an effective logarithmic prefactor c(1/2)γ even for η0 < 1.
In Fig. 4(e) the deterioration of this prefactor with η0 is shown. We find that decreasing
the measurement efficiency η0 leads to a monotonous decrease of c(1/2)γ , counteracting the
γ-induced increase.

5.2.4 Connection to Φ-Measurements

A critical measurement-induced evolution can also be obtained by general position measure-
ments, such as in Eq. (31). This is realized, for instance, by measuring the operators
Oi = Φi+1 −Φi with a uniform measurement strength γ, which corresponds to

(mφ)i j = δi, j −δi−1, j −δiNδ j1 , ηφ = η01N and Γφ = γ1N . (63)

1For a Gaussian steady state the n-Rényi are straightforwardly computed from the covariance matrix σ. The
partial trace of half the system is obtained from σA ≡ (σ)AA with A= {1, . . . , N/2}∪ {1+N , . . . , 3N/2} [132]. The
entanglement entropy is computed from the Williamson decomposition σA = SDS> where S are the symplectic
matrices S>JS = J , with D = Diag(ν1,ν1, . . . ,νN/2,νN/2). The n-Rényi entropy is obtained from the symplectic

eigenvalues using S(n)A [σ] =
1

1−n

∑N/2
k=1 log(gn(2νk)), where we defined gn(x) =

2n

(x+1)n−(x−1)n . In the limit of n = 1

we obtain gn→1(x) =
x+1

2 log
�

x+1
2

�

− x−1
2 log

�

x−1
2

�

. For the ground state of a CFT with central charge c the n-Rényi

entropy of half the system scales like S(n)A [σ] =
c
6 (1+

1
n ) ln(N), disregarding a trivial constant.
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Inserting this into Eqs. (39-41) we obtain a covariance matrix as in Eq. (55), only with
the constants A and C exchanged. Therefore, measuring {Oi = Πi} or {Oi = Φi+1 −Φi} yields
similar steady states. This may not be too surprising since taking the continuum limit of the
latter yields Oi → O(x) = ∂xΦ(x). Rewriting the Hamiltonian in Eq. (1) in terms of its dual
field yields

H =
v
2

∫
L
2

− L
2

dx
�

(∂xθ (x))
2 +Π2

θ (x)
�

, (64)

with the dual field θ (x) =
∫ x
−L/2 dyΠ(y) or equivalently Π = ∂xθ [3, 118]. The momentum

conjugate to the dual field θ is Πθ = ∂xΦ and they satisfy the canonical commutation relation
[θ (x),Πθ (y)] = iδ(x − y). Since the θ (x) ↔ Φ(x) is a symmetry of Eq. (1), measuring
O(x) = ∂xΦ(x) = Πθ (x) is equivalent to the momentum measurement discussed above.

6 Steady States with Extensive Entanglement Scaling

In the previous sections, we have discussed measurement protocols, which lead to steady states
with either logarithmic growth of the entanglement entropy or an area law entanglement. In
both cases, the entanglement structure is similar to that of a ground state wave function, either
for a gapless or a gapped Hamiltonian. For generic measurement-induced dynamics, however,
an extensive scaling of the entanglement entropy has been reported [13–15]. An extensive
entanglement entropy, obeying a volume law growth, is typically associated with an excited
state, located in the center of the spectrum [119–121]. For Gaussian measurements it is a priori
not clear, whether or not states with an extensive entanglement entropy can be sustained from
the interplay of local measurements and local Hamiltonians due to the structure of the reduced
Hilbert space. For example, volume law entangled states for free fermions [117] as well as for
free bosons [122] have been ruled out.

In order to mimic the Hilbert space structure of generic, interacting systems within the
framework of Gaussian measurements, we will now turn to a measurement protocol where the
measured operators {Ol} are chosen from a random matrix ensemble. This setting is strongly
idealized since the non-local measurements are experimentally challenging to implement. In
this setting the measurement operators have a highly non-local structure in the eigenbasis
of the Hamiltonian. The measurement-induced stationary states then correspond to highly
excited states in the spectrum of the Hamiltonian and share many properties, which are remi-
niscent of the eigenstates of random matrices [123–125]. Those properties include short range
correlations, finite relaxation times as well as extensive entanglement scaling [70].

6.1 Measurement Operators

For concreteness we will consider measurement operators Ol =
∑N

j=1 ml jΦ j , where m is a
stationary but random matrix, which is drawn from the Gaussian orthogonal ensemble (GOE).
It is sampled from to the distribution function Pr(m) ∼ exp[−Tr(m>m)]. For this choice of
random measurement operators, the Riccati equation (23) has no particular symmetries, which
would allow us to determine the steady state solution analytically. We thus solve it for the
steady state numerically.

6.2 Correlation Functions

In order to discuss the real space correlations in the steady state, we compute the stationary
state covariance matrix and average it over several realizations of random measurement ma-
trices m. The averaged correlation function σΦiΦl

for |i − l| � 1 decays exponentially in the
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Figure 5: (a) Averaged real space correlations σΦiΦl
for a system size of N = 200,

η0 = 1 and averaged over nsample = 500 random measurement settings. (b) Scal-
ing of the correlation length ξ with increasing γ (green markers) and η0 (purple
markers) for N = 200 and nsample = 500. The shaded region corresponds to the
variance between realizations. The systematic errors for the green line can be at-
tributed to heuristics in finding the exponential tails (darker dashed lines) in (a).
The green dashed line corresponds to the fit ξ ∼ γ−α with α = 0.478 , whereas the
purple dashed line corresponds to ξ∼ η−β0 with β = 0.226. (c) Riccati spectrum for
one realization of measurement operators with real (imaginary) gaps κ0 (ω0). (d)
Scaling of averaged ω0 (orange markers) and κ0 (blue markers) with γ for a system
size of N = 200 and nsample = 500. The orange (blue) dashed line corresponds to
ω0 ∼ γδ with δ = 0.478 (κ0 ∼ γε with ε = 0.968). (e) Finite size scaling of half
chain logarithmic negativity for half system averaged over nsample = 500 realizations.
(f) Dependence of the linear scaling constant b on γ (brown) and η0 (turquoise) ob-
tained from the finite size scaling over system sizes from (e). The turquoise dashed
line indicates a linear decay. For small measurement efficiencies the entanglement
vanishes completely, in accordance to entanglement "sudden-death".
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distance, featuring a correlation length ξ, which is shown in Fig. 5(a). This is also characteris-
tic for excited states of many body systems which are well captured by eigenstates of random
matrices [123–125].

The correlation length ξ displays a power-law-dependence on both the measurement
strength γ and the measurement imperfection η0, which is shown in Fig. 5(b). For perfect
measurements, η0 = 1, one finds that the correlation length decays with the measurement
strength ξ ∼ γ−α with an exponent α = 0.478. This is similar to what one finds for local
Φ-measurements in Sec. 4, where ξ ∼ γ−1/2 [see Eq. (46)]. In turn, for fixed γ/ω = 0.01,
the correlation length decays as ξ ∼ η−β0 with β = 0.226, which is again comparable with

local Φ-measurements with ξ ∼ η−1/4
0 . From the viewpoint of correlations functions, ran-

dom measurements thus have a comparable effect as local Φ-measurements. Both break the
scale invariance of the Hamiltonian and induce a non-zero correlation length, which decreases
proportional to the measurement strength.

6.3 Riccati Spectrum and Relaxation

Analogous to the non-zero correlation function ξ, random measurements also induce a non-
zero relaxation rate in the dynamics towards the steady state. The Riccati spectrum for one
realization of m is displayed in Fig. 5(c), which reveals a gap in the real (κ0) and imaginary
parts (ω0) of the eigenvalues λn [cf. Eq. (45)]. The behavior of both ω0 and κ0 as a function
of γ, and averaged over several realizations of m, is shown in Fig. 5(d). For small coupling
constants γ � ω, ω0 ∼ γδ with δ = 0.478, which is consistent with the behavior of the
correlation length and the identification ω0 ∼ ξ. The average relaxation rate, however, scales
as κ0 ∼ γε with ε = 0.968. This is twice the value of the correlation length and therefore
does not allow the identification κ0 ∼ ω0 ∼ ξ, which we encountered in Eq. (46) of Sec. 4.
Rather it yields κ0 ∼ ξ2, which corresponds to a dynamical critical exponent of z = 2, and to
a classical (finite temperature) relaxation dynamics. It is thus consistent with the picture of
relaxation into a highly excited state in the middle of the spectrum.

When increasing the measurement strength to values γ∼ω, the corresponding correlation
length becomes smaller than the distance between two neighboring lattice sites, which also
yields a breakdown of the scaling relations for ω0 and κ0.

6.4 Volume Law Entanglement

We will now turn to the entanglement structure of the steady state with random measurements,
which we characterize again in terms of the logarithmic negativity. In Fig. 5(e) we show the
scaling of the half-system logarithmic negativity with system size N for η0 = 1. It reveals an
extensive, volume law scaling of the entanglement,

NA[σ]∼ bN , (65)

with linear scaling parameter b and neglecting a constant offset. Volume law entanglement,
combined with exponentially decaying correlations is a characteristic that is usually found in
excited states. Here, it is fully attributed to the random measurements {Ol}.

Varying the measurement strength γ preserves the volume law structure [see Fig. 5(e)]
but modifies the linear prefactor b, which is displayed in Fig. 5(f). The prefactor grows pro-
portional to the measurement strength γ for weak measurements γ < ω and then saturates
around γ∼ω. This is around the value, at which the correlation length approaches the value
of the lattice spacing, and when increasing γ therefore no longer affects the steady state wave
function. The monotonous growth of the entanglement entropy with γ has also been observed
for the critical setup in Sec. 5. In both cases the entanglement structure indicates that the
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measurements increase the non-locality of the wave function, which then leads to a growth of
the entanglement entropy.

The volume law in the logarithmic negativity is robust against moving away from perfect
measurements and reducing the measurement efficiency η0 < 1. For sufficiently large values
of η0 ≈ 1, the entanglement decreases linearly in η0, i.e., b ∼ η0, see Fig. 5(f). When reaching
smaller values of η0 ≈ 0.5, it starts to decrease faster than linear and finally vanishes b = 0.
This corresponds to the phenomenon of entanglement "sudden-death" [126] and is attributed
to the high impurity of the steady state for small measurement efficiencies. The point at which
the logarithmic negativity vanishes completely is not universal and depends on the specific
measure of mixed state entanglement.

In summary, fully randomized measurements Ol =
∑

j ml jΦ j lead to a steady state wave
function (or density matrix), which mimics the behavior of a generic wave function in er-
godic quantum mechanical systems: short-ranged correlations, finite temperature relaxation
dynamics with a dynamical critical exponent z = 2, and a volume law entanglement structure.
From this viewpoint, random measurement matrices in the Gaussian measurement framework
act analogously to free random matrix Hamiltonians in isolated systems, and may be used as
proxies for measurement-induced dynamics in generic systems.

7 Full Tomography of the Conditioned State

Among the key signatures that have been established for a theoretical characterization of
measurement-induced phases and criticality in continuously or stroboscopically observed quan-
tum systems, are the entanglement scaling or the timescale of purification of the conditioned
quantum state. However, such quantities require in essence the knowledge of the full condi-
tioned quantum many-body state, which is notoriously difficult, if yet possible to verify exper-
imentally. The difficulty arises from both the exponential scaling of the number of measure-
ments required for a full state tomography and the fact that we are interested in properties of
the conditioned state ρc,t , which is the result of a specific sequence of random measurement
outcomes. For discrete measurements, it will take exponentially many trials to re-obtain the
very same measurement sequence and therefore to obtain multiple copies of ρc,t to perform
measurements on. For continuously monitored systems, the same trajectory of the measure-
ment current will never appear twice. Thus, the question how to overcome this “post-selection
barrier" in general and to detect measurement-induced criticality and phases in real experi-
ments remains an open problem of utmost importance in this field [29,71,82].

We demonstrate in the following that also in this respect the free boson Kalman filter as-
sumes a special role. For Gaussian measurements, the entanglement structure, the relaxation
(and purification) dynamics, and the spatial correlations are encoded in the covariance matrix
σc,t . Not only can it be solved analytically, in this setting it is possible to reconstruct the con-
ditioned density matrix ρc,t and σc,t from the knowledge of the measurement outcomes and
the measured observables. Thereby one can verify the very characteristics of measurement-
induced phases discussed above. This is an alternative to the approaches presented in [71]
and [72] where the postselection barrier has been treated with a decoding procedure, which
requires additional operations on the system. In order to demonstrate this, we will now con-
centrate on the actual aspect of a measurement, namely to learn something about the system
at hand. In particular, we will describe a measurement protocol to determine conditioned ex-
pectation values and the full conditioned state ρc,t , which for Gaussian states is equivalent to
the knowledge of σc,t and 〈s〉c,t along a single measurement trajectory.
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7.1 Observables and Tomography of the Unconditioned State

During each realization of a continuously measured trajectory, a stream of currents I t is
recorded. In general, quantum mechanical observables are measured via the averaging of
the measurement results over many experimental runs, and therefore we have to understand
E(O)' n−1

∑n
i=1 O(i) as a statistical average over n� 1 experimental runs, where O(i) denotes

the outcome of the i-th experiment. In the same spirit, for a set of continuously measured
operators {Ol}, one records the currents {I (i)l,t }, discussed in Eq. (12), in each experimental
realization. Averaging the measured currents over many experimental runs then allows us to
determine the unconditioned observables

E(Il,t) = 〈Ol〉t = Tr(Olρt) . (66)

Here, the state ρt = Eρc,t = eLtρt=0 evolves according to the master equation in Eq. (16)
and corresponds to the unconditioned, trajectory averaged density matrix. Similarly, when
averaging the fluctuations of the measured currents over many runs, we obtain

E(I t+0+ I>t ) =
1
4
ηΓMΣt M

>Γ>η>. (67)

The left of Eq. (67) is what is obtained in the experiment, which can then be used to compute
the unconnected correlator

Σt =
1
2
〈{s , s>}〉t , (68)

if the measurement operators M and Γ ,η are know. The unconnected correlator corresponds
to the expectation value with respect to the unconditioned density matrix 〈. . .〉t = Tr(. . .ρt).
The derivation of Eq. (67) is discussed in App. E.

Note that Σt does not depend on a specific measurement record and therefore is the same
for any large set of trajectories. This provides some freedom for implementing an experi-
mental detection scheme. For instance, in order to determine Σt for a given measurement
setting, say Π-measurements, one can run the measurement-induced evolution exclusively
with Π-measurements up to time t − d t. Then a complete set of measurements, i.e., of the
2N observables {Ol = Φl ,Πl}Nl=1, is implemented at time t and this experiment is repeated
n � 1 times. In this way we can determine the full Σt at an arbitrary point in time. In a
Gaussian setting, this corresponds to a full tomography of the unconditioned state, which can
be done with a number of measurements that scales only polynomially in the system size and
the evolution time. This information does not yet reveal any characteristic behavior of the
measurement-induced dynamics, since unconditioned observables correspond to the limit of
completely imperfect measurements, η0 = 0. Nevertheless, the knowledge of Σt will allow us
to reconstruct the covariance matrix σc,t , which we demonstrate below.

7.2 Tomography of the Full Conditioned Density Matrix

The previous examples highlight that the standard method of obtaining expectation values
from measurement results, via averaging over experimental measurement outcomes, only pro-
vide access to unconditioned expectation values and observables. However, the actual object
of interest is the conditioned state of the system, ρc,t (or equivalently σc,t and 〈s〉c,t), during a
single experimental run. In order to extract σc,t from the measured current I t , we follow the
protocol sketched in Fig. 1(c) and make use of Eq. (22), i.e., the deterministic (and therefore
integrable) structure of the free boson Kalman filter. From this equation we obtain the identity

σc,t = E(σc,t) = Σt −E(〈s〉c,t〈s〉>c,t) , (69)
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which shows the subtle interplay between conditioned and unconditioned means in the covari-
ance matrix. This expression is remarkable in the regard that the only conditioned quantities
the covariance matrix depends on are the first moments, which we will harness in the fol-
lowing. The first term, Σt , can be obtained in the ‘standard’ way from measurements of the
averaged current fluctuations described above [see Eq. (67)]. The second term, E(〈s〉c,t〈s〉>c,t),
denotes the average over products of conditioned expectation values, which evolve according
to Eq. (19). Substituting the noise increments through the measured currents, i.e.,

dW t = 4Γ−
1
2η

1
2

�

I t −
Γ

2
M〈s〉c,t

�

dt , (70)

we obtain

〈s〉(i)c,t+dt = 〈s〉
(i)
c,t +

§

Jh〈s〉(i)c,t + 2σc,t M
>η

�

I (i)t −
Γ

2
M〈s〉(i)c,t

�ª

dt . (71)

For a given measurement record I (i)t , this equation describes a deterministic update of 〈s〉c,t .
It, however, depends explicitly on the unknown σc,t , and therefore, Eq. (71) and Eq. (69)
must be solved iteratively. To do so one performs a large number of n � 1 experiments,
each prepared in the same initial state with known values for 〈s〉c,t=0 and σc,t=0. For each

experiment the measurement outcomes {I (i)l,t } are recorded and used to calculate the values

of 〈s〉(i)c,t+dt from the known values of 〈s〉(i)c,t and σc,t . For the updated value of σc,t+dt we
incur the identity Eq. (69) with the predetermined values of the unconditioned correlations
{Στ}τ≤t and the ensemble average performed over the set of n conditioned first order moments
〈s〉(i)c,t . With this, all the values for 〈s〉(i)c,t and σc,t can be constructed iteratively for a given
measurement trajectory. This is equivalent to a reconstruction of the full conditioned state
ρc,t [see Eq. (18)], from which all other measurement-induced characteristics, such as the
scaling of the entanglement, can be obtained.

Although the described procedure still requires many measurements and accurate knowl-
edge about the experimental setup, it can be done with a polynomial number of measurements
and thus overcomes the usual double exponential barrier encountered in the reconstruction
of conditioned quantum many-body states. The reason for this surprising result is rooted in
the fact that (i) Gaussians states can be described by a polynomial number of parameters that
can be numerically integrated for rather large system sizes, and that (ii) due to the determin-
istic dynamics of the covariance matrix we do not have the problem of postselection. This
means that we do not have to wait for an equivalent measurement pattern before the state
tomography can be resumed.

Finally, let us point out that in many situations of interest, it might be enough to verify that
the theoretically simulated estimate σ̂c,t , which can be calculated directly from Eq. (20), is
compatible with the obtained measurement results. In this case, the calculated value σ̂c,t , and
not the measured value of the covariance matrix, is used in Eq. (71) to evaluate the update for
the first moments. Only at the final time, the covariance matrix σ∗c,t is explicitly constructed
from the ensemble average in Eq. (69). To do so, Σt needs to be known only at a single point
in time t, which substantially reduces the experimental cost. If ‖σ∗c,t − σ̂c,t‖ � 1 we may
conclude that σ∗c,t , σ̂c,t → σc,t almost surely.

8 Conclusion

We have demonstrated that bosonic Gaussian measurements represent a rather unique class
of systems, whose conditioned dynamics under continuous measurements is exactly solvable.
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Starting from the unitary free boson CFT, we examined three different types of continuous mea-
surements, and found that the corresponding stationary states cover the three paradigmatic
cases of area law, volume law, or a logarithmic scaling of the entanglement. Despite its simplic-
ity, the Gaussian measurement framework thus represents an elementary model, which covers
the conventional measurement-induced phases (volume and area law) and quantum criticality
under measurements. Common for a Gaussian theory, it lacks the non-linear competition that
leads to a measurement-induced phase transition between the different regimes. However,
similar to Gaussian Hamiltonians (or Lindbladians), the Gaussian measurements capture the
characteristics in each regime, and provide insights on and foster our understanding of the
emergent behavior of more complicated, generic bosonic measurement dynamics.

In addition to the established classifier of measurement-induced dynamics, the entangle-
ment structure of the steady state, we provide a set of additional observables. Both the spa-
tial correlation functions and the relaxation behavior unambigously distinguish measurement-
induced (or -enriched) criticality, and therefore conformally invariant behavior, from the
gapped counterparts. This provides additional robust classifiers, which also work reliably for
mixed state phases in the presence of imperfect measurements, or other environmental de-
phasing processes. The fact that all three observables are determined from the deterministic
covariance matrix underpins the direct relation between correlations, relaxation behavior, and
the entanglement structure in hybrid setups and points out their significance [37,40,41,67,82].

For the Gaussian measurements, the role of the covariance matrix is highlighted further by
the fact that it can be partly (or completely) reconstructed on the basis of the already existing
continuous measurement records. In a broader scope, this result shows that correlations be-
tween the measurement outcomes in a given continuously measured evolution protocol reveal
information on the underlying wave function or density matrix. Statistical correlations be-
tween measurement outcomes at different times and (or) positions are nonlinear functions of
the state of the system and thus are the type of quantities that contain nontrivial information.
When this information is sufficient to distinguish different measurement-induced phases (as it
is for Gaussian measurements), then this provides a robust experimental detection scheme.

Further directions, which may build up on the formalism and the results discussed here
include the analysis of the apparent conformal invariance in the critical regime, and the im-
pact of a dissipative environment on the hybrid dynamics. Conformal invariance is associated
with both quantum and classical critical phenomena, and typically described by a universal
ground or stationary state. While we observe scale invariant correlations and relaxation dy-
namics with universal exponents in the critical regime, the floating prefactor of the logarithmic
entanglement growth as well as the non-universality of the central charges depending on the
entanglement measure, indicate that some aspects of universality in the steady state are vi-
olated under measurements. Whether the hybrid dynamics yields indeed a quantum critical
steady state, or only an apparently critical state, therefore is still an open question, which is
relevant for the similar scenario of continuously observed fermions [37,44,67,68].

Environmental dissipation, even if weak, will inevitably be present in experimental real-
izations of continuously measured evolution protocols. However, the interplay between mea-
surements and dissipation is still barely understood, especially for dissipation induced by non-
Hermitian Lindblad operators, such as particle gain and loss. Including such processes into the
measurement-induced evolution is particularly relevant for the connection of measurement-
induced phase transitions with quantum error correction [77,78,80], for which environmental
dissipation represents a severe limitation [127–130]. Our work, with a simple but powerful
formalism, may lay the foundation for this analysis of even more general boson models, which
combine unitary evolution, measurements and dissipation.
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A Ground State Covariance Matrix

The steady state covariance matrix in Eq. (55) is very similar to the ground-state covariance
matrix in Eq. (8), which therefore has a prominent role in this work. In order to be self
contained we restate this result, which can, among others, be found in [86]. The Hamiltonian
is diagonalized by the symplectic transformation

H =
ω

2

∑

i j

Φi(vN )i jΦ j +Πiδi jΠ j =
ω

2

∑

n

ε2
nΦ

2
n +Π

2
n =

ω

2

∑

n

εn(Φ̃
2
n + Π̃

2
n) , (A.1)

where Φn =
∑

j On jΦ j and Πn =
∑

j On jΠ j with the same orthogonal matrix O ∈ O(N). Here
we used the fact that position and momentum operators are uncoupled, such that the sym-
plectic transformation S ∈ Sp(2N ,R), which diagonalized H, simplifies to S = O ⊕ O. vN is
diagonalized by these orthogonal transformations with eigenvalues {ε2

n}. Further, we rescaled
Φ̃n = Φn/

p
εn and Π̃n =

p
εnΠn with 〈Π̃2

n〉GS = εn/2 and 〈Φ̃2
n〉GS = 1/(2εn). Therefore, the

real space correlations in the ground state are

σΦiΦ j
= 〈ΦiΦ j〉GS =

1
2

∑

n

Oinε
−1
n On j =

1
2
(v
− 1

2
N )i j (A.2)

and the momentum correlations are found in an analogous way. This gives the expression in
Eq. (8).
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B Gaussian Measurements and Stochastic Schrödinger Equation

B.1 Measurement Results Follow a Wiener Process

In the main text we claimed in Eq. (12) that the measurement outcomes It are distributed in
a Gaussian way around the mean 〈O〉c,t . In the following we will briefly sketch the derivation
of this result. We start by considering a representation of the trace Tr(. . .) =

∫

do 〈o| . . . |o〉 in
terms of the eigenvectors O|o〉= o|o〉. The probability for outcome It is then expressed as

Pr(It) = tr
�

E†
It

EIt
ρc,t

�

=
�

8dt
πγ

�
1
2
∫

do 〈o|ρc,t |o〉exp
�

−
8dt
γ

�

It −
γ

2
o
�2�

'
�

8dt
πγ

�
1
2
∫

doδ(o− 〈O〉c,t)exp
�

−
8dt
γ

�

It −
γ

2
o
�2�

=
�

8dt
πγ

�
1
2

exp
�

−
8dt
γ

�

It −
γ

2
〈O〉c,t

�2�

.

(B.1)

From the first to the second line we used that for small time increments dt with
(γdt)−1 � ∆O2

t , where ∆O2
t = 〈O

2〉c,t − 〈O〉2c,t denotes the width of 〈o|ρc,t |o〉, the Gaussian
measurement profile is much wider than the wave function, such that we approximate the
latter to be delta-localized. From this it follows that the measurement results are distributed
in a Gaussian way around the mean 〈O〉c,t and therefore the measurement results follow the
Wiener process from Eq. (12) in the main text.

B.2 Derivation of the Stochastic Schrödinger Equation

In Eq. (9) the SSE was introduced and subsequently its derivation was sketched. Here we
explicitly spell out the crucial steps of the derivation, which we omitted in the main text. This
presentation is inspired by [74, 76, 91]. The starting point is the state update in Eq. (11).
Expanding the measurement operator to lowest order in dt, using that Eq. (12) is a Wiener
process and applying the Itō rule dW 2

t = dt we obtain

EIt
|ψt〉c '

�

1− iHdt −
γ

2
(O2 − 4O〈O〉c,t)dt +

p
γOdWt

�

|ψt〉c , (B.2)

where we neglected terms of order O(dt3/2). The norm of Eq. (B.2) to lowest order is

‖EIt
|ψt〉c‖ ' 1+ 2

p
γ〈O〉c,tdWt + 4γ〈O〉2c,tdt (B.3)

and inverting this expression with a subsequent expansion yields

‖EIt
|ψt〉c‖−1 = 1−

γ

2
〈O〉2c,tdt −pγ〈O〉c,tdWt (B.4)

to lowest order in dt. Combining Eq. (B.4) and Eq. (B.2) we obtain the discrete stochastic
Schrödinger equation

|ψt+dt〉c '
�

1− i
�

H − i
γ

2

�

O− 〈O〉c,t

�2
�

dt +
p
γ(O− 〈O〉c,t)dWt

�

|ψt〉c , (B.5)

and from d|ψt〉c = |ψt+dt〉c − |ψt〉c we obtain the expression in Eq. (9) for a single mea-
surement. This derivation is straightforwardly extended to the simultaneous measurement of
multiple observables Oi with strengths γi and independent outcomes {Ii,t}.
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C Details on the Kalman Filter

C.1 Derivation of the Evolution Equation for the Conditioned First Moments and
the Covariance Matrix

In this section we derive the equations of motion for the first moments and the covariance
matrix from Eq. (19) and Eq. (20) of the main text. From the SME in Eq. (15) we derive the
equation of motion for a generic operator A, which becomes

d〈A〉c,t = −

�

i〈[A, H]〉c,t +
∑

i

γi

2
〈[Oi , [Oi , A]]〉c,t

�

dt

+
∑

i

p

ηiγi〈{Oi , A} − 〈Oi〉c,tA〉c,tdWj,t .
(C.1)

We first start by considering the unitary limit γi = 0. In order to examine the unitary evolution
of the first moments we start by considering the commutator

ṡi = −i[si , H] = −
i
2

∑

a,b

hab[si , sasb] = −
i
2

∑

a,b

iJiahabsb + iJi bhbasa) = (Jhs)i , (C.2)

from which Eq. (6) follows. The equations of motion of the operators centered around the
mean, s̃i = si − 〈si〉, are the same. From this the equation of motion for the unitary evolution
of the covariance matrix, σ̇i j = (〈{˙̃si , s̃ j}〉+ 〈{s̃i , ˙̃s j}〉)/2, is found to be Eq. (7) from the main
text. Let us now turn to γi > 0, where we start by considering the first moments with the last
term in Eq. (C.1), which becomes

∑

i

p

ηiγi〈{Oi , s j} − 2〈Oi〉c,ts j〉c,tdWi,t =
∑

i

p

ηiγi Mik(〈sks j〉c,t + 〈s jsk〉c,t

−2〈s j〉c,t〈sk〉c,t)dWi,t

= (2σc,t M
>pηΓdW t) j . (C.3)

The double commutator [si , [si , s j]] = 0 from the second term in Eq. (C.1) vanishes and there-
fore does not contribute to the final result of Eq. (19) in the main text. We will now turn to
the equation of motion for the covariances. First of all we note that the equation of motion for
the first moment is now a stochastic differential equation of the Itō kind. From this we obtain
the evolution of the covariances from

d(σc,t)i j =
1
2
(〈{dsi , s j}〉c,t + 〈{si , ds j}〉c,t)− 〈si〉c,td〈s j〉c,t − d〈si〉c,t〈s j〉c,t − d〈si〉c,td〈s j〉c,t

=
1
2
(〈{ds̃i , s̃ j}〉c,t + 〈{s̃i , ds̃ j}〉c,t)− d〈si〉c,td〈s j〉c,t , (C.4)

where the last term in both lines is attributed to the Itō correction to the differential increment,
d( f g) = d f g + f dg + d f dg. The unitary evolution will be unaltered, but there will be a
correction attributed to the double commutator, which we obtain by considering

∑

i

γi

2
〈[Oi , [Oi , s̃ j s̃k]]〉c,t = −

∑

i,m,n

γi

2
MimMin〈[sm, [sn, s̃ j s̃k]]〉c,t

=
∑

i,m,n

γi

2
MimMin(Jn jJmk + JnkJmj) = (J M>ΓMJ>) jk ,

(C.5)

which gives the inhomogeneous contribution in Eq. (20). The most important feature of the
linear measurements is that the stochastic contribution in the equation of motion for the co-
variances cancels. This is seen by noting that 〈s̃i〉 = 0 and since the state is at all times in the
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manifold of Gaussian states, Wick’s theorem applies. Therefore, the prefactor in the stochastic
contribution in Eq. (C.1),

〈
�

si , s̃ j s̃k

	

− 〈si〉c,t s̃ j s̃k〉c,t = 〈si s̃ j s̃k〉c,t + 〈s̃ j s̃ksi〉c,t − 2〈si〉c,t〈s̃ j s̃k〉c,t

= 〈si s̃ j〉c,t〈s̃k〉c,t + 〈si s̃k〉c,t〈s̃ j〉c,t + 〈s̃ jsi〉c,t〈s̃k〉c,t + 〈s̃ksi〉c,t〈s̃ j〉c,t

+ 〈si〉c,t〈s̃ j s̃k〉c,t + 〈s̃ j s̃k〉c,t〈si〉c,t − 2〈si〉c,t〈s̃ j s̃k〉c,t = 0 ,
(C.6)

cancels. Finally, using the Itō rule we see that

d〈s〉c,td〈s〉>c,t = 4σc,t M
>ηΓMσc,t +O(dt3/2) , (C.7)

which concludes the derivation of Eq. (20).

C.2 Alternative Argument for the Deterministic Dynamics of Covariances

In App. C.1 we showed that the evolution of the first moments is noisy, whereas from Wick’s
theorem it follows that the dynamics of the covariance matrix is deterministic. In the following
we will present an alternative argument for this remarkable property of Gaussian measure-
ments. We start with the measurement operator O = aΦ+ bΠ= m>s focusing on a single site
for simplicity. As above we defined s = (Φ, Π)> and m= (a, b)>. The measurement operator
Eq. (10) becomes

EIt
∼ exp

�

−
1
2

dt(s − j t)
>Q(s − j t)

�

, (C.8)

where we have defined the quadratic form

Q = 2γm m> and the noisy vector j t = γ
−1

�

a−1

b−1

�

It . (C.9)

Note that Q is deterministic while only j t depends on the stochastic measurement outcomes.
The operator EIt

is decomposed in terms of an imaginary time evolution Udt = e−iJQdt and the

displacement operator D(v) = eiv>J s as

EIt
∼D(− j t)D(U−1

dt j t)e
− 1

2 s>Qs dt . (C.10)

Applying the measurement operator the state at time t will give the updated first moments
and covariance matrix for one time step dt:

〈s〉c,t → 〈s〉c,t+dt ∼ 〈s〉c,t + (U
−1
dt − 12) j t , (C.11)

σc,t → σc,t+dt ∼ Udt σc,t U>dt , (C.12)

where we neglected normalization constants. The first moments are updated in a stochastic
way according to the outcomes of It , while the update of the covariance matrix is deterministic.
This is not too surprising since we know from unitary time evolution that Hamiltonian terms
linear in the fields will only affect the dynamics of the first moments.

C.3 Review of the Classical Kalman Filter

In Sec. 3.1 we introduced the notion of the free boson Kalman filter to denote the conditioned
equations of motion for the moments. In the following we will motivate this notation by first
reviewing the classical Kalman filter and then making the connection to the quantum problem
below.
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In classical control theory, or more specifically in classical estimation theory, one frequently
encounters the following problem: The state of a system of interest is described by the real
vector x t = (x1,t , . . . , xN ,t)> and obeys the following linear equation of motion

ẋ t = Ax t + Vxζt . (C.13)

Its deterministic part is described by the N × N -matrix A, but the system is also affected by
the process noise characterized by Eζi,t = 0 and Eζi,tζ j,s = (Vx V>x )i jδ(t − s). The state is
continuously monitored through a noisy measurement device with outcome

y t = C x t + Vyξt . (C.14)

Here, C is an Nm×N matrix, where Nm is the number of independent measurements, and the
measurement noise is characterized by Eξi,t = 0 and Eξi,tξ j,s = (Vy V>y )i jδ(t − s). There are
no cross-correlations, Eξi,tζ j,s = 0.

The problem of filtering in classical estimation theory [99] refers to the problem of finding
an estimator x̂ t provided that the measurement results {y t} and some aspects of the system
dynamics are known. This estimator is chosen such that it converges in some sense to the
true unknown system state x t . One prominent example, where it is assumed that the system
dynamics A, as well as the strengths of the process and measurement noises (Vx and Vy) are
known, is the Kalman filter. It is the prescription for constructing an optimal estimator such
that

Jt = Eε>t εt −→min. with εt ≡ x t − x̂ t . (C.15)

This means that the fluctuations in εt , which is the deviation of the estimator from the true
state, are minimized. In this case the Kalman-filter can be treated analytically and the equation
of motion for the estimated state x̂ t evolves according to the equation of motion

˙̂x t = Ax̂ t + KF (y t − ŷ t), (C.16)

where ŷ t = C x̂ t are the estimated measurement results, consistent with the estimator dynam-
ics. The usual procedure in filtering is the following; an experimentalist who continuously
receives a stream of measurement results y t uses Eq. (C.16) to solve for the estimator x̂ t and
thereby approximates the true system state x t . The Kalman filter refers to the choice of the
gain, KF , such that the cost function Jt is minimized. The simplicity of the Kalman filter per-
mits that the gain KF can be obtained from a simple variational computation [99] and has the
explicit form

KF = St C
>(VI V

>
I )
−1 with St = Eεtε

>
t , (C.17)

which is the covariance of the estimation error, which has to satisfy the Riccati differential
equation

Ṡt = ASt + StA
> + Vx V>x − St C

>(Vy V>y )
−1CSt . (C.18)

The system state is referred to as observable if the dynamics of the estimator is fully under
control by the choice of the matrix KF . This means that the eigenvalues of A− KF C can be
tuned to be all negative by the choice of KF alone.

C.4 Connection between Classical and Quantum Kalman Filter

After this brief review of classical estimation theory and the Kalman filter, we are now returning
to the quantum mechanical case of conditioned dynamics. Before proceeding we make the
disclaimer that duality to the classical Kalman filter can be made more explicit and rigorous
within the notion of quantum-filtering and -probability, which we will avoid here and refer the
reader to [92,93].
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The formal connection between the classical Kalman filter and the continuously monitored
quantum dynamics can be made by making the following identification in the Riccati equation
of the classical Kalman filter in Eq. (C.18) with quantities from the quantum mechanical prob-
lem: The covariance matrix of the estimation errors is identified with the covariance matrix,
St → σc,t , the system dynamics with the unitary Hamiltonian dynamics, A→ Jh, the accessible
points for the measurement with the measurement matrix, C → ΓM/2, and finally the process
and measurement noise, Vx → Vs = J>MΓ

1
2 and Vy → VI = 4

p

η/Γ , respectively. With these
replacements the Riccati equation for the estimation error St becomes identical to the equation
of motion for the covariance matrix σc,t in Eq. (20) under continuous observation. Identifying
the estimator with conditioned first moments, x̂ t → 〈s〉c,t , in the equations of motion for the
estimator, Eq. (C.16), as well as the above replacements in the Kalman gain KF , we obtain the
noisy equations of motion for the first moments we encountered in Eq. (19). The estimated
measurement is identified with ŷ t → Î t = ΓM〈s〉c,t/2 in the quantum mechanical case. The
conditioned state of the system ρc,t , which is governed by the stochastic master equation can
therefore be understood as the estimator of the true state of the system when all the measured
results are used. From this point of view, the Wiener noise in Eq. (12) has to be understood as
being obtained from

dW t = V−1
I

�

I t −
Γ

2
M〈s〉c,t

�

dt = V−1
I (I t − Î t)dt , (C.19)

where VI =
1
4η
− 1

2 Γ
1
2 . The SME in this case reduces to

ρ̇c,t =− i[H,ρc,t]−
∑

j

γ j

2
[Oj , [Oj ,ρc,t]]

+
∑

j

p

η jγ j

��

Oj ,ρc,t

	

− 2〈Oj〉c,tρc,t)(V
−1
I ) j j(I j,t − Î j,t)

�

.
(C.20)

It is reassuring that a continuously measured quantum state, updated by the measurement
results, and completely derived within the framework of quantum mechanics, reduces to the
well known classical filtering equations for Gaussian measurements.

D Solution of the Riccati Equation

In this section we present the general solution of the algebraic Riccati equation (23). This is
crucial for the solution of quadratic matrix equations arising for instance in Eq. (34) and it is
thus the key to solving for the steady states from the algebraic Riccati equation. We start by
rewriting this quadratic matrix equation in a more general form

−X>AX + X>B + B>X + C = 0 . (D.1)

Here A> 0 is a real symmetric non-negative n× n matrix, which is in our case always fulfilled
since it has the form A = M>ηΓM ≥ 0 and therefore also A> = A follows. This is crucial
for the existence of a unique solution [131]. The inhomogeneity C = C> is a real symmetric
n× n-matrix, which is clearly satisfied for our choice of C = J>M>ηΓMJ . The n× n matrices
B and X are real.

Although in the this work A is invertible, we will consider a slightly more general sit-
uation, where it can in principle be non-invertible and therefore we introduce the Moore-
Penrose pseudo-inverse A+ with A+A= AA+ = 1n, which also commutes with the transposition
(A+)> = A+ [131]. It is now possible to complete the square and simplify Eq. (D.1) to

−Y>AY + D = 0 , where Y = X − A+B and D = B>A+B + C . (D.2)
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Since A is non-negative we can define U = A
1
2 Y such that Eq. (D.2) becomes

U>U = D , with the solution U = ±QD
1
2 . (D.3)

This solution is well defined due to D ≥ 0, which is fulfilled in the above situation. Furthermore
we defined the orthogonal matrix Q ∈ O(n), which was in our case taken to be Q = 1n.
Using the Moore-Penrose pseudo-inverse of the matrix square-root A

1
2+ we obtain the general

solution
Y = ±A

1
2+QD

1
2 + (1n − B

1
2+B

1
2 )W , (D.4)

with an arbitrary real n× n matrix W and eventually we obtain the solution

X = A+B ± A
1
2+Q(B>A+B + C)

1
2 + (1N − B

1
2+B

1
2 )W . (D.5)

Note that in the special cases discussed above B+ = B−1 and therefore the second part of the
above solution was neglected.

E Unconditioned Observables from Averaging

In this section we will review the derivation of Eq. (67), a standard result from quantum
optics [73,76] in the formalism we established above. We will start from the stochastic master
equation (15) and the measurement outcomes (currents) from Eq. (10)

dρc,t = (Ldt +
∑

l

p

ηlγl dWl,tH[Ol])ρc,t I j,t =
γ j

2
〈Oj〉c,t + VI , jξ j,t , (E.1)

where we introduced the shorter notation VI , j =
1
4

r

γ j
η j

and we remind that ξ j,t =
dWj,t

dt . We

furthermore use the notation

Lρc,t = −i[H,ρc,t]−
∑

l

γl

2
[Ol , [Ol ,ρc,t]] , H[Ol]ρc,t = Olρc,t +ρc,tOl − 2〈Ol〉c,tρc,t .

(E.2)
When evaluating the equal time current-current correlation functions, it is more favorable to
point-split the correlator EIi,t I j,t = lim

dt→0+
EIi,t+dt I j,t . Multiplying out this correlator we obtain

EIi,t+dt I j,t =
γiγ j

4
E〈Oi〉c,t+dt〈Oj〉c,t +

γi

2
Vj,IE〈Oi〉c,t+dtξ j,t + Vi,I

γ j

2
Eξi,t+dt〈Oj〉c,t
︸ ︷︷ ︸

=0

+δi jVI ,iVI , jδ(dt) .

(E.3)

In the third term 〈Oj〉c,t only depends on ξτ<t and due to the white-noise property the ex-
pectation value vanishes, Eξi,t+τξ j,t = δi jδ(τ). The fourth term vanishes due to the same
reason. The second term requires more care and we start by writing it out explicitly

γi

2
Vj,IE〈Oi〉c,t+dtξ j,t =

γi

2
VI , jETr

�

Oi

�

eLdt +
∑

l

p

ηlγl dWl,tH[Ol]

�

ρc,t

�

dWj,t

dt
, (E.4)

where we used
ρc,t+dt ' (eLdt +

∑

l

p

ηlγldWl,tH[Ol])ρc,t . (E.5)
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Using the Itō rule dWi,tdWj,t = δi jdt and the vanishing mean Eξi,t = 0 of a white-noise
process, we obtain

γi

2
VI , jE〈Oi〉c,t+dtξ j,t =

1
2

γiγ j

4
E
�

Oi(Ojρc,t +ρc,tOj − 2〈Oj〉c,tρc,t)
�

=
γiγ j

4

�

1
2
E〈{Oi , Oj}〉c,t −E〈Oi〉c,t〈Oj〉c,t

�

,
(E.6)

with the anti-commutator {A, B} = AB + BA. Plugging this expression back into Eq. (E.3) we
obtain

EIi,t+dt I j,t =
γiγ j

4

�

E〈Oi〉c,t+dt〈Oj〉c,t −E〈Oi〉c,t〈Oj〉c,t +
1
2
E〈{Oi , Oj}〉c,t

�

. (E.7)

When taking the limit dt → 0+ the term δ(0+) = 0 and the first two terms cancel and we are
left with the unconditioned fluctutations

EIi,t+0+ I j,t =
γiγ j

4
1
2
〈{Oi , Oj}〉t , (E.8)

where we used E〈. . .〉c,t = Tr(. . .ρt) = 〈. . .〉t . Rewriting Oi =
∑

m Mimsm we obtain Eq. (67)
from the main text.
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