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Abstract

In this note we study the SYK model with one time point, recently considered by Saad,
Shenker, Stanford, and Yao. Working in a collective field description, they derived a
remarkable identity: the square of the partition function with fixed couplings is well
approximated by a “wormhole” saddle plus a “pair of linked half-wormholes” saddle. It
explains factorization of decoupled systems. Here, we derive an explicit formula for the
half-wormhole contribution. It is expressed through a hyperpfaffian of the tensor of SYK
couplings. We then develop a perturbative expansion around the half-wormhole saddle.
This expansion truncates at a finite order and gives the exact answer. The last term in
the perturbative expansion turns out to coincide with the wormhole contribution. In
this sense the wormhole saddle in this model does not need to be added separately, but
instead can be viewed as a large fluctuation around the linked half-wormholes.
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1 Introduction

It is becoming increasingly clear that wormholes play an important role in the physics of quan-
tum black holes. They explain the long-time behavior of the spectral form factor [1], [2], cor-
relation functions [3] and the entropy of Hawking radiation [4], [5]; can be traversable [6],
[7], [8] and sometimes even by humans [9].

On the other hand, wormholes in AdS/CFT lead to a factorization problem [10]. From the
boundary point of view, two decoupled systems L and R have a factorized partition function
Z = ZL ZR. While from the bulk perspective, there could be contributions from wormholes
connecting the two boundaries that might spoil such factorization.

Strictly speaking, there is no sharp paradox. In all known UV-complete string-theoretic
examples, the wormhole solutions are either subdominant or suffer from brane-nucleation
instabilities [10], [11].1 On the other hand, in some cases, there are wormhole solutions that
dominate over the disconnected solutions and have no known instabilities, but do not have a
known embedding in string theory (see [11] for a nice overview of these results and references
therein). In the latter case, it is not clear whether we should expect to have two decoupled
boundary systems with a factorized partition function. Or if instead the boundary theory is an
ensemble and its partition function does not factorize, as for example in JT gravity [2].

At the very least, wormholes contribute as off-shell configurations. So even though there
is no paradox, one might wonder what is the mechanism for getting a factorized answer. A
nice example, where our expectations are reasonably clear, is the spectral form factor. The
wormhole, in this case called the “double-cone”, describes [1] the linear ramp behavior at
long times [12]. However, if we do not do either an ensemble or time averaging, the spectral
form factor is expected to have large oscillations, comparable to the size of the ramp itself
[13]. Therefore, we should expect that there are contributions in the bulk describing these
oscillations that are comparable in size to the wormhole contribution and must be taken into
account.

Recently, a toy model, where the issue can be settled, was studied by Saad, Shenker, Stan-
ford and Yao (SSSY) [14]. They considered a finite dimensional Grassman integral that can be
thought of as an SYK model where the time direction is reduced to one point. They computed
a two-boundary observable zLzR and showed that even with fixed couplings one can introduce
collective field variables GLR,ΣLR representing correlations between the two systems L and R.
These variables can be thought of as a proxy for the bulk description. Then the configurations
with GLR,ΣLR 6= 0 can be viewed as wormholes.

In the theory with fixed couplings they found two types of saddles: wormhole saddle and
a “pair of linked half-wormholes” saddle. Crucially, the new half-wormhole saddle is not self-
averaging and depends strongly on the couplings. It disappears if we consider the average
〈zLzR〉. But for fixed couplings, the wormhole and linked half-wormholes combine to give a
good approximation of zLzR, thus restoring factorization.

In this note, we provide some further details of this model. We derive explicit formulas
for both the partition function and the half-wormhole contribution. Both are expressed as
“hyperpfaffians”, a generalization of pfaffian to tensors, of the tensor of SYK couplings. We
then develop a perturbation theory around the linked half-wormholes. It truncates at finite
order. Again, we compute every term in the expansion explicitly and show how they combine
to give the exact result.

An interesting feature of the model is that the last term in the perturbation theory around
linked half-wormholes coincides with the wormhole contribution. Therefore, the wormhole
saddle in this model need not be added separately, but can instead be described as a large
fluctuation around linked half-wormholes.

1In some of those examples, it is simply not known whether wormholes are dominant or not.
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2 SYK with one time point

We would like to study a partition function given by a finite-dimensional Grassmann integral2

z =

∫

dNψ exp

 

iq/2
∑

1≤a1<···<aq≤N

Ja1...aq
ψa1...aq

!

, ψa1...aq
≡ψa1

. . .ψaq
, (1)

with the completely antisymmetric tensor of the couplings Ja1...aq
drawn out of a gaussian

ensemble with zero mean and variance given by

〈Ja1...aq
Jb1...bq

〉= J̄2δa1 b1
. . .δaq bq

, J̄2 ≡
(q− 1)!

Nq−1
. (2)

We assume that N , q are both even integers and N is divisible by q (otherwise z = 0)

p ≡
N
q
∈ N . (3)

In [14] this model was naturally called SYK with one time point.
In what follows, we will use capital latin letters A, B, C , . . . to denote ordered q-subsets of

{1, . . . , N}. For example

A= {a1 < · · ·< aq} , JAψA ≡ Ja1...aq
ψa1...aq

. (4)

We define an ordering on the q-subsets by their first elements3

A< B ⇔ a1 < b1 . (5)

It is straightforward to compute the integral4 (1)

z =

∫

dNψ exp(iq/2JAψA) (6)

= iN/2

∫

dNψ
(JAψA)N/q

(N/q)!
(7)

= iN/2
∑′

A1<···<Ap

JA1
. . . JAp

∫

dNψ ψA1
. . .ψAp

(8)

=
∑′

A1<···<Ap

sgn(A)JA1
. . . JAp

, (9)

where sgn(A) = sgn(A1 . . . Ap) is the sign of the corresponding permutation. The prime on
the sums means that we include only non-intersecting q-subsets: Ai ∩ A j = ∅, a condition
enforced by the Grassmann integral. We will often use this notation below to avoid cluttering
with explicit summation constraints. The resulting expression is called a “hyperpfaffian” of the
tensor JA = Ja1...aq

and was first introduced in [15]

z = PFJ =
∑′

A1<···<Ap

sgn(A)JA1
. . . JAp

. (10)

For q = 2 this reduces to the usual pfaffian of an antisymmetric matrix Ji j .

2We define Grassmann measure s.t. iN/2
∫

dNψ ψ1 . . .ψN = 1. This will be convenient because there will be no
factors of i in the final expression for z.

3To be more precise, if a1 = b1 then we should compare a2 and b2 and so on. However, in the present work we
will only be considering non-intersecting q-subsets A∩ B =∅, so this issue never arises.

4Summation over repeated indices is implied henceforth.
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3 Averaged theory

Ensemble averages can be computed using the hyperpfaffian expression for the partition func-
tion (10). The simplest non-trivial quantity is 〈z2〉

〈z2〉= 〈zLzR〉= 〈(PFJ)2〉 (11)

=
∑′

A1<···<Ap
B1<···<Bp

sgn(A)sgn(B)〈JA1
JB1
〉 . . . 〈JAp

JBp
〉 (12)

=
N !

p!(q!)p
×
�

J̄2
�p

. (13)

In the second line, we kept the only non-trivial Wick contraction.5 Indeed, because of the
ordering both A1 and B1 start with the index 1. So they can be only contracted with each other.
Once we contract them, the same argument goes for A2, B2 and so on. Only the diagonal terms

Ai = Bi survive and the result is simply the number of terms in the sum times
�

J̄2
�N/q

.
This, of course, is the same result as in [14], which SSSY computed from the collective field

description. In particular, in the large N limit 〈z2〉 is approximated by the wormhole saddle
found in [14]

L RL R ≈ (14)

where the LHS represents the contractions of J ’s in (12).
Next, we compute 〈z4〉

〈z4〉= 〈zLzRzL′zR′〉=
∑

n1+n2+n3=N/q
ni≥0

L R

R’L’

(15)

= (J̄2)2N/q
∑

n1+n2+n3=N/q
ni≥0

N !
(qn1)!(qn2)!(qn3)!

×
�

(qn1)!
(q!)n1 n1!

(qn2)!
(q!)n2 n2!

(qn3)!
(q!)n3 n3!

�2

(16)

=

�

J̄2

q!

�2N/q

N !
∑

n1+n2+n3=N/q
ni≥0

(qn1)!(qn2)!(qn3)!
(n1!n2!n3!)2

. (17)

Each of the four hyperpfaffians corresponding to systems L, R, L′, R′ has p = N
q factors of JAi

.
In the most general pattern of Wick contractions, represented pictorially in (15), we split J ’s of
each system into p = n1+ n2+ n3. One can check that n1, n2, n3 must be the same for all four

5The prime on the sum here obviously implies only that A’s are non-intersecting among each other and the same
for B’s, but no such condition between A’s and B’s. We will often abuse notation in this way to keep equations
readable. Hopefully, the precise constraint will be clear from the context.
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systems.6 Then the combinatorics in (16) works as follows. First, we assign N = qn1+qn2+qn3
indices to one of the three groups of J ’s described above. There are N !

(qn1)!(qn2)!(qn3)!
ways to do

that. At this stage we do not count permutations within each of the three groups. Now, there
are (qn1)!

(q!)n1 n1! ways to assign qn1 indices to n1 J ′s, where we do not count permutations of indices
on one JA and do not count permutations of n1 J ’s. Similarly for n2, n3. Finally, assignment
of indices must be the same for Wick-contracted pairs. Therefore, we have a factor of (qni)!

(q!)ni ni !
for each of the six pairs of systems contracted as in (15). This agrees with the computation in
collective field description in [14].

In the large N limit, the three terms when one of the ni ’s is N/q dominate,
giving 〈z4〉 ≈ 3〈z2〉2. They correspond to the three wormhole saddles [14]

≈ + + (18)

4 Non-averaged theory

We now turn to studying z2 with fixed couplings. SSSY [14] noted that in a theory with fixed
couplings we can still introduce a collective field description. This is done by inserting identity
as an integral

1=

∫ ∞

−∞
dG

∫ i∞

−i∞

dΣ
2πi/N

exp
�

−Σ
�

NG −ψL
i ψ

R
i

��

︸ ︷︷ ︸

δ(G− 1
Nψ

L
aψ

R
a)

exp
§

N
q

�

Gq −
�

1
N
ψL

aψ
R
a

�q�ª

. (19)

After rotating the contour by Σ= ie−iπ/qσ, G = eiπ/q g, we have a representation of z2

z2 =

∫ ∞

−∞
dσ Ψ(σ)Φ(σ) , (20)

where the first factor

Ψ(σ) =

∫ ∞

−∞

d g
2π/N

exp
�

N
�

−iσg −
1
q

gq
��

, (21)

is a function that does not depend on the couplings and is highly peaked around σ = 0. While
the second factor

Φ(σ) =

∫

d2Nψ exp
�

ie−
iπ
q σψL

aψ
R
a + iq/2JA(ψ

L
A +ψ

R
A)− iq J̄2ψL

Aψ
R
A

�

, (22)

is a function that contains all of the information about the couplings. Note that Φ(σ) is a
polynomial of order N and only integer powers of σq are present.

Let us summarize the findings of [14]. They showed that the integral (20) has two types
of saddles. First, for σ outside of a certain finite region near σ = 0, the function Φ(σ) is

6There are six lines with associated ni in (15) connecting the four corners. At each corner there is a constraint
that ni ’s sum to p = N/q. Therefore, we have two independent parameters. Or, equivalently, three parameters
with a constraint n1 + n2 + n3 = p.
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self-averaging and is well approximated by σN . In this region there are “wormhole” saddles
living on the unit circle |σ|= 1 in the complex σ plane. They reproduce the averaged answer
〈z2〉. Second, in a region near σ = 0 the function Φ(σ) is not self-averaging and has a weak
dependence on σ since it is a polynomial. Near σ = 0 it is well approximated by Φ(0). While
the function Ψ(σ) is exponentially peaked at σ = 0. This is the second type of saddle, referred
to as a “pair of linked half-wormholes” in [14].7 Therefore, SSSY concluded, in the theory
with fixed couplings and at large N we have an approximate identity

z2 ≈ 〈z2〉+Φ(0) . (23)

This is a remarkable identity and we would like to understand it better.

4.1 Linked half-wormholes

We start with computing the contribution of linked half-wormholes Φ(0) (recall that p = N
q )

Φ(0) =

∫

d2Nψ exp
�

iq/2JA(ψ
L
A +ψ

R
A)− iq J̄2ψL

Aψ
R
A

�

(24)

= iN
p
∑

k=0

�

−J̄2
�k
∫

d2Nψ

�

ψL
Iψ

R
I

�k

k!
×

�

JAψ
L
A

�p−k

(p− k)!
×

�

JBψ
R
B

�p−k

(p− k)!
(25)

= iN
p
∑

k=0

�

−J̄2
�k
∫

d2Nψ
∑

I1<···<Ik

(ψL
I1

. . .ψL
Ik
)× (ψR

I1
. . .ψR

Ik
) (26)

×
∑

A1<···<Ap−k

JA1
. . . JAp−k

(ψL
A1

. . .ψL
Ap−k
) (27)

×
∑

B1<···<Bp−k

JB1
. . . JBp−k

(ψR
B1

. . .ψR
Bp−k
) (28)

=
p
∑

k=0

�

−J̄2
�k

∑′

I1<···<Ik

�

PFJ (I1,...,Ik)
�2

. (29)

In the second line, we kept only the terms that saturate the Grassmann integral. Next, we wrote
out the sums more explicitly utilizing our convention for ordering on q-subsets (5). In the final
line, we expressed the result in terms of the hyperpfaffian of the tensor J (I1,...,Ik)

A = J (I1,...,Ik)
a1...aq

.
It is defined to be the original tensor JA = Ja1...aq

with indices restricted to not be in I1, . . . , Ik.
This condition comes about due to the fermions in (26). The final expression can in fact be
put into a more suggestive form

Φ(0) =
∑′

A1<···<Ap
B1<···<Bp

sgn(A)sgn(B)
�

JA1
JB1
− J̄2δA1B1

�

. . .
�

JAp
JBp
− J̄2δApBp

�

. (30)

This is one of our main results.
The expression (30) makes it obvious that 〈Φ(0)〉 = 0. It also clarifies how the equation

(23) is satisfied. Using (10), we can write the exact answer as follows

z2 =
∑′

A1<···<Ap
B1<···<Bp

sgn(A)sgn(B)
�

J̄2δA1B1
+
�

JA1
JB1
− J̄2δA1B1

�

�

. . .
�

J̄2δApBp
+
�

JAp
JBp
− J̄2δApBp

�
�

. (31)

7This is contrasted with “unlinked half-wormholes”, which describe zL and zR separately. In this description
factorization is manifest. See [14] for details.
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Now we can start expanding this by choosing either of the two terms in each of the p factors. If
we choose all J̄2δAi Bi

terms, we get the wormhole contribution 〈z2〉 given in (12). On the other
hand, if we choose (JAi

JBi
− J̄2δAi Bi

) we get the linked half-wormholes (30). In the section
4.3 we will see how the remaining terms are reproduced in perturbation theory around the
half-wormhole.

Another way to think about linked half-wormholes Φ(0) is to note that :JAJB:≡ JAJB−J̄2δAB
can be viewed as a normal ordered product. We can suggestively write

z2 ≈ 〈z2〉+ :z2: , :z2:≡ Φ(0) . (32)

This of course doesn’t yet explain why the remaining terms in (31) are small. We turn to this
next.

4.2 Computation of Error

We should emphasize that the approximation (32) is not a conventional large N limit. In
particular, it is possible to choose a set of fixed couplings JA for which it is not a good ap-
proximation. Instead, the approximation (23) is valid for a typical realization of the couplings
JA. Namely, if we draw the couplings from the gaussian ensemble (2), we find that (32) is a
reliable approximation on average. In other words, the variance (or uncertainty) of z2 around
〈z2〉+ :z2: is small in the ensemble (2).

To quantify the errors in (32), following SSSY we define

Error= z2 −
�

〈z2〉+Φ(0)
�

. (33)

To show that Error is small for a typical realization of the couplings, we need to compute

〈Error2〉= 〈z4〉 − 〈z2〉2 + 〈Φ(0)2〉 − 2〈z2Φ(0)〉 . (34)

To calculate 〈Φ(0)2〉 it is convenient to think about Φ(0) as the normal ordered z2, see
(32). Then the computation of 〈Φ(0)2〉 = 〈:z2::z2:〉 is similar to the computation of 〈z4〉 in
(15) - (17), except that we do not include contractions between L and R and between L′ and
R′. That is, we set n1 = 0

〈Φ(0)2〉=
�

J̄2

q!

�2N/q

N !
∑

n2+n3=N/q
ni≥0

(qn2)!(qn3)!
(n2!n3!)2

(35)

≈ 2〈z2〉2 . (N →∞) (36)

Here, in the large N limit the sum is dominated by the two terms when one of ni ’s is N/q.
To calculate 〈z2Φ(0)〉 we note that because of normal ordering every JA in Φ(0) must be

contracted with some JA in z2. This takes up all J ’s in z2, so there are no contractions of two
J ’s in z2. Therefore, we get the same result as for 〈Φ(0)2〉

〈z2Φ(0)〉= 〈Φ(0)2〉 ≈ 2〈z2〉2 . (37)

Combining (34), (13) (17), (35), (37) we find

〈Error2〉=
�

J̄2

q!

�2N/q

N !
∑

n1+n2+n3=N/q
1≤n1≤p−1

n1,n2≥0

(qn1)!(qn2)!(qn3)!
(n1!n2!n3!)2

. (38)

At large N this sum is dominated by “boundary” terms with (n1, n2, n3) taking one of the four
values (1,0, p− 1), 1, p− 1, 0), (p− 1,0, 1), (p− 1,1, 0). Altogether, we have

〈Error2〉
〈z4〉

≈
4
3
(q− 1)!

q
1

Nq−2
. (39)

In this sense, corrections to (23) are small for q > 2.
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4.3 Perturbative expansion around linked half-wormholes to all orders

Now we turn to computing corrections to the equation (23). From the integral representation
(22) of Φ(σ) it is clear that it is a polynomial of order N and only powers of σq are present

Φ(σ) =
p
∑

k=0

σkq

(kq)!
Φ(kq)(0) . (40)

This is a perturbative expansion around the half-wormhole saddle σ = 0. After inserting (40)
and (21) into (20), we can compute both σ and g integrals (see appendix A). The result is

z2 =

∫ ∞

−∞
dσ Ψ(σ)Φ(σ) =

p
∑

k=0

(−J̄2)k

k!

�

iq

q!

�k

Φ(kq)(0) , (41)

where we substituted factors depending on N , q for J̄2 in a way that will be convenient mo-
mentarily. To compute Φ(kq)(0), we note that Φ(σ) satisfies an equation

iq

q!
∂ q
σΦ(σ) =

∂

∂ J̄2
Φ(σ) . (42)

This is derived from the definition (22). Here, we think of J̄2 as a free parameter in (22) and
set it to its value (2) after computing J̄ derivative.8 Now, our perturbative expansion takes the
form

z2 =
p
∑

k=0

1
k!

�

J̄2
�k
�

−
∂

∂ J̄2

�k

Φ(0) (43)

=
p
∑

k=0

Φk , (44)

where we also introduced a new notation Φk for later convenience. If we insert Φ(0) here from
(30), we see this precisely corresponds to doing the expansion of the exact answer as in (31).
The operator −J̄2 ∂

∂ J̄2 acting on (30) substitutes one of the factors of :JAi
JBi

: by J̄2δAi Bi
. So Φk

represents a piece of (31) when we choose J̄2δAi Bi
in k of the p factors and choose :JAi

JBi
: in

the rest.
Of course, the expansion (43) is just reorganizing the exact answer. What is interesting is

that it has an interpretation of a semi-classical expansion at large N .
Again, we should emphasize that the expansion (43) is not a conventional perturbative

large N expansion. Instead, it is a perturbative expansion for a typical choice of the couplings
in the gaussian ensemble (2). Below, we will estimate the typical values by Φk ∼ 〈Φk〉+

q

〈Φ2
k〉

and show that for these typical values the expansion (43) behaves as a perturbative series at
large N .

It is particularly interesting to consider the last term in (43)

1
(N/q)!

�

J̄2
�N/q

�

−
∂

∂ J̄2

�N/q

Φ(0) = 〈z2〉 . (45)

It gives the same contribution as the wormhole saddle, even though we were doing a pertur-
bative expansion around the linked half-wormholes at σ = 0. Should we separately include
the wormhole, since it is also a saddle, in addition to the linied half-wormholes with fluctua-
tions (43)? The answer is no, because (43) already gives the exact answer. We checked this
explicitly above by computing (31), (30), (43).

8In deriving (42) it is also convenient to use an identity iq

q! (ψ
L
aψ

R
a)

q =ψL
Aψ

R
A.
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In this sense, the wormhole does not have to be included in our toy model path integral as a
saddle. But instead, it can be viewed as a large fluctuation around the linked half-wormholes.
This is possible because we could track terms of order σN in the expansion around σ = 0,
something that might be hard to do in more sophisticated models.

Of course, one can reverse the logic and do perturbation theory around the wormhole
instead. In this case, the half-wormhole contribution Φ(0) would arise as a large fluctuation
around the wormhole.9

One potential objection to this picture is that for a typical realization of the couplings the
half-wormhole and the wormhole contributions, which represent the first and the last terms
in the perturbative expansion (43), are of the same order

〈z2〉 ∼
Æ

〈Φ(0)2〉 . (46)

While the remaining terms are suppressed, as we discussed in the section 4.2. This means that
when we do the expansion (43), for low orders of perturbation theory k, corrections become
more suppressed. But at some point in the expansion they start increasing again and the last
term is of the same order as the first one. This seems reminiscent of the fact that perturbation
theory in higher dimensional QFTs is often only asymptotic and not convergent. Let us make
this more precise in our model.

We would like to estimate Φk for a typical realization of the couplings. The average value
vanishes 〈Φk〉= 0 for k 6= p, because Φk contains at least one normal ordered factor :JAJB:. So
we need the variance 〈Φ2

k〉. The computation is similar to 〈Φ(0)2〉 in (35) and z4 in (15). The
answer is simply given by the diagram (15) where we set n1 = k

〈Φ2
k〉=

�

J̄2

q!

�2N/q

N !
(qk)!
(k!)2

∑

n2+n3=p−k
ni≥0

(qn2)!(qn3)!
(n2!n3!)2

. (47)

While

〈ΦkΦk′〉= 0 , k 6= k′ . (48)

In particular, this is related to Error computed in the section 4.2 (see (33), (38))

Error=
p−1
∑

k=1

Φk , (49)

〈Error2〉=
p−1
∑

k=1

〈Φ2
k〉 . (50)

For large N and fixed k, the sum (47) is dominated when one of the ni ’s is p − k and we
estimate

〈Φ2
k〉
〈z4〉

∝
1

N k(q−2)
, (N →∞, k - fixed) . (51)

We see that for q > 2 higher orders k of perturbation theory give supressed corrections, as
long as k is not too large. However, when k becomes of order N , corrections start growing.
And in the complementary regime we have contributions of the same order as (51) (p = N/q)

〈Φ2
p−k〉

〈z4〉
∝

1
N k(q−2)

, (N →∞, k - fixed) . (52)

9A similar phenomena was recently observed in the tensionless string [16], where the perturbative expansion
around the wormhole geometry background can be computed exactly. And it gives a factorized answer without
including any other semi-classical geometries as additional saddles.
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5 Two replicas with a coupling

Another interesting variation of the model, considered in [14], is to add a coupling µ between
the two replicas

ζ(µ) =

∫

d2Nψexp
�

µψL
aψ

R
a + iq/2JA(ψ

L
A +ψ

R
A)
�

. (53)

This can be thought of as either analogous to the coupling between the two boundaries in the
eternal traversable wormhole [8], or as an SYK model with two instants of time. Working in the
collective field description, SSSY found [14] that for 1/N � µ� 1 the wormhole contribution
gets enhanced relative to the half-wormhole and ζ(µ) becomes self-averaging.

In this section, we compute ζ(µ) exactly, similarly to the section 4.3. And show how the
coupling µ leads to the enhancement of the wormhole from this point of view.

The coupling µ modifies the formula (20) by a shift of the argument of Φ

ζ(µ) =

∫ ∞

−∞
dσ Ψ(σ)Φ(σ− iei πq µµ) . (54)

A computation similar to (40), (41) shows (see appendix A)

ζ(µ) =
p
∑

k=0

ζk(µ)Φk , (55)

ζk(µ) =
k
∑

n=0

k!
(k− n)!(nq)!

� q
N

�n
(Nµ)nq , (56)

where Φk were defined in (44).
We estimate the wormhole contribution k = p = N/q at large N and 1/N � µ� 110

ζp(µ)≈
∞
∑

n=0

1
(nq)!

(Nµ)nq ≈
1
q

eNµ . (57)

While the half-wormhole and small fluctuations around it contribute

ζk(µ)∼ µkqN k(q−1) , (N →∞, k - fixed) . (58)

In this case the sum (56) is dominated by the last term n= k.
Altogether, we find that the half-wormhole contribution is suppressed in the regime

1/N � µ� 1 and the partition function is dominated by the wormhole and is self-averaging

ζ(µ)≈
1
q

eNµ〈z2〉 . (59)

In the collective field description of [14], eNµ comes from the value of eµNG on the dominating
wormhole saddle G = 1. And the factor 1

q corresponds to breaking of the degeneracy between
q wormhole saddles by the coupling µ.

10In this regime the sum is dominated by n∼ Nµ.

10

https://scipost.org
https://scipost.org/SciPostPhys.12.1.029


SciPost Phys. 12, 029 (2022)

6 Discussion

In this paper we considered a simple finite-dimensional SYK model with fixed couplings living
at one time point. The partition function of this system is given by the hyperpfaffian of the
tensor of SYK couplings. Working in the collective field description, we explained how the
exact factorized answer for the square of the partition function arises in perturbation theory
around the linked half-wormholes. Finally, we observed that in this model it is enough to
consider one saddle point and fluctuations around it. While contributions of other saddles
arise as large fluctuations.

It would be interesting to know if this simple model has a dual 1d gravity system, perhaps
along the lines of [17]. And if any our findings carry over to the full-fledged SYK and more
sohpisticated models of holography.
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Appendix A: Computation of σ integrals

Here we compute the integrals over σ that were used the main text. First, we compute

∫ ∞

−∞
dσ Ψ(σ)σkq =

∫ ∞

−∞

d g
2π/N

e−
N
q gq

∫ ∞

−∞
dσ e−iN gσσkq (60)

=

∫ ∞

−∞

d g
2π/N

e−
N
q gq
×
�

i
N

�kq 2π
N
δ(kq)(g) (61)

=
�

i
N

�kq �

−
N
q

�k (kq)!
k!

(62)

=
(kq)!

k!

�

−
iq

q!
J̄2
�k

. (63)

Similarly, we have (m≡ iei πq µ)

∫ ∞

−∞
dσ Ψ(σ)(σ−m)kq =

∫ ∞

−∞

d g
2π/N

e−
N
q gq

∫ ∞

−∞
dσ e−iN gσ(σ−m)kq (64)

=

∫ ∞

−∞

d g
2π/N

e−
N
q gq
× e−iNmg

�

i
N

�kq 2π
N
δ(kq)(g) (65)

=
�

i
N

�kq ∫ ∞

−∞
d g δ(g) ∂ kq

g

�

e−
N
q gq−iNmg

�

(66)

=
(kq)!

k!

�

−
iq

q!
J̄2
�k

×
k
∑

n=0

k!
(k− n)!(nq)!

� q
N

�n
(Nµ)nq . (67)
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