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Abstract

The nature of unconventional superconductivity is intimately linked to the microscopic
nature of the pairing interactions. In this work, motivated by cubic heavy fermion
compounds with embedded multipolar moments, we theoretically investigate super-
conducting instabilities instigated by multipolar Kondo interactions. Employing mul-
tipolar fluctuations (mediated by RKKY interaction) coupled to conduction electrons
via two-channel Kondo and novel multipolar Kondo interactions, we uncover a vari-
ety of superconducting states characterized by higher-angular momentum Cooper pairs,
J = 0, 1, 2, 3. We demonstrate that both odd and even parity pairing functions are possi-
ble, regardless of the total angular momentum of the Cooper pairs, which can be traced
back to the atypical nature of the multipolar Kondo interaction that intertwines conduc-
tion electron spin and orbital degrees of freedom. We determine that different (point-
group) irrep classified pairing functions may coexist with each other, with some of them
characterized by gapped and point node structures in their corresponding quasiparticle
spectra. This work lays the foundation for discovery and classification of superconduct-
ing states in rare-earth metallic compounds with multipolar local moments.
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1 Introduction

The instability of the Fermi liquid state to interactions is at the heart of a wealth of emergent
phenomena. Of particular interest is the superconducting transition, wherein an attractive
potential leads to the formation of bound electron pair states. The subsequent macroscopic
condensation of these Cooper pairs and mass generation for the gauge fields through the
Anderson-Higgs mechanism, leads to the eponymous perfect conductivity and expulsion of
magnetic fields. In BCS superconductivity, the pairing of opposite spin electrons by phonon-
mediated interactions leads to a superconducting ground state characterized by an isotropic
(in momentum space) pairing function and a gapped quasiparticle excitation spectrum.

However, the discovery of superconductivity in a variety of strongly-correlated systems – in-
cluding cuprates [1], heavy fermions [2–15], transition metal oxides [16–23], organic [24–26]
and U-based ferromagnetic [27–30] superconductors – has challenged this conventional wis-
dom. Appropriately named as unconventional superconductors, they have broadly been char-
acterized by anisotropic condensate wavefunctions, odd/even under spatial parity and time-
reversal, as well as possessing gapless (nodal) structures in the quasiparticle spectrum [31,32].
Understanding their microscopic origins led to decades of active research, which has given rise
to a number of proposed mechanisms that go beyond the phonon-mediated description of con-
ventional superconductors. For instance, magnetic/spin fluctuations have been attributed to
the origin of the odd-parity superconductivity in heavy fermion UPt3 [33] and the d-wave su-
perconductor UPd2Al3 [34–36], while orbital fluctuations have been suggested as the cause
in the iron-pnictides [37]. The evidently intimate link between the nature of the supercon-
ducting state and the interaction that instigates its formation leads one to question if novel
superconducting instabilities may occur from novel interactions.
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The investigation of rare-earth metallic compounds provides an ideal avenue to explore
this question. Through the combination of spin-orbit coupling and crystalline electric fields,
the localized rare-earth ions support anisotropic charge and magnetization densities, described
by higher-rank multipolar moments [38–41]. As a consequence of their non-trivial transfor-
mations under lattice symmetries, conduction electrons may interact with them in atypical
manners. For instance, in the single-impurity limit, so-called multipolar Kondo interactions
lead to the development of both multi-channel as well as exotic non-Fermi liquid states, where
both the conduction electron spin and orbital degrees of freedom become intertwined under
scattering events with the moment [42–45]. In the generalized lattice setting, this Kondo ef-
fect competes with RKKY interactions between the moments leading to a rich phase diagram
of exotic phenomena including hidden multipolar-ordered phases [46–50, 50–53], emergent
non-Fermi liquids [54–56], and unconventional superconductivity [57–61] in the neighbour-
hood of a putative quantum critical point [62,63]. In ferro-quadrupolar PrTi2Al20, for example,
thermodynamic and transport measurements indicate the existence of a broad superconduct-
ing dome coexisting with ferro-quadrupolar ordering under hydrostatic pressure [64]. Indeed,
the Tc is enhanced near the critical point suggesting that multipolar/orbital fluctuations of the
local moments play a crucial role in the pairing mechanism. Since the interactions between
the moments and electrons may themselves be unusual, this provides the tantalizing prospect
of the development of exotic unconventional superconducting behaviours.

In this work, motivated by superconducting behaviours in ferro-quadrupolar PrTi2Al20
[64], we investigate the superconducting instability instigated by multipolar Kondo interac-
tions. Employing a Ginzburg-Landau theory of ferro-multipolar ordering (mediated by RKKY
interaction), we consider Gaussian multipolar fluctuations in the high-symmetry paramagnetic
phase. These fluctuations (and the associated order parameters) are symmetry-permitting and
coupled to conduction electrons possessing spin (↑,↓) and orbital (`= 1) degrees of freedom.
Due to the nature of the Kondo coupling, the electrons’ decoupled spin and orbitals are in-
terwoven to form effective j = 1

2 , 3
2 conduction electrons. The multipolar Kondo interaction

used in this work was recently shown to result in both two-channel and novel non-Fermi liquid
behaviours in the single-impurity limit; as such, we consider these two limiting Kondo interac-
tions as the source of superconductivity. Integrating out the Gaussian multipolar fluctuations,
and employing group theoretical methods, we derive the superconducting interaction wherein
the Cooper pair channels are organized into the (Oh) cubic symmetry irreps, A1g , A2g , T1g , T2g ,
which involve combinations of the total angular momentum of the Cooper pairs, J = 0,1, 2,3;
for brevity we drop the gerade subscript henceforth.

The pairing functions arising from the two-channel Kondo interaction, have even/odd spa-
tial parity that follows from their even/odd J . Intriguingly, from the novel Kondo interaction,
both even/odd parity channels are possible regardless of the Cooper pair’s total angular mo-
mentum. This is a marked difference from conventional BCS and highlights the exotic nature
introduced from the novel Kondo interaction. Using mean-field theory, we examine the cor-
responding quasiparticle spectra and discover either point nodes along the various cubic axes
[100], [110] and [111], or a fully gapped spectrum on the Fermi surface (with a momentum
space dependence acquired from the pairing potential) depending on the superconducting
irrep of interest. This work lays the foundation for the discovery of unusual forms of super-
conductivity in multipolar based heavy fermion compounds.

The rest of the paper is organized as follows. In Sec. 2 we present a Ginzburg-Landau the-
ory of multipolar fluctuations based on the symmetry-constraining environment surrounding
the multipolar moments. In Sec. 3 we consider the multipolar Kondo coupling of conduction
electrons (of total angular momentum j = 1

2 , 3
2) to ferro-multipolar order parameters. The

Gaussian multipolar fluctuations are then integrated out to obtain effective electron-electron
interactions that can instigate superconducting instabilities. Section 4 organizes the subse-
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quent pairing Hamiltonian (composed of Cooper pair operators of total angular momentum
J ∈ [0, 3]) into the irreducible representations of the Oh point group. In Sec. 5 we consider
the variety of superconducting order parameters arising from two-channel and novel multi-
polar Kondo interactions, and discuss the variety of different pairing irreps. Section 6 details
the properties of the non-trivial superconducting states (including the nodal structure of the
quasiparticle spectra) using a mean-field theory approach. Lastly, in Sec. 7 we discuss the key
findings from this study and provide directions of future work.

2 Ginzburg-Landau theory of multipolar ordering

Localized multipolar moments arise from a combination of spin-orbit coupling and crystalline
electric field (CEF) effects. As a representative example, we consider the family of cubic mul-
tipolar compounds, Pr(Ti,V)2Al20, where the Pr ions reside on a two-sublattice diamond lat-
tice. Encircling each Pr ion is a cage of Al-atoms that subjects the 4 f 2 electrons to a local
Td symmetry, which splits the J = 4 multiplet to yield a low-lying non-Kramers doublet of
ground states, |Γ 1,2

3 〉. These states support solely higher-rank multipolar moments, namely

time-reversal even quadrupolar moments Ô20 =
1
2(3J2

z − J2), Ô22 =
p

3
2 (J

2
x − J2

y), and a time-

reversal odd octupolar moment T̂x yz =
p

15
6 Jx Jy Jz [41]. The two-fold nature of the ground

state permits a tidy representation of the multipolar moments in terms of pseudospin-1/2 op-
erators S= (S x , S y , Sz),

S x
A,B ∼ Ô22 , S y

A,B ∼ Ô20 , Sz
A,B ∼ T̂x yz . (1)

Due to the sublattice nature of the underlying diamond structure, the local moments are also
specified by their sublattice (A,B) location.

Conduction electron mediating RKKY-like interactions permit the development of spon-
taneous ferro- and antiferro- multipolar orderings. In this work, we focus on the possible
development of ferro-like order of both quadrupolar and octupolar moments described by the
coarse-grained Landau order parameters [65],

φx ,y,z(r) = 〈S
x ,y,z
A (r)〉+ 〈S x ,y,z

B (r)〉 , (2)

where r denotes the coarse-grained spatial coordinate. We note that in the subsequent path-
integral formulation, φx ,y,z are bosonic field variables.

Constrained by the surrounding Td point group of each moment, time-reversal symme-
try, and spatial inversion about bond-centre (detailed in Appendix A), we have the following
Euclidean time static Ginzburg-Landau action for the multipolar moments,

S0 =

∫

τ

∑

q

∑

µν

φµ(−q)Mµν(q)φν(q) , (3)

where we employ the Fourier modes of the order parameters,
∫

τ
=

∫ β

0 dτ,
Mx x(q) = (mQ + a0q2 + a2q2

ν), My y(q) = (mQ + a0q2 − a2q2
ν), Mzz(q) = (mO + a1q2),

Mx y(q) =My x(q) = (a2q2
µ). We employ the cubic Eg normal modes q2

ν ≡
1
2(2q2

z − q2
x − q2

y)

and q2
µ ≡

p
3

2 (q
2
x − q2

y), phenomenological constants mQ,O represent the mass terms for the
quadrupolar and octupolar degrees of freedom, and a0,1,2 > 0 express the stiffness associated
with spatial fluctuations of the order parameters. We retain only the quadratic fluctuations of
the order parameters under an implicit Gaussian approximation that only weak fluctuations
are important for the superconducting instability in the approach from the paramagnetic phase
(mQ,O > 0).
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3 Electron-electron interactions from multipolar Kondo effects

The nature of the interaction between the multipolar moments and conduction electrons, and
the subsequent many-body ground state, is strongly dependent on the available conduction
electron spin and orbitals [42–45]. As a representative example, we consider conduction elec-
trons, characterized by orbital px ,y,z (l = 1) and spin−1/2 degrees of freedom, forming a Fermi
surface well localized about the high-symmetry zone-centre of the Brillouin zone [66,67]. The
electrons are degenerate in both orbital and spin space, where the orbital degeneracy in the
p orbitals satisfies the cubic (Oh) symmetry of the high-symmetry zone-centre and the spin
degeneracy is guaranteed by time-reversal symmetry. The free fermion action is given by,

Sc =

∫

τ

∑

k

ckµ

�

(∂τ + εk)δµν
�

ckν , (4)

where µ,ν run over the six flavours of fermions (Appendix B details the conduction basis used)
which have a degenerate dispersion εk =

k2

2m −µF .
Though the isolated conduction electrons do not necessarily possess intrinsic spin-orbit

coupling, the interaction with multipolar Kondo moments necessitates the intertwining of the
orbital and spin degrees of freedom,

SK =

∫

τ

∑

k,q

�

ck+q,µ

�

Γ x
µνφx(q) + Γ

y
µνφy(q) + Γ

z
µνφz(q)

�

ck,ν + (q↔−q)

�

, (5)

where we detail the form of the interaction vertices Γ x ,y,z in Appendix B; it suffices to state
here that the Kondo interaction vertices involve three coupling constants J1,2,3. The natu-
ral basis for the conduction electrons in Eq. 5 is in terms of the total angular momentum
j = `⊗ s = 1⊗ 1

2 =
1
2 , 3

2 . In the single impurity limit, this multipolar Kondo interaction permits
the development of (i) a two-channel non-Fermi liquid behaviour (characterized by J2 = 0),
and (ii) a novel non-Fermi liquid behaviour (J1 = 0) at low temperatures [44].

The Gaussian nature of the multipolar order parameters permits them to be integrated out
(as described in Appendix C) of the path integral to yield an effective action,

Z =

∫

D[c, c;φ,φ]e−(S0+Sc+SK ) =

∫

D[c, c]e−Sc e−Seff . (6)

In order to study the superconducting instabilities instigated by Seff =
∫

τ
Heff, we rewrite it

in terms of pairing channel terms by (i) normal ordering the interaction and (ii) projecting
the interactions to ensure Cooper pairs are formed from electrons of opposite momenta (in
the renormalization group sense, any other possible pairs yield irrelevant interaction vertices
[68]). The effective superconducting Hamiltonian is,

Heff =−
∑

k,k′

∑

αβγδ

(Vαβγδ)k−k′ c
†
k,αc†

−k,γc−k′,δck′,β , (7)

where the complete form of the interaction potential (Vαβγδ)k,k′ , involving bi-quadratic prod-
ucts of the interaction vertices Γ x ,y,z and momentum dependent form factors, is presented in
Appendix C. We note that the interaction potential is composed of rational functions in mo-
mentum k,k′, which introduces a challenge when attempting to separate it into a product of
a function solely dependent on k and a function solely dependent on k′; this difficulty encour-
ages us to retain this momentum dependence k,k′ in the interaction/vertex function when
numerically solving the gap equations. The abundance of possible terms in Eq. 7 encourages
a careful examination of two limiting cases of the effective electron-electron interaction gen-
erated from (i) two-channel Kondo interaction, and (ii) novel multipolar Kondo interaction,
which we do so in the subsequent sections.
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4 Higher-angular momentum Cooper Pairs

The nature of the effective interaction permits superconducting instabilities of electrons be-
longing solely in the j = 1/2 sector, solely in the j = 3/2 sector, and a mixture of the two j
sectors. This leads to the development of Cooper pairs of total angular momentum J ,

1
2
⊗

1
2
→ 0⊕ 1 , (8)

3
2
⊗

3
2
→ 0⊕ 1⊕ 2⊕ 3 , (9)

1
2
⊗

3
2
→ 1⊕ 2 , (10)

which follows from standard angular momentum addition. This higher-angular momentum
nature of the Cooper pair is unlike the standard singlet state of BCS theory. We note that
the conduction electrons created here possess only the total angular momentum (or “effective
spin”) j and no additional orbital angular momentum.

Formally, the angular momentum sector of a generic form of a Cooper pair creation oper-
ator with momentum k can be decomposed into the total angular momentum states [69],

c†
k; j1

c†
−k; j2

=
∑

J ,M

〈 j1, m1; j2, m2| j1, j2; J , M〉b†
J ,M ;k , (11)

where j1,2 and m1,2 are the effective spin and z-direction component of each electron (m1,2 sub-
scripts for the conduction electron operators are dropped for brevity), and b†

J ,M ;k is a Cooper
pair creation operator of total effective spin J and M component along the z-direction at mo-
mentum ±k. 〈 j1, m1; j2, m2| j1, j2; J , Jz〉 are the Clebsch-Gordon (CG) coefficients, which takes
into account the symmetric/anti-symmetric property of effective spin exchange via the phase
factor i.e. 〈 j1, m1; j2, m2| j1, j2; J , M〉= (−1)J− j1− j2〈 j2, m2; j1, m1| j2, j1; J , M〉.

Due to the electrons possessing both j and k quantum numbers, fermionic exchange in-
volves the composition of spin exchange ( j1 ↔ j2) and spatial parity (k→ −k). For j1 = j2,
the associated Cooper pair operator must be even (odd) under spatial parity if J is even (odd)
to satisfy Fermi-Dirac statistics; this can verily be identified from Eq. 11 using the aforemen-
tioned CG phase factor and the anticommutation of fermionic operators. For j1 6= j2, special
care needs to be taken to establish the spatial parity nature of the pairing operator, as one can
define a Cooper pair creation operator in two ways: b†

J ,M ,k (b̃†
J ,M ,k) with j = 3

2 ( j = 1
2) fermion

at k and j = 1
2 ( j = 3

2) fermion in the −k in Eq. 11. These Cooper pair operators are related
to each other by the CG phase factor under exchange of j1 and j2. In order to create a Cooper
pair of definite parity, one should thus consider linear combinations (±) of the Cooper pair
operator in Eq. 11,

b†
J ,M ;k;± =

1
p

2

�

b†
J ,M ;k ± b̃†

J ,M ;k

�

, (12)

where due to satisfying Fermi-Dirac statistics, b̃†
J ,M ;−k = (−1)J+1 b†

J ,M ;k. Thus, b†
J ,M ;k;+

(b†
J ,M ;k;−) is odd (even) under spatial parity for even J ; and b†

J ,M ;k;+ (b†
J ,M ;k;−) is even (odd)

under spatial parity for odd J .
The cubic nature of the interactions necessitates that the Cooper pair operators of total

angular momentum b†
J ,M ;k be organized into the irreducible representations of the associated

point-group Oh, rather than the good quantum number of spherical symmetry, J [70–72]. The
group theoretical decomposition of Cooper pair states are: for J = 0→ A1,

|A1〉= |0,0〉 , (13)

6

https://scipost.org
https://scipost.org/SciPostPhys.12.2.057


SciPost Phys. 12, 057 (2022)

for J = 1→ T1,

|T1(1)〉=
1
p

2

�

|1, 1〉 − |1,−1〉
�

, (14)

|T1(2)〉=
i
p

2

�

|1, 1〉+ |1,−1〉
�

, (15)

|T1(3)〉= |1, 0〉 , (16)

for J = 2→ E ⊕ T2,

|E(1)〉=
1
p

2

�

|2,2〉+ |2,−2〉
�

, (17)

|E(2)〉= |2,0〉 , (18)

|T2(1)〉=
i
p

2

�

|2, 1〉+ |2,−1〉
�

, (19)

|T2(2)〉=
1
p

2

�

|2, 1〉 − |2,−1〉
�

, (20)

|T2(3)〉=
i
p

2

�

|2, 2〉 − |2,−2〉
�

, (21)

and for J = 3→ A2 ⊕ T1 ⊕ T2,

|A2〉=
i
p

2

�

|3, 2〉 − |3,−2〉
�

, (22)

|T1(1)〉=

√

√ 5
16

�

|3, 3〉 −

√

√3
5
|3, 1〉+

√

√3
5
|3,−1〉 − |3,−3〉

�

, (23)

|T1(2)〉= i

√

√ 5
16

�

|3, 3〉+ i

√

√3
5
|3, 1〉+

√

√3
5
|3,−1〉+ |3,−3〉

�

, (24)

|T1(3)〉= |3,0〉 , (25)

|T2(1)〉=

√

√ 3
16

�

|3, 3〉+

√

√5
3
|3, 1〉 −

√

√5
3
|3,−1〉 − |3,−3〉

�

, (26)

|T2(2)〉= i

√

√ 3
16

�

|3, 3〉 −

√

√5
3
|3, 1〉 − i

√

√5
3
|3,−1〉+ |3,−3〉

�

, (27)

|T2(3)〉=
1
p

2

�

|3,2〉+ |3,−2〉
�

, (28)

where we use the notation of the irreps of Oh point group, and |J , M〉 is the total angular
momentum wavefunction of the Cooper pair operator b†

J ,M ;k. We stress that the irrep decom-
position is of the total angular momentum J , rather than the linear momentum, of the Cooper
pair. The above total angular momentum states are even (with the appropriate gerade sub-
script) under the inversion element of Oh due to being composed of orbital angular momentum
l1 = l2 = 1 electrons i.e. picks up a phase of (−1)l1+l2 = 1 under the inversion [73]. We con-
trast this with the spatial parity that flips the linear momentum k. As mentioned previously, we
have dropped the gerade subscript for brevity. The procedure by which the group decomposi-
tion is performed is detailed in Appendix D, and the composition of the Cooper pair in terms
of individual fermionic bilinears is presented in Appendix E. We note that the cubic irrep ba-
sis functions and the corresponding Cooper pair operators are time-reversal invariant. This
permits the subsequent superconducting states to be characterized as time-reversal preserv-
ing (breaking) depending on if the superconducting order parameters, ∆, are (not) equal to
their complex conjugate, up to a global phase [70], as is typical in studies of multicomponent
superconductivity.
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Even Parity:


 ( 3
2 ⊗ 3

2 )

EJ=2(2)EJ=2(1)

AJ=01 TJ=22(i)

TJ=1,3+(i)TJ=32(i)

AJ=32 TJ=1,3−(i)

Odd Parity:


 ( 3
2 ⊗ 3

2 )

Figure 1: Superconducting order parameters arising from 3
2 ⊗

3
2 electrons, with

i = 1,2, 3 denoting the components of the three-dimensional irreps, from the two-
channel Kondo interaction. Coupled order parameters have an intersection between
their depicted circles. The Cooper pair operators associated with the order param-
eters are detailed in Appendix E. The complete form of the pairing Hamiltonian is
presented in Appendix F.

5 Superconducting instabilities from multipolar
Kondo interactions

The Cooper pairs, and the associated pairing functions, are associated with definite spatial
parity. In order to account for this, the interaction potential must similarly be decomposed
into even and odd under spatial parity components [74],

(V±Γ )k−k′ =
1
2

�

(VΓ )k−k′ ± (VΓ )k+k′
�

, (29)

where the Γ indicates a particular irrep of interest of definite spatial parity, and the interaction
potential is inversion-symmetric (VΓ )k−k′ = (VΓ )−k+k′ . From inspection, (V+Γ )k−k′ and (V−Γ )k−k′

are respectively even and odd under spatial parity, and thus the interaction Hamiltonian will
project out terms of definite parity i.e. pairing operators even (odd) under spatial parity only
contain the associated V+Γ (V−Γ ) portions of the interaction potential.

5.1 Two-channel Kondo interaction derived pairing instabilities

The superconducting order parameters derived from the two-channel Kondo interaction in-
volve electrons solely belonging to the j = 3

2 sector. They can divided into two families: those
involving even-J and odd-J total angular momentum, which correspond to even-(odd-)J pair-
ing functions under spatial parity. Since the interaction potential is functionally dependent
on momentum space, this permits certain Cooper pairs of different cubic irreps to scatter off
each other. For the even-J sector, AJ=0

1 and ~T J=2
2 are decoupled from the rest, while the two

components of the two-dimensional ~EJ=2
2 irrep are numerically found to be non-vanishing. For

the odd-J sector, the variety of realized irreps is more prominent as though the AJ=3
2 sector

is decoupled from the rest, the ~T1
J=1

and ~T1
J=3

irreps form two linear combinations out of
which one of the linear combination (for each component of the three dimensional irrep T1)
couples to a component of ~T2

J=3
. The complete form of the Hamiltonian is presented in Ap-

pendix F. We present a schematic depicting the decoupling for the even and odd-J channels,
and subsequent variety of the irreps in Fig. 1.
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Even Parity:


 ( 1
2 ⊗ 1

2 )∪( 3
2 ⊗ 3

2 )

TJ=11(i)

TJ=1,3−(i)TJ=1,3+(i)

TJ=32(i)

Odd Parity:


 ( 1
2 ⊗ 1

2 )∪( 3
2 ⊗ 3

2 )

AJ=01

EJ=2(2)EJ=2(1)

AJ=01

Figure 2: Superconducting order parameters arising from 3
2 ⊗

3
2 and 1

2 ⊗
1
2 electrons,

with i = 1,2, 3 denoting the components of the three-dimensional irreps, from the
novel fixed point Kondo interaction. Coupled order parameters have an intersection
between their depicted circles. The Cooper pair operators associated with the order
parameters are detailed in Appendix E. The complete form of the pairing Hamiltonian
is presented in Appendix G.

5.2 Novel Kondo interaction derived pairing instabilities

The superconducting order parameters derived from the novel Kondo interaction involve elec-
trons belonging to the j = 1

2 and j = 3
2 sectors. This offers a novel avenue of diversity of

superconductivity as Cooper pairs may be (i) formed from within each sector separately and
scatter off pairs in the other sector, and (ii) may be composed of one fermion from j = 1

2 and
the other from j = 3

2 sector. The classification of even/odd spatial parity Cooper pairs for
scenario (i) follows the previous approach, namely it is identified with the even/odd J nature
of the Cooper pair. As detailed in Sec. 4, the parity identification for scenario (ii) is not as
simple, and one has both even and odd parity pairings regardless of the even/odd-ness of J .
This is a clear distinction from the instabilities arising from the two-channel Kondo interaction.
We depict the variety of the various pairing channels for scenario (i) and (ii) in Figs. 2 and
3, respectively. As seen in Fig. 2, though the components of the Cooper pairs formed within
the j = 3

2 sector are decoupled from each other (for both even and odd J), the Cooper pair
formed within with j = 1

2 sector provides a common source to scatter the decoupled channels
amongst themselves. For the scenario (ii) in Fig. 3, even and odd J Cooper pairs are permitted
to scatter off each other, since even/odd J no longer corresponds to even/odd spatial parity
pairing functions.

6 Properties of Superconducting States

The characterization of the superconducting channels in terms of even/odd parity cubic irreps
permits a BCS-mean field theory to be developed to study the properties of the superconducting
state. Employing a Hubbard–Stratonovich (HS) transformation (as detailed in Appendix H)
we obtain gap equations of the form,

∆pα =
∑

q

∑

γ

(Ωpq)αγ
∑

i=1,...,m

tanh(βEmq/2)

Emq

∂ E2
iq

∂∆qγ

, (30)

where Emq is the Bogoliubov quasiparticle dispersion of the mth quasiparticle, (Ωpq)αγ is a
collection of interaction potentials associated with a decoupled irrep (or collection of irreps
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Even Parity:


 ( 1
2 ⊗ 3

2 )
Odd Parity:


( 1
2 ⊗ 3

2 )

EJ=2
−(2)EJ=2

−(1) EJ=2
+(2)EJ=2

+(1)

TJ=1
1+(i)TJ=22−(i) TJ=1

1−(i)TJ=22+(i)

Figure 3: Superconducting order parameters arising from 1
2 ⊗

3
2 electrons, with

i = 1, 2,3 denoting the components of the three-dimensional irreps, from the novel
fixed point Kondo interaction. Coupled order parameters have an intersection be-
tween their depicted circles. The Cooper pair operators associated with the order
parameters are detailed in Appendix E. The complete form of the pairing Hamilto-
nian is presented in Appendix G.

that is decoupled from the rest), and β = 1/T . In the case of a unique (m = 1) quasiparticle
dispersion, as is for the decoupled pairing channel in 3

2 ⊗
3
2 and the pairings from case of (ii)

of the novel interaction, there is an additional factor of the 2 on the right hand side of Eq. 30.
For choice of parameters provided in Appendix H, we obtain non-trivial gap solutions for

particular irreps. Indeed, solving the coupled BCS gap equations (Eq. 30) yields multiple non-
vanishing order parameter solutions in some cases. We present a summary table for the various
non-vanishing order parameters in Table 1 and 2 for the two-channel Kondo interaction and
the novel multipolar Kondo interaction, respectively. As seen, for the choice of parameters,
not all order parameters are realized, and in some cases multiple irrep solutions are found. In
Appendix I, we present the k-space distribution of the realized order parameters.

The nature of the superconducting state and the accompanying Bogoliubov quasiparticle
dispersion is intimately linked to the composition of the Cooper pairs from the fermionic j
sectors. For Cooper pairs formed from j = 3

2 or j = 1
2 sector, the realized even-parity order pa-

rameters have gapped quasiparticle dispersion, though with a momentum space dependence
that follows from the momentum distribution of the interaction potential. This property ap-

Table 1: Non-vanishing superconducting states resulting from electron-electron in-
teractions induced by two-channel Kondo coupling. G.D. = Gapped dispersion with
acquired k dependence from pairing potential. The corresponding order parameters
are provided in Fig. 1.

Spatial Parity ∆ Superconducting Properties

Even
AJ=0

1 G.D. Time-reversal invariant state.
EJ=2 G.D. Time-reversal invariant states.

Coexisting superconducting order parameters.

Odd

T J=3
2(1,2,3) , Gapless point nodes along body diagonals

T J=1,3
+(1,2,3) [111], [111], [111], [111] axes. Time-reversal broken states.

T J=1,3
−(1,2,3) Gapless point nodes

along cubic [100], [010], [001] axes. Time-reversal broken states.
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Table 2: Non-vanishing superconducting states resulting from electron-electron in-
teractions induced by novel Kondo coupling. G.D.=Gapped dispersion with acquired
k dependence from pairing potential. The corresponding order parameters are pro-
vided in Figs. 2, 3.

Spatial Parity ∆ Superconducting Properties

Even
AJ=0

1; j=1/2, Coexisting superconducting order parameters.
AJ=0

1; j=3/2, G.D.
EJ=2

j=3/2 Time-reversal invariant states.

Odd

T J=1
1; j=1/2, Coexisting superconducting order

T J=1,3
+; j=3/2, parameters. Gapless point nodes

T J=1,3
−; j=3/2, along [110], [101], [011],

T J=3
2; j=3/2 [110], [101], [011] axes. Time-reversal broken states.

Even EJ=2
−; 1

2⊗
3
2

G.D. Time-reversal broken states.

Odd
T J=2

2+; 1
2⊗

3
2

Coexisting superconducting order

T J=1
1−; 1

2⊗
3
2

parameters. G.D. Time-reversal broken states.

plies even in the case of multiple coexisting even-parity order parameters. The odd-parity
order parameters, on the other hand, acquire gapless nodes in the quasiparticle dispersion, in
a manner that respects the underlying cubic symmetry. We present a schematic of the realized
gapless quasiparticle nodes for the order parameters in Fig. 4. The distinction in the location
of the gapless nodes provides a means to distinguish the odd-parity order parameters. Indeed,
the realized superconducting states arising from electrons belonging to either j = 3

2 or j = 1
2

sector are time-reversal invariant (broken) depending on if J is even (odd).
For Cooper pairs formed from the combined j = 1

2 , 3
2 sectors, gapped quasiparticle disper-

sions are realized for both even and odd parity order parameters. Unlike the order parameters
where Cooper pairs are formed in the j = 1

2 or j = 3
2 sectors independently, odd-parity order

parameters develop for even-J Cooper pairs. This is an important distinction of this model
from standard BCS-like instabilities formed from j = 1

2 or from j = 3
2 sectors. A further in-

triguing aspect from the combined model is that the odd and even J Cooper pairs may coexist
with each other. This is seen, for example, in the coexisting gaps formed from T J=1

1−; 1
2⊗

3
2

and

T J=2
2+; 1

2⊗
3
2
, where despite being odd under spatial parity, the quasiparticle spectrum is gapped on

the Fermi surface. We contrast this with the nature of the gap functions obtained for odd-parity
Cooper pairs, where distinct gapless nodes are along the various depicted cubic directions in
Fig. 4. Indeed, both the realized superconducting states break time-reversal regardless of the
even-ness of J , as is seen for both the EJ=2

−; 1
2⊗

3
2

states, as well as for T J=2
2+; 1

2⊗
3
2
, T J=1

1−; 1
2⊗

3
2

states.

The origin of such unusual coexisting superconducting instabilities can be routed to the novel
multipolar Kondo coupling that permitted the mixing of multi-orbital conduction electrons.

7 Conclusion

In this work, we examined the nature of superconducting instabilities originating from two-
channel and novel multipolar Kondo interactions between multi-orbital conduction electrons
and localized non-Kramers moments. Due to the multipolar nature of the localized moments,
the spin and orbital of conduction electrons became intertwined, leading to pairing instabilities
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kx

ky

kz

(a)

kx

ky

kz

(b)

kx

ky

kz

(c)

Figure 4: Gapless nodes in the Bogoliubov quasiparticle dispersions for odd-parity
order parameters formed by fermions belonging to j = 1/2 or j = 3/2 sectors inde-
pendently. The point nodes are indicated by the blue dots, while the orange sphere
is the itinerant electron Fermi surface. The red-dashed lines are for ease of view-
ing the gapless point nodes along the various cubic axes. (a): Gapless nodes for
T J=1,3
+(1,2,3) , T J=3

2 order parameters resulting from two-channel Kondo interaction are lo-

cated along body diagonal [111] directions. (b): Gapless nodes for T J=1,3
−(1,2,3) order

parameters resulting from two-channel Kondo interaction are located along primary
cubic êi axes. (c): Gapless nodes for T J=1,3

+; j=3/2, T J=1,3
−; j=3/2, T J=3

2; j=3/2 resulting from novel
Kondo interaction are located along the [1± 10], [10± 1], [01± 1] axes.

between effective j = 1
2 , 3

2 the conduction electrons. Using group theoretic symmetry analy-
sis, we characterized the variety of higher-angular momentum Cooper pairs according to the
irreducible representations of the Oh point group. The Cooper pairs arising from two-channel
Kondo interactions are composed of electrons from the j = 1

2 , j = 3
2 sectors independently, and

possess even and odd spatial parity gap functions that follow from the even and odd-ness of
their corresponding total angular momentum J . Indeed, the odd-parity quasiparticles possess
point-nodal structures along various cubic directions in their dispersion. Intriguingly, Cooper
pairs arising from the novel Kondo interaction leads to coexisting even-J and odd-J instabil-
ities, which have even and odd spatial parity regardless of the even/odd-ness of the Cooper
pair total angular momentum.

Our studies are broadly applicable to the rare-earth family of Pr(Ti,V)2Al20,
Pr(Ir,Rh)2Zn20, where multipolar moments are situated on diamond lattice sites with well-
localized Fermi surface formed by Al atoms. Indeed, our work may be employed as a theoretical
guide to classify the superconducting instabilities occurring in the paramagnetic phase, which
may be achieved via the application of hydrostatic pressure. Future directions of study would
be to examine and classify the nature of the superconductivity coexisting within a multipolar
ordered phase. Due to the reduced symmetry of the ordered phase, the above cubic irreps be-
come reducible and it is natural to expect further variety of the pairing functions. Such studies
would be highly relevant to observed superconductivity coexisting with quadrupolar ordered
phase in PrTi2Al20 [64]. Indeed, microscopic details of the conduction electrons (such as the
conduction electron band structure and Fermi surface in the paramagnetic phase) would be
required to make direct connections with such coexistence experiments [75]. Understanding
the topological nature of the superconducting states in both the paramagnetic and multipo-
lar ordered phases may ultimately require such microscopic information, and would be an
important future study.
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A Symmetry transformations of multipolar moments

The phenomenological order parameters transform as their microscopic counterparts under
the generating elements of the Td point group (improper rotation S4z and a C3 rotation along
the [111] axis), namely [43,53]:

φx(r)
S4z−→ −φx(R

−1
S4z

r) , (31)

φy(r)
S4z−→ φy(R

−1
S4z

r) , (32)

φz(r)
S4z−→ −φz(R

−1
S4z

r) , (33)

φx(r)
C31−→ −

1
2
φx(R

−1
C31

r) +
p

3
2
φy(R

−1
C31

r) , (34)

φy(r)
C31−→ −

p
3

2
φx(R

−1
C31

r)−
1
2
φy(R

−1
C31

r) , (35)

φz(r)
C31−→ φz(R

−1
C31

r) . (36)

The Fourier transform of these order parameters are given by,

φx ,y,z(q) =
1
N

∑

r

e−iq·rφx ,y,z(r) . (37)

B Multipolar Kondo interaction

The single-impurity model studied in Ref. [44] can be extended to a generalized coarse-grained
lattice model where conduction band electrons uniformly couple to the ferro-multipolar order
parameters in a manner respecting the local Td symmetry of the moments,

HK = 2
∑

r

∑

d=x ,y,z

c†
rµΓ

d
µνcrνφd(r) , (38)

where

Γ x = J1(λ
1 +λ27)− J2(λ

4 −λ30) ,

Γ y = J1(λ
3 +λ29)− J2(λ

6 −λ32) , (39)

Γ z = −J3(λ
2 +λ28) .

Here, J1, J2, J3 are the Kondo couplings to the multipolar moments, r denotes the coarse-
grained spatial coordinate, and λW are the SU(6) Gell-Mann generators W = {1,2..., 35} with
normalization such that tr[λaλb] = 1

2δ
ab. In the single impurity limit, the IR fixed points

are described by (i) J1 = J3 6= 0; J2 = 0 (two-channel Kondo interaction fixed point), and
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(ii) J2 = J3 6= 0; J3 = 0 (novel fixed point). In terms of the coefficients studied in Ref. [44]:
J1 ≡ −

1p
3
K1+2K2, J2 ≡

q

2
3 K1+

p
2K2, and J3 ≡

p
3K3. We note that the factor of 2 in Eq. 38

is cancelled out by the factor of 1
2 introduced in Eq. 5 to include both φx ,y,z(q) and φx ,y,z(−q)

coupling to the fermionic bilinears. We note that the 1/2-factor normalization of the SU(6)
Gell-Mann generators is absorbed into the definition of J1,2,3 henceforth for simplicity. The
conduction electron basis employed in Eq. 38 is,

~c>r =
�

cr; 3
2 ,−3

2
cr; 3

2 , 1
2

cr; 1
2 , 1

2
cr; 3

2 , 3
2

cr; 3
2 ,−1

2
cr; 1

2 ,−1
2

�

, (40)

where the subscript r; j, jz for the fermionic operator indicates the coarse-grained spatial coor-
dinate, total-angular momentum j, and z-component projection of the total angular momen-
tum jz , respectively. The Fourier transform of the conduction electron fields is given by,

crµ =
1
p

N

∑

k

eik·rckµ . (41)

C Effective electron-electron interaction from multipolar Kondo
interaction

The total path integral (composed of conduction electron action, Kondo coupling, and multi-
polar fluctiations) is given by,

Z =

∫

D[c, c]D[φ,φ]e−(Sc+S0+SK )

=

∫

D[c, c]e−ScD[φ,φ]e−
∫

τ,q

�

∑

µνφµ(−q)Mµνφν(q)+
∑

µφµ(q)Γ
µ(q)+

∑

µφµ(−q)Γµ(−q)
�

, (42)

where

~Γ (q)≡





∑

k;α,β ck+q,αΓ
x
αβ

ck,β
∑

k;α,β ck+q,αΓ
y
αβ

ck,β
∑

k;α,β ck+q,αΓ
z
αβ

ck,β



 , (43)

and the measure is given by

D[φ,φ] =
∏

µ={x ,y,z}

D[φµ,φµ]

=
∏

µ={x ,y,z}

�

lim
N→∞

N
∏

l=1

dφµ,l dφµ,l

2πi

�

≡
∏

µ={x ,y,z}

dφµdφµ
2πi

. (44)

Integrating out the bosonic field variable using the identity:

∫

∏

α

d bαd bα
2πi

e−(bαMαβ bβ− jαbα−bα jα) =
e j·M−1 j

det[M]
, (45)
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we thus arrive at Z =
∫

D[c, c]e−Sc e−Seff with the effective interaction

−Seff =

∫

τ,k,k′,q

(Vαβγδ)qc†
k+q,αck,β c†

k′−q,γ
ck′,δ , (46)

where the interaction vertex is,

(Vαβγδ)q =
�

f0(q)
�

Γ x
αβΓ

x
γδ + Γ

y
αβ
Γ

y
γδ

�

+ f1(q)
�

Γ z
αβΓ

z
γδ

�

− f2ν(q)
�

Γ x
αβΓ

x
γδ − Γ

y
αβ
Γ

y
γδ

�

− f2µ(q)
�

Γ x
αβΓ

y
γδ
+ Γ y

αβ
Γ x
γδ

�

�

, (47)

and the interaction potential terms are,

f0(q)≡

�

a0q2 +mQ
�

�

a0q2 +mQ
�2 − a2

2

�

q4
µ + q4

ν

�

, (48)

f1(q)≡
1

a1(q)2 +mO
, (49)

f2µ(q)≡
a2q2

µ
�

a0q2 +mQ
�2 − a2

2

�

q4
µ + q4

ν

�

, (50)

f2ν(q)≡
a2q2

ν
�

a0q2 +mQ
�2 − a2

2

�

q4
µ + q4

ν

�

. (51)

We note that once again, q2
ν ≡

1
2(2q2

z − q2
x − q2

y) and q2
µ ≡

p
3

2 (q
2
x − q2

y). This interaction
is prepared for investigating superconducting instabilities by (as described in the main text)
(i) normal ordering the interaction : c†

k+q,αck,β c†
k′−q,γ

ck′,δ : = c†
k+q,αc†

k′−q,γ
ck′,δck,β , and (ii)

projecting the Cooper pairs to being formed by opposite momentum electrons (in the same
spirit as BCS theory), k′ = −k. This leads to the effective interaction Hamiltonian in Eq. 7.

D Symmetry decomposition of total angular momentum Cooper
pair states

The total angular momentum Cooper pair states can be elegantly decoupled into the irreps of
the point group Oh. The Oh point group contains 48 elements Oh = {Td , I × Td}, where I is
inversion, and the Td elements are, Td = {E, C+31, C−31, C+32, C−32, C+33, C−33, C+34, C−34, C2x , C2y , C2z ,
S+4x , S+4y , S+4z , S−4x , S−4y , S−4z ,σda,σd b,σdc ,σdd ,σde,σd f } where we use the standard Schoenflies
notation to denote the symmetry elements.

The total angular momentum states can be used to construct basis functions for each of
the irreps using the projection operator,

P i
α =

dα
g

∑

G

〈Γ i
α|G |Γ

i
α〉
∗

, (52)

where i labels the basis function of the dα-dimensional irrep Γα (i.e. the basis function is |Γ i
α〉).

g = 48 is the order of the point group of interest, and α runs over the possible irreps in Oh.
In order to employ the projection operator, the matrix elements 〈Γ i

α|G |Γ
i
α〉
∗

in Eq. 52 need to
be extracted. Since the basis functions of the irreps in terms of cartesian basis states is known
(for example, for T2g , the basis functions are |ΓT2g

〉= {yz, xz, x y}), they are employed (along
with the cartesian representation of the elements of Oh) to compute the aforementioned matrix
element, and thus the projection operator.
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E Cooper pair composition from j = 1
2 , 3

2 sectors of conduction
electrons

The Cooper pair operator associated with a particular irrep can be constructed from differ-
ent means depending on the angular momentum j associated with the individual conduction
electrons. We list the possibilities below, and use the notation of

∆†
k

�

j1, m j1

�

�

�

�

j2, m j2

�

= c†
j1,m j1 ;kc†

j2,m j2 ;−k , (53)

for brevity. We organize the Cooper pairs in terms of even or odd total angular momentum J ,
as well as the conduction electrons sector from which they are constructed from.
Even J: 1

2 ⊗
1
2

(A†;J=0
1 )k =

1
2

�

∆†
k

�

1
2

,
1
2

�

�

�

�

1
2

,
−1
2

�

−∆†
k

�

1
2

,
−1
2

�

�

�

�

1
2

,
1
2

��

. (54)

Odd J: 1
2 ⊗

1
2

(T †;J=1
1(1)

)k =
1
p

2

�

∆†
k

�

1
2

,
1
2

�

�

�

�

1
2

,
1
2

�

−∆†
k

�

1
2

,
−1
2

�

�

�

�

1
2

,
−1
2

��

, (55)

(T †;J=1
1(2)

)k =
i
p

2

�

∆†
k

�

1
2

,
1
2

�

�

�

�

1
2

,
1
2

�

+∆†
k

�

1
2

,
−1
2

�

�

�

�

1
2

,
−1
2

��

, (56)

(T †;J=1
1(3)

)k =
1
p

2

�

∆†
k

�

1
2

,
1
2

�

�

�

�

1
2

,
−1
2

�

+∆†
k

�

1
2

,
−1
2

�

�

�

�

1
2

,
1
2

��

. (57)

Even J: 3
2 ⊗

3
2

(A†;J=0
1 )k =

1
2

�

∆†
k

�

3
2

,
3
2

�

�

�

�

3
2

,
−3
2

�

−∆†
k

�

3
2

,
1
2

�

�

�

�

3
2

,
−1
2

�

+∆†
k

�

3
2

,
−1
2

�

�

�

�

3
2

,
1
2

�

−∆†
k

�

3
2

,
−3
2

�

�

�

�

3
2

,
3
2

��

, (58)

(E†;J=2
(1) )k =

1
2

�

∆†
k

�

3
2

,
3
2

�

�

�

�

3
2

,
1
2

�

−∆†
k

�

3
2

,
1
2

�

�

�

�

3
2

,
3
2

�

+∆†
k

�

3
2

,
−1
2

�

�

�

�

3
2

,
−3
2

�

−∆†
k

�

3
2

,
−3
2

�

�

�

�

3
2

,
−1
2

��

, (59)

(E†;J=2
(2) )k =

1
2

�

∆†
k

�

3
2

,
3
2

�

�

�

�

3
2

,
−3
2

�

+∆†
k

�

3
2

,
1
2

�

�

�

�

3
2

,
−1
2

�

−∆†
k

�

3
2

,
−1
2

�

�

�

�

3
2

,
1
2

�

−∆†
k

�

3
2

,
−3
2

�

�

�

�

3
2

,
3
2

�

�

, (60)

(T †;J=2
2(1)

)k =
i
2

�

∆†
k

�

3
2

,
3
2

�

�

�

�

3
2

,
−1
2

�

−∆†
k

�

3
2

,
−1
2

�

�

�

�

3
2

,
3
2

�

+∆†
k

�

3
2

,
1
2

�

�

�

�

3
2

,
−3
2

�

−∆†
k

�

3
2

,
−3
2

�

�

�

�

3
2

,
1
2

��

, (61)

16

https://scipost.org
https://scipost.org/SciPostPhys.12.2.057


SciPost Phys. 12, 057 (2022)

(T †;J=2
2(2)

)k =
1
2

�

∆†
k

�

3
2

,
3
2

�

�

�

�

3
2

,
−1
2

�

−∆†
k

�

3
2

,
−1
2

�

�

�

�

3
2

,
3
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For Cooper pairs created from the mixed sector of j = 1/2 and j = 3/2 the ordering of the
fermionic operators are important. We use the M̃ notation to indicate operators where the
order of the operators is interchanged. Even J: 3
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F Two-channel Kondo interaction derived pairing interactions

The pairing interactions generated from the two-channel Kondo interaction can be classified
into even and odd spatial parity, which follows from the even and odd J angular momentum,
in Eqs. 91 and 92, respectively,
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. (90)

For brevity, we drop the superscript indicating the total angular momentum; Fig. 1 indicates
the total angular momentum of the Cooper pair.

H2CK
even = −

∑

k,k′

�

− f1J2
3 + 2J2

1 f0
�

k,k′
A†

1kA1k′

−
∑

k,k′

�

f1J2
3 − 2J2

1 f2ν
�

k,k′
E†
(1)kE(1)k′ −

∑

k,k′

�

f1J2
3 + 2J2

1 f2ν
�

k,k′
E†
(2)kE(2)k′

+
∑

k,k′

�

2J2
1 f2µ

�

k,k′

�

E†
(1)kE(2)k′ + h.c.

�

+
∑

k,k′

�

f1J2
3 + 2J2

1 f0
�

k,k′
~T †

2k · ~T2k′ , (91)

H2CK
odd =−

∑

k,k′

�

− f1J2
3 − 2J2

1 f0
�

k,k′
A†

2kA2k′ −
∑

k,k′

�

− f1J2
3 + 2 f0J2

1

�

k,k′
~T †
−k · ~T−k′ (92)

−
∑

k,k′

�

f1J2
3 + J2

1 f2ν −
p

3J2
1 f2µ

�

k,k′
T †

2(1)k
T2(1)k′

−
∑

k,k′

�

f1J2
3 − J2

1 f2ν +
p

3J2
1 f2µ

�

k,k′
T †
+(1)k

T+(1)k′

+
∑

k,k′

�

−
p

3J2
1 f2ν − J2

1 f2µ
�

k,k′

�

T †
2(1)k

T+(1)k′ + h.c.
�

−
∑

k,k′

�

f1J2
3 + J2

1 f2ν +
p

3J2
1 f2µ

�

k,k′
T †

2(2)k
T2(2)k′

−
∑

k,k′

�

f1J2
3 − J2

1 f2ν −
p

3J2
1 f2µ

�

k,k′
T †
+(2)k

T+(2)k′

+
∑

k,k′

�p
3J2

1 f2ν − J2
1 f2µ

�

k,k′

�

T †
2(2)k

T+(2)k′ + h.c.
�

−
∑

k,k′

�

f1J2
3 − 2J2

1 f2ν
�

k,k′
T †

2(3)k
T2(3)k′ −

∑

k,k′

�

f1J2
3 + 2J2

1 f2ν
�

k,k′
T †
+(3)k

T+(3)k′

+
∑

k,k′

�

− 2J2
1 f2µ

�

k,k′

�

T †
2(3)k

T+(3)k′ + T †
+(3)k

T2(3)k′
�

, (93)

where the linear combination of the T1 irreps are defined by

T †
+(1,3) =

1
p

5

�

− 2T †;J=1
1(1,3) + T †;J=3

1(1,3)

�

, (94)
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T †
−(1,3) =

1
p

5

�

− T †;J=1
1(1,3) − 2T †;J=3

1(1,3)

�

, (95)

T †
+(2)
=

1
p

5

�

− 2T †;J=1
1(2)

− T †;J=3
1(2)

�

, (96)

T †
−(2) =

1
p

5

�

T †;J=1
1(2)

− 2T †;J=3
1(2)

�

. (97)

G Novel Kondo interaction derived pairing interactions

The pairing interactions arising from the novel Kondo interaction can be classified into two
types of models: (i) Cooper pairs formed separately within j = 1/2 and j = 3/2 scatter off
each other, and (ii) Cooper pairs formed with one fermion from j = 1/2 and the other from
j = 3/ sector. We present the Hamiltonians for each of the families of models below.

G.1 Cooper pairs formed separately within j = 1/2 and j = 3/2 sectors

The pairing interaction can be decomposed into even and odd parity sectors (which follows
from the even and odd J total angular momentum),

Hnovel (i)
eff =

�

Hnovel (i)
even +Hnovel (i)

odd

�

, (98)

where

Hnovel (i)
even =−

∑

k,k′

�p
2 f0J2

2

�

k,k′

�

A†
1; j= 3

2 ;k
A1; j= 1

2 ;k′ + h.c.
�

+
∑

k,k′

�p
2 f2νJ2

2

�

k,k′

�

A†
1; j= 1

2 ;k
EJ=2

2;k′
+ h.c.

�

+
∑

k,k′

�p
2 f2µJ2

2

�

k,k′

�

A†
1; j= 1

2 ;k
EJ=2

1;k′
+ h.c.

�

−
∑

k,k′

�

f1J2
3

�

k,k′

�

−A†
1; j= 3

2 ;k
A1; j= 3

2 ;k′ + ~E
†;J=2
k · ~EJ=2

k′

�

. (99)

As seen in the above interaction, the A1 irrep arising from the pair formed by j = 1/2 sector of
conduction electrons has a non-vanishing matrix element with the Cooper pairs formed from
the j = 3/2 sector; we give the operators the corresponding j sector subscript label. We once
again drop the total angular momentum superscript for brevity.

The odd parity pairing interactions are,

Hnovel (i)
odd =−

∑

k,k′

�p
2 f0J2

2

�

k,k′

�

T †
1(1); j=1/2;k

T−(1); j=3/2;k′ + h.c.
�

(100)

−
∑

k,k′

� 1
p

2
f2νJ2

2 −

√

√3
2

f2µJ2
2

�

k,k′

�

T †
1(1); j=1/2;k

T+(1); j=3/2;k′ + h.c.
�

−
∑

k,k′

�

√

√3
2

f2νJ2
2 +

1
p

2
f2µJ2

2

�

k,k′

�

T †
1(1); j=1/2;k

T2(1); j=3/2;k′ + h.c.
�

+
∑

k,k′

�

f1J2
3

�

k,k′

�

T †
−(1); j=3/2;k

T †
−(1); j=3/2;k′

− T †
+(1); j=3/2;k

T †
+(1); j=3/2;k′
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− T †
2(1); j=3/2;k

T †
2(1); j=3/2;k′

�

−
∑

k,k′

�

−
p

2 f0J2
2

�

k,k′

�

T †
1(2); j=1/2;k

T−(2); j=3/2;k′ + h.c.
�

−
∑

k,k′

� 1
p

2
f2νJ2

2 +

√

√3
2

f2µJ2
2

�

k,k′

�

T †
1(2); j=1/2;k

T+(2); j=3/2;k′ + h.c.
�

−
∑

k,k′

�

−

√

√3
2

f2νJ2
2 +

1
p

2
f2µJ2

2

�

k,k′

�

T †
1(2); j=1/2;k

T2(2); j=3/2;k′ + h.c.
�

+
∑

k,k′

�

f1J2
3

�

k,k′

�

T †
−(2); j=3/2;k

T †
−(2); j=3/2;k′

− T †
+(2); j=3/2;k

T †
+(2); j=3/2;k′

− T †
2(2); j=3/2;k

T †
2(2); j=3/2;k′

�

−
∑

k,k′

�p
2 f0J2

2

�

k,k′

�

T †
1(3); j=1/2;k

T−(3); j=3/2;k′ + h.c.
�

−
∑

k,k′

�

−
p

2 f2νJ2
2

�

k,k′

�

T †
1(3); j=1/2;k

T+(3); j=3/2;k′ + h.c.
�

−
∑

k,k′

�p
2 f2µJ2

2

�

k,k′

�

T †
1(3); j=1/2;k

T2(3); j=3/2;k′ + h.c.
�

+
∑

k,k′

�

f1J2
3

�

k,k′

�

T †
−(3); j=3/2;k

T †
−(3); j=3/2;k′

− T †
+(3); j=3/2;k

T †
+(3); j=3/2;k′

− T †
2(3); j=3/2;k

T †
2(3); j=3/2;k′

�

.

The T1 irrep arising from the j = 1/2 sector has a non-vanishing matrix element with the
Cooper pairs formed from the j = 3/2 sector; we once again present the operators with the
corresponding j sector subscript label.

G.2 Cooper pairs formed from j = 1/2 and j = 3/2 sectors

The interaction arising from this case needs to be treated more carefully as the order in which
the fermionic creation operators are written to form a given Cooper pair provides an additional
complexity: for example, for the J = 2 pair, we can have E†

1k and Ẽ†
1k presented in Appendix E.

To ensure the pairing function is odd under fermion-exchange and spatial inversion/parity, we
need to consider symmetric and antisymmetric combinations of these pairing operators: one
will yield an even under parity combination, while the other will yield and odd under parity
combination:

~E†
±k =

1
p

2

�

~E†
k ±

~̃E†
k

�

, (101)

~T †
1±k =

1
p

2

�

~̃T †
1k ± ~T

†
1k

�

, (102)

~T †
2±k =

1
p

2

�

~̃T †
2k ± ~T

†
2k

�

. (103)

We thus organize the interaction Hamiltonians into even and odd under spatial parity Cooper
pairs.

Hnovel (ii)
eff = Hnovel (ii)

even +Hnovel (ii)
odd , (104)
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where

Hnovel (ii)
even =−

∑

k,k′

�

f2νβ
2 − f0β

2
�

k,k′
E†
+(1)k

E+(1)k′ −
∑

k,k′

�

− f2νβ
2 − f0β

2
�

k,k′
E†
+(2)k

E+(2)k′

+
∑

k,k′

�

− f2µβ
2
�

k,k′

�

E†
+(1)k

E+(2)k′ + h.c.
�

+
∑

k,k′

�

f2µβ
2
�

k,k′

�

E†
−(1)kE−(2)k′ + h.c.

�

−
∑

k,k′

�

− f2νβ
2 + f0β

2
�

k,k′
E†
−(1)kE−(1)k′ −

∑

k,k′

�

f2νβ
2 + f0β

2
�

k,k′
E†
−(2)kE−(2)k′ ,

(105)

Hnovel (ii)
odd =−

∑

k,k′

�

f0β
2 +

1
2

f2νβ
2 −
p

3
2

f2µβ
2
�

k,k′
T †

2+(1)k
T2+(1)k′

−
∑

k,k′

�

f0β
2 −

1
2

f2νβ
2 +
p

3
2

f2µβ
2
�

k,k′
T †

1−(1)kT1−(1)k′

+
∑

k,k′

�

−
p

3
2

f2νβ
2 −

1
2

f2µβ
2
�

k,k′

�

−iT †
2+(1)k

T1−(1)k′ + h.c.
�

−
∑

k,k′

�

f0β
2 +

1
2

f2νβ
2 +
p

3
2

f2µβ
2
�

k,k′
T †

2+(2)k
T2+(2)k′

−
∑

k,k′

�

f0β
2 −

1
2

f2νβ
2 −
p

3
2

f2µβ
2
�

k,k′
T †

1−(2)kT1−(2)k′

+
∑

k,k′

�

−
p

3
2

f2νβ
2 +

1
2

f2µβ
2
�

k,k′

�

iT †
2+(2)k

T1−(2)k′ + h.c.
�

−
∑

k,k′

�

f0β
2 − f2νβ

2
�

k,k′
T †

2+(3)k
T2+(3)k′ −

∑

k,k′

�

f0β
2 + f2νβ

2
�

k,k′
T †

1−(3)kT1−(3)k′

+
∑

k,k′

�

f2µβ
2
�

k,k′

�

−iT †
2+(3)k

T1−(3)k′ + h.c.
�

(106)

−
¦

(T2+, T1−)↔ (T2−, T1+)
©

,

where once can notice that the E+ decouples from the E−, and the T2± couples to the same
component of T1∓.

H BCS Mean field Theory Gap equation

The BCS gap equation can be elegantly derived by the Hubbard–Stratonovich (HS) transfor-
mation. We present a sketch of the derivation below, focussing on the aspects that require
special attention.

We consider the form of a typical collection of interaction terms,

Sint = −
∫ β

0

dτ
∑

k,k′

∑

αβ

X kα(Ωkk′)αβXk′α , (107)

where A†, B† are generic Cooper pair operators made up of conduction creation operator bi-
linears, α, β runs over the internal structure of the interaction potential (Ωkk′)αβ ; as a simple
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example, for the pairing instability arising in the 3
2 ⊗

3
2 sector’s ~EJ=2 Cooper pairs, (Ωkk′)αβ is

a 2× 2 matrix in the internal structure, where each entry is a matrix in momentum space.
We now introduce the auxillary field ~zk into the partition function with its corresponding

free action,

∫ β

0

dτ
∑

k,k′

∑

αβ

zkα(V
g

kk′
)αβzk′α , (108)

where we use the generalized (Moore-Penrose) pseudoinverse. The pseudoinverse is typically
introduced when solving a system of linear equations

A~x = ~b . (109)

When A is singular matrix, the unique inverse cannot be employed, thus necessitating the
introduction of the pseudoinverse which provides the solution to Eq. 109,

~x∗ = Ag~b+ (I− AgA) ~ω , (110)

where Ag is the pseudoinverse matrix, and ~ω is an arbitrary vector. Importantly, the pseudoin-
verse matrix satisfies the identity AAgA = A, and provided that a solution exists for Eq. 109,
then

AAg~b = ~b , (111)

where we emphasize for the pseudoinverse matrix, AgA 6= I in general.
Returning back to the path integral, we perform the shift of the auxillary field,

zkα =∆kα +
∑

p;γ

(Vkp)αγXpγ , (112)

zkα =∆k;α +
∑

p,γ

X pγ(Vpk)γα , (113)

where we now introduce the superconducting HS field ∆kα. To make progress, the HS field is
taken to satisfy the criterion,

∑

kk′

∑

αβ

(Vpk)γα(V
g

kk′
)αβ∆k′β =∆pγ . (114)

For an invertible interaction, Eq. 114 reduces to a trivially true statement, but for a non-
invertible matrix this equality is rationalized as the application of Eq. 111 with the identifica-
tion of ~b as the static HS field satisfying the linear equation

∑

k′
∑

β(Vkk′)αβ〈Xk′β〉=∆kα. We
thus we arrive at the effective interaction,

Heff =
∑

k,k′

∑

α,β

∆kα(V
g

kk′
)αβ∆k′β +

∑

k;α

�

∆kαXkα + X kα∆kα

�

, (115)

with the accompanying path integral,

Z =

∫

D[∆,∆]D[c, c]e−
∫ β

0 dτ(
∑

k
~ck(∂τ+εk)~ck+Heff) , (116)

where we reinserted the free fermion action, where εk =
k2

2m −µF .
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To make progress, the fermions are re-written in a Nambu basis depending on the nature
of the interactions in Eq. 115. For the Cooper pairs arising in the 3

2 ⊗
3
2 sector, the Nambu

basis is,

~ψ†
k; 3

2⊗
3
2
=

































c†
3
2 , 2

2 ;k

c†
3
2 , 1

2 ;k

c†
3
2 ,−1

2 ;k

c†
3
2 ,−3

2 ;k

c 3
2 , 2

2 ;−k

c 3
2 , 1

2 ;−k

c 3
2 ,−1

2 ;−k

c 3
2 ,−3

2 ;−k

































, (117)

and for models that involve both j = 3
2 and j = 1

2 fermions the basis is expanded to be

~ψ†
k; 1

2⊗
3
2
=





















































c†
3
2 , 2

2 ;k

c†
3
2 , 1

2 ;k

c†
3
2 ,−1

2 ;k

c†
3
2 ,−3

2 ;k

c†
1
2 , 1

2 ;k

c†
1
2 ,−1

2 ;k

c 3
2 , 2

2 ;−k

c 3
2 , 1

2 ;−k

c 3
2 ,−1

2 ;−k

c 3
2 ,−3

2 ;−k

c 1
2 , 1

2 ;−k

c 1
2 ,−1

2 ;−k





















































. (118)

In terms of the Nambu basis, the HS transformed path integral is bilinear and as such we
can simply integrate out the fermionic fields. The subsequent fermionic determinant is of the
form Πi=1,...,m(ω2

n + E2
ik)

2, where ωn is the fermionic Matsubara frequency, m runs over the
possible quasiparticle energies. In the cases we consider in this work, m = 1,2, 3 are the
only possibilities; for m = 1, the determinant is (ω2

n + E2
1k)

4. Finally, approximating the path
integral via the standard saddle-point approximation, leads to the mean-field free energy,

FMFT =− T ln ZBCS

=− 2T
∑

k,ωn

∑

i=1...m

ln(ω2
n + E2

ik) + βT
∑

k,k′

∑

α,β

∆kα(Ω
g
kk′
)αβ∆k′β , (119)

where β = 1/T in the second term comes from integrating a static term over τ ∈ [0,β].
Extremizing the mean-field free energy with respect to∆qγ and multiplying by

∑

q

∑

γ(Ωpq)αγ
leads to Eq. 30 in the main text. As mentioned above, for the case of a single quasiparticle
energy (m= 1) the right hand side of Eq. 30 has an additional factor of 2.

In solving the mean-field equations, we employ the following choices for the phenomeno-
logical constants: m = 0.2,µF = 1.0, a0 = 2.5, a1 = 0.67, a2 = 1.67, mQ = 4.0, mO = 20.8.
The values of phenomenological Landau values were chosen so as to connect with the exper-
imental setting. In particular, the quadrupolar mass term (mQ ∼ (T − TQ)) was taken to be
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Figure 5: Momentum space distribution of the superconducting states arising from
the two-channel Kondo interaction presented in Table 1 and Fig. 1.

smaller than the octupolar mass (mO ∼ (T−TO)) to reflect the fact that the proposed octupolar
ordering temperature TO is lower than the quadrupolar ordering temperature TQ [65]; here
T is the temperature, which is taken to be above TQ,O in the paramagnetic phase. The choices
of the other phenomenological values a0,1,2 > 0 were chosen to ensure that the multipolar
action is non-singular, thus permitting the Gaussian fluctuations to be integrated out. For the
multipolar Kondo interactions, we choose uniformly α,β ,γ = 10, where in the two-channel
(novel) interaction β = 0 (α= 0).

I Momentum space distribution of superconducting states

We present in Fig. 5, 6, 7, 8, 9 the momentum space distribution of the realized superconduct-
ing states induced by the two-channel and novel Kondo interactions. For the cases where there
exist multiple degenerate solutions, we present the distribution of one solution for clarity.
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Figure 6: Momentum space distribution of the superconducting states arising from
the novel Kondo interaction of even parity presented in Table 2 and Fig. 2.

Figure 7: Momentum space distribution of the superconducting states ( j = 1 com-
ponent) arising from the novel Kondo interaction presented in Table 2 and Fig. 2.
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Figure 8: Momentum space distribution of the superconducting states ( j = 2 com-
ponent) arising from the novel Kondo interaction presented in Table 2 and Fig. 2.

Figure 9: Momentum space distribution of the superconducting states ( j = 3 com-
ponent) arising from the novel Kondo interaction presented in Table 2 and Fig. 2.
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Figure 10: Momentum space distribution of the superconducting states arising from
the novel Kondo interaction presented in Table 2 and Fig. 3.
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