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Abstract

We generalize the eigenstate thermalization hypothesis to systems with global symme-
tries. We present two versions, one with microscopic charge conservation and one with
exponentially suppressed violations. They agree for correlation functions of simple oper-
ators, but differ in the variance of charged one-point functions at finite temperature. We
then apply these ideas to holography and to gravitational low-energy effective theories
with a global symmetry. We show that Euclidean wormholes predict a non-zero variance
for charged one-point functions, which is incompatible with microscopic charge conser-
vation. This implies that global symmetries in quantum gravity must either be gauged
or explicitly broken by non-perturbative effects.
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1 Introduction

The thermal behavior of quantum many-body systems is well understood in terms of statisti-
cal mechanics. However, developing a microscopic understanding of thermalization is a dif-
ficult problem of sustained interest. The eigenstate thermalization hypothesis (ETH) [1, 2] is
a powerful framework to understand how a pure state can give rise to thermal behavior af-
ter sufficiently long times. The crux lies in the fact that individual eigenstates behave like a
statistical ensemble for a large class of observables, with pseudo-random corrections that are
exponentially small in the entropy. The ETH states that for simple (few-qubit) operators Oa,
we have

〈Ei|Oa |E j〉= f a(Ē)δi, j + ga(Ē,ω)e−S(Ē)/2Ri j , (1)

where Ē and ω are the mean energy and energy difference of the states i and j, respectively.
The matrix Ri j is comprised of erratic order one numbers which statistically have zero mean
and unit variance. In any given quantum system with fixed Hamiltonian, they are definite
numbers that could be obtained by diagonalizing the Hamiltonian. However, for the purpose
of computing few-point correlation functions of simple operators in high energy states, these
microscopic details are irrelevant and it suffices to treat the Ri j as true random variables. This
randomness is tightly linked to the connection between quantum chaotic systems and random
matrix theory (see [3] for a review).

New insights into the randomness of chaotic quantum systems have emerged from gravi-
tational physics, through holographic duality [4]. If the chaotic quantum system at hand is a
large N , strongly coupled conformal field theory (i.e. a holographic CFT), thermalization of the
boundary quantum system is connected to black hole formation in the gravitational dual [5–8].
In fact, the apparent loss of unitarity in both these processes is closely related and understand-
ing one will help in the understanding of the other. Indeed quantum thermalization has been
discussed in the context of holography for precisely this reason (see for example [9–20]).

1.1 Randomness in Holography

It has recently become clear that the low energy effective theory on the gravity side (i.e. semi-
classical general relativity and its Euclidean path integral) has the potential to know quite a
lot about the structure of eigenstates of the CFT Hamiltonian, perhaps much more than we
had hoped for. While it has long been known that the Bekenstein-Hawking formula computes
the (coarse-grained) entropy of black hole micro-states, recent progress has established that
the low energy effective theory also knows something about fine structure of the microstates
and their discrete nature, for example the level-repulsion of nearby eigenvalues of the Hamil-
tonian [21]. New field configurations known as Euclidean wormholes contributing to the
gravitational path integral play a crucial role in these developments. These may or may not
be saddle-points [22–24].

Precisely quantifying the amount of CFT information that the gravitational path integral
has access to has become one of the most pressing questions in holography. Interestingly, it
has given a new perspective on the ETH: rather than viewing semi-classical general relativity
as a traditional low energy effective theory that computes scattering amplitudes around the
vacuum, it can be viewed as an effective theory in the sense of ETH, namely a framework
for computing the correlators of simple operators on black hole microstates. In this context,
simple operators should be understood as operators dual to supergravity fields. Multi-trace
operators are also simple as long as ∆O � N . While there are many erratic signals in such
observables that cannot be accessed through the effective theory, the moments of these signals
can. This led [25] to propose a framework to describe these moments in terms of the statistics
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of OPE coefficients. The OPE randomness hypothesis is a generalization of ETH that states that
any index of an OPE coefficient labelling a black-hole microstate can effectively be treated as
a random variable. A similar approach for Haar-typical states was studied in [26].

While ensemble-averaging over quantum systems has played a prominent role in two-
dimensional gravity, for example in [21], this effective description is also applicable in individ-
ual quantum systems with a fixed Hamiltonian (at least for self-averaging quantities), which
will be the focus of this work. A general framework explaining this mechanism and connecting
it to random matrix theory was developed in [27] (see also [28, 29]). This framework leads
to random fluctuations in OPE coefficients [30].

1.2 Summary of results

In this Letter, we will discuss how global symmetries interact with the ETH, wormholes and
erratic signals of quantum chaos. We start by generalizing the ETH in the presence of global
symmetries. For neutral operators, we can simply apply the ETH charge sector by charge sector.
This is expected from a Hamiltonian decomposed into blocks corresponding to the different
charge sectors, and each individual block approximates an independent random matrix [31].

Charged operators on the other hand make different charge sectors talk to one another.
We discuss two possible variants of a charged ETH, one that preserves the symmetry micro-
scopically, the other that allows for exponentially small violations of charge conservation in
the random variables.1 This second version of ETH is more relevant when viewing the ansatz
as an effective theory for the simple operators, where one is agnostic about whether or not the
symmetry is realized microscopically. Viewed statistically, these two ansätze give equivalent
answers for low-point correlators of the simple operators in any given background. However,
they differ for products of correlation functions. Most notably, we have

〈Oq〉β 〈O
†
q〉β

�

�

c.p. ETH = 0 ,

〈Oq〉β 〈O
†
q〉β

�

�

c.v. ETH ∝ e−S , (2)

where c.p. and c.v. denote the charge preserving and charge violating versions of ETH, re-
spectively.

We will show that this resonates strongly with the gravitational perspective. In the bulk,
multi-boundary Euclidean wormholes can give non-zero answers for the product of charged
one-point functions. Whether the answer is non-zero depends on whether the symmetry is
gauged in the bulk or not. If the symmetry is gauged, then we find a vanishing answer com-
patible with a charge preserving ETH, where the symmetry is realized microscopically. If on
the contrary the symmetry is only a global symmetry of the bulk theory, the wormhole yields
a non-zero answer. This implies that charged one-point functions have a non-zero variance
and thus that OPE coefficients Ci īq are not exactly zero, but rather fluctuate with exponentially
small variance. We show that provided that the wormhole accurately captures the variance
of observables, this is inconsistent with exact global symmetries in quantum gravity. To sum-
marize, either the symmetry is gauged in the bulk, or it is broken by non-perturbative effects
in GN . This provides additional evidence that global symmetries cannot exist in quantum
gravity [32, 33], and extends the more recent discussion in the context of AdS/CFT using
entanglement wedge reconstruction [34, 35]. Note that the violation of global symmetries
due to the presence of wormholes in a gravitational theory is a long studied subject, [36–39].
The present work offers a different perspective based on ETH and quantum chaos, which is
particularly relevant in light of recent developments.

1While inessential in what follows, note that these violations affect neutral operators as well.
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This paper is organized as follows. In section 2, we present a charged version of the
ETH. We turn to gravitational computations in section 3 and discuss correlation function on
wormhole backgrounds. In section 4, we discuss the implication of our findings for global
symmetries in quantum gravity. We end with a discussion of open questions in section 5.

Note added: while this paper was in preparation, [40,41] appeared which contain related
results in the context of replica wormholes.

2 The ETH with global symmetries

In this section, we will present the form of the ETH which holds in the presence of global
symmetries. For concreteness, we will take the global symmetry group to be U(1), but it
is straightforward to generalize to other groups. In the presence of a symmetry, the charge
commutes with the Hamiltonian and we can simultaneously diagonalize both operators. It is
thus natural to organize the Hilbert space in different charge sectors labelled by the eigenvalue
Q of the charge operator. Consider now a simple operator which is neutral under the global
symmetry. For such operators, the generalization of the ETH is straightforward and we have

〈Ei ,Q i|Oa
q=0 |E j ,Q j〉= δQ i ,Q j

�

f a(Ē,Q i)δEi ,E j
+ ga(Ē,ω,Q i)e

−S(Ē,Q i)/2Ri j

�

, (3)

where fa
2 and ga are smooth functions of Ē ≡ (Ei+ E j)/2, ω≡ Ei− E j and Q i; Ri j are random

numbers with zero mean and unit variance; and, S(Ē,Q i) is the microcanonical entropy in a
definite charge sector Q i . Note that this is just the usual form of the ETH charge sector by
charge sector. An astute reader might point out that in a system with quantized energy and
charge, the functions f a, ga can’t really be continuous. However, for states with macroscopic
charge and energy, when the differences in these quantum numbers are much smaller than
their values, we can treat them as continuous variables. This is equivalent to considering mi-
crocanonical ensembles at fixed energy and charge, and presents an immediate generalization
of how these functions are defined in the conventional eigenstate thermalisation hypothesis.
The above proposal, (3), is intuitively consistent with expectations from random matrix theory
and quantum chaos, where one treats the different blocks of the Hamiltonian corresponding
to each charge sector as independent random matrices [31] (see also [43]).

The story becomes more interesting when we discuss (simple) charged operators, since
they automatically make different charge sectors talk to one another. In this case, the following
ansatz should hold:

〈Ei ,Q i|Oa
q |E j ,Q j〉 = δEi ,E j

δQ i ,Q j
δq,0 f a(Ē, Q̄)

+ δQ i ,q+Q j
ga(Ē,ω,Q i ,Q j)e

−(S(Ē,Q i)+S(Ē,Q j))/4Ri j . (4)

It is worthwhile to note that unlike the case of neutral operators, there is no diagonal term
for operators that carry charge. This is in fact expected: the one-point function of a charged
operator vanishes in the thermal (or grand-canonical) ensemble, which only leaves room for
small off-diagonal contributions in the ETH ansatz. The function ga is related to the (Fourier
transform of the) two-point function for the operator Oq, as we now show.

Let us consider the expectation value of O†
qOq in an energy eigenstate and we would like

to show that this quantity has a diagonal part compatible with ETH, using only (4). To do so,

2An expression for f in two-dimesional CFTs is given in [42].
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we insert a resolution of the identity

〈Ei ,Q i|O†
qOq |Ei ,Q i〉 =

∑

j

〈Ei ,Q i|O†
q |E j ,Q j〉 〈E j ,Q j|Oq |Ei ,Q i〉

=
∑

{| j〉;Q j=Q i+q}

e−(S(Ei+
ω
2 ,Q i)+S(Ei+

ω
2 ,Q i+q))/2

×|g(Ei +
ω

2
,ω,Q i + q,Q i)|2|Ri j|2 . (5)

The random variables Ri j will average out to unity upon taking the sum over j since they have
unit variance. Moreover, we can replace the dense sum over states with varying energies, E j ,
by an integral, namely

∑

j
→
∫

dωeS(Ei+ω,Q i+q), which gives

〈Ei ,Q i|O†
qOq |Ei ,Q i〉=

∫

dω eS(Ei+ω,Q i+q)−(S(Ei+
ω
2 ,Q i)+S(Ei+

ω
2 ,Q i+q))/2

× |g(Ei +
ω

2
,ω,Q i + q,Q i)|2 . (6)

All remaining functions are smooth and rapidly decaying functions of ω and q, so we can
Taylor expand them to obtain to leading order

〈Ei ,Q i|O†
qOq |Ei ,Q i〉 ≈

∫

dω e
β
2 (ω−µq)|g(Ei ,ω,Q i ,Q i)|2 , (7)

where we defined β ≡ ∂ S
∂ E andµ≡ − 1

β
∂ S
∂Q . The result (7) should be given by the microcanonical

average for the operator O†
qOq if it is to satisfy ETH, which fixes the function g and its relation

to the microcanonical expectation value of O†
qOq.

Before moving on to discuss the implications for gravitational theories, we would like to
discuss another type of charged ETH ansatz, which will mildly break charge conservation.
Instead of (4), consider the ansatz

〈Ei ,Q i|Oa
q |E j ,Q j〉= δEi ,E j

δQ i ,Q j
δq,0 f a(Ē, Q̄) + g̃a(Ē,ω, Q̄,δQ, q)e−S(Ē,Q̄)/2Ri j . (8)

The main difference between (4) and (8) is that this second version replaces the exact charge
conservation by a smooth function of δQ =Q i −Q j which is rapidly decaying as a function of
δQ−q. From this ansatz, one could also relate the function g̃ to the microcanonical two-point
function as in (7) (see the supplemental material for details). We would like to emphasize
that the two ansätze only differ up to exponentially small corrections and are therefore indis-
tinguishable for simple operators.

A reason to consider such a charge-breaking ansatz is the following: if we have a set of
simple operators that preserve some global symmetry but we are unsure whether the micro-
scopic Hamiltonian truly preserves this symmetry, it is perhaps more cautious to only enforce
an approximate global symmetry. This would be useful for example if one wanted to formulate
an effective theory for the simple operators in high energy states.
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3 Euclidean Wormholes

In this section, we compute correlation functions of charged operators in gravitational theo-
ries. We are interested in the simplest possible setup with a wormhole solution connecting
two asymptotic boundaries. The simplest solution of this type arises in AdS3 when the two
boundaries have negative constant curvature, hence we consider two genus-2 surfaces at the
boundary.3

The relevant gravitational low energy effective theory is given by the Euclidean action

S = −
1

16πGN

∫

d3 x
p

g

�

R+
2

`2
AdS

�

+ Smatter ,

Smatter =
1
2

∫

d3 x
p

g(|∂ φ|2 +m2|φ|2) . (9)

Note that this action has a global U(1) symmetry. The metric of this genus-2 wormhole reads

ds2 = `2
AdS(dτ

2 + cosh2τ dΣ2
2) , (10)

where dΣ2 is a constant curvature metric on the genus-2 surface. This geometry is locally
AdS3 and can be obtained from the hyperbolic ball H3 by taking a quotient with respect to a
Fuchsian group Γ which is a discrete subgroup of the AdS isometries.

Because the scalar theory is a free field theory and the geometry (10) is a quotient of AdS3,
the two-point function on the wormhole is obtained by the sum over images. For two operators
inserted on opposite boundaries (see Fig. 1), the correlation function reads [22]

〈Oq〉g=2 〈O
†
q〉g=2

�

�

�

gravity
∼
∑

h∈Γ

1

[cosh(h(s))]2∆
, (11)

where s is the distance between the 2 points on the boundary Riemann surface and ∆ is the
conformal dimension of the CFT operator dual to φ. Here, h ∈ Γ is an element of the Fuch-
sian discrete subgroup of the hyperbolic symmetry group, SL(2, R). Correspondingly, the sum
over h(s) denotes the sum over all images generated under the action of this subgroup on the
geodesic.4 For sufficiently large∆, this sum converges which is related to the wormhole being
(perturbatively) stable. The fact that this correlation function doesn’t vanish has an interpreta-
tion in terms of the variance of the genus-2 one-point function of the operator O, which carries
global charge. As we will discuss in the next section, this has drastic consequences for global
symmetries in quantum gravity.

Before moving on to the consequences of such non-vanishing correlation functions for
quantum gravity, we will first discuss the situation where the U(1) global symmetry of the
field φ is gauged. In this case, the boundary-to-boundary correlation function in the bulk is
not gauge-invariant unless the two operators are connected by a Wilson line that propagates
through the wormhole. This is depicted on the right hand side of Fig. 1. In this case, the
correlation function vanishes, as already noted in [22].

The simplest way to see this is to note that in the presence of multiple boundaries, the
asymptotic symmetry due to the bulk gauge field becomes one copy of the global symmetry
per disconnected Euclidean boundary. In the case of our genus-2 wormhole, the boundary

3Note that because we are considering genus-2 boundaries, we are not computing thermal one-point functions
and their variance but rather genus-2 one-point functions. Instead of probing the variance of Cī iq, we instead probe
Cl̄qkCi jl Ci jk. This does not affect our conclusion for global symmetries.

4In the above expression we aren’t carefully keeping track of the overall normalisation factor of the correlation
function. which are not critical for our discussion and therefore we use ‘∼’ to remind us of this fact.
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X

X

X

X

Figure 1: A genus-2 wormhole on which we compute correlation functions. On the
left, the situation where the symmetry in the bulk is not gauged. This yields a non-
zero correlation function. On the right, the situation where the symmetry is gauged
in the bulk. In this case the field theory operators can be interpreted, using the ex-
trapolate AdS/CFT dictionary, as the boundary limit of the bulk operator insertions
which are attached to Wilson lines that end on the respective boundary. This corre-
lation function vanishes.

global symmetry is U(1)×U(1) and the correlation function 〈Oq〉g=2 〈O
†
q〉g=2

is charged under

it (even if it is neutral under the diagonal subgroup). It must hence vanish. We therefore
have5

〈Oq〉g=2 〈O
†
q〉g=2

�

�

�

gauged
= 0 . (12)

As demonstrated in Figure 1 the corresponding bulk object one needs to compute is a pair
of insertions, φ(x)†W (x ,∞top) and W (∞bottom, y)φ(y), of charged operators attached to
Wilson lines extending to the respective boundaries.6 It is worthwhile to note that this does
not imply that the correlation function 〈φ(x)†W (x , y)φ(y)〉, corresponding to the insertion
of charged operators, φ†,φ, connected by a Wilson line, W (x , y), vanishes for bulk points.
Such correlation functions are perfectly fine gauge-invariant objects of the bulk theory, even
if they are separated in Euclidean time (in particular, they are neutral under the U(1)× U(1)
global symmetry of the boundary).

It is worthwhile mentioning a peculiarity of the Euclidean setup. Clearly, one can have a
non-zero correlation function 〈φ(x)†W (x , y)φ(y)〉 when x and y lie on the same time-slice.
In a Euclidean setup however, one can also move one of the operators in time, as long as there
is a Euclidean ball surrounding both charges. In such a setup, the correlation function again
is non-zero. There is therefore an interesting limit where we connect the two operators by a
Wilson line and send the operators to the boundary, which now is no longer forced to vanish.
We return to this question in the discussion section.

5The same argument applies to other types of symmetries, even spacetime ones. For example, a finite temper-
ature one-point function is independent of Euclidean time. Therefore 〈O(τ1)〉β 〈O(τ2)〉β must be independent of
τ1 and τ2. A given wormhole solution may naively look like it gives a non-trivial τ1−τ2 dependence, but this will
be destroyed by integrating over a family of wormhole solutions that restore time translation symmetry on both
boundaries. In our situation, this integral is over the gauge field.

6The left and the right boundaries are symbolically denoted here by∞L,R here.
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4 No Global Symmetries in Quantum Gravity

We will now show that the existence of multi-boundary Euclidean wormholes prevents the ex-
istence of exact global symmetries in quantum gravity. First, we need to discuss the difference
between an exact global symmetry of quantum gravity and one that is gauged. From the CFT
standpoint, both involve a graded operator algebra and exact selection rules for correlation
functions: a correlation function is non-zero only if the sum of the charges of all operators van-
ishes. In particular, this applies to all OPE coefficient which must satisfy charge conservation

COq1
Oq2

Oq3
∝ δq1+q2+q3,0 . (13)

The difference between a situation where the symmetry is gauged in the bulk involves the dual
of the bulk gauge field: a CFT current which implements the action of the global symmetry.

It is currently unknown whether a consistent CFT with a local stress-tensor can have an
exact symmetry for all its correlation functions without having a current (see [34] for a detailed
discussion on such issues).7 Here, we will show that the low-energy gravitational effective
theory is smart enough to know that exact global symmetries are not allowed. Note that
independently of whether the symmetry is gauged in the bulk, the one-point function of a
charged operator must vanish on any compact Euclidean surface. In particular, we have

〈Oq〉g=2 = 0 . (14)

This is an exact statement, and follows from the selection rule (13). We will now see that this
is in conflict with the wormhole answer.

The existence of wormhole solutions in the bulk and the correlations they imply may seem
puzzling at first sight, but such wormhole correlation functions have been interpreted as en-
coding the variance of microscopic CFT observables as the result of some coarse-graining. For
one-point functions, we have

〈O〉 〈O〉
�

�

�

gravity
= | 〈O〉CFT |2 , (15)

where the · notation refers to some coarse-graining involving averaging over an energy band
which we will not aim to make precise here. In general, when quantities like OPE coefficients
or spectral phases are erratically varying, wormhole contributions can give us the mean and
variance of such signals. The central assumption that we will make is that the wormhole
contribution in gravity accurately captures the CFT variance for this type of signal.

Hence, we seem to arrive at a contradiction, reductio ad impossibile. The wormhole corre-
lation function (11) is non-vanishing, implying that the charged one-point function has some
variance. But this is in direct contradiction with (14) which asserts that charged one-point
functions are exactly zero. What this shows us is that if we try to enforce an exact global sym-
metry in quantum gravity, the existence of Euclidean wormholes tells us that this symmetry
cannot be exact, and must necessarily be broken by non-perturbative effects. It is remarkable
that the low-energy gravitational effective theory and its Euclidean path integral are smart
enough to know this. On the other hand, if the symmetry is gauged in the bulk, the exact
microscopic selection rule is enforced by the gauge symmetry and the variance (i.e. wormhole
contribution) exactly vanishes.

Let us now make contact with the ETH ansatz in the presence of a global symmetry. We pro-
posed two ansätze for ETH, (2), one that exactly preserves the global symmetry and one that
only approximately does. Recall that for one-boundary correlators, charge conservation was

7In the absence of a local stress-tensor, such CFTs clearly exist: the canonical example is generalized free fields.
In fact any QFT in AdS with a global symmetry will generate such a CFT.
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not violated by large amounts for either ansatz and the two agreed up to exponentially small
corrections. We conclude that the two different ansätze correspond to gravitational theories in
which global symmetry is either gauged or broken by some non-perturbative phenomenon, re-
spectively. We also learn that the multi-boundary correlation functions are the apt observables
that can distinguish these effects.

5 Discussion

In this paper, we have presented the generalization of the ETH when there are additional global
symmetries, and discussed two possible version of the ansatz: one that manifestly preserves
the symmetry microscopically, and another that only preserves it for simple operators, but al-
lows exponentially small violations of charge conservation. We then discussed a manifestation
of these two scenarios for CFTs with a holographic dual in terms of Euclidean wormholes.
Assuming that Euclidean wormhole computations done with the low-energy gravitational the-
ory accurately captures moments of certain pseudo-random signals of quantum chaos in the
dual CFT, we have shown that global symmetries cannot exist in quantum gravity (at least for
quantum gravity in Anti-de Sitter space).

There are two possible outcomes for the fate of a global symmetry present in the low en-
ergy effective theory: it can be explicitly broken by non-perturbative effects, and we can give
a lower bound on the scale of such a breaking from the gravitational action of the wormhole,
namely e−`AdS/GN [25]. This is compatible with previous findings (see for example [44]). Al-
ternatively, it can be gauged in which case the Euclidean wormhole computation vanishes and
the symmetry is exact in the microscopic CFT description. In such a case, we cannot bound
the magnitude of the gauge coupling.

It is interesting to observe that the absence of global symmetries in quantum gravity is
tightly connected to the fact that low-energy observers can accurately resolve charges, in con-
trast with energy levels which are exponentially dense. Appearance of approximate global
symmetries itself is not a new phenomenon in quantum theories. It is well known that both
both baryon number and lepton number are approximately conserved at low energies but these
global symmetries are broken at higher energies and only the difference of baryon and lepton
numbers (B-L) is a preserved symmetry. In fact, in a quantum theory beyond standard model
of particle physics, B-L itself might be broken. Our work provides a holographic signature of
whether such global symmetries are preserved or broken.

We conclude with some open questions. The existence of Euclidean wormholes prevents
the factorization of products of CFTs on disconnected manifolds, which is inconsistent with
any microscopic CFT computation. While this can sometimes originate from taking ensemble
averages over microscopic theories, one would also like to understand the role of wormholes
in definite unitary CFTs, and how factorization is restored. There is evidence that factor-
ization can be restored by considering certain UV ingredients like branes, which account for
“non-diagonal" elements of the quasi-random variables [45–47]. One may wonder if UV ingre-
dients could resolve the wormhole contribution (11) and the associated tension with global
symmetries in quantum gravity. The point we are making here is that in the presence of an
exact global symmetry, all moments of charged one-point functions must vanish, which is not
what we observe for the variance. This is irrespective of how factorization is restored.

Another avenue to consider is to understand the interplay between our results concern-
ing energy eigenstates and typical states obtained from Haar averaging in the microcanonical
window [26]. It is worth pointing out that the charge violating version of ETH is very similar
to formulas one would obtain when Haar-averaging over an ensemble of states that contain
several different charge sectors. It would thus naturally arise in such a context.
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In this paper, we came across various type of correlation functions on wormhole back-
ground. One such correlation function is 〈φ(x)†W (x , y)φ(y)〉, with x and y arbitrary bulk
points. On a Euclidean wormhole, this correlation function need not vanish for points on dif-
ferent time slices, and in particular we can take the operators all the way to the boundary.
One may now ask what this correlation function computes, and pushing on our intuition, this
must be some variance. But the variance of what? The problem is that there is no one-sided
correlation function with a single operator insertion, even connected to a Wilson line. This is
because the Wilson line has nowhere to go. This should connect to discussions for the TFD
state, where it is known that this Wilson line is a complicated CFT operator [48,49]. Perhaps
thinking about eternal traversable wormholes would help, since in Euclidean signature they
look like Euclidean wormholes. We hope to return to this question in the future.

Taking a step back, we are proposing that a CFT framework that can encode all observ-
ables the low energy gravitational theory has access to, is a theory of OPE coefficients treated
statistically. Gravitational computations give us access to (arbitrary) moments of the statistical
distribution of microscopic data.8 In this work, we have shown that this line of thought leads
to a novel argument against global symmetries in theories of quantum gravity. It would be
very interesting to connect our reasoning to the standard arguments against global symme-
tries coming from black hole physics. We hope to return to these questions in the future.
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A Comparing ETH ansatze

In this appendix we compare the physical predictions of the two ETH ansatze discussed in
the main paper. For this purpose we look at the two point function, 〈Ei ,Q i|O†

qOq|Ei ,Q i〉. In
the main text, we have discussed how this two point function is related to the subleading
component, g, of the ETH ansatz (4). Here we demonstrate the same for the function g̃ and
the second ETH ansatz, (8). To do so, we insert a resolution of the identity

〈Ei ,Q i|O†
qOq |Ei ,Q i〉 =

∑

E j ,Q j

〈Ei ,Q i|O†
q |E j ,Q j〉 〈E j ,Q j|Oq |Ei ,Q i〉 (16)

=
∑

ω,δQ

e−S(Ei+
ω
2 ,Q i+

δQ
2 )

× | g̃a(Ei +
ω

2
,ω,Q i +

δQ
2

,δQ, q)|2|Ri j|2 .

The random variables Ri j will average out to unity upon taking the sum over j since they
have unit variance. Once again, we can replace the dense sum over E j ,Q j by an integral,

8An interesting challenge for this program is that the gravitational theory has access to data coming from putting
CFTs on arbitrary manifolds, which in d > 2 does not manifestly connect to the local data of the CFT (see [50]).
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namely
∑

ω,δQ
→
∫

dω dδQ eS(Ei+ω,Q i+δQ), which gives

〈Ei ,Q i|O†
qOq |Ei ,Q i〉 =

∫

dω dδQ eS(Ei+ω,Q i+δQ)−S(Ei+
ω
2 ,Q i+

δQ
2 )

× | g̃a(Ei +
ω

2
,ω,Q i +

δQ
2

,δQ, q)|2 . (17)

All remaining functions are smooth and rapidly decaying functions of ω and δQ, so we can
Taylor expand them to obtain to leading order

〈Ei ,Q i|O†
qOq |Ei ,Q i〉 ≈

∫

dωdδQe
β
2 (ω−µδQ)| g̃a(Ei ,ω,Q i ,δQ, q)|2 , (18)

where we defined β ≡ ∂ S
∂ E and µ ≡ − 1

β
∂ S
∂Q . It is important to note that the function g̃ is really

a rapidly decaying function of δQ − q, rather than just δQ. Physically, this means that the
integral will be sharply peaked at δQ = q, as one would expect. For this reason, we have kept
the q dependence explicit in the function g̃.

Similarly to the charge preserving ETH, the result (7) should be given by the microcanon-
ical average for the operator O†

qOq if it is to satisfy ETH, which fixes the function g̃ and its

relation to the microcanonical expectation value of O†
qOq. This also establishes a relation be-

tween the function g that appears in equation (7) and the function g̃.

References

[1] J. M. Deutsch, Quantum statistical mechanics in a closed system, Phys. Rev. A 43, 2046
(1991), doi:10.1103/PhysRevA.43.2046.

[2] M. Srednicki, Chaos and quantum thermalization, Phys. Rev. E 50, 888 (1994),
doi:10.1103/PhysRevE.50.888.

[3] L. D’Alessio, Y. Kafri, A. Polkovnikov and M. Rigol, From quantum chaos and eigenstate
thermalization to statistical mechanics and thermodynamics, Adv. Phys. 65, 239 (2016),
doi:10.1080/00018732.2016.1198134.

[4] J. M. Maldacena, The Large N limit of superconformal field theories and supergravity, Int.
J. Theor. Phys. 38, 1113 (1999), doi:10.1023/A:1026654312961

[5] J. Aparício and E. López, Evolution of two-point functions from holography, J. High Energy
Phys. 12, 082 (2011), doi:10.1007/JHEP12(2011)082.

[6] V. Balasubramanian et al., Holographic thermalization, Phys. Rev. D 84, 026010 (2011),
doi:10.1103/PhysRevD.84.026010.

[7] T. Anous, T. Hartman, A. Rovai and J. Sonner, Black hole collapse in the 1/c expansion, J.
High Energy Phys. 07, 123 (2016), doi:10.1007/JHEP07(2016)123.

[8] T. Anous, T. Hartman, A. Rovai and J. Sonner, From conformal blocks to
path integrals in the Vaidya geometry, J. High Energy Phys. 09, 009 (2017),
doi:10.1007/JHEP09(2017)009.

[9] H. Liu and S. J. Suh, Entanglement tsunami: Universal scaling in holographic thermaliza-
tion, Phys. Rev. Lett. 112, 011601 (2014), doi:10.1103/PhysRevLett.112.011601.

11

https://scipost.org
https://scipost.org/SciPostPhys.12.2.059
https://doi.org/10.1103/PhysRevA.43.2046
https://doi.org/10.1103/PhysRevE.50.888
https://doi.org/10.1080/00018732.2016.1198134
https://doi.org/10.1023/A:1026654312961
https://doi.org/10.1007/JHEP12(2011)082
https://doi.org/10.1103/PhysRevD.84.026010
https://doi.org/10.1007/JHEP07(2016)123
https://doi.org/10.1007/JHEP09(2017)009
https://doi.org/10.1103/PhysRevLett.112.011601


SciPost Phys. 12, 059 (2022)

[10] A. L. Fitzpatrick, J. Kaplan and M. T. Walters, Virasoro conformal blocks and ther-
mality from classical background fields, J. High Energy Phys. 11, 200 (2015),
doi:10.1007/JHEP11(2015)200.

[11] N. Lashkari, A. Dymarsky and H. Liu, Eigenstate thermalization hypothesis in conformal
field theory, J. Stat. Mech. 033101 (2018), doi:10.1088/1742-5468/aab020.

[12] J. Sonner and M. Vielma, Eigenstate thermalization in the Sachdev-Ye-Kitaev model, J. High
Energy Phys. 11, 149 (2017), doi:10.1007/JHEP11(2017)149.

[13] A. Maloney, G. S. Ng, S. F. Ross and I. Tsiares, Generalized Gibbs ensemble and
the statistics of KdV charges in 2D CFT, J. High Energy Phys. 03, 075 (2019),
doi:10.1007/JHEP03(2019)075.

[14] A. Dymarsky and K. Pavlenko, Generalized Gibbs ensemble of 2D CFTs at large cen-
tral charge in the thermodynamic limit, J. High Energy Phys. 01, 098 (2019),
doi:10.1007/JHEP01(2019)098.

[15] S. Datta, P. Kraus and B. Michel, Typicality and thermality in 2D CFT, J. High Energy Phys.
07, 143 (2019), doi:10.1007/JHEP07(2019)143.

[16] J. de Boer, R. van Breukelen, S. F. Lokhande, K. Papadodimas and E. Ver-
linde, Probing typical black hole microstates, J. High Energy Phys. 01, 062 (2020),
doi:10.1007/JHEP01(2020)062.

[17] T. Anous and J. Sonner, Phases of scrambling in eigenstates, SciPost Phys. 7, 003 (2019),
doi:10.21468/SciPostPhys.7.1.003.

[18] P. Nayak, J. Sonner and M. Vielma, Eigenstate thermalisation in the conformal Sachdev-
Ye-Kitaev model: An analytic approach, J. High Energy Phys. 10, 019 (2019),
doi:10.1007/JHEP10(2019)019.

[19] P. Nayak, J. Sonner and M. Vielma, Extended eigenstate thermalization and the role
of FZZT branes in the Schwarzian theory, J. High Energy Phys. 03, 168 (2020),
doi:10.1007/JHEP03(2020)168.

[20] P. Saad, Late time correlation functions, baby universes, and ETH in JT gravity,
arXiv:1910.10311.

[21] P. Saad, S. H. Shenker and D. Stanford, JT gravity as a matrix integral, arXiv:1903.11115.

[22] J. M. Maldacena and L. Maoz, Wormholes in AdS, J. High Energy Phys. 02, 053 (2004),
doi:10.1088/1126-6708/2004/02/053.

[23] D. Stanford, More quantum noise from wormholes, arXiv:2008.08570.

[24] J. Cotler and K. Jensen, Gravitational constrained instantons, Phys. Rev. D 104, L081501
(2021), doi:10.1103/PhysRevD.104.L081501.

[25] A. Belin and J. de Boer, Random statistics of OPE coefficients and Euclidean wormholes,
Class. Quantum Grav. 38, 164001 (2021), doi:10.1088/1361-6382/ac1082.

[26] J. Pollack, M. Rozali, J. Sully and D. Wakeham, Eigenstate thermalization
and disorder averaging in gravity, Phys. Rev. Lett. 125, 021601 (2020),
doi:10.1103/PhysRevLett.125.021601.

12

https://scipost.org
https://scipost.org/SciPostPhys.12.2.059
https://doi.org/10.1007/JHEP11(2015)200
https://doi.org/10.1088/1742-5468/aab020
https://doi.org/10.1007/JHEP11(2017)149
https://doi.org/10.1007/JHEP03(2019)075
https://doi.org/10.1007/JHEP01(2019)098
https://doi.org/10.1007/JHEP07(2019)143
https://doi.org/10.1007/JHEP01(2020)062
https://doi.org/10.21468/SciPostPhys.7.1.003
https://doi.org/10.1007/JHEP10(2019)019
https://doi.org/10.1007/JHEP03(2020)168
https://arxiv.org/abs/1910.10311
https://arxiv.org/abs/1903.11115
https://doi.org/10.1088/1126-6708/2004/02/053
https://arxiv.org/abs/2008.08570
https://doi.org/10.1103/PhysRevD.104.L081501
https://doi.org/10.1088/1361-6382/ac1082
https://doi.org/10.1103/PhysRevLett.125.021601


SciPost Phys. 12, 059 (2022)

[27] A. Altland and J. Sonner, Late time physics of holographic quantum chaos, SciPost Phys.
11, 034 (2021), doi:10.21468/SciPostPhys.11.2.034.

[28] H. Liu and S. Vardhan, Entanglement entropies of equilibrated pure states in
quantum many-body systems and gravity, PRX Quantum 2, 010344 (2021),
doi:10.1103/PRXQuantum.2.010344.

[29] K. Langhoff and Y. Nomura, Ensemble from coarse graining: Reconstructing
the interior of an evaporating black hole, Phys. Rev. D 102, 086021 (2020),
doi:10.1103/PhysRevD.102.086021.

[30] A. Belin, J. de Boer, P. Nayak and J. Sonner, Generalized spectral form factors and the
statistics of heavy operators, arXiv:2111.06373.

[31] D. Kapec, R. Mahajan and D. Stanford, Matrix ensembles with global symmetries and
’t Hooft anomalies from 2D gauge theory, J. High Energy Phys. 04, 186 (2020),
doi:10.1007/JHEP04(2020)186.

[32] C. W. Misner and J. A. Wheeler, Classical physics as geometry, Ann. Phys. 2, 525 (1957),
doi:10.1016/0003-4916(57)90049-0.

[33] T. Banks and N. Seiberg, Symmetries and strings in field theory and gravity, Phys. Rev. D
83, 084019 (2011), doi:10.1103/PhysRevD.83.084019.

[34] D. Harlow and H. Ooguri, Symmetries in quantum field theory and quantum gravity,
arXiv:1810.05338.

[35] D. Harlow and E. Shaghoulian, Global symmetry, Euclidean gravity, and
the black hole information problem, J. High Energy Phys. 04, 175 (2021),
doi:10.1007/JHEP04(2021)175.

[36] S. B. Giddings and A. Strominger, Loss of incoherence and determination of coupling
constants in quantum gravity, Nucl. Phys. B 307, 854 (1988), doi:10.1016/0550-
3213(88)90109-5.

[37] L. F. Abbott and M. B. Wise, Wormholes and global symmetries, Nucl. Phys. B 325, 687
(1989), doi:10.1016/0550-3213(89)90503-8.

[38] S. Coleman and K. Lee, Wormholes made without massless matter fields, Nucl. Phys. B
329, 387 (1990), doi:10.1016/0550-3213(90)90149-8.

[39] R. Kallosh, A. D. Linde, D. A. Linde and L. Susskind, Gravity and global symmetries, Phys.
Rev. D 52, 912 (1995), doi:10.1103/PhysRevD.52.912.

[40] Y. Chen and H. W. Lin, Signatures of global symmetry violation in rela-
tive entropies and replica wormholes, J. High Energy Phys. 03, 040 (2021),
doi:10.1007/JHEP03(2021)040.

[41] P.-S. Hsin, L. V. Iliesiu and Z. Yang, A violation of global symmetries from replica worm-
holes and the fate of black hole remnants, Class. Quantum Grav. 38, 194004 (2021),
doi:10.1088/1361-6382/ac2134.

[42] D. Das, S. Datta and S. Pal, Charged structure constants from modularity, J. High Energy
Phys. 11, 183 (2017), doi:10.1007/JHEP11(2017)183.

[43] J. Liu, Scrambling and decoding the charged quantum information, Phys. Rev. Research 2,
043164 (2020), doi:10.1103/PhysRevResearch.2.043164.

13

https://scipost.org
https://scipost.org/SciPostPhys.12.2.059
https://doi.org/10.21468/SciPostPhys.11.2.034
https://doi.org/10.1103/PRXQuantum.2.010344
https://doi.org/10.1103/PhysRevD.102.086021
https://arxiv.org/abs/2111.06373
https://doi.org/10.1007/JHEP04(2020)186
https://doi.org/10.1016/0003-4916(57)90049-0
https://doi.org/10.1103/PhysRevD.83.084019
https://arxiv.org/abs/1810.05338
https://doi.org/10.1007/JHEP04(2021)175
https://doi.org/10.1016/0550-3213(88)90109-5
https://doi.org/10.1016/0550-3213(88)90109-5
https://doi.org/10.1016/0550-3213(89)90503-8
https://doi.org/10.1016/0550-3213(90)90149-8
https://doi.org/10.1103/PhysRevD.52.912
https://doi.org/10.1007/JHEP03(2021)040
https://doi.org/10.1088/1361-6382/ac2134
https://doi.org/10.1007/JHEP11(2017)183
https://doi.org/10.1103/PhysRevResearch.2.043164


SciPost Phys. 12, 059 (2022)

[44] T. Daus, A. Hebecker, S. Leonhardt and J. March-Russell, Towards a swampland
global symmetry conjecture using weak gravity, Nucl. Phys. B 960, 115167 (2020),
doi:10.1016/j.nuclphysb.2020.115167.

[45] A. Blommaert, T. G. Mertens and H. Verschelde, Eigenbranes in Jackiw-Teitelboim gravity,
J. High Energy Phys. 02, 168 (2021), doi:10.1007/JHEP02(2021)168.

[46] A. Blommaert, Dissecting the ensemble in JT gravity, arXiv:2006.13971.

[47] L. Eberhardt, Partition functions of the tensionless string, J. High Energy Phys. 03, 176
(2021), doi:10.1007/JHEP03(2021)176.

[48] D. Harlow, Wormholes, emergent gauge fields, and the weak gravity conjecture, J. High
Energy Phys. 01, 122 (2016), doi:10.1007/JHEP01(2016)122.

[49] M. Guica and D. Jafferis, On the construction of charged operators inside an eternal black
hole, SciPost Phys. 3, 016 (2017), doi:10.21468/SciPostPhys.3.2.016.

[50] A. Belin, J. de Boer and J. Kruthoff, Comments on a state-operator correspondence for the
torus, SciPost Phys. 5, 060 (2018), doi:10.21468/SciPostPhys.5.6.060.

14

https://scipost.org
https://scipost.org/SciPostPhys.12.2.059
https://doi.org/10.1016/j.nuclphysb.2020.115167
https://doi.org/10.1007/JHEP02(2021)168
https://arxiv.org/abs/2006.13971
https://doi.org/10.1007/JHEP03(2021)176
https://doi.org/10.1007/JHEP01(2016)122
https://doi.org/10.21468/SciPostPhys.3.2.016
https://doi.org/10.21468/SciPostPhys.5.6.060

	Introduction
	Randomness in Holography
	Summary of results

	The ETH with global symmetries
	Euclidean Wormholes
	No Global Symmetries in Quantum Gravity
	Discussion
	Comparing ETH ansatze
	References

