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Bloch oscillations and the lack of the decay of the false vacuum
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Abstract

We consider the decay of the false vacuum, realised within a quantum quench into an
anti-confining regime of the Ising spin chain with a magnetic field opposite to the ini-
tial magnetisation. Although the effective linear potential between the domain walls is
repulsive, the time evolution of correlations still shows a suppression of the light cone
and a reduction of vacuum decay via suppression of the growth of nucleated bubbles.
The suppression of the bubble growth is a lattice effect, and can be assigned to emergent
Bloch oscillations.
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1 Introduction

The decay of the false vacuum is a famous scenario proposed in 1977 by Sidney Coleman
to describe the dynamics of phase transitions in quantum field theory [1, 2], which plays an
important role in particle physics and cosmology. In such a situation a system stuck in a
metastable (‘false’) vacuum state transitions to the ‘true’ vacuum state by bubble nucleation
and subsequent growth of the bubbles driven by the energy difference between the false and
the true vacua. This is a non-equilibrium process, in which the expansion of the bubbles rapidly
accelerates to the maximum possible velocity (the speed of light), and thus the true vacuum
ultimately replaces the original false vacuum everywhere in space. Quantum bubble formation
is, of course, not only relevant in cosmology, but it is the primary mechanism behind first order
classical and quantum phase transitions and hysteresis.

Quantum quenches, i.e., sudden changes in a system’s Hamiltonian [3,4] provide a paradig-
matic protocol to study non-equilibrium quantum dynamics and relaxation in by now routinely
engineered closed quantum systems [5–12], and thus provide a natural environment to test
Coleman’s scenario in various quantum systems. In fact, in global, translationally invariant
quantum quenches, the initial state has a finite uniform energy density with respect to the post-
quench Hamiltonian, and the system is therefore in a highly excited state. This highly excited
configuration acts as a source of quasi-particle excitations, which may collide and thermalize
with time. Indeed, within a semi-classical picture [3], these quasi-particle excitations drive
equilibration by spreading correlation and entanglement across the system. In a large class of
systems, including various spin chains with short-range interactions, or interacting bosonic or
fermionic systems, quasi-particles have an upper bound on their velocity [13], leading typi-
cally to a distinctive light-cone pattern in time dependent correlation functions [3, 4, 14–19].
Preparing a system in the false vacuum as an initial state, therefore allows one to test quantum
bubble nucleation in the laboratory [20–24].

A primary candidate to perform this experiment is the quantum Ising spin chain, governed
by the Hamiltonian

HQISC = −J
∑

i

�

σz
iσ

z
i+1 + gσx

i + hσz
i

�

, (1.1)

where g and h denote the transverse and the longitudinal magnetic fields, respectively. Here
we consider the model in the thermodynamic limit, i.e., for a chain of infinite length, and set
J = 1 which entails a choice of energy and time units. This model provides a paradigmatic
example of quantum phase transition [25,26], and has also attracted interest as a model system
for weak thermalization [27,28], and has been studied in the context of many-body scars [29].
In the ferromagnetic phase, g < 1, quasi-particles are domain walls, and the chain’s dynamics
may be understood in terms of quantum bubble nucleation [cf. Ref. [30] for a recent study in
a different setting].

However, light-cone spreading of correlations is not completely generic [31]: confining
forces, as a remarkable exception, can suppress the light-cone spreading of correlations. The
prediction of dynamical confinement has indeed been confirmed recently in numerous systems
and settings exhibiting confinement [32–40]. For the model (1.1) dynamical confinement
occurs when initializing the system in its g0 < 1 positive (spontaneous) magnetisation ground
state with m=




σz
i

�

> 0 and h0 = 0, and then quenching to a Hamiltonian with some g < 1 and
h > 0. In this case, the quench gives rise to oppositely moving domain walls (kink-antikink
pairs), with a bubble of false vacuum with negative magnetisation −m stretched between
them (see Fig. 1.1a), which costs a potential energy proportional to the distance between the
domain walls. The resulting confining force [41] inhibits the propagation of the domain walls
to large distances, and prevents thermalization of the system within all time scales accessible
to numerical simulations.
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Figure 1.1: Upper panel: (a) For h parallel to the initial magnetisation, bubbles
nucleated during the quench contain the false vacuum. The corresponding attrac-
tive forces (red arrows) confine domain walls into ‘mesons’. (b) For h opposite to
the initial magnetisation, nucleating bubbles contain the true vacuum. The induced
repulsive forces (red arrows) accelerate the domain walls. Lower panel: Time evo-
lution of the connected spin-spin correlation function Cz(l, t) ≡




σz
0(t)σ

z
l (t)

�

c for
g = 0.4 in the confining regime, h> 0 (left), and in the anti-confining regime, h< 0
(right). Red vs. blue lines show average bubble sizes estimated using Eqs. (2.15)
and (2.14), respectively.

It is intriguing to investigate what happens if we switch on a field in the opposite direc-
tion, h < 0, thereby initializing the system in the false vacuum of the final Hamiltonian. In
this case, according to Coleman’s scenario, nucleation must lead to bubbles of the true vac-
uum appearing inside a sea of false vacuum. The external field then promotes the expansion
of bubbles, and generates a repulsive force between domain walls forming the bubbles, as
illustrated in Fig. 1.1b. As a result, in the standard scenario the nucleated bubbles extend to
the whole system and the system rapidly relaxes to an equilibrium or steady state around the
true vacuum. In the quantum quench framework, this corresponds to the light-cone spreading
of correlations, as predicted by the quasi-particle picture.

3

https://scipost.org
https://scipost.org/SciPostPhys.12.2.061


SciPost Phys. 12, 061 (2022)

0 20 40 60
t

0.0

0.1

0.2

0.3

0.4

0.5

0.6
S

g = 0.4, h = 0.1

g = 0.4, h = −0.1

0 20 40 60
t

0.0

0.1

0.2

0.3

0.4

0.5

0.6

S

g = 0.4, h = 0.2

g = 0.4, h = −0.2

Figure 1.2: Time-dependence of entanglement entropy for the quenches displayed in
Fig. 1.1. Note that anti-confining quenches (blue continuous lines) show a suppres-
sion of entropy growth similar to the confining case (red dashed lines), albeit with a
larger magnitude of entanglement entropy generated during the quench.

Here we show by detailed simulations, however, that – quite counter-intuitively – the above
scenario is violated in the Ising spin chain. The dynamics of spin-spin correlation function
shown in Fig. 1.1 clearly indicates that the true vacuum bubbles do not expand indefinitely. In
addition, computing the entanglement entropy between two halves of the system reveals that
its initial linear growth is suppressed after a transitional period as shown in Fig. 1.2. For the
confining quenches this effect was discovered in [31] and is explained by the suppression of
light-cone spreading of correlations due to localisation of the quasi-particles by the confining
force; however, in the anti-confining case this is unexpected in light of the force being repulsive.

We find that the relevant mechanism responsible for the lack of light-cone spreading of
bubbles is not dynamical confinement: rather, the repulsive force leads to an oscillatory mo-
tion of the domain walls, known as Bloch oscillations. It was recently found that these os-
cillations slow down equilibration by preventing the fast propagation of excitations in other
non-equilibrium settings, corresponding to starting the dynamics from a bipartite domain wall
state [34], or from a random distribution of kinks [38]. Our findings are also consistent with
recent numerical studies of the order parameter statistics in the quantum Ising spin chain [42].

Today, strongly correlated quantum many-body systems – including the quantum Ising
spin chain itself [43] – can be routinely realised using ultra-cold atomic quantum simula-
tors [44–48], or in a digital quantum computers [49]. These advances have triggered recently
considerable interest in simulating the decay of the false vacuum [20–24]. Our results, demon-
strating the suppression of false vacuum decay and providing directly observable signatures of
the underlying Bloch oscillations, may be particularly interesting in this context.
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2 Dynamics in the anti-confining regime

2.1 Quench setup and subsequent time evolution

As discussed in the introduction, we consider quantum quenches in the ferromagnetic phase
of the quantum Ising spin chain (1.1). For simplicity, we start the quench from a fully aligned,
positively polarised state, i.e. from the ground state with g0 = 0 and h0 = 0. We then quench
to a finite transverse field, g < 1, and an “anti-confining” longitudinal field h< 0. Turning on
a finite g0→ g > 0 creates a gas of domain wall excitations, which then move in the presence
of the field h< 0.

The time evolution is numerically simulated using the infinite volume time evolving block
decimation (iTEBD) method [50], which we use to compute the time evolution of the con-
nected two-point equal time spin correlation function

Cz(l, t) ≡



σz
0(t)σ

z
l (t)

�

c (2.1)

=



σz
0(t)σ

z
l (t)

�

−



σz
0(t)

� 


σz
l (t)

�

,

as well as the entanglement entropy between two halves of the system, say A and Ā,

S(t) = −TrρA(t) logρA(t) , (2.2)

where ρA is the reduced density matrix of the subsystem A. For the time evolution we used
a second order Trotter expansion, with the maximum bond dimension of the matrix product
states fixed at 512.

As shown in Figs. 1.1 and 1.2, at a first sight, the time evolutions of the correlation func-
tions Cz(l, t) and the entanglement entropy S(t) look remarkably similar for an anti-confining
field, h< 0, to the one obtained in the dynamical confinement region, h> 0, studied in [31]:
in both cases, the light-cone propagation of correlations and the growth of entropy are sup-
pressed, and oscillations are observed.

Closer examination of the simulation results discerns, however, some important differ-
ences between the two cases. While correlations have an oscillatory behaviour in both cases,
the corresponding frequencies and amplitudes are quite different. As discussed in Ref. [31],
in the confining case h > 0 the frequencies of oscillations scale with h2/3 and correspond to
bound states of domain walls called“mesons”. In contrast, for the anti-confining case the char-
acteristic frequency scales with h, as shown explicitly by the quench spectroscopy discussed in
Subsection 2.4.

2.2 Bloch oscillations

Consider first a pure transverse field quench with h= 0 and g > 0. The post-quench state then
consists of independent kink-antikink pairs with momenta k and −k. These kinks behave as
non-interacting fermions with a dispersion relation, ε(k) = 2J

p

1+ g2 − 2g cos k, and propa-
gate with the group velocity

v(k) =
∂ ε(k)
∂ k

, (2.3)

limited by the maximum velocity, vmax = 2J g. The initial density of kinks can be determined
following Refs. [17,51]. Kink-antikink pairs of momentum ±k are created with a pair creation
amplitude, K(k) = tan∆k/2, with

cos∆k =
g g0 − (g + g0) cos k+ 1

p

1+ g2 − 2g cos k
q

1+ g2
0 − 2g0 cos k

. (2.4)
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Figure 2.1: The kink dispersion relation ε(k) for g = 0.3 (full line) and the initial
density ρ(k) (shaded region) for g0 = 0, g = 0.3.
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Figure 2.2: Illustration of Bloch oscillation of a bubble with a definite initial momen-
tum of the kinks forming the bubble walls. Arrows indicate dominant spin directions
in space and time. Time delays at kink collisions are neglected.

and the density of kink pairs with momentum in the interval [k, k+ dk] is given by

ρ(k) =
|K(k)|2

1+ |K(k)|2
=

1− cos(∆k)
2

= sin2(∆k/2) , (2.5)

shown in Fig. 2.1. The denominator in this equation simply reflects the fermionic nature of
kinks, and the spatial bubble density is just the integral of ρ(k),

ρbubble =

∫ π

0

dk
2π
ρ(k) . (2.6)

Let us consider now a finite longitudinal field h < 0. Before entering the issue of bubble
dynamics, it is important to discuss the origin of the bubbles. In Coleman’s original scenario,
the bubbles appear as a result of vacuum tunnelling. The tunnelling probability per lattice
site for the Ising spin chain was computed in [52] and in a semi-classical approximation1 it is

1We note that the conditions for the semi-classical approximation are that g is sufficiently far away from its
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given by

γ=
πgm

9
exp

§

−
1

mg
| f (−i log h)|

ª

, (2.7)

where m = (1 − g2)1/8 is the spontaneous magnetisation for the pure transverse field Ising
spin chain with transverse field g and

f (x) = 2

∫ x

0

ε(k)dk . (2.8)

For the range of parameters considered in our simulations, the nucleation rate per site es-
timated from (2.7) is very small, not exceeding 10−6. In fact, the nucleation is heavily sup-
pressed by a mechanism analogous to the Schwinger effect [53] in Quantum Electrodynamics:
the creation of the bubbles can also be viewed as spontaneous creation of particle-antiparticle
(kink-antikink) pairs in a homogeneous external field (here given by h), which is the same as
in continuum field theory. However, the bubbles created in the quenches we consider originate
from the finite energy density in the initial state which is not fine-tuned to be the false vacuum
itself. Nevertheless, the fate of the bubbles after their appearance is essentially independent
of the mechanism responsible for their creation and, as we demonstrate, the suppression of
their subsequent expansion is due to Bloch oscillations, which arise from the presence of the
lattice.

Bloch oscillations can be described using a simple semi-classical picture, similar to the
one used in [54] to describe the spectrum of mesonic excitations due to confinement. This
is expected to work under the conditions that (i) the system is apart from the immediate
vicinity of the critical point gc = 1, (ii) the mean inter-particle spacing is much larger than the
correlation length ξ: ρbubbleξ� 1, where ξ is of order one away from the vicinity of gc , and
(iii) |h| is sufficiently small. The validity of the latter condition can be seen from the fact that
the semi-classical description of the meson spectrum (cf. Appendix A) is very accurate for the
parameter range considered here [31].

To a first approximation, we can neglect the correction to the dispersion relation ε(k),
and treat the dynamics of the bubbles as that of a two-particle system, a kink and an antikink
interacting via a repulsive potential

V (r) = −χ r, (2.9)

where r is the distance between the kinks, and χ the coefficient given by the energy gain of

flipping the magnetisation into the external field’s direction: χ = 2m|h| = 2|h|
�

1− g2
�1/8

.
The semi-classical equation of motion of the kinks is then written as

ṙ = 2
∂ ε(k)
∂ k

, k̇ = −
1
2
∂ V
∂ r
=
χ

2
, (2.10)

with the factors 2 and 1/2 related to having two mobile kinks. The second equation yields
immediately k(t) = k0 +

1
2χ t , and can be used to determine the kink-antikink distance as

r(t) =
4
χ
[ε (k0 +χ t/2)− ε (k0)] + r0 , (2.11)

with r0 initial size of the bubble (typically of the order of the lattice spacing), and ±k0 the
initial momenta of the kinks. Let us first consider bubbles where the initial size r0 can be
neglected. Due to the periodicity of ε(k), the kink velocity reverses sign when the momentum

critical value gc = 1 and it is valid in the asymptotic limit h → 0, which means that the exponent is large and
tunnelling is suppressed.
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k passes the boundary of the Brillouin zone at k = ±π, where the kinks turn back. As a result,
kinks return to their original position and collide again after a period T (k0) when the bubble
re-collapses (r(T (k0)) ≈ 0). This happens when k0 + χ T (k0)/2 = 2π − k0. At this point,
the kink and the antikink are reflected, and start off again with the whole cycle repeating as
illustrated in Fig. 2.2, causing the bubbles oscillate in time. The maximum amplitude of these
oscillations is obtained when k0 = 0:

lmax =
4(ε(π)− ε(0))

χ
=

8g
m|h|

. (2.12)

In contrast to the idealised single-bubble dynamics shown in Fig. 2.2, the observed oscilla-
tions shown on the left of Fig. 1.1 result from a large number of bubbles, each having different
initial momenta and initial sizes. Nevertheless, these Bloch oscillations still have a character-
istic time. As obvious from Fig. 2.1, (and can be indeed verified by direct calculation, for an
initial state with g0 = 0) the kink density is highest around momenta corresponding to vmax,
which determines the front line of the bubbles, and thus the overall frequency of oscillations
via the condition, 1

2χ TB = 2k0 ≈ π for small g-s, yielding

ω≈
2π
TB
= χ .

The presence of a distribution of domain wall momenta leads, however, to a gradual decay
of oscillations due to the dependence of the oscillation period and phase on the initial kink
momentum. Bubble collisions have a similar, degrading effect on coherent oscillations.

We close this subsection with some important observations regarding the role of collisions:

• For small bubbles, kink-antikink pairs collide once during every oscillation period. In
principle they could annihilate into mesons then; however our numerics shows no such
effect in the accessible time frame, which is consistent with recent findings [55] that the
inelastic scattering is very ineffective. In this regard we also note that annihilation into
mesons would involve string breaking which is heavily suppressed as can be understood
via relating it to the Schwinger effect [38].

These collisions also give rise to a time delay due to the interaction between kinks. In the
case of zero longitudinal field, h = 0, however, the kink-antikink scattering amplitude
is simply −1, and there is no time delay. Therefore any time delay introduced by kink
collisions is of order h, which we can neglect in the simple semi-classical picture used
here.

• Collisions between different bubbles lead to corrections to the simple motion described
above. This effect can be neglected if the average spacing between bubbles is larger than
their maximum allowed size, which leads to the condition ρbubble� 1/lmax requiring the
longitudinal field to satisfy h� hc , where

hc =
8g
m
ρbubble , (2.13)

therefore we always use field values larger than hc in our simulations. The values of hc
are reported in Table 2.1 for different values of g.

• For bubbles created with a sufficiently large initial size r0 > lmax, the kinks never collide
and instead oscillate around spatially separated positions with frequency given exactly
by χ (cf. also [54]). Note that the creation of large bubbles is suppressed, since creating
a finite sized bubble of the true vacuum corresponds to a process involving a number
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Table 2.1: Values of hc for different values of g.

g 0.20 0.25 0.30 0.35 0.40

hc 0.0041 0.0080 0.0139 0.0223 0.0338
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Figure 2.3: Entanglement entropy as a function of time for different values of g and
h, with the overall drift indicated by dashed lines.

of simultaneous spin flips given by the bubble size r0, with probability suppressed ex-
ponentially in r0. As a result, the contribution of ‘collisionless bubbles’ (those satisfying
r0 > lmax and therefore oscillating without periodic internal collisions) increases sharply
with decreasing lmax i.e. increasing |h|, which is consistent with the quench spectroscopy
results reported later in Subsection 2.4. In addition, to avoid collisions between kinks
from different bubbles, the average bubble spacing must be much larger than lmax, lead-
ing to the same condition |h| � hc as before.

• It is apparent from Fig. 1.2 that even though the growth of entanglement entropy is
suppressed, it still shows a slow drift in time in addition to the dominant feature of
temporal oscillations. This drift can be understood to originate from bubble collisions,
which become less probable as |h| grows compared to hc . Indeed, Fig. 2.3 demonstrates
that the drift is suppressed for other values of g as well when |h| > hc . Note that en-
tanglement entropy grows so fast at g = 0.4 for h = −0.05 that it was not possible to
simulate the evolution in the time scale shown in the figure. As can be seen from Table
2.1, hc = 0.0338 for g = 0.4, so bubble collisions are much less suppressed than for the
other two cases g = 0.2 and 0.3.

2.3 Verifying average bubble size and scaling

One piece of evidence for the scenario of Bloch oscillations is that it predicts an average bubble
size that agrees reasonably well with the spatial extension of the correlations. This is demon-
strated in Figure 1.1, where the blue lines depict the estimate for the average bubble size
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Figure 2.4: Scaling evidence for Bloch oscillations for the transverse field values
g = 0.20 (left) and g = 0.25 (right), with the longitudinal field taking the values
h = −0.05,−0.10,−0.15,−0.20 for each. The plot shows




σz
0σ

z
l

�

c as a function of
the scaling variables |h|t and |h|l. The colour scale is defined by normalising the
maximum value of the correlator to 1, while the blue lines show the bubble wall
defined by the data with h = −0.10 at one fifth of its maximum value. Note that
h = −0.05 where the scaling is visibly the least perfect, is a small field for which
quench spectroscopy (cf. Subsec. 2.4) reveals that the system is not yet cleanly
dominated by Bloch oscillations.

〈r〉anti−conf ≈
1

ρbubble

∫ π

0

dk0

2π
ρ(k0)

4
χ
(ε(π)− ε(k0)) (2.14)

obtained by neglecting the original bubble size d0. For the standard confining case, a similar
reasoning gives the average bubble size

〈r〉conf ≈
1

ρbubble

∫ π

0

dk0

2π
ρ(k0)

4
χ
(ε(k0)− ε(0)) (2.15)
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Figure 2.5: Power spectrum of



σz
0(t)σ

z
l (t)

�

c for l = 0 and g = 0.25. Green dotted
lines show meson frequencies (computed following [31]) - note that they become
less and less relevant as |h| grows. Red dashed lines have a spacing χ = 2|h|m,
indicating a regular sequence of higher harmonics of the Bloch oscillations, which
instead become more prominent for higher values of |h| as lmax becomes smaller. In
the cases shown, the minimum size of collisionless bubbles lmax (from top to bottom)
are 40.3, 20.2, 13.4 and 10.1, respectively.

since, in this latter case, kink momenta oscillate between k0 and 0. Note that these estimates
depend both on g and h, and give a very good estimate for the spatial extension of the corre-
lations shown in Figure 1.1.

Another tell-tale signal of Bloch oscillations is that their spatial extension is predicted to
scale as ∼ 1/h, while their frequency is proportional to h. This is manifest in the numerically
computed time evolution, as demonstrated in Fig. 2.4, where the space-time bubble contour
is extracted from the data at h= −0.1 and then superimposed on the time evolution obtained
for other h values, with time and space rescaled accordingly. Note that the actual distance and
time scales vary by a factor of 4, while the correlation profiles remain almost identical when
plotted in terms of the scaled variables, |h|t and |h|l. This scaling works remarkably well for
the first few oscillations. Differences for larger values of time can be attributed to deviations
from our simple semi-classical picture such as the presence of localised spin excitations with
frequencies much higher than the Bloch oscillations of the bubble walls, as well as distortions
due to bubble collisions and the contributions from the periodic kink collisions when bubbles
shrink to their minimal size.
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2.4 Quench spectroscopy

‘Quench spectroscopy’, presented in Fig. 2.5, i.e. the Fourier analysis of the time evolution
after the quench provides a further tool to assess Bloch oscillations. For negative values of
h with small magnitude, we only observe frequency peaks corresponding to mesonic bound
states, just as for the case of dynamical confinement with h> 0 [31]. The energy gap of these
mesonic excitations is always larger than twice the kink gap, grows with increasing |h|, and can
also be computed theoretically using a semi-classical method [54], which we briefly summarise
in Appendix A. For longitudinal fields such that |h| is smaller than, or comparable to hc , we
do not observe well-defined frequencies corresponding to Bloch oscillations, as shown by the
top plot in Fig. 2.5. This is not unexpected, since in such a case bubble collisions prevent
independent Bloch oscillations.

For larger field values |h| � hc , collisions between bubbles become less frequent. In ad-
dition, the maximum Bloch oscillation length lmax becomes shorter with increasing h, and the
number of collisionless bubbles increases rapidly. This leads to the appearance of regularly
spaced frequency peaks well below the threshold of mesonic excitations, corresponding to
higher harmonics of the Bloch frequency χ. Indeed, such a series of peaks is seen to coincide
with the red lines in the lower three plots in Fig. 2.5, with the distance between them equal
to χ. Note that the simulation can only capture higher harmonics, mostly due to the finite
time window of the numerical simulations, but also due to low-frequency background which
results from the quench time evolution containing frequencies corresponding to all differences
between energy levels of the post-quench Hamiltonian. In addition, the energy needed to cre-
ate mesonic excitations also increases with |h|. We therefore expect, and indeed find, that
mesonic contributions to the frequency spectrum become less and less pronounced with grow-
ing |h|. This stands in stark contrast to the case of dynamical confinement, where meson
excitations continue to dominate the time evolution even for large values of the longitudinal
field h [31].

3 Conclusions

As we demonstrated in this work within the framework of the transverse field Ising model,
light-cone time evolution and the decay of the false vacuum can be absent in one-dimensional
systems even in a deconfined quench regime, where the formation of bubbles would be ener-
getically favourable. Rather, quite unexpectedly, we observe in this regime spatially confined
correlations, oscillating in time, which we identify as Bloch oscillations. These appear due to
the underlying lattice and the periodicity of the quasi-particles’ dispersion relation in the mo-
mentum variable. The absence of relaxation after the quantum quench can also be considered
an effect of the bounded quasi-particle dispersion, due to which the domain walls can only
carry away a limited portion of the energy that would be liberated by the expansion of the
true vacuum bubble.

Our present results demonstrate that Bloch oscillations play a key role in inhibiting the
growth of bubbles which result from nucleation of the true vacuum in a global quantum quench
starting from a translationally invariant initial state dominated by the false vacuum. The effect
we observe can also be interpreted as a suppression of thermalisation in a global quench of
a spin chain with (anti-)confining dynamics. Compared to the recent works [34, 38], where
Bloch oscillations have been discussed in the context of inhomogeneous states, our choice of
initial state allows us to address directly the dynamics of the false vacuum. Also, while the
discussion of Refs. [34, 38] relies on perturbation theory in the transverse field g, our semi-
classical analysis is valid for any g – not too close to the critical point g = 1. Comparing the
maximum bubble size to the post-quench bubble density yields that the dominance of Bloch
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oscillations and the resulting suppression of bubble growth requires a longitudinal magnetic
field, h, that exceeds a characteristic value hc (cf. Eq. (2.13)).

Our observations of emergent Bloch oscillations are also in agreement with recent results
obtained in kinetically constrained Rydberg spin systems [56]. However, while in Ref. [56] a
special constraint (fine-tuning) was needed to generate Bloch oscillations, here they emerge
quite generically, without any constraint in a regime where quasi-particle excitations would
naively be expected to speed up and spread correlations over the system.

Our results are relevant for experimental realisations of the tunnelling decay of the false
vacuum such as put forward in Ref. [22]. We predict that in discrete spin chains, the dynamics
after bubble nucleation generally leads to Bloch oscillations, in stark contrast to expectations
from continuum quantum field theories. Our results also demonstrate that Bloch oscillations
realised in simple spin chains can clearly be identified from the scaling of the space-time de-
pendent spin-spin correlation functions with the applied longitudinal field, and from quench
spectroscopy which (for h � hc) is dominated by a a series of sharp peaks in the frequency
spectrum with a regular spacing, corresponding to collisionless bubbles undergoing Bloch os-
cillations.

Note added - After the submission of this manuscript, the vacuum tunnelling in the Ising spin
chain was numerically observed in [57], where the prediction (2.7) was also verified. The ob-
servation of the tunnelling was made possible by choosing transverse fields close to the critical
value, g ≥ 0.7 which enhances the transition amplitude (2.7) to magnitudes 10−3−10−1, and
also by observing the dynamics for times much shorter (at least by an order of magnitude) than
the period of Bloch oscillations for the chosen parameter values of g and h. It is an interesting
issue to perform simulations for parameter values and time ranges where effects of both Bloch
oscillations and vacuum tunnelling can be observed, to see how the two mechanisms interfere.
However, these regimes are difficult to access by the present numerical methods.
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A Semi-classical meson spectrum

Here we summarise briefly the semi-classical approach to the meson spectrum developed in
[54]. Consider a kink and an antikink moving under a linear confining potential with the
Hamiltonian

H = ε (k1) + ε (k2) +χ |x1 − x2| . (A.1)
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Introducing variables describing the centre-of-mass and relative motion

X =
x1 + x2

2
, x = x1 − x2

K = k1 + k2 , k =
k1 − k2

2
(A.2)

the Hamiltonian takes the form

H =ω(k; K) +χ|x | , ω(k; K) = ε(k+ K/2) + ε(k− K/2) . (A.3)

For the relative motion, swapping the role of the canonical coordinates by introducing p = −x
as momentum and q = k as coordinate, the Hamiltonian describes the motion of a particle with
“kinetic energy” χ|p| in a one-dimensional “potential”ω(q; K). The simplest way to obtain the
energy levels is to use Bohr-Sommerfeld quantisation. For K < 2 arccos g the potentialω(q; K)
has a single minimum at q = 0, and the quantisation condition reads

2En(K)qa(n, K)−

qa(n,K)
∫

−qa(n,K)

dqω(q; K) = 2πχ(n− 1/4) , (A.4)

with n= 1, 2, . . . , and the turning point qa(n, K) ∈ [0,π] are determined by the equation

ω (qa(n, K); K) = En(K) . (A.5)

For K > 2arccos g the potentialω(q; K) has two minima. For E >ω(0, K) the above treatment
is unchanged; however, for E < ω(0, K) the motion takes place in one of the two separated
potential wells and the quantisation condition changes to

En(K) [qa(n, K)− qb(n, K)]−

qa(n,K)
∫

qb(n,K)

dqω(q; K) = πχ(n− 1/2) , (A.6)

with n= 1,2, . . . , and the turning points qa,b(n, K) ∈ [0,π] determined by

ω
�

qa,b(n, K); K
�

= En(K) . (A.7)

In principle, the Bohr-Sommerfeld quantisation gives the leading asymptotic behaviour of the
energy for large quantum numbers n; however, for the values of g and h considered here it is
known to give accurate values for the meson masses even for small n [31], and so there is no
need to resort to the more sophisticated methods detailed in [54].
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