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Abstract

Correlated many-fermion systems emerge in a broad range of phenomena in warm dense
matter, plasmonics, and ultracold atoms. Quantum hydrodynamics (QHD) complements
first-principles methods for many-fermion systems at larger scales. We illustrate the
failure of the standard Bohm potential central to QHD for strong perturbations when
the density perturbation is larger than about 10−3 of the mean density. We then extend
QHD to this regime via the many-fermion Bohm potential from first-principles. This may
lead to more accurate QHD simulations beyond their common application domain in the
presence of strong perturbations at scales unattainable with first-principles methods.
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1 Introduction

Correlated quantum many-fermion systems are currently in the focus of several fields ranging
from high-energy-density physics [1] to ultracold fermionic atoms [2] and correlated materi-
als [3]. Progress in all these fields relies on accurate theory and simulations including quantum
Monte Carlo (QMC) [4], density functional theory (DFT) [5, 6], nonequilibrium Green func-
tions [7], and density matrix renormalization group (DMRG) methods [8]. While remarkable
progress was achieved with these methods, their high computational cost and fundamental
bottlenecks significantly restrict their application. For example, the fermion sign problem com-
plicates the use of QMC [9], or the computational cost renders DMRG applications in three
spatial dimensions infeasible. Therefore, there is a high need for complementary methods that
extend the domain of simulations to length and time scales relevant for experiments, even at
the price of reduced accuracy.

One such method is quantum hydrodynamics (QHD). There has recently been a surge of ac-
tivities based on QHD in a number of research areas including warm dense matter (WDM) [10–
13], plasmonics [14–16], electron transport in semiconductor devices and thin metal films [17,
18], reactive scattering [19,20], cosmology, and dark matter research [21–23].

QHD complements the aforementioned first-principles methods by enabling simulations at
larger length and longer time scales. The quantum Bohm potential is central to QHD [13,17].
It captures quantum tunneling, spill out, and other non-local effects. Commonly, the quantum
Bohm potential is approximated as [17,24,25]

vB(r , t) = −ħh2/(2m)
�

∇2
Æ

n(r , t)/
Æ

n(r , t)
�

(1)

in terms of the mean density of electrons n(r , t); hereafter called standard Bohm potential. It
is utilized in this form to model phenomena in various many-fermion systems.

While standard QHD has proven useful, we question the validity of the standard Bohm po-
tential when strong density perturbations are present. These emerge, for example, in strongly
perturbed WDM [26] and quantum plasmas [27, 28]. Most notably, this regime is probed in
recent and upcoming X-Ray scattering measurements of matter that is shock-compressed and
laser-excited [29–34] using the seeding technique discussed in the conclusions.

In this research report, we therefore extend QHD to the regime of strong density pertur-
bations. Our central result is to utilize the many-fermion Bohm potential [11]

ṽB(r , t) = −
ħh2

2mN

N
∑

i=1

fi
∇2
p

ni(r , t)
p

ni(r , t)
, (2)

where N is the total number of electrons, ni = |φi|2 represents the amplitude of an orbital with
the occupation number given by the Fermi function fi(β ,µ) = [exp{β(εi −µ)}+1]−1 at finite
temperature kB T = β−1. Specifically, we (1) generate an exact many-fermion Bohm potential
based on exact QMC data, (2) show how the standard Bohm potential differs significantly
from the many-fermion Bohm potential for strong density perturbations, and (3) highlight how
the resulting forces – the key ingredient to QHD – differ greatly in this regime. Throughout
the manuscript, we consider the practically important example of the harmonically perturbed,
interacting electron gas at finite temperature which is a challenging many-fermion system and
is a relevant for modeling high-energy density experiments conducted at coherent light sources
and pulsed power facilities around the globe.

Utilizing the many-fermion Bohm potential in QHD is motivated by the fact that it is derived
from the exact quantum dynamics of electrons within time-dependent DFT [6] which provides
the crucial link between QHD and interacting many-fermion systems.
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2 Theory

We begin with the non-relativistic, many-particle Hamiltonian of interacting fermions

Ĥ = T̂ + V̂ee + V̂ , (3)

where T̂ denotes the kinetic energy operator, V̂ee the electron-electron interaction and V̂ the
external potential including the ionic background. The solutions are N -particle wave func-
tions that are antisymmetric and normalized. For the sake of clarity we consider only spin-
unpolarized systems. A formally exact and computationally feasible solution to the quantum
dynamics of electrons is given within time-dependent DFT [6]. Here, a set of N time-dependent
Kohn-Sham (KS) equations

iħh
∂

∂ t
φi(r , t) =

�

−
ħh2

2m
∇2 + vS(r , t)

�

φi(r , t) , (4)

yields the exact time evolution of the electronic density, n(r , t) =
∑

i fi|φi(r , t)|2, in terms
of the single-particle KS orbitals φi(r , t), where fi denotes an occupation function. This is
achieved by the KS potential, vS(r , t) = v(r , t)+ vH[n](r , t)+ vXC[n](r , t), which exactly mim-
icks the electron-electron interaction within a mean-field description. Here, v denotes the ex-
ternal potential, vH[n] the classical electrostatic (Hartree) potential, and vXC[n] the exchange-
correlation potential.

Now, the time-dependent KS equations are reformulated into a set of coupled QHD equa-
tions by the following steps: (1) we insert the amplitude-phase representation of the KS or-
bitals [35], φi(r , t) =

p

ni(r , t)exp [iSi(r , t)], into the time-dependent KS equations; (2)
we use the expression for the mean orbital density, n̄(r , t) =

∑

i fini(r , t)/N , and veloc-
ity, v =

∑

i fivi/N , where we introduce ni(r , t) = |φi(r , t)|2, as the KS orbital density and
vi = ∇Si(r , t)/m, as the KS orbital velocity; (3) we introduce density and velocity fluctua-
tions ni = n̄+δni and vi = v+δvi . These steps yield the formally exact QHD equations

∂ n̄
∂ t
+

1
N

∑

i

fi∇ · (nivi) = 0 , (5)

m
∂ v
∂ t
= −∇ṽB −

1
n
∇Pe +

1
n
∇ ·σe + eE−∇vXC , (6)

where we have not yet made any assumptions about velocity and density fluctuations [11]. In

Eq. (6), e is the absolute value of the electron charge, Pe =
1

2m∂αδp2
iα the electronic pressure

term (with δpi = mδvi), σe =
1
m∂γδpiαδpiγ with γ 6= α the electronic viscous stress-tensor,

and E= −∇ [v + vH] the electric field due to the Hartree and external potentials. The first equa-
tion is the continuity equation, whereas the second is the momentum conservation equation.
Notice that the many-fermion Bohm potential emerges naturally [11]. These QHD equations
are equivalent to the time-dependent KS equations.

The QHD equations are turned into computationally feasible practice by employing ap-
proximations to (1) the exchange-correlation functional vXC, (2) the equation of state Pe, (3)
the viscous stress-tensor σe, and (4) setting 1

N

∑

i fi∇ · (nivi) = ∇ · (n̄v) in Eq. (5) where
the averaged fluctuations of a flux 〈δj̄〉 = 〈δniδvi〉 are assumed to be negligible compared
to the mean value j̄ = n̄v. Proven approximations to the exchange-correlation energy, i.e.,
vXC can be employed where recent developments such as the parametrization of the interact-
ing electron gas at finite temperature [36] provide a solid basis for an accurate inclusion of
exchange-correlation effects into the QHD equations. Using approximations to the equation
of state and the viscous stress-tensor enables QHD to go beyond the length and time scales
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Figure 1: Electronic density for two different amplitudes A, at rs = 2 and θ = 1. QMC
results (red circles) are compared to KS-DFT data for different XC-%potentials: solid
green: SCAN; dashed black: LDA; dotted blue: non-interacting fermions (vXC = 0).

that are attainable in time-dependent DFT calculations. Commonly, the electronic pressure Pe
is approximated by the ideal Fermi gas. On the other hand, practical calculations spanning
a large range of length and time scales are performed with classical hydrodynamics simula-
tions. These, however, completely neglect quantum non-locality effects. As discussed below,
these quantum effects become increasingly relevant for high-energy-density sciences due to
ongoing and recent developments in experimental and diagnostic capabilities. We stress that
in traditional QHD used in prior works, the many-fermion Bohm potential is approximated by
the standard Bohm potential in terms of the mean density as defined in Eq. (1).

3 Results

As the central result of this work we demonstrate the relevance of the many-fermion Bohm
potential for the QHD equations (5) and (6), whereas in all prior works the standard Bohm
potential was used. First, we generate a many-fermion Bohm potential using KS-DFT based
on exact QMC calculations of the harmonically perturbed, interacting electron gas. Then we
show that the standard Bohm potential differs both qualitatively and quantitatively from ṽB
to a great extent for strong density perturbations. Finally, we illustrate how these deviations
yield vastly different forces. We, hence, argue that these lead to a different quantum plasma
dynamics when used in the QHD equations. Agreement to better than 50% in the resulting
forces is achieved only for small density perturbations when |δn|® 10−3 n0 or q > 2 qF . This is
further analyzed in Appendix C. The use of the many-fermion Bohm potential now renders QHD
valid for the regime of strong density perturbations. While approximations to the pressure and
viscous stress-tensor also influence the accuracy of the QHD equations, we focus on the many-
fermion Bohm potential. It primarily determines the accurate inclusion of quantum effects,
e.g., tunneling and spill-out, that are crucial for the aforementioned applications.

An important application that is highly relevant for high-energy-density physics is the har-
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monically perturbed, interacting electrons gas. It is described by the Hamiltonian [37–39]

Ĥ = ĤUEG +
N
∑

i=1

2Acos (ri · q) , (7)

where ĤUEG denotes the Hamiltonian of the uniform electron gas with periodic boundary con-
ditions. We choose the x-axis along q with q = jqmin, qmin = 2π/L, L = (N/n0)1/3, and n0 the
number density of electrons.

The electronic states described by Eq. (7) are generated in recent WDM experiments (see
Conclusions 4 for further details). The amplitude A in Eq. (7) controls the character of the KS
orbitals. Tuning A changes the KS orbitals from plane waves to strongly localized wave func-
tions. Moreover, by varying both A and the wave number q, we tune the density gradients from
small to large. The relevant parameter space is spanned by the density parameter rs = a/aB
and the degeneracy parameter θ = kB T/EF , where a is the mean inter-electronic distance,
aB the first Bohr radius, T the temperature, and EF the Fermi energy. For the remainder of
this paper we choose rs = 2 and θ = 1. This corresponds to the WDM and quantum plasma
regime [1,4].

The construction of the many-fermion Bohm potential relies on accurate KS orbitals. We
generate orbitals using KS-DFT for various amplitudes 10−3 ≤ A ≤ 1 corresponding to the
range from weak to strong perturbations. We assess their accuracy by comparing them with
the exact result provided by QMC calculations. Details of the KS-DFT and QMC calculations
are provided in Appendix A and Appendix B, respectively. The electronic densities for A = 1
and A= 0.02, using various exchange-correlation approximations (non-interacting fermions,
LDA [40], and SCAN [41]) are illustrated in Fig. 1, where q = qmin = 0.84qF . The compar-
ison with the QMC data (red circles) confirms that the KS-DFT calculations using the SCAN
functional provide the KS orbitals that virtually yield the exact density.

We now construct an exact many-fermion Bohm potential by inserting these KS orbitals into
Eq. (2). The results are shown in the top panel of Fig. 2 for q = 0.84qF . They are ordered
in increasing perturbation strength (A = 0.02, 0.1,0.5). At the top we compare the many-
fermion Bohm potential (thick green) with the standard Bohm potential (dashed blue). We
observe significant differences for all amplitudes, and profound qualitative differences at high
perturbation strength (A= 0.5). To better understand the origin of these differences, consider
contributions of the individual KS orbitals with a maximum and a minimum in the central
region (orange and red lines). The former lead to a stronger many-fermion Bohm potential
in the density depletion region at the edges, whereas the latter yield a weaker many-fermion
Bohm potential in the central region where electrons accumulate. The important point to note
is that the contribution from individual orbitals does not depend on the amplitude of the orbital
density, but on its shape as is apparent from Eq. (2). This means that the contribution of a
highly curved orbital can be critical, even if the corresponding occupation number may be
relatively small.

Next, we relate these differences to the relevant energy scale in the QHD equations. We
compare against the ideal part of the free energy density, fTF[n(r)] = δFid[n]/δn(r) = µ (red
squares), which is a common approximation to the pressure in the QHD equations [13,17] in
terms of the Thomas-Fermi (TF) free-energy functional. The top panel of Fig. 2 shows that the
ideal part of the free energy density has about the same order of magnitude as the standard
Bohm potential throughout highlighting the importance of the many-fermion Bohm potential.

Now we assess the impact of using the many-fermion Bohm potential, instead of the stan-
dard Bohm potential, for simulating quantum dynamics. We compute the force due to the pres-
sure of the quantum Bohm potential from n(r )∇VB, where VB is the either the standard Bohm
potential vB or the many-fermion Bohm potential ṽB. To assess the importance of the observed
differences, we compare them with the force due to TF pressure, ∇PTF = n(r )∇ fTF[n(r )].

5

https://scipost.org
https://scipost.org/SciPostPhys.12.2.062


SciPost Phys. 12, 062 (2022)

Figure 2: Upper panel: Comparison of the exact many-fermion Bohm potential (thick
green) with the standard Bohm potential (dashed blue) at rs = 2 and %θ = 1. Ad-
ditionally, the TF free energy density (red squares, scaled) and the contributing KS
orbitals are illustrated (thin red (dark) and orange (light) lines for the contribu-
tions with the local maximum and minimum in the central region, respectively). The
contribution of orbitals is scaled by a factor two (three) at A = 0.02 (A = 0.1 and
A = 0.5). Lower panel: Comparison of the forces from the many-fermion Bohm po-
tential (green) with forces from the standard Bohm potential (dashed blue). We also
display the TF pressure (squares) and the density profile (grey circles). Note the
scaling.

The lower panel of Fig. 2 demonstrates that the forces differ distinctly. At small perturbation
strength the maximum deviation of the forces is already 50%. This deviation further increases
with a stronger perturbation amplitude. At A= 0.5, they differ substantially, and the standard
Bohm potential fails to even yield a qualitative description. In the central region they are also
qualitatively very different. Furthermore, the comparison with the TF force highlights the rel-
ative importance of the force due to ṽB. At A= 0.02, the TF force is about four times stronger
than the force due to both variants of the quantum Bohm potential. With increasing pertur-
bation strength, the force due to the many-fermion Bohm potential becomes more relevant. At
A= 0.5, it is close to the TF force in the central region, whereas it even exceeds the TF force
in the density depletion regions close to the edges.

Next, in Fig. 3, we provide a more detailed comparison of the forces. On the left, we
show the ratio of the forces due to the many-fermion Bohm potential and the standard Bohm
potential, whereas on the right, we show the ratio of the force due to ṽB with the TF force
at A= 0.1, 0.3, 1.0. We infer that, in general, the force due to the standard Bohm potential
differs from the result based on the exact many-fermion Bohm potential by at least a factor of
two throughout (left panel). For a small perturbation amplitude, A= 0.1, the standard Bohm
potential based result significantly overestimates (up to fifty times) the exact many-fermion
Bohm potential based data in the central region and underestimates it by a factor of two in
the density depletion region. At larger amplitudes (A = 0.3 and A = 1.0), the differences in
both the density depletion region and in the central region increase. Finally, in Fig. 3 (right),
we assess the relative importance of the quantum Bohm potentials. We deduce that the force
due to the many-fermion Bohm potential is dominant in the density depletion regions, when
A ¦ 0.3, with a maximum value of the density increase of |δn| ¦ 0.6 n0. In conclusion, the
many-fermion Bohm potential may lead to a substantially different quantum dynamics which
will be explored in our future work.
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Figure 3: Left: Ratio of the forces between the exact many-fermion Bohm potential
(ṽB) and the standard Bohm potential (vB) at rs = 2 and θ = 1 for increasing density
perturbation amplitudes A. Right: Ratio of the forces due to the many-fermion Bohm
potential, ṽB, and the TF pressure.

4 Conclusions and Outlook

For a degenerate quantum many-particle system with Bose statistics in the condensate, the
Madelung decomposition leads to the Gross-Pitaevski equation. Here, the exactness of the
standard Bohm potential can be proven [11]. For fermionic systems, such a proof does not
exist. A trivial exception is the case when the amplitudes of all orbitals coincide and the system
is mapped onto a single orbital [11].

In this work, we carried out the very first investigation of the many-fermion Bohm potential
for a correlated many-fermion system based on first-principles data from QMC and KS-DFT.
Despite its long history in quantum mechanics since its derivation by Bohm in 1952 [35] and
its importance as a computational device in QHD, this has not been attempted before. Our key
result highlights the very limited applicability of the standard Bohm potential which is used in
virtually all previous works of QHD. Considering a harmonic perturbation in the Hamiltonian
defined in Eq. (7), we showed that the standard Bohm potential is only valid for a very weakly
perturbed electron gas (|δn| ® 10−3 n0) or at very large wave-numbers (q > 2 qF ). Likewise,
we demonstrated that the many-fermion Bohm potential is needed to model nonlinear phe-
nomena in quantum plasmas and WDM. We further illustrated the significance of the force
produced by the many-fermion Bohm potential for QHD simulations.

We anticipate that taking into account the many-fermion Bohm potential in quantum fluid
approaches will play a significant role for many upcoming high-energy-density physics ex-
periments. Strongly perturbed WDM states are generated and probed, for example, using
THz lasers with an intensity of 600 kV/cm that corresponds to a perturbation amplitude of
A ' 0.3 [29] and using free electron lasers with intensities of up to 1022 W/cm2 that lead
to A ≈ 2 [27]. Likewise, it was recently demonstrated in an experiment [42] that spatially
modulated WDM is created by laser pumping of a sample with a pre-designed, periodic grat-
ing structure. The induced WDM states can be characterized in-situ with the small-angle x-ray
scattering technique using femtosecond X-Ray free-electron laser pulses on a spatial resolution
of nanometers.

Another exciting application of QHD is inertial confinement fusion [43] where strongly
inhomogeneous electronic states emerge in the heating of shock-compressed fuel capsules. Of
particular interest is the effect the many-fermion Bohm potential has on the shock behavior in
high-energy density applications using lasers or pulsed power. The presence of higher-order
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spatial derivatives of the density produces a dissipative-like effect on the shock structure, shear-
ing the interface and broadening the shock front. Particularly, the effect of the standard Bohm
potential has very recently been assessed in hydrodynamics simulations [44]. As demonstrated
in Figs. 2 and 3, the many-fermion Bohm potential yields significantly different forces in re-
gions of strong density perturbation than the standard Bohm potential. We therefore expect
the many-fermion Bohm potential to further impact the dynamics of shock formation.

Other interesting applications include non-linear wave phenomena and instabilities in
quantum plasmas [13]. We also expect the many-fermion Bohm potential to impact the field
of nano-plasmonics [14–16] where simulations of large nano-clusters are routinely performed
with QHD. Moreover, the many-fermion Bohm potential might enable quantum dynamics sim-
ulations of cold atom experiments that study transport properties [2]. We also speculate that
the force field generated by the many-fermion Bohm potential can be utilized as a computa-
tionally inexpensive neural-network surrogate model as it was done, e.g., for the free energy
functional in KS-DFT [45,46] and the local field correction in QMC [47].

Finally, the many-fermion Bohm potential awaits exciting applications in cosmology. These
approaches are based on an observation made by de Broglie pointing out that quantum me-
chanical effects are entirely equivalent to a conformal transformation of the background met-
ric [48,49]. This leads to a representation of the non-local Bohm potential of all the particles in
the Universe as an effective cosmological constant [21]. Therefore, this outlines an interesting
line of future research.
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A KS-DFT simulation details

The KS-DFT calculations were performed with GPAW [50], which is a real-space implementa-
tion of the projector augmented-wave method. A k-point grid of 12×12×12 using Monkhorst-
Pack sampling of the Brillouin zone (k-points) was used. At θ = 1, 180 orbitals (with the small-
est occupation number of about 10−4) were used for a total of 14 electrons. The grid spacing
was set to 0.15 for 10−3 ≤ A ≤ 1 and 0.3 qF ® q ® 2.53 qF . The Hamiltonian of electrons
is given by the sum of the standard (unperturbed) uniform electron gas Hamiltonian and the
potential energy term corresponding to external perturbation. Several exchange-correlation
(XC) functionals were used: the standard LDA functional by Perdew-Zunger for degenerate
electrons [51], the GDSMFB functional which is a parametrization of the LDA of the homo-
geneous electron gas at finite temperature [52], PBE [53], PBEsol [54], AM05 [55], and the
meta-GGA functional SCAN [41]. The ab-initio quality of the KS-DFT calculations was vali-
dated with first-principles quantum Monte Carlo (QMC) calculations. We found that SCAN
reproduces the exact QMC data more accurately than any of the other XC functionals. Only in
the limit of a weak perturbation, the tested XC functionals yield agreement, as they reduce to
the zero-temperature limit of the LDA.

The relative error of the results obtained using different XC functionals compared to the
QMC data is given in Fig. 4 for A= 1 and A= 0.02. The corresponding total density is presented
Fig. 1 of the manuscript. The case A= 1 corresponds to a strong-perturbation regime with a
minimum density of n' 0.03 n0 close to the edges of the simulation box and with a maximum
density of n ' 3 n0 in the center. The case A = 0.02 corresponds to the weak-perturbation
regime with a density maximum n' 1.04 n0 and minimum n' 0.96 n0. From Fig. 4 we infer
that the inclusion of XC effects by using the LDA significantly improves upon the fully non-
interacting case (no XC functional) with a maximum error of about 4.7% in the central region
for A= 1. However, using GGA functionals does not improve over the LDA results. The exact
QMC data are reproduced remarkably well by the SCAN functional with an accuracy better
than 1.43 %. We conclude that it is crucial to go beyond both LDA and GGA in order to obtain
an accurate density when the perturbation is strong. A further analysis of this observation is
presented in Ref. [56].

Figure 4: Relative error of the density using different XC functionals compared to the
QMC data at θ = 1 and rs = 2.
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B QMC simulation details

We use the standard path integral Monte Carlo (PIMC) method [4] without any nodal restric-
tions on the thermal density matrix. Therefore, the simulations are computationally expensive
due to the fermion sign problem [9], but exact within the given Monte Carlo error bars. We
have used P ∼ 102 primitive imaginary-time propagators, which is fully sufficient to ensure
convergence at these parameters. Additional details on the simulation of the harmonically
perturbed electron gas at finite temperature can be found in Refs. [4].

C KS-DFT results for the many-fermion Bohm potential

The Role of Correlations and Thermal Excitations. In the manuscript we presented data
for interacting electrons at finite temperature at rs = 2 and θ = 1. Although it is clear that
the shape of the Bohm potential is determined by both correlations and thermal excitations, a
natural question arises: Does the failure of the standard Bohm potential solely result from the
effect of electronic correlations or from effects due to thermal excitations? The answer to this
question is that the standard Bohm potential does not adequately describe the many-fermion
quantum Bohm potential when the perturbations are strong regardless of the degree of correla-
tions and thermal excitations. In principle, one can consider various rs and θ combinations to
show that. However, it is unpractical as the conclusion will always be valid only for the consid-
ered rs and θ pairs. Instead, we analyze this question as follows: First, we exclude the impact
of thermal excitations by considering the zero-temperature limit θ → 0 (i.e., setting θ = 0.01)
and showing that the main conclusion above is valid. Next, we exclude correlation effects by
switching off the electron-electron interaction and showing that the main conclusion of the
paper regarding the standard Bohm potential holds in this case as well. As a representative
case we choose A= 0.1.

In Fig. 5, the Bohm potentials for the strongly degenerate case are shown at θ = 0.01.
The figure illustrates that the deviation of the standard Bohm potential (dashed blue) from
the many-fermion quantum Bohm potential (green) is not solely due to thermal excitations.

Then, in Fig. 6, the Bohm potentials for a non-interacting, i.e., ideal electron gas are shown.
This figure illustrates that the failure of the standard Bohm potential is not solely an effect of
the electron-electron interaction.

Now, as we have established that the deviation of the standard Bohm potential from the
correct many-fermion quantum Bohm potential is not just due to thermal excitations or the
electron-electron interaction, we proceed to analyze the deviations with respect to the wave
number of the perturbation.

Small wave numbers: q ≤ 0.5 qF . For q = 0.5 qF we illustrate a comparison of the quan-
tum Bohm potentials (top panel) and their induced forces (bottom panel) in Fig. 7 (where
N = 64). We observe significant deviations of the standard Bohm potential (dashed blue)
from the many-fermion quantum Bohm potential (green). The difference in the forces is up to
about 50%. In Fig. 8, we further decrease the wavenumber to q = 0.3 qF (where N = 256).
As illustrated, this does not lead to a better agreement, but to larger deviations. However,
comparing Fig. 5 with Fig. 8, we notice that with decreasing wave number (from q ' 0.84 qF
to q ' 0.3 qF ) also the magnitude of the quantum Bohm potentials decreases from the order
of 10−2 Ha to the order of 10−3 Ha. This illustrates that the quantum Bohm potential becomes
less important in the long wavelength limit as quantum tunneling becomes less important.

Large wave numbers: q > qF . Results for larger wave numbers, q > qF , are shown in
Fig. 9. In the top panel we illustrate the quantum Bohm potentials for q ' 1.68 qF and in the
bottom panel for q ' 2.53 qF . At q ' 1.68 qF , we observe significant deviations of the stan-
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Figure 5: Comparison of the quantum Bohm potentials in the zero-temperature limit
at rs = 2 and θ = 0.01. The deviations of the standard Bohm potential (dashed
blue) from the exact many-fermion quantum Bohm potential (green) are not just due
to thermal excitations. The individual contribution of orbitals with one maximum in
the center (orange) and with more that one maximum (red) are also illustrated.

Figure 6: The same as in Fig. 5, but for the non-interacting, i.e., ideal electron gas.

dard Bohm potential from the many-fermion quantum Bohm potential in the density depletion
regions. As the wave number increases further to q ' 2.53 qF , the deviations decrease. This
observation is in agreement with the fact that, in the limit q � qF , — which is equivalent to
the single-particle limit — the standard Bohm potential becomes exact.

When is the standard Bohm potential applicable? As mentioned in the manuscript, the
standard Bohm potential is accurate in the limit of weak perturbations. This is demonstrated
in Fig. 10, where the quantum Bohm potentials of the correlated electron gas are illustrated
for A = 10−3. In this case, the maximum deviation in the density from the mean density is
about |δn| ' 1.8× 10−3 n0.
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Figure 7: Comparison of the quantum Bohm potentials (top panel) and their induced
forces (bottom panel) at q = 0.5 qF (rs = 2 and θ = 0.01). The deviations between
the standard Bohm potential (dashed blue) and the many-fermion quantum Bohm
potential (green) persist. The total electron density (grey circles) and the individual
contribution of orbitals with one maximum in the center (orange) and with more
that one maximum (red) are also illustrated. Note scaling.

Figure 8: The same as in Fig. 7, but for q = 0.3 qF .
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Figure 9: Comparison of the quantum Bohm potentials at q ' 1.68 qF (top panel)
and at q ' 2.53 qF (bottom panel) (rs = 2 and θ = 1), where we illustrate the stan-
dard Bohm potential (dashed blue) and the many-fermion quantum Bohm potential
(green). We also illustrate the contribution of the orbitals (black) scaled by the factor
five (twelve) in the top (bottom) panel.

Figure 10: Comparison of quantum Bohm potentials of the correlated electrons gas
in the limit of weak perturbation (θ = 1 and rs = 2). The deviations of the standard
Bohm potential (dashed blue) from the exact many-fermion quantum Bohm potential
(green) are shown. The individual contribution of orbitals with one maximum in the
center (orange) and with more that one maximum (red) are also illustrated.
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