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Abstract

We present aspects of a gravitational theory that interpolates between JT gravity, and a
gravity theory with a fixed boundary Hamiltonian. For this, we consider a matrix integral
with the insertion of a Gaussian with varianceσ2, centered around a matrix H0. Tighten-
ing the Gaussian renders the matrix integral less random, and ultimately it collapses the
ensemble to one Hamiltonian H0. This model provides a concrete setup to study factor-
ization, and what the gravity dual of a single member of the ensemble is. Perturbatively
around infinite σ we find that the JT gravity dilaton potential is modified, and ultimately
the gravity theory goes through a series of phase transitions, corresponding to a prolif-
eration of extra macroscopic holes in the spacetime. A good gravitational description
at small values of σ remains elusive. Furthermore, we observe that in the Efetov model
approach to random matrices, the non-averaged factorizing theory is described by one
simple saddle point.
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1 Introduction

The conventional AdS/CFT correspondence dictates that one single conformal field theory
is dual to a single string theory in anti-de Sitter spacetime [1, 2]. A prime example of the
correspondence involved N “ 4 super Yang-Mills theory in four dimensions on the boundary
side and superstring (field) theory on AdS5 ˆS5 on the bulk side, but there are also examples
in other dimensions [2–4]. By now, however, there are also examples in low dimensions where
a single bulk theory is not dual to one single boundary theory, but to an ensemble of theories
[5–28]. The most notable, is the duality between JT gravity in two dimensions and a certain
random matrix ensemble [5].

In recent years, it has been a puzzle how to reconcile these two seemingly different incar-
nations of the AdS/CFT correspondence. In particular, what the role of averaging is, and what
the bulk dual of a single member of the ensemble is. It is important to emphasize that the older
examples of AdS/CFT are derived from string theory and, in principle, those examples are UV
complete; unlike theories like JT gravity, which are not, but see for instance [29] for a recent
attempt to embed JT in string theory. We also want to mention the recent works [30–32] for
a fascinating and extremely concrete example within AdS3/CFT2, where some of these ques-
tions were addressed. Note as well that in higher dimensions, there are only a few marginal
and relevant couplings one could imagine averaging over, if one wants to.

One way of thinking about this puzzle, is that the averaging is just a reflection of the igno-
rance of UV physics, and in particular JT gravity can only be used to compute self-averaging
quantities reliably. Another, compatible, perspective is that when one considers a UV complete
theory of quantum gravity, the UV details of the theory, such as branes, strings, higher-spin
fields etcetera, get encoded in specific couplings of the effective low energy bulk description.
For example this could result in JT gravity with many specific couplings turned on.

The idea would be that this second type of theory is a more realistic toy model of quan-
tum gravity, analogous to selecting one member of the ensemble. In the present paper we
investigate in more detail what such a theory would look like. In other words we focus on the
question, what is the gravity dual of one single member of the ensemble?

To make progress on that question we consider a deformation of random matrix ensembles
(with a known gravitational interpretation) and insert a Gaussian with variance σ centered
around a target Hamiltonian H0. Upon tightening the Gaussian, the matrix integral localizes
around H0, and at σ “ 0 we have picked out H0 from the matrix ensemble. By an appropriate
double scaling of this theory, we study the effects of the insertion of such a Gaussian on JT
gravity.
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1.1 Less random matrices

More concretely, the matrix model we consider is,1

Zpσ,H0q “

ˆ
dH exp

ˆ

´L Tr V pHq ´
L

2σ2
TrpH0´Hq2

˙

. (1)

This integral interpolates between the original matrix ensemble at σ “8

Zp8,H0q “

ˆ
dH exp

ˆ

´ L Tr V pHq
˙

, (2)

and the system with Hamiltonian H0 - which will be referred to as the target Hamiltonian -
when σ “ 0

Zp0,H0q “

ˆ
dH δpH ´H0q exp

ˆ

´ L Tr V pHq
˙

. (3)

This follows since appropriately normalized tight Gaussians are distributionally identical to
Dirac deltas,

lim
σÑ0

ˆ

L
2πσ2

˙LpL`1q{4

exp

ˆ

´
L

2σ2
TrpH ´H0q

2
˙

“ δpH ´H0q . (4)

Morally, the point is that random matrices are less random when their potential is very sharply
peaked around some target H0 eigenvalues; the uncertainly on the position of the random
eigenvalues is strongly reduced, because a strong external force is attracting them to the target
H0 eigenvalues.

Expanding out (1), and dropping an overall constant that cancels in all observables, one
obtains,

Zpσ,H0q “

ˆ
dH exp

ˆ

´L Tr

ˆ

V pHq `
1

2σ2
H2

˙

´
L
σ2

TrpH0 Hq
˙

. (5)

This is just a matrix integral with potential V pHq ` H2{2σ2 coupled to an external field H0,
which has been studied extensively in the literature [33–51].

The question now is, what is the two dimensional quantum gravity of these models? Fa-
mously, minimal string theories are obtained by double scaling finite dimensional matrix in-
tegrals near the spectral edge E0 of the leading order density of states [52–54] - the double
scaling procedure involves sending E0 to infinity and simultaneously sending L to infinity in
such a way that the spectral density near the edge, remains finite.2 JT gravity can be obtained
as a further p Ñ 8 limit of the p2, pq minimal strings [5, 56–59], and concordantly is also a
double scaled matrix integral [5].

Except for providing a remarkably complete matching between all genus amplitudes – not
previously achieved for minimal strings, due to a lack of precise formulas for conformal blocks
– perhaps the most important insight in [5] was the realization that the random matrix H
should literally be interpreted as the Hamiltonian of the boundary dual to JT dilaton gravity.
This invites to instead view the minimal string theories as bona fide theories of 2d quantum
gravity, interpreting the worldsheets as spacetimes. Remarkably they too can be rewritten
as dilaton gravities, and the random matrix again gains physical significance as the random

1 Note that we can multiply this with arbitrary overall normalization constants whenever we see fit, these cancel
out in all observables.

2 Equivalently, in the older matrix model literature one would send L Ñ 8 and tuning simultaneously to the
critical point of the matrix model [55].
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Hamiltonian [56, 57]; not just an abstract field in a nonperturbative definition of quantum
gravity.

This gives immediate gravitational motivation for considering our model (1). Our goal is
to understand this theory (1) for finite values of σ, and follow as much as possible how it
transitions from random to non-random.

1.2 Summary, structure and main lessons

The summary and structure of the rest of the paper is as follows.
We start by investigating the simplest possible example, the finite dimensional Gaussian

matrix integral. By using techniques of [36,37,40] we can exactly compute the spectrum, and
spectral correlation, for any value of σ. It is satisfying to visually see this theory transition
from completely random to entirely non-random, as summarized in Fig. 2 and Fig. 3.

Ultimately we are interested in continuum gravity, so we try to extract geometric lessons
from these exact manipulations. Our main observations are the following:

1. The wormhole geometry in the completely averaged theory σ “ 8, approaches diag-
onal delta functions near the completely fixed theory σ “ 0, as factorization requires.
This resonates well with earlier discussions about how gravitational systems could fac-
torize [11,12,60], see section 2.2.

2. Nonperturbative effects in matrix integrals are best captured via another, dual matrix
integral known as the Efetov model [61,62]. It has an interesting saddle point structure
that for example explains the plateau via the Andreev-Altshuler instanton [62,63]. There
are new saddle points for finite σ. These are one to one with solutions of the spectral
curve equation

y “
4E
a2
´

4
La2

L
ÿ

i“1

1
y ´ x i{σ2

,
2
a2
“

2
b2
`

1
2σ2

, (6)

for the Gaussian model with an external field (9) [47]. Here x i are the eigenvalues
of the target Hamiltonian H0. The gravitational interpretation of these new saddles
involves D-branes, much like the interpretation of the Andreev-Altshuler saddle itself;
this is an invitation to universe field theory [18], where D-brane effects have natural
gravity interpretations. Notably, one universal saddle point S “ 0 governs the non-
random theory at σ “ 0. See section 2.3.

3. At small σ the matrix integrals develops L narrow cuts with only one eigenvalue in
each of them, on average. Zooming in on a tight semicircle, there still is random matrix
universality, however there are deserts between these tiny cuts where the spectrum and
spectral correlations essentially vanish. The theory becomes less-random because of
these deserts. See section 2.3.

4. We find a dispersion relation for each observable, expressing the completely fixed the-
ory for σ “ 0 as the completely random theory at σ “ 8, plus non-self averaging
contributions associated with other poles in the complex σ plane. This explains how
the averaged geometry is always contained in the non-averaged theory. This is anal-
ogous to [60], especially when applying this to the Efetov model. This model can be
thought of as the GΣ theory of SYK but now for matrix integrals. See section 2.4. The
gravitational interpretation of the other poles remains largely unclear, see section 6.

5. By studying the ribbons graphs, one observes a tendency for huge holes to form when
σ becomes small, see section 2.5. In gravity this is the tearing of spacetime observed
in [64], see section 4.
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Figure 1: Phase diagram of the matrix integral (1) and its gravitational interpretation
as a function of σ. On the far right (blue region), we have σ “ 8 and our matrix
model is that for JT gravity. We also added the saddle for the Efetov sigma model in
the Gaussian model at σ “8. As we move away from σ “8 we enter in the orange
region, where the matrix model is deformed by (ghost) brane insertions that are
labelled by the eigenvalues x i of the target Hamiltonian H0 (the different shades of
orange on the small boundaries is supposed to represent that). The spectral density
is given as well in this region with αk given in 108. As σ is decreased further in
the orange region the model goes through a series of tearing phase transitions [64],
which is manifested geometrically by very large boundaries ending on the brane.
Decreasing σ further results in the breakdown of various approximations we had
made in section 3 and the model seems to enter a branched polymer phase, see
section 6. At σ “ 0 the theory is completely fixed to H “ H0. Remarkably, the Efetov
model localizes on one universal saddle S “ 0 in this regime.

Next we are interested in investigating how the JT dilaton gravity path integral changes
upon tuning the Hamiltonians from random matrices (2) to non-random matrices (3). The
endgame is capturing what gravitational systems with a single boundary dual might look like
and which new ingredients can appear. Therefore we will study (1) in the double scaling limit
focusing on three regimes. We obtain the following main results (see also Fig. 1):

1. For large σ, the external matrix H0 results in a deformation of the JT gravity dilaton
potential of the type discussed in [65,66], and applied later for example in [57,67,68]

I “´
1
2

ˆ
d2 x

?
g rΦ pR` 2q ` 2 UpΦ,σ,H0qs . (7)

The explicit expression for the dilaton potential as function of σ and the eigenvalues of
the target Hamiltonian H0 is presented in (116). This can be viewed as JT gravity with
many local operators inserted. The take away is there are perfectly sensible theories of
dilaton gravity which are slightly less random than JT gravity, see section 3.

2. We investigate how the system transitions from large to small σ, and find that a phase
transition in the matrix integral occurs, structurally similar to the one discussed in [64].
On the far side of the transition, the spacetimes are utterly destroyed by the proliferation
of huge holes, we call this the tearing phase of gravity, following [64], see section 4.

3. We explain that fixing the whole Hamiltonian H is overkill if one is interested only in
factorization [5,8,10–12]. Instead, one could keep most of the eigenvalues of H random,
and only gradually fix some eigenvalues of H towards eigenvalues of H0, by tuning σ.
In such a scenario, one treats most of the target Hamiltonian H0 as random, resulting
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in a two-matrix integral [69–73], and one fixes some eigenvalues of H0 to x1 . . . xn by
considering the partition function

Zpσ, x1 . . . xnq “

ˆ
dH

ˆ
dH0 TrδpH0´ x1q . . . TrδpH0´ xnqˆ

ˆ exp

ˆ

´L Tr V pHq ´
L

2σ2
TrpH0´Hq2

˙

. (8)

Integrating out the matrix H0 and working at small σ, this results to leading order in
eigenbranes for the matrix H [11], but with a Gaussian smearing that is reminiscent of
the Gaussian peaks in the finite dimensional matrix integral of section 2. Each of the
eigenbranes represents a macroscopic hole in spacetime. Subleading corrections involve
ever more macroscopic boundaries, surprisingly. See section 5.

We close off in section 6 with a discussion on lessons for higher-dimensions, the gray
region in Fig. 1, and present open questions.

2 Gaussian matrix integral

The Gaussian matrix integral coupled to an external matrix H0 is given by (5)

Zpσ,H0q “

ˆ
dH exp

ˆ

´
2L
a2

Tr
`

H2
˘

`
L
σ2

TrpH0 Hq
˙

,
2
a2
“

2
b2
`

1
2σ2

. (9)

Here b indicates the edge of the spectrum at large L for the undeformed theory [62, 74],
this gets shifted due to the Gaussian deformation. We introduced 2{a2 to compactify some
formulas down the road.

We would like to compute the spectrum of this theory

ρpEq “ TrδpE´Hq , (10)

and moments of the spectrum, like the spectral correlation ρpE1qρpE2q, which measures the
correlation between different eigenvalues of H. We achieve this by first computing the real-
time partition

Zpitq “ Tr
`

eitH
˘

, (11)

or, more particularly, the ensemble average xZpi tqy with the probability distribution given in
(9); and then Fourier transforming to obtain spectral correlators, for example:

xρpEqy “ xTrδpE´Hqy “
ˆ `8

´8

dt
2π

e´iEt xZpitqy . (12)

One novelty is that the term TrpH0 Hq breaks the UpLq invariance of standard matrix inte-
grals. When we go to an eigenvalue basis for the random Hamiltonians

H “ U ΛU: , Λ“ diagpλ1, . . . ,λLq , (13)

the integral over Haar random unitaries U does not decouple, and we need to explicitly com-
pute that integral too. Here we are interested in computing expectations values of only UpLq
invariant observables like (10) or (11). In these cases, fortunately, the unitary integral can
be done exactly using a beautiful result by Harish-Chandra and - decades later - by physicists
Itzykson and Zuber [75,76].
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To see how this works, let’s consider some generic UpLq invariant observable FpHq. Diag-
onalizing H, and including the Jacobian [74] this becomes

xFpHqy “
1

Zpσ,H0q

ˆ `8

´8

L
ź

i“1

dλi exp

˜

´
2L
a2

L
ÿ

i“1

λ2
i

¸

∆pλq2Fpλqˆ

ˆ

ˆ
dU exp

ˆ

L
σ2

Tr
`

H0 U ΛU:
˘

˙

,

(14)

which features the famous Vandermonde determinant

∆pλq “

L
ź

iă j

pλi ´λ jq . (15)

The unitary integral is the sole modification to the matrix model as compared to the unde-
formed case. This can be computed using the Harich-Chandra formula [75,76]

ˆ
dU exp

ˆ

L
σ2

Tr
`

H0 U ΛU:
˘

˙

“

ˆ

σ2

L

˙LpL´1q{2 L´1
ź

n“1

n!
1

∆pxq∆pλq
det

ˆ

exp

ˆ

L
σ2

x iλ j

˙˙

.

(16)
Here x i are the eigenvalues of H0. Using more modern techniques one derives this by notic-
ing that this unitary group integral is one-loop exact and the Duistermaat-Heckman theorem
applies [77,78].

Extracting the constant prefactor from the partition function (9) and using the symmetries
of the integrand under exchanging eigenvalues, one obtains

xFpHqy “
1

Zpσ,H0q

ˆ `8

´8

L
ź

i“1

dλi exp

˜

´
2L
a2

L
ÿ

i“1

λ2
i `

L
σ2

L
ÿ

i“1

x iλi

¸

∆pλq

∆pxq
Fpλq . (17)

The effect of the deformation is thus to change the potential for the eigenvalues in two ways,
first by the explicit term in the exponential, coupling the eigenvalues of H to those of H0,
and second by replacing ∆pλq2 with ∆pλq{∆pxq. Despite appearances perhaps, there is still
quadratic level repulsion [62, 74] in this ensemble; the cluster function TpE1, E2q retains a
quadratic maximum, see Fig. 3.

Notice that this trivially extends to other potentials V pHq instead of the quadratic Gaussian.
Now we only need to work out the eigenvalue integral. In the Gaussian case this is straight-

forward, but nevertheless gives a lot of insight into what changes the coupling to the external
matrix H0 causes. One major change is that the spectral density should interpolate between
a sum of delta functions and the semi-circle. Another important change is that as σ becomes
small, spectral correlation becomes smaller. To show this, we now compute the spectral density
and spectral correlation. See also [36,40].

2.1 Spectrum

As announced we first compute the real-time partition function, which from (17) becomes

xZpitqy “
1

Zpσ,H0q

ˆ `8

´8

L
ź

i“1

dλi exp

˜

´
2L
a2

L
ÿ

i“1

λ2
i `

L
σ2

L
ÿ

i“1

x iλi

¸

∆pλq

∆pxq

L
ÿ

j“1

eitλ j . (18)

The integral over the eigenvalues λi can be done explicitly using the result

ˆ `8

´8

L
ź

i“1

dλi exp

˜

´
2L
a2

L
ÿ

i“1

λ2
i ` L

L
ÿ

i“1

qiλi

¸

∆pλq 9 exp

˜

La2

8

L
ÿ

i“1

q2
i

¸

∆pqq . (19)
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The normalization constant drops out, when we do the same integral for the denominator of
(18). In our calculation qi “ x i{σ

2` itδi j{L, so that the ratio of Vandermonde determinants
∆pqq{∆pxq becomes

∆pqq
∆pxq

9

L
ź

iăk

x i ´ xk ` itσ2δi j{L´ itσ2δk j{L

x i ´ xk
“

L
ź

p‰ j

˜

1`
itσ2{L
xp ´ x j

¸

. (20)

The terms in the first product are one except when i “ j or k “ j. Combining everything,
including a similar integral for the denominator of (18), one finds

xZpitqy “
L
ÿ

j“1

exp

ˆ

it x j
a2

4σ2
´ t2 a2

8L

˙ L
ź

i‰ j

˜

1`
itσ2{L
x i ´ x j

¸

. (21)

As consistency check, the normalization works out because xZp0qy “ L.
This looks rather unpleasant for manipulations, due to the sum and product. This improves

when exchanging the sum over j for a contour integral around all eigenvalues x j of H0

xZpitqy “
L

itσ2

˛
H0

du
2πi

L
ź

i“1

ˆ

1`
itσ2{L
u´ x i

˙

exp

ˆ

´
σ2

2L
t2 1

1` 4σ2{b2
` itu

1
1` 4σ2{b2

˙

,

(22)
where the subscript H0 on the contour integral indicates the collection of small contours
around each eigenvalue x i of H0. Each pole generates one term in the sum. The spectral
density is then the Fourier transform of (22)

xρpEqy “
ˆ 8

´8

dt
2π

L
itσ2

˛
H0

du
2πi

L
ź

i“1

ˆ

1`
itσ2{L
u´ x i

˙

ˆ

ˆ exp

ˆ

´
σ2

2L
t2 1

1` 4σ2{b2
` it

ˆ

u
1

1` 4σ2{b2
´ E

˙˙

.

(23)

In the extremal regimes of σ we deduce the following behavior:

1. For σ small, we expand the product over i. The order σ0 term in the product does not
contribute, because is has no poles, and thus the leading contribution comes from the
σ2 term in the product. Furthermore we can approximate the exponent for σ2 ! b2; in
total we then obtain

xρpEqy “
ˆ 8

´8

dt
2π

˛
H0

du
2πi

1
u´ x i

exp

ˆ

´
σ2

2L
t2` itpu´ Eq

˙

(24)

“

ˆ

L
2πσ2

˙1{2 L
ÿ

i“1

exp

ˆ

´
L

2σ2
pE´ x iq

2
˙

“

L
ÿ

i“1

δpE´ x iq , (25)

where the last line uses the definition of Dirac deltas (4) for σ “ 0. This is indeed the
expected spectral density for a system with non-random Hamiltonian H0.

2. for σ large we rescale u Ñ uσ2 and expand around large σ, this effectively pushes
all poles towards the origin u “ 0. The product over i then simplifies and becomes

8
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independent of the eigenvalues of H0. Then we can furthermore enforce the large L
limit, using a limit representation of ex

xZpitqy “
L
it

˛
0

du
2πi

ˆ

1`
1
L

it
u

˙L

exp

ˆ

´
b2

8L
t2` itu

b2

4

˙

“
2L
it b

˛
0

du
2πi

exp

ˆ

it b
2

ˆ

1
u
` u

˙˙

,

(26)

in the second equality we again rescaled uÑ 2u{b for convenience. This contour inte-
gral can be done by using the generating function of the Bessel functions,

exp

ˆ

ibt
2

ˆ

u`
1
u

˙˙

“

`8
ÿ

k“´8

piuqkJkpbtq . (27)

The contour integral over u picks out the k “ ´1 term in the sum and we recover the
known genus zero partition function of the Gaussian matrix integral [79]

xZpitqy “
2L
t b

J1pbtq . (28)

Fourier transforming this gives the semicircle [62,74], with implicit Heaviside

xρpEqy “
2L
πb2

pb2´ E2q1{2 . (29)

To summarize, at largeσwe obtain the standard result for the undeformed Gaussian matrix
integral, whereas for small σ we obtain a sum of delta functions. This is of course no surprise,
but helps to understand the full result (23).

We are especially interested in understanding how the system transitions from the com-
pletely random result (29), to the delta spikes (25). One approach is to expand around both
large and small σ. Those regimes are discussed at length in the double scaled regime, with the
corresponding gravitational interpretation, in respectively section 3 and section 5; we choose
not to repeat that exercise here.

Instead we exploit the strengths of the finite dimensional theory. It is rewarding to just
plot ρpEq for several values of σ and L “ 8, see Fig. 2. At both extreme values of σ we find
the expected result, whereas at intermediate values of σ the oscillations in the spectral density
are large, eventually resulting in regions where the eigenvalue support is exponentially small.

Below in section 2.3 and 2.4 we comment on potential nonperturbative gravitational inter-
pretations associated with these oscillations, and the transition as a whole. An important role
seems to be played by extra saddle points in the Efetov model formulation [61,62] of the Gaus-
sian matrix integral and by poles of observables, as function of σ. We have not yet succeeded
in double scaling these particular aspects and consider this an important open problem, see
section 6.

However, let us first perform a similar analysis for the spectral correlation, which is relevant
for the factorization problem.

2.2 Eigenvalue correlation and factorization

To compute the eigenvalue correlation, we first consider the spectral form factor. Using (17),
one finds

xZpit1qZpit2qy “
1

Zpσ,H0q

ˆ `8

´8

L
ź

i“1

dλi exp

˜

´
2L
a2

L
ÿ

i“1

λ2
i `

L
σ2

L
ÿ

i“1

x iλi

¸

∆pλq

∆pxq
ˆ

ˆ

L
ÿ

j“1

eit1λ j

L
ÿ

k“1

eit2λk
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“ xZpipt1` t2qqy `
1

Zpσ,H0q

ˆ `8

´8

L
ź

i“1

dλi exp

˜

´
2L
a2

L
ÿ

i“1

λ2
i `

L
σ2

L
ÿ

i“1

x iλi

¸

ˆ

ˆ
∆pλq

∆pxq

L
ÿ

j‰k

eit1λ j`it2λk .

Using (19) with qi “ x i{σ
2 ` it1δi j{L ` it2δik{L we perform the integral over eigenvalues;

the ratio ∆pqq{∆pxq becomes in this case

∆pqq
∆pxq

9

˜

1`
ipt1´ t2qσ

2{L
x j ´ xk

¸

L
ź

i‰p j,kq

˜

1`
it1σ

2{L
x j ´ x i

¸

ˆ

1`
it2σ

2{L
xk ´ x i

˙

. (30)

The eigenvalue integral of the off-diagonal j ‰ k terms in (30) therefore becomes

L
ÿ

j‰k

exp

ˆ

ipt1 x j ` t2 xkq
a2

4σ2
´ pt2

1 ` t2
2q

a2

8L

˙

˜

1`
ipt1´ t2qσ

2{L
x j ´ xk

¸

ˆ

ˆ

L
ź

i‰p j,kq

˜

1`
it1σ

2{L
x j ´ x i

¸

ˆ

1`
it2σ

2{L
xk ´ x i

˙

.

Notice as check that xZp0qZp0qy “ L2. Introducing contour integrals, this is reorganized fur-
ther into

L
it1σ2

˛
H0

du1

2πi
exp

ˆ

it1u1
a2

4σ2
´ t2

1
a2

8L

˙ L
ź

i“1

ˆ

1`
it1σ

2{L
u1´ x i

˙

L
it2σ2

ˆ (31)

ˆ

˛
H0

du2

2πi
exp

ˆ

it2u2
a2

4σ2
´ t2

2
a2

8L

˙ L
ź

j“1

˜

1`
it2σ

2{L
u2´ x j

¸

ˆ (32)

ˆ
pu1´ u2` ipt1´ t2qσ

2{Lqpu1´ u2q

pu1´ u2` it1σ2{Lqpu1´ u2´ it2σ2{Lq
“ (33)

“ xZpit1qy xZpit2qy `

˛
H0

du1

2πi
exp

ˆ

it1u1
a2

4σ2
´ t2

1
a2

8L

˙ L
ź

i“1

ˆ

1`
it1σ

2{L
u1´ x i

˙

ˆ (34)

ˆ
1

u1´ u2´ it2σ2{L

˛
H0

du2

2πi
exp

ˆ

it2u2
a2

4σ2
´ t2

2
a2

8L

˙

ˆ (35)

Figure 2: Spectrum ρpEq for L “ 8 and σ “ 3,1{2, 1{10 (left to right); it transitions
from the semicircle (orange) to a sum of deltas on the eigenvalues of H0. For inter-
mediate values of σ there are heavy oscillations. The sharper the peaks and valleys
in the spectrum, the less random the matrix integral.
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ˆ

L
ź

j“1

ˆ

1`
it2σ

2{L
u2´ x i

˙

1
u1´ u2` it1σ2{L

.

This expression simplifies further when one Fourier transforms to the spectral correlation

xρpE1qρpE2qy “

ˆ `8

´8

dt1

2π
e´iE1 t1

ˆ `8

´8

dt2

2π
e´iE2 t2 xZpit1qZpit2qy . (36)

Within the double contour integral in (34), we can shift the time variables as
t1 Ñ t1 ` ipu1 ´ u2qL{σ

2 and t2 Ñ t2 ´ ipu1 ´ u2qL{σ
2; this factorizes the double contour

integral. Combining this, with the first term in (30) and with the first term in (34), one finally
arrives at the elegant answer

xρpE1qρpE2qy “ δpE1´ E2qKpE1, E1q ` KpE1, E1qKpE2, E2q ´ KpE1, E2qKpE2, E1q , (37)

where the all-encompassing kernel is derived to be

KpE1, E2q “

ˆ 8

´8

dt
2π

L
itσ2

˛
H0

du
2πi

L
ź

i“1

ˆ

1`
itσ2{L
u´ x i

˙

ˆ

ˆ exp

ˆ

´t2 a2

8L
` it

ˆ

u
a2

4σ2
´ E2

˙

` upE1´ E2q
L
σ2

˙

.

(38)

On the diagonal E1 “ E2 this kernel reduces to the spectrum (23). In the usual GUE matrix
model, this kernel is an important object, because all spectral correlators can be expressed as
sums of products of these kernels [74]. This conclusion extends to the matrix model with an
external field (1), the two point function (37) is just the simplest example [33,36,37,40].

Following Mehta [74], we introduce the smooth part of the eigenvalue correlation RpE1, E2q

and the eigenvalue covariance TpE1, E2q, using (37) these become

RpE1, E2q “ KpE1, E1qKpE2, E2q ´ KpE1, E2qKpE2, E1q ,

TpE1, E2q “ KpE1, E2qKpE2, E1q . (39)

These quantities were plotted for several values of σ and L “ 8 in Fig. 3. These figures are
important for understanding how the system gradually achieves factorization, as discussed
below.

As before, it is instructive to analyze the extremal regimes of σ analytically. We obtain the
following behavior:

1. For σ small, we expand the product over i. The order σ0 term in the product does not
contribute, because there are no poles, and so the leading contribution comes from the
σ2 term in the product, just as for the one-point function. Furthermore approximating
the exponent for σ2 ! b2, one obtains

KpE1, E2q “

ˆ 8

´8

dt
2π

˛
H0

du
2πi

L
ÿ

i“1

1
u´ x i

exp

ˆ

´
σ2

2L
t2` itpu´ E2q ` upE1´ E2q

L
σ2

˙

(40)

“

ˆ

L
2πσ2

˙1{2 L
ÿ

i“1

exp

ˆ

´
L

2σ2
pE2´ x iq

2`
L
σ2

x ipE1´ E2q

˙

. (41)

The spectral covariance (39) for smallσ then becomes, after simply inserting the kernels

TpE1, E2q “

ˆ

L
2πσ2

˙ L
ÿ

i, j“1

exp

ˆ

´
L

2σ2
pE2´ x iq

2´
L

2σ2
pE1´ x jq

2´
L
σ2
pE1´ E2qpx j ´ x iq

˙
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Figure 3: Spectral correlation RpE1, E2q (top) and spectral covariance TpE1, E2q (bot-
tom) for L “ 8 and σ “ 5, 1,1{10 (left to right). The covariance TpE1, E2q is only
significant close to the diagonal axis, nearby eigenvalues repel; it interpolates be-
tween a ridge and the diagonal deltas. The theory factorizes, because the covariance
drops to zero everywhere, except on the location of the eigenvalues of H0 where it
produces the required delta contact terms. The correlation RpE1, E2q has a quadratic
zero on the diagonal, testimony to quadratic level repulsion.

“ δpE1´ E2q

L
ÿ

i“1

δpE1´ x iq , (42)

where in the last equality we enforced the limit σ “ 0.

2. For large σ, the connected term in (34) simplifies by first rescaling ui Ñ 2uiσ
2{b and

then taking the large L limit. This again simplifies the product over i and j, the result is
˛

0

du1

2πi

˛
0

du2

2πi
1

pu1´ u2q
2

exp

"

ibt1

2

ˆ

u1`
1
u1

˙

`
ibt2

2

ˆ

u2`
1
u2

˙*

. (43)

Expanding this out into powers of u1 and u2, by using (27), one obtains

˛
0

du1

2πi

˛
0

du2

2πi
1

u2
2

8
ÿ

n,m“0

ˆ

u1

u2

˙nˆu1

u2

˙m `8
ÿ

j,k“´8

piu1q
jpiu2q

kJ jpbt1qJkpbt2q . (44)

The contour integral then picks up the terms with j “ ´n´m´ 1, and k “ n`m` 1
and we obtain

xZpit1qZpit2qy Ą

8
ÿ

l“0

pl ` 1qp´1ql`1Jl`1pbt1qJl`1pbt2q . (45)

Taking the Fourier transform before doing the sum, one recover the known wormhole
contribution for the undeformed Gaussian matrix integral (with implicit Heavisides such
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that the square roots remain real)

TpE1, E2q “
1

2π2

b2´ E1E2

pE1´ E2q
2
pb2´ E2

1q
´1{2pb2´ E2

2q
´1{2 . (46)

When the eigenvalues are close together this gives the universal answer

TpE1, E2q “
1

2π2

1
pE1´ E2q

2
. (47)

Notice as consistency check also that this wormhole is order L0.

We thus find that the wormhole in the completely averaged theory, ultimately becomes
the diagonal delta functions (42) in the completely fixed theory. Of course, to find the delta
functions one would have to include perturbative and nonperturbative corrections in L. One
might wonder what the genus zero contribution to (42) is, i.e. the actual wormhole. Looking
ahead, the results of section 2.3 suggest an educated guess

TpE1, E2q
guess
“

1
2π2

L
ÿ

i“1

4σ2{L´ pE1´ x iqpE2´ x iq

pE1´ E2q
2

ˆ (48)

ˆ p4σ2{L´ pE1´ x iq
2q´1{2p4σ2{L´ pE2´ x iq

2q´1{2 . (49)

Indeed as we discuss below, the genus zero spectrum becomes L tight semicircles centered
around each target eigenvalue x i and the above guess comes from treating each semi-circle
independently. If two eigenvalues found themselves in the same semicircle, they would obvi-
ously still repel one another.

On a basic level one can notice, just from the plots, that RpE1, E2q always has a quadratic
zero on the diagonal E1 “ E2; this means that if we look close enough, the quadratic Van-
dermonde repulsion is sill there. No matter how exotic one chooses an external potential
for charged particles, at any finite σ ą 0 there is always a distance scale where the electric
repulsion between the particles wins, and one can forget the details of the external potential.

Another strong piece of evidence comes from the kernel (38). One can prove that, when
the energies E1 and E2 are close enough together, this always reduces to the sine kernel

KpE1, E2qKpE2, E1q “
sin2pπρpE1qpE1´ E2qq

π2pE1´ E2q
2

, (50)

but now featuring the deformed spectrum [33, 36, 40]. Of course, the smaller σ, the closer
together the eigenvalues must be for this formula to make sense. One should look on scales
much smaller than the width 4σ{L1{2 of the tiny semicircles, but since the spectral density
there is also huge, there should be a regime where one finds the universal wormhole answer
(47). Here, the wormhole contribution should have only support on tiny regions centered
around the target eigenvalues x i; this logic suggests something like (49) makes sense.

This resonates well with earlier discussions about how gravitational systems can achieve
factorization [11,12,60]. Factorization happens because the eigenvalue covariance TpE1, E2q

approaches a sum of delta functions on the diagonal, on a technical level. Indeed, the con-
nected correlation is

xρpE1qρpE2qy ´ xρpE1qy xρpE2qy “ δpE1´ E2q xρpE1qy ´ TpE1, E2q , (51)

and this must vanish in non-random theories; this is clearly visible in Fig. 3.3 In essence, the
wormhole, which we define to include perturbative and nonperturbative corrections, becomes
equal to the diagonal deltas when tuning towards σ “ 0. See also section 5.

3 Remember that xρpEqy itself also goes to delta functions in the non-averaged theory, see (25).
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Most of the magic in this regard sits in the simplest observable, the spectrum. For any
gravitational theory where the spectrum is sharply peaked, to good approximation, we know
where all eigenvalues are; concordantly, the theory is almost non-random. This translates to
the spectral covariance vanishing almost anywhere, except on the diagonal and close to these
distinct points (where the spectrum is peaked). This is sufficient to obtain a factorizing theory
since, according to (51), it means the connected correlation vanishes

xρpE1qρpE2qy “ xρpE1qy xρpE2qy . (52)

2.3 Universal saddle for non-averaged gravity

The purpose of this subsection is working toward a gravitational interpretation for the theory
at finite values of σ, we want to understand how one sees the peaks and valleys in figure 2
and figure 3 emerge. In particular, we want to highlight fundamental differences between the
calculations in the completely averaged, and non-averaged cases.

In terms of the u contour integrals, the difference is whether we do perturbation theory
around poles at the origin u “ 0 or immediately take residues at u “ x i . By resumming the
perturbative expansion around the origin u “ 0, one ultimately finds the contributions from
all the poles; therefore, expanding around σ “ 8 and looking at the effects of high-order
terms, is a sensible way to investigate the theory at finite σ. We do this in the double scaling
gravity limit in section 4, and observe that spacetimes is shredded by many extra macroscopic
boundaries [64], whenever the high-order terms become relevant.

Here we take a different path. There is a language where the transition from large to
small σ can be conveniently studied using saddle points. Nonperturbative effects in matrix
integrals are best captured by another, dual matrix integral, sometimes known as the Efetov
model [61, 62]. This has an interesting saddle point structure in which the plateau in the
spectral form factor can be explained by a saddle known as the Andreev-Altshuler instanton
[6,62,63,80].

For this model one considers products of K determinants in the matrix integral, then writes
the determinants as Grassmann integrals, does the Gaussian integral over H; and uses a
Hubbard-Stratanovich transformation with an auxiliary K ˆ K Hermitian matrix S, to per-
form the Grassmann integrals. The result of these steps, for the undeformed Gaussian matrix
integral (9) with σ “8, is [5,62,80,81]

C

K
ź

i“1

detpEi ´Hq

G

“

ˆ
dS detpE´ iSqL exp

ˆ

´
2L
b2

Tr
`

S2
˘

˙

. (53)

Upon double scaling, this becomes the Kontsevich matrix integral [6,82,83].
One might wonder whether, in the case of an external matrix H0, one can derive similar

expressions. Fortunately, it is not difficult to see that this is indeed the case; one just diago-
nalizes H0 in (9) (by a unitary rotation of H), and then proceeds precisely as in the standard
calculation. Omitting the detailed derivation, one finds

C

K
ź

i“1

detpEi ´Hq

G

“

ˆ
dS

L
ź

j“1

det
`

E´ x ja
2{4σ2´ iS

˘

exp

ˆ

´
2L
a2

Tr
`

S2
˘

˙

. (54)

As check, notice that when σ “8, we trivially recover (53). However, when σ “ 0 (and thus
a “ 0), the theory localizes on S “ 0. We may then simply evaluate the other pieces of the
integrand on-shell, this results immediately in the correct non-averaged answer

C

K
ź

i“1

detpEi ´Hq

G

“

L
ź

j“1

K
ź

i“1

pEi ´ x jq “

K
ź

i“1

detpEi ´H0q . (55)
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Using the u integral, the non-average answer corresponds with a complicated contour integral
around the eigenvalues x i . Using the Efetov model however, the non-averaged answers is
obtained already from one saddle point at S “ 0. Perturbative expansions of the u integral are
on similar footing as the genus expansion. High-order effects in the genus expansion encode
the transition from ramp to plateau, but in the Efetov model this transition follows from a
simple saddle point approximation [62]. The Efetov model is clearly the easiest language to
capture nonperturbative effects in gravity, and the transition from large to small σ is one of
those effects.

Therefore let us investigate the saddle points of the Efetov model (54) is more detail, for
simplicity let us consider only one determinant, where S becomes one real parameter

xdetpE´Hqy “
ˆ `8

´8

dS exp

˜

´
2L
a2

S2`

L
ÿ

i“1

ln

ˆ

E´ x i
a2

4σ2
´ iS

˙

¸

. (56)

More determinants do not result in more interesting structure. The saddle point equation is

4L
a2

iS “
L
ÿ

i“1

1
E´ x ia2{4σ2´ iS

. (57)

The solutions determine the genus-zero resolvents of the matrix model [62, 80]. To see this,
notice that

BE detpE´Hq “ RpEq detpE´Hq , (58)

with RpEq the resolvent. Applying this identity to the Efetov model

BE xdetpE´Hqy “
ˆ `8

´8

dS
L
ÿ

i“1

1
E´ x ia2{4s2´ iS

exp

˜

´
2L
a2

S2`

L
ÿ

i“1

ln

ˆ

E´ x i
a2

4σ2
´ iS

˙

¸

, (59)

and evaluating the integral to leading order on the saddle points (57); one sees that the leading
order resolvent is indeed proportional to the Efetov saddle points

xRpEqy “
4L
a2

iS , (60)

with S a solution to (57). Using the relation between the genus zero resolvent and the spectral
curve of the matrix model [5], we find that the saddle point equations of the Efetov model,
are equivalent to the spectral curve equations for our matrix model (1) with an external field.
That spectral curve can be found in [47]

y “
4E
a2
´

4
La2

L
ÿ

i“1

1
y ´ x i{σ2

, (61)

which is indeed the same as (57), if one uses the relation between RpEq{L “ V 1pEq ´ y [47].
For the undeformed theory σ “8 there are two solutions to (57)

xRpEqy “
2L
b2

E¯
2L
b2
pE2´ b2q1{2 , iS “

E
2
¯

1
2
pE2´ b2q1{2 . (62)

This is respectively the physical sheet of the resolvent for the Gaussian matrix integral, because
there it decays as L{E at large E, and the second sheet; obtained by going through the branch-
cut. The spectrum is computed on the first sheet and gives the standard semicircle (29), from
(62). Note that this saddles have real and imaginary parts in the allowed region.

Crucially however, for finite values ofσ, the spectral curve has L`1 solutions, correspond-
ing to the different sheets of the resolvent for the matrix model with an external field [47].
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When lowering σ, the other saddles will become competitive, and we believe they account for
the heavy oscillations seen in the middle panel of Fig. 2 [62].4

Let us now discuss these other saddles both at large and small σ in more detail. Solving
(57) near σ “8 also reveals L´ 1 extra non-physical saddle point solutions

iS “ E´
q
σ2

,
L
ÿ

i“1

1
q´ x i b2{4

“ 0 , (64)

on top of the standard saddles (62), which change only slightly near σ “8.
In the other extreme regime, close to σ “ 0, the solutions to (57) (using (60)) can be

described as follows. The solution on the physical sheet is given by

xRpEqy “
L
ÿ

i“1

L
2σ2

pE´ x iq ´
L

2σ2
ppE´ x iq

2´ 4σ2{Lq1{2 , (65)

again because it decays as L{E at large E and leads to a spectrum that consists of L tight
semicircles centered around each of the target eigenvalues x i , as announced already around
(49). To leading order in small σ2{L this is the saddle S “ 0 announced below (54).

There are L other solutions, where one of the relative signs in (65) is positive. These
correspond to the second sheets of the same resolvent, having travelled through one of the
L tiny branchcuts of width 4σ{L1{2. These L solutions behave for large E as pE ´ x iqL{σ

2.
To leading order in small σ2{L these saddle points are iS “ E ´ x i . In total this gives L ` 1
solutions. We note that the leading order spectrum, coming from the saddle S “ 0

xρpEqy “
L

2πσ2

L
ÿ

i“1

p4σ2{L´ pE´ x iq
2q1{2 , (66)

already reproduces the delta functions (25) when σ “ 0, the iS “ E ´ x i saddles seem to be
redundant. We will indeed argue below that this is the case at the completely non-random
point σ “ 0.

In light of [80] note that S “ 0 is the regime where the sigma model action vanishes and the
universal features of a random matrix theory disappear, which makes sense if the saddle point
S “ 0 corresponds with the non-averaged theory. Notice also that products of determinants
trivially factorize when the integral localizes on S “ 0.

We want to know which of these saddles are actually on the integration contour for differ-
ent values of E, and which saddles near σ “ 0 flow towards which saddles near σ “8.5

Remarkably, the physical saddle S9 E ´ pE2 ´ b2q1{2 flows towards the S “ 0 saddle. To
appreciate this, consider some large energy E that lies outside all cuts for anyσ. Atσ “8 and
for energies in the forbidden region, only the saddle S9 E´pE2´b2q1{2 lies on the integration
contour [62]; we checked within a simple example in appendix A that this remains true near
σ “ 8. Similarly we checked that near σ “ 0, only the S “ 0 saddle lies on the integration
contour. Since E by assumption never leaves or enters any cut, the saddle S9 E´pE2´ b2q1{2

near σ “8 must connect continuously to the S “ 0 saddle near σ “ 0. We therefore think of
S “ 0 also as the physical saddle.

4 A detailed analysis of these effects requires defining the resolvent via

xRpEqy “ lim
MÑE

BE

B

detpE´Hq
detpM ´Hq

F

. (63)

Introducing inverse determinants replaces the bosonic matrix S with a supermatrix, but the essence is unaffected:
one needs to consider the other saddles for finite σ.

5 We thank Steve Shenker for discussion on this.
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The fun starts when considering energies E that leave the spectral cut when changing σ.
Say that for σ ă σc , E lies inside some cut, and that it lies outside all cuts for σ ą σc . At
this critical σ we hit a (anti-)Stokes line and one saddle seizes to contribute, taking us from
a real oscillating region in the determinant to an exponentially decaying one. The reverse
phenomenon happens when E enters a cut, another saddle starts contributing such that we
obtain a real and oscillating determinant again. At small enoughσ the cuts are tiny, hence most
E will be outside the cut and only the S “ 0 saddle contributes. We checked these statements
explicitly for some simpler case where H0 has L{2 eigenvalues z and L{2 eigenvalues ´z, see
appendix A.

Near σ “ 0, as discussed above, the L additional saddles besides S “ 0 are given by
iS “ E ´ x i . These other saddles (both close to σ “ 0 and 8) are problematic for the simple
reason that they are purely imaginary and would give a contribution that is exponentially
enhanced with energy E squared. Based on this intuition and the simple example in appendix
A, we therefore expect these saddles to not lie on the integration contour when E is not inside
any cut. When E is inside some cut, we expect only the physical saddle (on the physical sheet)
and the saddle where we went through the cut, in which E lies, to contribute (recall below
(65) that this is how you generate the non-physical saddles). We have checked this explicitly
in simple examples like the one discussed in appendix A, leaving a more detailed check for the
generic case to the future. 6

Notably at σ “ 0 there are no cuts. The takeaway message remains that the completely
non-random point σ “ 0 is described completely by one saddle point S “ 0 in the Efetov
model, which flows towards the physical saddle point S9 E ´ pE2 ´ b2q1{2, at the random
matrix theory point σ “8.

2.4 Dispersion relation

The raison d’être of random matrices, is that the completely averaged description approximates
many features of individual draws H0 of the system extraordinary well [62,74]; whilst being an
exponentially simpler description. This shines through in the gravity dual: the bulk description
of completely random systems σ “ 8 can be as simple as JT gravity [5], and the dual to
eigenvalue repulsion are wormholes.

If one thing is certain it is that the gravity dual to some non-averaged system is much more
complex, likely having some bulk action that is much more complicated that the JT gravity
one. Nevertheless, one expects the wormhole to still be there and one question that has been
raised [60] is how it can be seen in the non-averaged answer.

Since we have precise formulas for all correlation functions in the matrix model as function
ofσ, we can ask how the averaged contribution at largeσ is encoded in the smallσ behaviour.7

This should help to understand what contributions one needs to include in order to go from,
a non-factorizing theory to a factorizing one. The idea is to analytically continue σ to the
complex plane and use the following identity

1
2πi

˛
0

dσ
σ

Fpσq `
1

2πi

˛
8

dσ
σ

Fpσq `
1

2πi

ÿ

σi

˛
σi

dσ
σ

Fpσq “ 0 , (67)

where the σi denote all non-analyticities of Fpσq - this could include branchcuts. The contour
integral around all non-analyticities obviously vanishes. The residues for the first two terms

6 As an aside, we note that when two branch-points hit the real energy axis, the spectrum develops two E1{3

edges. The physics near this edge is described by the Pearcey kernel or the Kontsevich matrix integral with a S4

potential [45]; and corresponds with the p3, 1q minimal gravity. When the eigenvalues of the external matrix are
allowed to be complex, other edges can appear [45]; but here they do not.

7 We thank Onkar Parrikar for discussion on this
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give

Fp0q “ Fp8q´
1

2πi

ÿ

σi

˛
σi

dσ
σ

Fpσq . (68)

Here Fpσq can be any correlation function, for example we could insert the wormhole TpE1, E2q

from (34). Then the statement is that the diagonal deltas Fp0q in some non-averaged theory
(42), equals the wormhole Fp8q from the completely averaged theory (46), plus corrections
from other poles that wash out upon averaging.

This is similar to the conclusions of [60], though with saddles instead of poles; a fortunate
coincidence is the similar role played by the parameter σ in that paper. There is also vaguely
similar flavor to some of the discussion about poles as corresponding with geometries in [32].

To make things super concrete in a simple example, take the L “ 1 case of (9), also known
as the Gaussian integral

Zpσ, h0q “

ˆ `8

´8

dh exp

ˆ

´
2
b2

h2´
1

2σ2
ph´ h0q

2
˙

. (69)

The exact partition function in this theory is

Fpσq “
@

e´βh
D

“ exp

ˆ

β2σ2´ 2βh0

2p1` 4σ2{b2q

˙

, (70)

which indeed is (21) for L “ 1. This interpolated between the averaged result

Fp8q “ exp

ˆ

b2β2

8

˙

, (71)

which smoothly decays with time; and the non-averaged result, which highly oscillates with
time

Fp0q “ e´βh0 . (72)

We also see that Fpσq has essential singularities at σi “˘ib{2, which we need to account for
in (68). The infinitely many contributions coming from this term will, when combined with
the averaged Fp8q, reproduce the the non-average result Fp0q. To see this, we expand the
exponential in Fpσq (70) and explicitly compute the sum of the residues at σi “˘ib{2

1
2πi

ÿ

σi

˛
σ“σi

dσ
σ

Fpσq “
ÿ

σi

8
ÿ

k“1

b2k

8kpk´ 1q!k!
Bk´1
σ

˜

ˆ

β2σ2´ 2βh0

σ`σi

˙k
1
σ

¸

σ“σi

“ Fp8q´ Fp0q .

(73)

One can check that this indeed agrees with the difference between the non-average and av-
erage answer, for instance by doing a Taylor expansion in β . Clearly both Fp0q and the con-
tribution from the essential singularities are oscillating, and therefore non-self-averaging, for
Lorentzian times.

There is a similar pattern for generic L, see for example (23) The only non-analyticities
seem to appear when σi “ ˘ib{2, in which case there is an essential singularity. There are
an infinite number of contributions coming from these singularities which conspire with the
average answer to give something factorizing.

The challenge, much like for the results of [60], is to find a gravity interpretation for the
contributions from these other poles. This is far from obvious. We believe that a good place
to start, would be taking Fpσq to be the Efetov model (54). This model is the most natural
language to study non-perturbative effects in gravity, it being basically an open universe field
theory, and it might be manageable to give gravitational meaning to the poles there. Another
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Figure 4: Ribbon graph of quartic matrix model with coupling TrpH0Hq (left), the
insertions of the external field H0 (blue dots) are like leaves on a tree. For the gravity
interpretation one must perform the unitary integral (right), giving a double sum
over Wick contractions or permutations of which we show two examples (orange
and red). The new vertices are weighed by Weingarten functions and traces of H0,
because of the Weingarten functions the orange contraction dominates for large L,
as explained in detail in section 3.

avenue, would be to interpret σ directly in gravity. Based on [60], perhaps it is similar to the
ΣLR in the GΣ formulation of SYK, since our σ also tells us whether we are in a self-averaging
or non-self-averaging region.

In the remainder of this work, we return to investigating the gravitational theory at finite
σ directly. We start with a discussion on ribbon graphs.

2.5 Ribbon graph intuition

Another way to get geometric intuition about matrix integrals, is to think about the ribbon
graphs; or Feynman diagrams [84]. These are not that interesting in the pure Gaussian case,
so let us temporarily consider a matrix integral with quartic interactions (148).

The external matrix coupling is weighed with 1{σ2 and is therefore expensive at large σ,
concordantly there are barely insertions of the H0 matrix in this regime. In terms of the ribbon
graph, these insertions are vertices on which the ribbon graph ends, like the leaves of a tree;
see Fig. 4. In the opposite regime of small σ, there are many such H0 insertions [38].

This picture is however incomplete. As further discussed in section 5, these insertions of
the matrix H0 have no immediate gravitational interpretation; which is reserved for ribbon
graphs that are built exclusively out of the field H. For that, we need to perform the integral
over random unitaries (16) in (5); we diagonalize H “ U ΛU: and conveniently expand the
exponential as

ˆ
dU exp

ˆ

L
σ2

Tr
`

H0 U ΛU:
˘

˙

“

8
ÿ

n“0

1
n!

ˆ

L
σ2

˙n ˆ
dU Tr

`

H0 U ΛU:
˘n

. (74)

These unitary integrals can be computed order per order using Weingarten functions [85,86]
ˆ

dU Tr
`

H0 U ΛU:
˘n
“

ÿ

σ,τPSn

TrσpH
nqTrτpH

n
0qWgpστ´1, Lq , (75)

which features a double sum over permutations in Sn. The notation for the traces should be
intuitively clear

TrσpH
nq “

ź

αi

Tr
´

H lpαiq
¯

, (76)

19

https://scipost.org
https://scipost.org/SciPostPhys.12.2.073


SciPost Phys. 12, 073 (2022)

Figure 5: Discretized worldsheet for a quartic matrix integral with deformations,
showing the quartic ribbon graph (blue) and the dual graph (black) which contains
polygonic holes (orange) due to the deformations. The quartic interactions (black
dots) are weighted by τ4 (as defined in B), the extra vertices (blue dots) from the
deformations are weighed by traces of H0.

where αi are the cycles of σ and lpαiq is the length of each cycle. The basic point is that in
(75) one obtains all types of single-trace and multi-trace combinations of H. For example,
the quartic matrix model acquires, when including the external field, all types of local vertices
TrpHmq; but also all multi-trace nonlocal vertices, like pTrpH pqqq. The Feynman rules for these
vertices, are set by combinations of Tr

`

Hn
0

˘

. In conclusion, the external matrix determines the
coupling constants of the deformed theory. This remains true for double-scaled gravitation
theories as we discuss in section 3.

As discussed in section 3, single trace deformations of the matrix integral potential TrpHmq

dominate at large σ. To see the related spacetimes, we must consider the dual graph. For
the quartic matrix model this dual graph consists of squares, associated with the original in-
teractions; and additional polygons representing the deformations TrpHmq, each polygon is
weighed by a coupling constant Tr

`

Hm
0

˘

.
When we compute the partition function of the quartic theory with these deformations,

the extra polygons are not interpreted as contributing to the Euler character; the topological
expansion is one in powers of τ4, the quartic coupling constant for the undeformed theory,
see equation (149). Therefore those polygons correspond with boundaries or holes of the
spacetime [64], see Fig. 5.

Holes with order one valency become microscopic in the double-scaling limit, and corre-
spond with local operators, or conical defects in gravity; holes with very high valency cor-
respond with macroscopic boundaries in gravity. At large σ the holes are isolated, meaning
that the extra vertices are not adjacent, and holes with high valency are suppressed. For small
σ though, the extra holes can become adjacent; they can therefore condense and become
macroscopic; also isolated large holes are no longer suppressed. This changes the spacetimes
drastically, effectively tearing them up [64]. See section 4.

In the following sections we clarify how these statements translate to the double scaling
limit, where the theory describes two dimensional dilaton gravity, as explained in section 1.
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3 Deformed dilaton gravity

In the remainder of this work we study the effect of the external matrix H0 in the double
scaling limit, and therefore in two dimensional gravity theories. This is a subtle endeavour,
since L is strictly infinite and naively, say, (22) becomes independent of σ. This means that, to
find continuum limits with nontrivial dependence on H0, one must simultaneously carefully
scale σ too.

In this section we will describe one such scaling, relevant for large σ, where one can treat
the external matrix in (5) as a perturbation, allowing us to investigate the effects of fixing H
ever so slightly.

The situation for small σ is more mysterious. As discussed in section 2.3, the matrix inte-
gral develops many tiny cuts, making it is unclear what double scaling precisely means. We
will make a compromise in section 5 and instead study a setup where only part of H0 is non-
averaged, but most of this external matrix is random. In the resulting two-matrix model, we
can find a continuum description for small σ.

We now start our investigation for large σ. For convenience, we give the matrix integral
(5) again

Zpσ,H0q “

ˆ
dH exp

ˆ

´L Tr V pHq ´
L

2σ2
Tr
`

H2
˘

`
L
σ2

TrpH0 Hq
˙

, (77)

and diagonalize H “ U ΛU:. Since we are interested in trace class observables, the integral
over Haar random unitaries is always the same one,

ˆ
dU exp

ˆ

L
σ2

Tr
`

H0 U ΛU:
˘

˙

. (78)

Previously we evaluated this integral exactly using the Harish-Chandra-Itzykson-Zuber for-
mula [75,76]. Throughout this section, however, we are interested in working close to infinite
σ and treat (78) perturbatively in 1{σ2. The exact formula (16) is not naturally suited for
such an expansion.

To obtain an approximation at σ " 1, it is more efficient to instead use the trick

B

exp

ˆ

L
σ2

Tr
`

H0 U ΛU:
˘

˙F

“ exp

˜

8
ÿ

n“1

1
n!

Ln

σ2n

B

Tr
`

H0 U ΛU:
˘n
F

conn

¸

, (79)

where the average denotes the Haar integral. This is an application of the general identity in
statistics

log xexppxqy “
8
ÿ

n“1

1
n!
xxnyconn . (80)

In physics we know this for example from the calculation of D-brane partition functions where
xxnyconn would be the sum of all connected worldsheets with n boundaries ending on the
D-brane, and the 1{n! is because the boundaries are indistinguishable [5, 87]. The rewrite
(79) is exact, if the sum converges. Whether it does or not, is an interesting question. In the
approximation which we make here, we will see momentarily that it does converge, but this
might no longer be the case when we transition to smaller σ, we comment on this in section
4 and 6.

As mentioned around (75), correlators of the Haar random ensemble are expressed in
terms of Weingarten functions Wgpσ, Lq, which are known explicitly [85, 86]. We consider
here the double scaling limit, where L is sent to infinity. One may then use the large L be-
havior of the Weingarten functions, to prove [12] that the leading large L correlators of the
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Figure 6: Illustration for integrals over unitaries. The wires represent summation
over indices and integrating over random unitaries inserts a complete sets of wires.
Weingarten functions Wgpαβ´1, Lq weight each bra-ket combination and are the
inverse of the matrix of overlaps between wire states, which is the Gramm matrix
L#pα¨β´1q [85] with #pαq the number of cycles in the permutation α. Dominant large
L configurations are diagonal contractions (middle) with identical bras and kets,
whereas subleading configurations correspond with multi-trace operators (right).

Haar random ensemble, go to the Wick contractions of an ensemble of independent Gaussian
complex variables with variance L.

Using this leading large L behavior it is quite straightforward to compute each of the terms
in (79), taking into account the discussion around (75)

Ln

σ2n

B

Tr
`

H0 U ΛU:
˘n
F

conn
“

1
σ2n

pn´ 1q!Tr
`

Hn
0

˘

TrpHnq ´
1
L

1
σ2n

ˆ (81)

ˆ

n
ÿ

m“1

pm´ 1q!pn´m´ 1q! Tr
`

Hn
0

˘

TrpHmq Tr
`

Hn´m
˘

` . . . ,

where the factorial counts the number of fully connected Wick contractions and we used
Tr Hk “ TrΛk, see Fig. 6 for a graphical representation of these calculations. The sublead-
ing corrections come from the Weingarten functions Wg pσ, Lq where σ has multiple cycles,
hence the emergence of multi-trace operators. In making this approximation, we have as-
sumed that in the double scaling limit, all traces should not be interpreted as scaling with L.
This is self-consistent concerning the Tr

`

Hn
0

˘

; to implement the double scaling limit we will be
urged below to scale these with the nth power of the spectral edge, and indeed with no extra
overall L associated with each trace.

The scaling of the TrpHnq is harder to establish, the procedure that we will use to analyze
the double scaled scaled theory is insensitive to their scaling as long as multi-trace operators
TrpHn1qTrpHn2q are negligible in the action. We assume here they are subleading at large σ,
and comment on their potential significance for smaller σ in section 6. in the remainder of
this work we continue with (81).

Inserting (81) in (79) results in a deformed matrix integral

Zpσ,H0q “

ˆ
dH exp

˜

´L Tr V pHq ´
L

2σ2
Tr
`

H2
˘

`

8
ÿ

n“1

1
n

Tr
`

Hn
0

˘

σ2n
TrpHnq

¸

“

ˆ
dH exp

˜

´L Tr V pHq ´
L

2σ2
Tr
`

H2
˘

´

L
ÿ

i“1

Tr log
`

σ2{x i ´H
˘

¸

(82)

“

ˆ
dH

1
detpσ2{H0b 1´ 1bHq

exp

ˆ

´L Tr V pHq ´
L

2σ2
Tr
`

H2
˘

˙

, (83)
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up to irrelevant normalization factors. This can be viewed as a matrix integral with potential
V pHq ` H2{2σ2, with a stack of ghost-branes inserted, which are represented by the inverse
determinant [5,83].

Before we embark on double scaling of this matrix model, let us first study how the finite
L resolvent and spectral density are modified in the presence of inverse determinants.

3.1 Deformed resolvent and spectral density

The resolvent of a matrix model is defined as

RpEq “ Tr

ˆ

1
E´H

˙

, (84)

and by taking the discontinuity across the real axis it gives the spectrum,

RpE` iεq ´ RpE´ iεq “ ´2πiρpEq , (85)

whose normalization is determined by the total number of eigenvalues in the game
ˆ `8

´8

dEρpEq “ L . (86)

We are interested in the saddle point solution for ρpEq; the genus zero spectral density. The
saddle point equations for a matrix integral with potential W pHq are [88]

LW 1pEq “ 2
 `E0

´E0

dλ
ρpλq

E´λ
“ RpE` iεq ` RpE´ iεq . (87)

This should be satisfied only on the support of the saddle point solution for ρpEq, which we will
assume is a single connected region r´E0, E0s. We will consider the eigenvalues of H0 to come
in pairs˘x i and so the full matrix potential (82) is even. This choice will clearly not affect the
behavior near one of the edges, but it simplifies calculations because the spectrum becomes
symmetric. The equation of motion (87), together with the constraint (86), are sufficient to
solve for RpEq and concordantly ρpEq.

Indeed, imposing that RpEq has a discontinuity only on the interval r´E0, E0s, that it decays
as L{E towards infinity, but has no poles elsewhere in the complex plane, one can invert (87)
and find [5,89]

RpEq “ ´
L

4πi

˛
C

dλ
λ´ E

W 1pλq

g

f

f

e

E2´ E2
0

λ2´ E2
0

, (88)

with C a contour around the spectral cut r´E0, E0s. Since this formula is linear in W , we can
simply focus on the part of the potential coming from the inverse determinants separately (82)

δW 1pλq “ ´
1
L

L
ÿ

i“1

1
σ2{x i ´λ

. (89)

The contribution to the resolvent from this deformation, denoted by δRpEq, is then [68]

δRpEq “ ´
1

4πi

˛
C

dλ
λ´ E

L
ÿ

i“1

1
λ´σ2{x i

pE2´ E2
0q

1{2

pλ2´ E2
0q

1{2
. (90)

We see that the integrand could potentially have poles on the spectral cut. We assume that
σ4{x2

i ą E2
0 , such that all poles are outside the cut, see Fig. 7. This is identical to the con-

vergence criterion of (79). Surprisingly, as discussed in section 4, this criterion σ4{x2
i ą E2

0 is
always satisfied within the approximation (82).
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Figure 7: Contours and their deformation relevant for computing (90). In blue the
initial contour C and in orange the deformed one.

We now deform the contour C around the poles at infinity, E and σ2{x i . The residue at
infinity vanishes because δW 1pλq goes like 1{λ towards infinity. Combining the remaining
residues, we obtain

δRpEq “
1
2

L
ÿ

i“1

1
E´σ2{x i

´
1
2

L
ÿ

i“1

1
E´σ2{x i

pE´ E0q
1{2

pσ2{x i ´ E0q
1{2

pE` E0q
1{2

pσ2{x i ` E0q
1{2

. (91)

This expression is regular at the naive poles σ2{x i because the residues vanish. Taking the
discontinuity, one finds that the correction to the spectral density is given by

δρpEq “ ´
1

2π

L
ÿ

i“1

sgnpx iq

σ2{x i ´ E

pE2
0 ´ E2q1{2

pσ4{x2
i ´ E2

0q
1{2

. (92)

Here the square roots are to be interpreted as positive – we have extracted the explicit minus
associated with the square root in the denominator of (88) and (91) whenσ2{x i lies to the left
of the spectral cut [5,68]. Note that in our case of interest where the eigenvalues of the target
Hamiltonian come in pairs ˘x i , the spectral density remains even, and the spectral density
has decreased. This is consistent with the deformation in the potential (82) [64]

TrδW pHq “
1
L

L{2
ÿ

i“1

Tr log
`

σ4{x2
i ´H2

˘

, (93)

which is also even and negative – obviously a shallower potential with the same number of
eigenvalues filling it, gives a shallower and broader equilibrium sea of eigenvalues, therefore
E0 will have increased.

The full spectral density is thus given by

ρpEq “ ρV pEq ´
1

2π

L
ÿ

i“1

sgnpx iq

σ2{x i ´ E

pE2
0 ´ E2q1{2

pσ4{x2
i ´ E2

0q
1{2

, (94)

with ρV pEq the spectral density coming from V pHq ` H2{2σ2 [68], which we compute ex-
plicitly for a quartic potential in appendix B. Note that at large σ the second term goes away
and we are back to the original matrix model defined by V pHq. The above spectral density
still contains one free parameter E0, which is fixed by the normalisation condition 86. For
instance, if we take V pHq to be quartic like in appendix B, E0 needs to satisfy,

E2
0

4τ

ˆ

1´
3
4
τ4E2

0

˙

´
1

2L

L
ÿ

i“1

ˆ

˜

1´ E2
0

x2
i

σ4

¸´1{2

´ 1

˙

“ 1 . (95)

For σ “ 8, this reduces to the constraint (153) for a quartic matrix integral. Notice also the
divergence when σ4 hits x2E2

0 , with x the larges eigenvalue of H0; we return to this in section
4.
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3.2 Double scaling

We are now ready to double scale our matrix model and interpret H0 in gravity. Luckily, the
deformation of the potential is just a bunch of inverse determinants and the procedure for how
to double scale this is well-known [54, 90]. We find it useful to review that here, especially
since it will help us understand how to scale the parameters coming from the coupling to H0,
namely the eigenvalues of H0 and σ.

The orienting discussion about branes will not be entirely rigorous, but we emphasize that
our methods used to derive (107) are completely rigorous and consistent with results obtained
using the string equation technology, which we discuss below in subsection 3.3 .

To start, it is useful to express the ghost-branes in terms of critical potentials [54].8 This
can be done using the following surprising identity [54,83]

Tr

ˆ

1
y ´H

˙

´
L
y
“

8
ÿ

q“1

1
yq`1

TrpHqq

“

8
ÿ

k“1

py ` E0q
´k´1{2py ´ E0q

´1{2 Tr
´

pH ` E0q
k´1{2pH ´ E0q

1{2
¯

`
, (96)

which holds for any choice of the constant E0. The subscript ` means one should expand in
powers of 1{H and keep only the terms with positive powers of H in the resulting expansion.
The Trp. . .q` in this expression are the critical potentials, or rather their derivative, V 1pHq. To
prove this one explicitly does the binomial expansions in 1{H and rearranges the resulting
sums to collect all terms multiplying TrpHqq, for fixed q. The remaining double sum for fixed
q equals 1{yq`1.

To double scale one then takes the constant E0 to be the spectral edge, and considers
energies close to this spectral edge

H Ñ´E0`H , y Ñ´E0` y , (97)

where E0 is sent to8 whilst the new energies H and y remain finite. This double scaling then
results in9

Tr

ˆ

1
y ´H

˙

´
L
y

ds
“

8
ÿ

k“1

Ok´1 y´k´1{2 , Ok “ Tr
´

Hk`1{2
¯

`
. (98)

Applying the same logic to a stack of inverse determinants one obtains [83]

1
detpY b 1´ 1bHq

ds
“ exp

˜

8
ÿ

k“0

Ok tkpY q

¸

, tkpY q “
1

k` 1{2
TrpY q´k´1{2 , (99)

up to an overall normalization constant that drops out in (82). Here, the operators Ok are
known to correspond in the closed string worldsheet description with insertions of physical
closed string operators, like the closed string tachyon vertices T j of minimal strings [56, 57,
91–95].

The inverse determinant in our theory (82) has Y “ σ2{H0. Since H0 is the target Hamil-
tonian, we should scale it in precisely the same way as the random Hamiltonians and zoom
in on target eigenvalues x i close to the spectral edge. The scaling of Y in (97) is fixed by

8 These are potentials that give rise to an Em`1{2 spectral edge in the double scaling limit.
9 This is the point in this derivation which is not rigorous, in the scaling (97) one secretly assumes that only

order one eigenvalues of the shifted H contribute. Whilst intuitively true, in formula (96) it is not clear that large
eigenvalues of H are suppressed in the term pH ´ 2E0q

1{2.
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demanding that the double scaled inverse determinant gives something nontrivial, together
this demands we scale σ and the x i like

σÑ E0`σ , x i Ñ´E0` x i , (100)

so that the coupling constants in (99) are given by

tkp2σ`H0q “
p´1qk`1{2

k` 1{2
Tr p2σ`H0q

´k´1{2 . (101)

If we now scale the theory with potential V pHq ` H2{2σ2 to the critical point corresponding
to the p2, pq minimal string, the matrix integral (82) is a deformation around that by turning
on the couplings tkp2σ`H0q. In principle it is possible to translate these deformations (99)
to linear deformations of the minimal string worldsheet action I

Itotal “ I ´
8
ÿ

j“0

T j τ jpY q , (102)

with these operators T j implicitly integrated over the worldsheet. One could then rewrite
these actions as dilaton gravity [56–58] and take the p Ñ8 limit to obtain a deformation of
the JT gravity action (7).

In practice though, this is hard. The map between tkpY q and τ jpY q is in general compli-
cated, due to contact terms [91,95]. Moreover because the sum runs over all j, we require not
just the commonly studied tachyons,10 but all physical closed string operators T j – including
those in the ground ring, and those with higher ghost numbers [93,94]. These are much more
mysterious, and seldom studied.

However, if we are interested in JT gravity, there is a much more efficient way of comput-
ing (7) that sidesteps the detour via the minimal string worldsheet formulation [65, 66, 68].
The idea is to scale the theory with potential V pHq`H2{2σ2 immediately to the critical point
corresponding with JT gravity. We then simply solve the matrix integral (82) with the defor-
mation due to the ghost-branes, meaning we calculate the genus zero spectral density – this
completely specifies all genus amplitudes in matrix integrals [5, 48, 96]. Thanks to [49, 66]
one can immediately map deformations around the JT gravity genus zero spectrum, to defor-
mations of the dilaton gravity potential (7).

Let us return to the quartic matrix model. We will first tune the couplings so that the
undeformed theory is tuned to criticality as τ4M2

0 “ g “ 2{3p1´ 2κ{M0q. One could just
double scale to the precise spectral edge E0 of the deformed theory, however we want to
understand to which degree E0 changes with the deformation. Therefore, we should instead
double scale to the spectral edge of the undeformed theory (149), here denoted M0

E Ñ´M0` E , E0 Ñ M0´ E0 , x i Ñ´M0` x i , σÑ M0`σ . (103)

In particular this means,
σ2

H0
Ñ´M0´ p2σ`H0q , (104)

with x i the eigenvalues of H0. Applying this to (92), one finds the spectral density

ρpEq “
2eS0

π

ˆ

κpE´ E0q
1{2`

2
3
pE´ E0q

3{2
˙

(105)

10 These correspond to the primary operators in the corresponding minimal model.
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´
1

2π

8
ÿ

i“1

pE´ E0q
1{2

pE´ E0q ` p2σ` x i ` E0q

1

p2σ` x i ` E0q
1{2

. (106)

Notice that the deformation still vanishes for σ “8. We can expand this out as

ρpEq “ ρV pE´ E0q ´
1

2π

8
ÿ

k“0

pE´ E0q
k`1{2αk`1p2σ`H0` E0q , (107)

where we have the coefficients

αkp2σ`H0` E0q “ p´1qk`1 Trp2σ`H0` E0q
´k´1{2 . (108)

This result makes sense, because the whole point of inserting branes – here parameterized
by σ and x i – is that these can take us from any one minimal model to any other, or any
deformation in between. Indeed the above is the most general expression for a double scaled
spectral curve. Clearly the result (107) is valid for an arbitrary undeformed double scaled
spectral curve, including that for JT gravity.

Note that the deformation parameters blow up when an eigenvalue of σ2{H0 approaches
the spectral cut. We connect this to the work of [64] in section 4.

Finally, one can determines E0 by directly double scaling the constraint (86) or (95) and
using (103) one obtains

0“ 2E0pE0`2κq`e´S0

8
ÿ

i“1

1

p2σ` x i ` E0q
1{2
“ 2E0pE0`2κq´e´S0α0p2σ`H0`E0q . (109)

3.3 JT gravity

So far we have focused on the quartic matrix model, but from our discussion it is clear this
works for any potential for the p2, pq minimal string theories and by extension to p “ 8 also
for JT gravity.

As an alternative to the above manipulations one could also employ the string equation
technology which originates from the orthogonal polynomial approach to matrix models. This
has the advantage of allowing a non-perturbative and numerical analysis [97], but the disad-
vantage of being more abstract. At any rate, it presents a useful check on the results of section
3.2.

The string equation is a differential equation for a function upxq, which can be used to
compute any correlation function [98, 99]. For the p2, pq minimal string theories, the string
equation takes the form,

x “
ÿ

k

TkRkrus ” Frus , (110)

with Rkrus the Gelfand-Dickii functionals, which to leading order in the genus expansion go as
uk. The parameters Tk are analogous to those we defined earlier in (99) and for the minimal
string theories they take particular values, for instance see appendix B of [94] or [57]. We
also defined F as the RHS of the string equation for convenience. It is not worthwhile for the
present discussion to repeat or review the derivation of the string equation, but see [55] for
a review. Let us denote by FV , the term in the RHS of the string equation coming from the
potential without ghost-branes.

It is a simple application of the technology of [98, 100] to determine the effect of the
ghost-branes. To leading order this gives the string equation,11

x “ FV puq ´
1
2

e´S0α0p2σ`H0` uq , (111)

11 The effect of branes scale with e´S0 whereas the higher genus corrections start at e´2S0 .
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with α0 given in (108). The equation for E0 is obtained by setting u “ E0 and x “ 0. This
matches exactly with (109) when we use Fpuq “ u2 ` 2κu, the undeformed p2,3q minimal
string with non-zero cosmological constant. The density of states can then be computed using

ρpEq “
eS0

2π

ˆ E

E0

du
BuFpuq
?

E´ u
, (112)

and we reproduce (107). This provides a check of the derivation in section 3.2. In the case of
JT, we can use the results of [57] to find

?
E0

2π
I1p2π

a

E0q ´
1
2

e´S0α0p2σ`H0` E0q “ 0 . (113)

From these expressions we find that E0 is negative, as anticipated around (93). In fact, it is
subleading in eS0 and to leading order

E0 “ α0e´S0 , (114)

where α0 is negative. To leading order, the spectral density for JT therefore takes the form

ρpEq “
eS0

4π2
sinh

´

2πpE´ E0q
1{2

¯

´
1

2π

8
ÿ

k“0

Ek`1{2αk`1p2σ`H0q . (115)

3.4 Gravitational interpretation

With the preparatory work out of the way, we can discuss the gravitational interpretation of
slightly fixing a member of the matrix integral ensemble. There are two ways to interpret our
results; an open string picture which involves branes and the spacetime ending on it and a
closed string picture, which captures our deformation as changing the dilaton gravity action.
Both of them provide us with interesting insights as to what happens when one tries to collapse
the matrix ensemble to one member.

Open universes

We have learned that at large σ, the effect of the external matrix H0 is just inserting a bunch
of ghost-branes (83). In the double scaling limit there are infinitely many such branes, one for
each eigenvalue of H0. From a geometric point of view, this means that when we compute a
certain observable, say the partition function xZpβqy, the sum over topologies includes space-
times that not just have a large asymptotic boundary, but many other boundaries as well, since
the spacetime can end on the ghost-branes. The boundary conditions on the brane side are of
the FZZT type in the language of minimal string theory [5,83,101,102], and on the (classical)
level of JT simply fixed energy boundary conditions [58].

For two point functions xZpβ1qZpβ2qy, the presence of the branes gives rise to an explicit
realisation of the idea of broken cylinders [103]; configurations which are disconnected and
have some other boundary condition in the middle. The full sum over topologies is not yet
factorizes, because σ remains large, but it does indicate other contributions that might even-
tually take over and cause the two-point functions to factorize, see Fig. 8 for an illustration.
Specifically, in this case one can see that the increasing number of brane boundaries weakens
the geometric connection between the two asymptotic boundaries.

Notice also that our stack of ghost branes in the matrix potential is in spirit similar to the
recently considered effective matrix model for dynamical end-of-the-world branes [68], those
are D-branes with fixed mass Cardy state in open string parlance.
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Figure 8: Contributions to xZpβ1qZpβ2qy in our gravity theory deformed by the ex-
ternal field H0. The blue boundaries are asymptotic boundaries, whereas the orange
ones are boundaries come from the ghost branes and are labelled by the eigenvalues
of H0 (not explicitly drawn here).

We have treated all ghost-branes as independent, and the boundaries associated to each
eigenvalue exponentiate separately. This is an effect that happens at large σ, and arises be-
cause we took only the leading term in the unitary integral (81). The subleading corrections
in (81) gives rise to double-trace terms for H0 and H, this means the RHS of (79) is no longer
a single product over the eigenvalues of H0. At large σ, every eigenvalue of H0 can be seen as
being associated with one ghost-brane, therefore the multi-trace terms that appear for smaller
σ can be thought of as interactions between the different ghost-branes. Indeed (16) is also
not just a product over the eigenvalues of H0. We will discuss this more in section 6.

Deformed dilaton potential

The closed string interpretation is different. Using the results of [57, 65, 66], we can imme-
diately map this deformation of the JT gravity spectral density (115) to a deformation of the
dilaton gravity action (7). We find that the dilaton potential to order e´S0 becomes

W pΦq “ 2pΦ` UpΦqq , UpΦq “ ´ e´S0 e´2πΦ
8
ÿ

k“0

Φ2k αkp2σ`H0q `Ope´2S0q , (116)

with αkp2σ`H0q given in (108). Alternatively we can simply carry out the sum over k and
write

UpΦq “ e´S0

8
ÿ

i“1

a

2σ` x i

2σ` x i `Φ2
e´2πΦ`Ope´2S0q . (117)

The insertion of the branes has thus been reinterpreted as small changes of the spacetime
action. The most important take away from this section is there are perfectly sensible theories
of dilaton gravity (116), which are less random than the simplest case of JT gravity.

Notice however that we have assumed here that 2σ` x i ą 0. When 2σ becomes close to
the largest (negative) eigenvalue we see that the corrections in U become large and the dila-
ton potential seems to develop non-monotonicities. At that point however, one also needs to
include higher genus corrections but not only to U but also to E0. A more thorough discussion
of that is beyond the scope of the present discussion.

The fact that we have these two different ways of interpreting the effect of H0 in the bulk
spacetime is a manifestation of an open-closed duality or as discussed in [60, 104] it is an
explicit realisation where two bulk descriptions coexist.12

12 The context is different than in [60], who discuss a path integral duality at small σ whereas this duality is at
large σ.
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Figure 9: Disk that is torn apart because of the proliferation of macroscopic holes
[64]. The blue boundary indicates an asymptotic boundary and the large orange
holes are where the spacetime ends on ghost-branes. In reality these orange bound-
aries are much larger and the spacetime just consists of thin strips.

The large σ regime showed what it means in gravity to slightly fix a Hamiltonian in the
boundary matrix ensemble. However this is still only an asymptotic region of σ space, and
our main interest is in small σ. We next consider what happens when we back away from
asymptotically large σ.

4 Tearing spacetime

When lowering σ, the coupling constants αk in (108) blow up, when one of the eigenvalues
of σ2{H0 approaches the spectral edge E0, resulting in a proliferation of operator insertions.
More importantly, operators Ok in (99) with large k are strongly suppressed for large σ, when
all eigenvalues are far from the cut, but this suppression stops when one of the eigenvalues
approaches the edge, and operators with large k dominate. Another way of seeing this prolif-
eration is by noticing that the series (79) in (82) is no longer convergent for small σ, meaning
that Tr

`

Hk
˘

operators for large k dominate. These correspond to macroscopic holes in the
spacetime, unlike local operators which have small k. The result is a spacetime with many
large holes (see Fig. 9) which therefore appears to be torn apart.

Remarkably, this tearing phenomenon has been discovered by Kazakov [64], in the quartic
matrix integral with avant la lettre ghost-brane-insertions. He studies the potential (149) with
the deformation (99), but restricted to one eigenvalue pair. We have L{2 eigenvalue pairs,
restricting to the case with an even spectrum

W pHq “
1

2τ
H2´

τ4

4τ
H4`

1
L

L{2
ÿ

i“1

Tr log
`

σ4{x2
i ´H2

˘

. (118)

Here the parameter τ is understood to be fixed once and for all to the value

τ“
M2

0

8
. (119)

This is the combination of (153) and (156), with M0 the undeformed spectral edge (103).
This was also used in (109).

Let x be the absolute value of the largest negative eigenvalue of H0.13 Based on the above
discussion one might expect a tearing phase transition when σ2{x “ E0; however, a more

13 As before, we will be scaling towards the left edge.
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careful analysis shows that this transition happens when an eigenvalue of σ2{H0 passes the
edge of the undeformed spectrum

σ2

x
ă M0 . (120)

Let us explain this in a bit more detail, and discuss the double-scaled continuum theory at both
sides of the transition.

The point is that, when σ becomes too small, the critical coupling for the theory, where
one obtains the continuum p2, 3q minimal gravity theory, is no longer τ4 “ 1{12τ and one
needs to scale towards a different coupling constant to find a continuum theory [55]. To see
this, consider the constraint equation (95)

g
4ττ4

ˆ

1´
3
4

g
˙

´
γ

2

1{γ
ÿ

i“1

ˆ

˜

1´
g x2

i

τ4σ4

¸´1{2

´ 1

˙

“ 1 , (121)

where we introduced g “ τ4E2
0 and following Kazakov introduced γ “ 1{L. Furthermore,

consider the derivative of the constraint equation with respect to g

ˆ

1´
3
2

g
˙

´
γτ

σ4

1{γ
ÿ

i“1

x2
i

˜

1´
g x2

i

τ4σ4

¸´3{2

“ 0 . (122)

Naively taking γ“ 0, one recovers the critical couplings g “ 2{3 and τ4 “ 1{12τ. This second
equation (122), tunes the coupling such that one obtains a E3{2 spectral edge, and is analogous
to demanding that the first term vanishes in (154), as is explained in the refreshingly didactic
review [55].

However, as Kazakov explained, the limit γ “ 0 is treacherous [64]. To see this, one can
solve these equations perturbatively in γ, the first subleading correction gives

g “
2
3
´ γ

1
12

M2
0

σ4

8
ÿ

i“1

˜

1´
M2

0 x2
i

σ4

¸´3{2

, (123)

with a structurally similar expression for τ4. This expansion is regular whenσ2{x ą M0, but it
becomes singular, and hence nonphysical, once this largest eigenvalue enters the undeformed
cut σ2{x ă M0 as follows from the negative fractional power.

This means that for σ2{x ă M0 the critical couplings at γ “ 0 are not g “ 2{3 and
τ4 “ 1{12τ, one should instead expand around different values to obtain an expansion with
real couplings. The trick is to expand the couplings close to the singular point in (121) and
(122), where one obtains the leading answer

E2
0 “

g
τ4
“
σ4

x2
´ γ2{3 1

4

˜

1´
σ4

M2
0 x2

¸´2{3

. (124)

The power of γ2{3 for the correction is an ansatz which implies the second term in (122) is
order γ0 and therefore competitive with the first term, and similarly in (121). The solution
for the coupling itself is more messy, but has a similar structure τ4 “ a` γ2{3 b where a and
b functions of σ, x and M0 that are real as long as σ2{x ă M0. See Fig. 10 for an numerical
solution to the constraints (95) and (122) as a function of σ. The transition is clearly visible
there. For future purposes we note that Bσa ‰ 0.

Now for Kazakov’s surprise. Using intuition from the discrete ribbon graphs, one deduces
that the average circumference ` of the holes associated with the deformation (see Fig. 5) is
proportional to [64]

` 9 ´
σBστ4

γBγτ4
9 γ´2{3 . (125)
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Figure 10: Tearing transition as a function of σ. Blue dots are numerical solutions
to the (95) and (122) for x “ 10, γ “ 10´4 and M2

0 “ 8. At large σ we see the
usual solution for the quartic matrix model and E2

0 « 8 (horizontal grey line). As
σ is lowered and crosses σ2 “ x M0 “ 20

?
2, there is a first order phase transition

and E2
0 goes like σ4{x2, which is indicated with the solid orange curve. Note that at

finite γ the transition is smoothed out, but becomes sharp as γÑ 0.

In the limit γ“ 0 these become macroscopic or even asymptotic boundaries; this is the tearing
phase where the smooth spacetime is shredded by these large holes. In the phase before the
tearing transition σ2{x ă M0, the holes remain relatively small [64].

Notice that (124) implies that σ2{x i ă E0 everywhere. The eigenvalues σ2{x i therefore
never actually enter the spectral cut, the edge moves along; this validates using (107) for all
values of σ, it protects the coupling constants from becoming imaginary and hence nonphysi-
cal.

From this analysis, we see that the undeformed potential does not affect the tearing tran-
sition. The non-trivial feature of this phase, the fractional power of γ and Bσa ‰ 0, just comes
from the addition of the brane terms. Consequently, the tearing phase is also present if we
take the undeformed potential to be the one corresponding to JT gravity.

One might wonder what happens after σ2 has crossed M0 x . First, notice that the large
boundaries that occur are labelled only by x . The other x i boundaries are still small, but
when σ2 becomes smaller, also those can become large. As a result, the surface becomes
more and more torn. Second, when σ becomes sufficiently small, the approximations we
made to find (82) breaks down. For instance, multi-trace terms will become important, see
section 6. Furthermore, we have not considered non-perturbative effects and the insertion
of the Gaussian around H0 does not introduce any pathologies and so we expect that non-
perturbatively this transition might be resolved. For instance, to check this one can compute
the relevant (ghost) brane correlators in the Airy case [105], which are presumably smooth
functions of the ghost brane energies σ2{x i .
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5 Towards non-averaged dilaton gravity

We have just seen that the gravitational interpretation becomes more complicated when back-
ing away from asymptotically large σ. Surprisingly though, in the other extreme of small
σ, one can still find a gravitational interpretation, but this requires taking a slightly different
route.

We propose for small σ to modify (1) by integrating over H0 and insert a small number of
spectral densities for H0, which fixes several eigenvalues of H0 but leaves most of the Hamil-
tonian random. The matrix model we shall consider is

Zpσ,κ1 . . .κnq “

ˆ
dH

ˆ
dH0 TrδpH0´κ1q . . . TrδpH0´κnqˆ

ˆ exp

ˆ

´L Tr V pHq ´
L

2σ2
TrpH0´Hq2

˙

, (126)

where n ! L. At finite σ, we are dealing with a certain two-matrix model. At small σ, the
Gaussian centered around H0 becomes a delta function, and the H0 integral collapses, giving
an ordinary matrix integral with a bunch of densities inserted. This is the merit of integrating
over H0, as most of the eigenvalues of H remain random, even at small σ and so a more
feasible direction to discuss a gravitational interpretation opens up.

5.1 Local factorization

Actually, to further motivate studying (126), we note that partial fixing is already enough to
understand questions such as factorisation [5,8,10–12,90]. As we explain now, this is because
in energy space it results in what one could call local factorization.

Consider the spectral correlation for n“ 1, to which we restrict during most of this section

xρpE1qρpE2qyκ “
1

Zpσ,κq

ˆ
dH TrδpH ´ E1qTrδpH ´ E2q

ˆ
dH0 TrδpH0´κqˆ

ˆ exp

ˆ

´L Tr V pHq ´
L

2σ2
TrpH0´Hq2

˙

. (127)

One of the eigenvalues of H is gradually fixed to κ; to appreciate this, notice that for small
σ we obtain a delta function δpH0 ´ Hq. By permuting the eigenvalues of H one finds that
indeed one eigenvalue has been fixed

Zpσ,κq “ L
ˆ `8

´8

L
ź

i“1

dλi exp

ˆ

´ L
L
ÿ

i“1

V pλiq

˙

∆pλq2δpλ1´κq . (128)

The same thing happens in all correlators, and it carries over immediately to generic n.
The connected part of (127) is

xρpE1qρpE2qyκ conn “ xρpE1qρpE2qyκ´xρpE1qyκ xρpE2qyκ

“´TκpE1, E2q `δpE1´ E2q xρpE1qyκ , (129)

where one computes xρpE1qyκ analogously to how the two-point function is computed, but
now with only the one insertion of TrδpH ´ Eq. Following the logic of section 2, we are
interested in calculating TκpE1, E2q. Define thereto the sine-kernel [106], which features the
undeformed (associated to a matrix integral with potential V pEq) spectral density ρpEq

SpE1, E2q “
sinpπρpE1qpE1´ E2qq

πpE1´ E2q
. (130)
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Figure 11: The spectral correlation TpE1, E2q for the theory where we gradually fix
one eigenvalue (127). For σ “ 8 (left) this is the characteristic sine-kernel of ran-
dom matrix theory (131). For σ “ 0 (right) the spectral correlation is completely
destroyed close to the fixed eigenvalue, modulo a delta spike (132). For finite but
small σ (middle) the leading effect is a Gaussian smearing of this delta spike (143).
Here κ“ 0.2.

In the case n“ 0 random matrix universality implies that one can approximate the covariance
TpE1, E2q for the completely random theory as [106]

TpE1, E2q “ SpE1, E2q
2 . (131)

Using formula (67) of [11] one finds a similarly universal expression for the theory with one
eigenvalue fixed

TκpE1, E2q “ pSpE1, E2q ´ SpE1,κqSpE2,κq{Spκ,κqq2`δpE1´κqδpE2´κq , (132)

see Fig. 11. When E1 and E2 approach κ, the smooth part of the covariance vanishes

TκpE1, E2q “ δpE1´κqδpE2´κq `
π4ρpκq6

9
pE1´κq

2pE2´κq
2` . . . . (133)

This shows that fixing one eigenvalue κ already destroys all spectral correlation for energies
close to κ. In fact, it is clear that locally near this eigenvalue xρpE1qρpE2qyκ already factorizes
and gives rise to an interesting constraint between geometries.

Geometrically, (132) features 3 topologies; suppressing the genus expansion and the cor-
responding nonperturbative corrections, see Fig 12.14 There is the wormhole connecting the
two boundaries ρpE1q and ρpE2q, the three holed sphere connecting ρpE1q and ρpE2q to
ρpκq “ Spκ,κq, a product of two wormholes connecting ρpE1q to ρpκq and the second worm-
hole connecting ρpE2q to a second copy of ρpκq. This last term originates from subtracting
the disconnected terms in (129).

If we are close to κ, (133) tells us that Tκ is small and we that the three aforementioned
geometries need to satisfy the constraint as sketched in Fig. 12. When fixing multiple consec-
utive eigenvalues κi , the region where the corresponding Tκ1...κn

is small, grows and leads to
more intricate relations between different geometries. We emphasize that the nonperturbative
corrections are crucial for recovering these sine-kernel formulas, and the resulting factoriza-
tion. Classical geometries will not explain Fig. 12.

14 Here we use the dictionary between double scaled matrix models and minimal string theory to relate a insertion
of the spectral density to a geometry with fixed energy boundary conditions [5]. In the JT limit such boundary
conditions were studied also classically in [58].
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Figure 12: The geometries contributing to the spectral correlation (132), the genus
expansion is suppressed for presentation purposes. Fixed energy boundaries are red
and eigenbrane boundaries are orange. The first two terms should be normalized by
one eigenbrane disk (labelled by κ), the third term is normalized by two such disks.
Here we again emphasize that the relation between these geometries holds locally.

In connection to the dispersion relation in section 2.4, and [60] we notice that the self-
averaging wormholes contribution is always there. The other two geometries strongly depend
on κ and are non-self-averaging. The third geometry represents the completely factorized
diagonal contribution, it equals the sum of the wormhole and some other non-self-averaging
geometry [11,12].

Let us emphasize the main point. Suppose one considers JT gravity with one eigenvalue
fixed at position κ, and computes the two point function of asymptotic boundaries with fixed
energy boundary conditions. Then when considering boundary energies close to κ one finds
that this amplitude essentially factorizes. This makes the theory with only several fixed eigen-
values (126) worth understanding.

5.2 Gravitational interpretation

Let us now return to studying finite σ (126). As mentioned before, this matrix model can be
interpreted geometrically as having n background boundaries labelled by κi . In [11,12] they
were dubbed eigenbranes as they represent fixed energy boundary conditions. When insert-
ing probe boundaries ρpEiq, labelled by energies Ei , in order to compute various correlation
functions, we sum over over all spacetimes that are consistent with the boundary conditions.
We already saw an example of this in the previous subsection.

Unfortunately, these n background boundaries have no immediate gravitational interpre-
tation, because the auxiliary random matrix H0 has no direct gravitational interpretation. We
need to integrate H0 out in order to make contact with gravity. Luckily, using the formulas
from section 2, we can easily perform these H0 integrals and obtain the appropriate insertion
in the matrix integral for H.

The goal is understanding the gravitational dual of that insertion and how the eigenbrane
picture is modified for nonzero σ. This gives us a better handle on the full parameter space
of our theory (1). To simplify the analysis and discussion, let us focus on fixing just one
eigenvalue. The insertion in the H matrix integral is thus

ρH0
pκq “

ˆ
dH0 TrδpH0´κqexp

ˆ

L
2σ2

TrpH0´Hq2
˙

. (134)

The idea is to write this in terms of operators with known gravitational duals. For the purposes
of this section we introduce a coupling g2 “ L{σ2 which remains finite throughout; this is a
different scaling of σ than in section 3.
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Tr

ˆ

δpκ´Hq
1

κ´H

˙

“ ...

Trδpκ´HqTr

ˆ

1
κ´H

˙

“ ... ...

Figure 13: Contact terms correspond in gravity with different boundary conditions
on different segments (left).The gravitational translation of the double trace operator
(right) is inserting one boundary with fixed energy boundary state, and a marked
FZZT boundary or resolvent [5, 107]. We distinguish these close related boundary
states by picturing the FZZT boundary segments using dark orange wiggly curves in
contrast to the eigenbrane boundary in orange.

By slightly modifying the derivation of (22) one can exactly perform this Gaussian integral
and find [36]

ρH0
pκq “

ˆ `8

´8

dt
2π

L
ÿ

k“1

exp

ˆ

´
1

2g2
t2` itpλk ´κq

˙ L
ź

i‰k

λk ` it{g2´λi

λk ´λi

“ g2
ˆ `8

´8

ds
2π

˛
H

du
2πi

exp

ˆ

´
g2

2
ps2` pu´κq2q

˙

1
κ´ is´ u

detpκ´ is´Hq
detpu´Hq

, (135)

where the contour integral around the eigenvalues λk of H, and we defined s “ ipu´κq´ t{g2,
which is actually the same variable as appearing in the Kontsevich integral. It is important to
notice that here we are thinking about H as a matrix that we still need to integrate over, so at
this point it has a bunch of discrete eigenvalues and the above manipulations make sense.

The contour for the u integral can be deformed so as to take the discontinuity, on the real
axis, of the ratio of determinants (and not of the pole at κ´ is). This is non-zero as a result of
the Sokhotski-Plemelj theorem.

To find these discontinuities is difficult, but luckily, at large g (small σ), the Gaussians
in (135) are sharply peaked around s “ 0 and u “ κ. This invites us to Taylor expand the
determinants as

detpκ´ is´Hq
detpu´Hq

“ det

ˆ

1`
κ´ is´ u

u´H

˙

“ 1`
8
ÿ

n“1

1
n!
pκ´ is´ uq

L
ÿ

i1‰¨¨¨‰in

1
u´λi1

. . .
1

u´λin

“ 1`
8
ÿ

n“1

1
n!
pκ´ is´ uqn

ˆ

Tr

ˆ

1
u´H

˙˙n

smooth
,

(136)

where the subscript on the products of resolvents means we subtract contact terms. The sim-
plest cases are

Tr

ˆ

1
u´H

˙

smooth
“ Tr

1
u´H

,

ˆ

Tr

ˆ

1
u´H

˙˙2

smooth
“

ˆ

Tr

ˆ

1
u´H

˙˙2

´ Tr

ˆ

1
u´H

˙2

.

(137)
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Now one can take the discontinuity for each term in the expansion (136). The constant in
(136) does not contribute, since the pole at κ´ is lies outside of the contour. Using Sokhotski-
Plemelj, we obtain

ρH0
pκq “

g2

2π

ˆ `8

´8

ds exp

ˆ

´
g2

2
s2
˙ˆ `8

´8

du exp

ˆ

´
g2

2
pκ´ uq2

˙

ˆ

ˆ

8
ÿ

n“0

1
n!
pκ´ is´ uqn

ˆ

Trδpu´Hq
ˆ

Tr

ˆ

1
u´H

˙˙n˙

smooth
,

(138)

where again the smooth quantities are defined by subtracting diagonal contact terms. For
example
ˆ

Trδpu´HqTr

ˆ

1
u´H

˙˙

smooth
“ Trδpu´HqTr

ˆ

1
u´H

˙

´ Tr

ˆ

δpu´Hq
1

u´H

˙

. (139)

Notice that there are no products of delta functions, because the sum in (136) is over different
eigenvalues. Finally, the integrals over s give n-th order Hermite polynomials, which, by using
the Rodrigues formula, can be converted in derivatives of the Gaussian centered at u “ κ.
After n partial integration, we then arrive at

ρH0
pκq “

g

p2πq1{2

ˆ `8

´8

du exp

ˆ

´
g2

2
pκ´ uq2

˙

ˆ (140)

ˆ

8
ÿ

n“0

1
n!

p´1qn

g2n
Bn

u

ˆ

Trδpu´Hq
ˆ

Tr

ˆ

1
u´H

˙˙n˙

smooth

“
g

p2πq1{2

ˆ `8

´8

du exp

ˆ

´
g2

2
pκ´ uq2

˙

pTrδpu´Hq ` . . . q . (141)

Each term in this expansion has a direct gravitational interpretation, which we will discuss
next.

The leading contribution represents the insertion of a spectral density operator Trδpκ´Hq
in the H integral, and in gravity this corresponds to inserting one extra asymptotic boundary,
with fixed energy boundary conditions. The difference with g “ 8, is that the energy of the
boundary state will be smeared with a tight Gaussian. The leading effect on the eigenvalue
correlation (132) is a similar smearing

TκpE1, E2q “pSpE1, E2q ´ SpE1,κqSpE2,κq{Spκ,κqq2 (142)

`
g2

2π
exp

ˆ

´
g2

2
pE1´κq

2´
g2

2
pE2´κq

2
˙

. (143)

Close to the almost-fixed eigenvalue this is indistinguishable from the results for the finite
dimensional matrix integral (42), but here with a clear gravitational interpretation. See also
Fig. 11.

The subleading corrections to (141) correspond with having multiple extra boundaries.
They come in two types. The first one is the contact term contributions and has segments with
different boundary condition separated by marked points [56,72,107,108]. The second type
is simply the coming from the multi-trace contributions in the first line of (141). Both are
shown in Fig. 13.

The partial derivative Bu introduces an extra marked point on any of the boundaries [56,
72,107,108]; fundamentally the boundary conditions remain the same.
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... “

ˆ `8

´8

du exp

ˆ

´
g2

2
pκ´ uq2

˙

...

´
1
g2

ˆ `8

´8

du exp

ˆ

´
g2

2
pκ´ uq2

˙

... ... ` . . .

Figure 14: Gravitational interpretation (right) for inserting ρH0
pκq (left) in our two-

matrix integral (126). The eigenbrane boundary is smeared away from the g “ 0
limit.

In summary, we end up with the mapping of fixed energy boundaries for the auxiliary H0
matrix, to tightly smeared gravitational boundary conditions, that is shown in Fig. 14.

Notice that, when lowering g to make the eigenvalue more random, the configurations
with many macroscopic boundaries are no longer suppressed and ultimately they proliferate.
This reminds us of the tearing phenomenon encountered in section 4, but now approached
from the small σ regime. It is surprising that in this setup, the gravitational theory seems
to make more sense when one eigenvalue is completely fixed, than when the eigenvalue is
half -random.

This provides hope for the endpoint σ “ 0 of the theory, where we try fixing the whole
Hamiltonian (1). Perhaps when lowering from σ “ 8, the theory goes through some rough
patch at intermediate values of σ where spacetime appears to be broken, torn apart by macro-
scopic holes, but then regains its footings and acquires a nice gravitational interpretation again
at σ “ 0.

6 Concluding remarks

We have investigated the matrix integral

Zpσ,H0q “

ˆ
dH exp

ˆ

´L Tr V pHq ´
L

2σ2
TrpH0´Hq2

˙

, (144)

in different parametric regimes of σ, both in finite dimensional matrix integrals and in the
double-scaling limit, where the theory describes two dimensional dilaton gravity. This repre-
sent a more realistic toy model for higher dimensional quantum gravity, which appears to be
dual to a single boundary theory, instead of an ensemble like JT gravity.

Our most important findings are:

1. Wormholes gradually approach diagonal delta functions in the non-random theory.

2. One universal saddle S “ 0 in the Efetov model governs the non-averaged theory.

3. When making the theory less random, there are phase transitions where spacetime is
torn apart.

It has been suggested that perhaps quantum gravity is just an ensemble average, and that
is the end. However, via wormhole physics, traces of microstructure have been discovered
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within gravitational systems, like the ramp and plateau. Analogous to how Brownian motion
was evidence for molecules, this is evidence that there is microstructure underlying spacetime.
The logical next step is to investigate what the atoms of spacetime are. Our work is a step in
that direction.

We refer to the individual sections and the summary in section 1.2, for specific discussions
on each regime. We end this work with various, more speculative, pieces of discussion and
raise open questions.

Higher dimensions

Unlike with two or three dimensions, quantum gravity in higher dimensional AdS is dual to
one single boundary theory. From our analysis, we have learned what it means, for a two
dimensional theory, to go towards a single boundary theory. Importantly, we saw in section 3
that there are perfectly sensible theories of dilaton gravity (116) which are less random than
the simplest case of JT gravity.

This confirms the idea that, when we consider a UV complete theory of quantum gravity,
which we believe are rather scarce and special; the UV details of the theory, such as branes,
strings, higher-spin fields etcetera, are encoded in specific couplings of the effective low energy
bulk description. For many questions, however, a truncation to the Einstein-Hilbert or JT action
suffices. But for questions about, say, factorisation [90,109] it does not. The simplified gravity
theory appears to be dual to an ensemble. It is the additional bulk couplings (that we dropped
in doing the truncation) that then need to be taken into account. Our model precisely shows
that when we move away from the boundary theory being an ensemble, bulk couplings appear
and in particular they depend heavily on the specific boundary theory. This also highlights the
point that one specific boundary theory is dual to one specific bulk theory.

It would be interesting to study our deformed JT gravity theory in Lorentzian signature.
The extra boundaries labelled by x i would then, after analytic continuation, correspond to ad-
ditional boundaries in Lorentzian spacetime, seemingly just outside the horizon like fuzzballs
[68]. Do these micro-structures also generalise to higher dimensions? If and how these struc-
tures relate to microstates of black holes is an interesting question and requires a full under-
standing of the theory at small σ, which seems unclear at present.

The most promising avenue towards understanding small σ, seems to be understanding
the S “ 0 universal saddle of the Efetov model in gravity.

Of course, there is an alternative open-closed dual Lorentzian interpretation of literally
JT gravity with a deformed dilaton potential (116). It would be interesting to understand the
closed dual of the tearing phase. Perhaps this is related to the aforementioned non-monoticities
that appear in the dilaton potential.

Weingarten corrections

The conclusion of sections 4 was that spacetimes are annihilated by the nucleation of huge
holes, when σ is lowered below some critical value.

However one should remember that the starting point (82) of our analysis is an approx-
imation too, and that approximation comes into jeopardy when the coupling constants blow
up. When operators On with huge valence n become relevant, the Gaussian approximation to
the Weingarten functions breaks down. This is because all Weingarten functions at fixed n,
share the same denominator [85,86], which diverges when ną L. For example when n“ 3

Wgp1,1, 1q “
L2´ 2

LpL2´ 1qpL2´ 4q
, (145)
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the Weingarten functions diverge if L ă 3. Deviations of Weingarten functions from Gaussian
behavior are intimately connected with various signatures of discreteness, such as the plateau.
These corrections should be important for a full understanding of small σ. Furthermore, the
combinatorial prefactors in (81) could make the multi-trace deformations compete with the
single-trace deformations.

Therefore, we believe a rigorous treatment of the transition to small σ, will require control
of the full Harish-Chandra integral (78) in the double scaling limit; we have not succeeded in
understanding this. Undoubtedly this would result in an expression for the deformed potential
involving multi-trace deformations on top of the L branes we already had. One would have
to figure out how to process this through something like (88) or through the string equation
machinery.

Multitrace deformations and branched polymers

Fortunately, multitrace deformations of matrix models have been considered before and several
interesting phenomena were found [110–114].

In [110], a quartic matrix integral deformed by the double trace term ptr H2q2 is consid-
ered. This interaction is known as a touching interaction, because in the ribbon graph, ribbons
would be touching. If one considers a term ptr Hkq2 then higher interaction vertices are touch-
ing, establishing a microscopic wormhole. In the continuum limit, these become nonlocal in-
teractions between distinct points on the spacetime, so one obtains a non-local dilaton gravity
action (7). The open string dual are the brane interactions discussed in section 3.4.

As function of the coupling g of these multitrace operators, three phases were found. Be-
low some critical coupling g0 the theory behaves like the standard minimal string, but with
nonlocal interactions. Then there is a peculiar phase at g0 where we still have the minimal
string, but mysteriously the minimal matter primaries are dressed by the dual Liouville pri-
mary with weight Q´α instead of α [113]. For g ą g0 the theory is dominated by branched
polymers, which seems to signal a breakdown of continuum geometry.

It would be interesting to understand these phases in detail in the context of our finite σ
theory, in particular one would like to analytically track the non-localities in the dilaton gravity
action, and try to make sense of the branched polymer phase in gravity.

Averaging over bulk couplings

Let us mention that by using a Hubbard-Stratonovich transformation, the double-trace de-
formation can also be interpreted as a single trace term with Gaussian measure. The mi-
croscopic wormholes then originate from an average over bulk couplings, just as Coleman
envisioned [115]. This now corresponds in dilaton gravity with viewing the nonlocal theory
discussed above, as a local dilaton gravity theory with specific couplings, and with en ensem-
ble average over the couplings. This would be a closed string picture of the effects of branes
and their interactions. It is tantalizing that averages over bulk couplings appear when we
are trying to describe the bulk dual of one system. The idea would be that this ensemble too
ultimately collapses when σ “ 0, then we are in an α-state [9,12].

We have seen that introducing the external matrix H0 generates bulk couplings, as mani-
fested in the deformed dilaton potential (116). From the matrix model perspective, we have

ˆ
dH0 Zpσ,H0q “

ˆ
dH dH0 exp

ˆ

´L Tr V pHq `
1

2σ2
TrpH0´Hq2

˙

“

ˆ
dH exp

ˆ

´ L Tr V pHq
˙

(146)
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modulo implicit normalization constants. An interesting open problem is understanding why
averaging over H0 in the closed string description (116) returns simply JT gravity, without any
matrix technology. One way to understand this, would be to find a gravitational interpretation
for the other poles in the dispersion relation (68), and for them vanishing when we integrate
over H0.

Another place where averaging over bulk couplings appeared was in section 5. There we
considered fixing only one eigenvalue of H and needed to integrate over the brane parameters.
Directly interpreting (135) as averaging over brane locations is, however, subtle; because de-
terminants and branes differ by a factor expp´LV pEq{2q. This diverges in the double scaling
limit, therefore complicating an immediate gravitational interpretation of (135). It would be
interesting to understand how to deal with this, such that one could study (135) away from
small σ perturbation theory.

Direct product of gravity theories

From the matrix integral point of view, the genus zero spectral density now has many cuts (66).
Perhaps for sufficiently small σ, one could interpret the matrix integral as a direct product of L
gravity theories, which only know about each other non-perturbatively (see also [116]). Thus
perhaps there is some many-universe interpretation [9] at small σ.

One way to also see that this could be true is by looking at the topological recursion for
matrix models with an external field [47,117]. This recursion (and hence also the topological
expansion) is much more complicated then in the usual case, not only because the spectral
curve is more intricate, but also, and perhaps most importantly, because the residue is not just
taken at z “ 0 (as is the case for JT for instance), but at all branch points of the spectral curve
(spectral edges). Since there are many of them, the topological recursion includes many more
contributions. In the naive double scaled theory one could argue that only one branch point
is of interest, but clearly at small σ this is insufficient.

Open questions

We have made progress in understanding non-averaged two dimensional gravity. However,
many open questions remain. There are several concrete things to investigate:

1. Gravitational interpretation for the universal S “ 0 saddle in the Efetov model.

2. Double scaling limit of the Efetov model (54). Gravitational interpretation for the theory
whose spectrum consists of many tight semicircles, centered around each of the target
eigenvalues (66). Investigate the leading order wormhole for that theory.

3. Gravitational interpretation for the residues from the other poles in the dispersion rela-
tion (68).

4. Solve matrix integrals with multi-trace deformations in the potential. Gravitational in-
terpretation of the corresponding double scaling limit, resulting in a concrete nonlocal
dilaton gravity action. Some progress in this direction has been made in [110–114].

5. Describe the atoms of non-averaged gravity at σ “ 0.
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A Efetov saddle points

In this appendix, we collect some details about the saddle point structure of the Efetov model
for one single determinant (56); in a simple example where H0 has L{2 eigenvalues z and L{2
eigenvalues ´z. In this case the saddle point equation becomes

8
a2

iS “
1

E´ za2{4σ2´ iS
`

1
E` za2{4σ2´ iS

. (147)

This is a cubic equation for S and can be solved analytically, but the solutions are a bit unwieldy,
so we resort to a numerical analysis. The basic things we want to highlight are the movement
of the solutions as a function of σ, which we sketched in Fig. 15 for two different energies.
One energy remains outside of all cuts and the other enters and leaves a cut as sigma decreases.
The discussion is in the caption of Fig. 15.

The question is which of these saddle points lies on the integration contour. This quickly
becomes teadious to answer. Fortunately, we have made some educated guesses in section 2.3.
We can simply check if these are correct by computing (56) numerically and comparing it to the
saddle point approximation, where we take only the physical saddle into account for energies
outside any cut; and take the physical saddle plus the saddle with the opposite branch for the
relevant square root, whenever we are inside some spectral cut. We find excellent agreement,

0 1 2 3 4 5
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-1

0
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-3

-2

-1

0

Figure 15: Three solutions (orange, black, blue) to (147) as a function of σ. The
real part of S is in solid lines and the imaginary part of S is in dashed lines. We use
z “ 5{2, b “ 2 and E “ 3 for the left figure and E “ 2.2 for the right. At large
σ the physical saddle (orange) should approach ´i{2pE ´

?
E2´ b2q « ´0.382i

for the left and ´0.642i for the right plot, as can be seen from the plots. Notice
that the physical saddle approaches S “ 0 for σ “ 0 as claimed in the main text,
whereas the other saddles indeed approach S “ ´ipE ˘ zq. Near σ “ 8 one saddle
(blue) approaches the value S “ ´iE corresponding with (64) and another (black)
approaches ´i{2pE `

?
E2´ b2q, the other standard solution in (62). For the right

plot, we can see that E “ 2.2 enters the cut when the physical saddle and one of the
other saddles coincide, it leaves the cut again at the second bifurcation. Both these
transitions take place at an (anti-)Stokes line, as claimed in the main text, since both
the real and imaginary parts of the saddles coincide. In the region between the two
bifurcations, both saddles are on the integration contour, otherwise only the physical
one is included (orange).
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Figure 16: Comparison between numerical evaluation of (56) (orange dashed) and
its saddle point approximation (solid blue) at L “ 20, taking only the saddles men-
tioned in the text into account. We used b “ 2 and z “ 5{2. The plot on the left is
a log plot (because the range is rather big) for E “ 3 which remains outside any cut
as a function of σ, and we see that the saddle point approximation is excellent. For
the right figure we have E “ 2.2 and will thus enter and leave a cut as σ decreases.
The saddle point approximation is still very good, except when the value of E enters
a cut around σ « 0.16 and « 1.2. At these values for σ the saddles change dom-
inance and the saddle point approximation breaks down, leading to bigger errors.
Notably, between those two values there are two saddles (orange and black in Fig.
15) contributing. The inset on the right shows the same plot, but for smaller values
of σ.

as shown in Fig. 16.15

We expect this to be true more generally, but it would be worthwhile to verify it more
analytically, by computing steepest descent contours etcetera.

B Quartic matrix integral

In this appendix we study some aspects of a quartic matrix model and its double scaling.
In particular, we will present a straightforward way of obtaining an E3{2 edge and one that
includes a E1{2 edge as well. The latter is what is encountered in the p2, 3qminimal string, also
known as pure gravity; however in the current context that name is misleading, all minimal
strings are pure dilaton gravity [5,56–59].

We consider the potential

V pHq “
1
2t

H2´
t4

4t
H4 , (148)

and we will scale to the critical point corresponding with the p2,3qminimal string. This model
is simple enough to be didactic, and sufficiently rich to clarify the intricacies of double scaling
to anything except the p2,1qminimal string; which you obtain everywhere except at the critical
points.

With the main sections in mind we will include the quadratic deformation from (82), but

15 Including another saddle given an answer that is many orders of magnitude too large to match (56).
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leave out the inverse determinants; and thus study the potential

W pHq “
ˆ

1
t
`

1
σ2

˙

1
2

H2´
t4

t
1
4

H4 “
1

2τ
H2´

τ4

4τ
H4 , (149)

where we introduced new effective coupling constants, similar to in (9)

1
τ
“

1
t
`

1
σ2

,
τ4

τ
“

t4

t
. (150)

Let us now compute the resolvent using (88). We deform the integration contour around
the pole at E and the pole at 8, which, in the latter case, should be computed by going to
variables λ “ 1{z. The one at E gives W 1pHq{2, and does not contribute to the discontinuity
of the resolvent; and therefore neither to the spectral density. The pole at 8 does give an
interesting contribution, it reads

RpEq “ ´
L

2τ
pE2´ E2

0q
1{2

ˆ

1´
3
2
τ4E2

0

˙

`
Lτ4

2τ
pE2´ E2

0q
3{2 , (151)

resulting in the spectral density

ρpEq “
L

2π
1
τ
pE2

0 ´ E2q1{2
ˆ

1´
3
2
τ4E2

0

˙

`
L

2π
τ4

τ
pE2

0 ´ E2q3{2 . (152)

We want to think about the constraint (86) as fixing the parameter τ as a function of E0, such
that there is the freedom to send E0 to infinity for double scaling

τ“
E2

0

4

ˆ

1´
3
4
τ4E2

0

˙

, (153)

which reduces indeed to the Gaussian potential (9), when we turn off the quartic term. This
equation eliminates t when translated back to the original couplings (149).

To double scale this theory we send E0 to infinity and considers energies close to the spectral
edge (97), whilst simultaneously sending L to infinity; in such a way that the spectrum near
the edge remains finite. We believe it is didactic to work this out in some detail. It seems
sensible to scale τ4 as τ4 “ g{E2

0 with g finite, giving

ρpEq ds
“

L
π

23{2

E3{2
0

1´ 3g{2
1´ 3g{4

E1{2´
L

?
2π

1

E5{2
0

1´ 19g{2
1´ 3g{4

E3{2 . (154)

The second term is suppressed by 1{E0 for generic coupling. We are then urged to scale
L “ eS0pE0{2q

3{2 to obtain some finite answer near the edge

ρpEq “
eS0

π

1´ 3g{2
1´ 3g{4

E1{2 . (155)

This is the spectral curve for the p2,1q minimal string, or topological gravity [5,118]. Generic
potentials indeed always double scale to this simplest p2, 1q minimal string.

To obtain the p2, pq minimal strings one should tune (in the quartic case) the couplings of
the potential such that the coefficient of the E1{2 vanishes, making the E3{2 term competitive.
For p “ 2m` 1, the couplings multiplying H2`2m are tuned to make the first m terms in the
expansion vanish, leaving only Em`1{2, these special couplings are called critical points. In
our case we must take g “ 2{3, commonly written as; after using (153)

τ4 “
1

12τ
. (156)
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Since the leading density is being tuned to zero, we need much more eigenvalues L in the
theory to see interesting behavior near the edge – from (154) we see that we should take
L “ eS0pE0{2q

5{2, and find

ρpEq “
eS0

π

4
3

E3{2 . (157)

This is indeed the spectral curve of the second critical point. We can make the lower terms
competitive at the same order, by scaling slightly differently towards the critical points. For
this quartic example, choosing the coupling g “ 2{3p1´ 2κ{E0q gives

ρpEq “
2eS0

π

ˆ

κ E1{2`
2
3

E3{2
˙

. (158)

This spectral density is indeed proportional to the spectral density of the p2, pq minimal string
theory with non-zero cosmological constant κ, with p “ 3 [5]

ρpEq 9 eS0 sinh

„

p
2

arccosh

ˆ

1`
E
κ

˙

. (159)

As we send the cosmological constant to zero, one then indeed recovers the second multi-
critical point (157).
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