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Abstract

The dynamics of cold strongly magnetized plasma – traditionally the domain of force-
free electrodynamics – has recently been reformulated in terms of symmetries and ef-
fective field theory, where the degrees of freedom are the momentum and magnetic flux
carried by a fluid of cold strings. In physical applications where the electron mass can
be neglected one might expect the presence of extra light charged modes – electrons
in the lowest Landau level – propagating parallel to the magnetic field lines. We con-
struct an effective description of such electric charges, describing their interaction with
plasma degrees of freedom in terms of a new collective mode that can be thought of as a
bosonization of the electric charge density along each field line. In this framework QED
phenomena such as charged pair production and the axial anomaly are described at the
classical level. Formally, our construction corresponds to gauging a particular part of
the higher form symmetry associated with magnetic flux conservation. We study some
simple applications of our effective theory, showing that the scattering of magnetosonic
modes generically creates particles and that the rotating Michel monopole is now sur-
rounded by a cloud of electric charge.
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1 Introduction

Diverse sets of physical phenomena across vastly different length scales are controlled by the
dynamics of magnetic fields in plasma. The description of such plasmas in terms of coarse-
grained hydrodynamic degrees of freedom has a long history [1]. A particular regime of a
strongly magnetized plasma is obtained when one considers a situation where electric charges
are sufficiently plentiful as to screen the electric field to zero, but sufficiently diffuse in that
one can ignore their collective stress-energy. Such a regime is conventionally described by
the equations of force-free electrodynamics (FFE), which describes the non-linear dynamics
of magnetic field lines at zero temperature [2–4]. Importantly, this theory has no preferred
rest frame. The many applications of this theory include the study of the magnetospheres of
compact astrophysical objects [5,6].

Nevertheless, FFE as conventionally formulated may be considered incomplete. As a
coarse-grained theory with no intrinsic scales, it is insufficient to describe by itself astrophysi-
cal phenomena such as (e.g.) coherent radiation and the production of particle winds [7–9].
Theoretically, though FFE is clearly an approximation, it is not immediately clear what the
small parameter is, nor how exactly it could be improved to better approximate reality.

Thus motivated, and with an eye towards astrophysical applications, [10] (building on a
framework constructed in [11]) reformulated force-free electrodynamics as an effective field
theory. The authors identified a set of symmetry principles and wrote down the most general
low-energy action respecting those principles, resulting in a realization of the force-free plasma
as a fluid of cold strings. The novel symmetry principle making this possible was that of
generalized global symmetries [12], and the utility of such symmetries in the description of
magnetized plasma was first articulated in [11]. To leading order in derivatives, the theory
of [10] is precisely force-free electrodynamics, where the “strings” are magnetic field lines.
There is however an important conceptual difference in that one no longer supposes that the
inertia of electric charges is neglected; rather these charges have been “integrated out” in that
they no longer appear in the low-energy description. A (slightly) different action principle for
an EFT for FFE appears in [13].

2

https://scipost.org
https://scipost.org/SciPostPhys.12.2.078


SciPost Phys. 12, 078 (2022)

Importantly, this effective field theory formalism now allows for the systematic inclusion
of higher-derivative corrections to FFE. [11] showed that these corrections can result in qual-
itatively new physical effects, such as the generation of nontrivial electric fields parallel to the
magnetic field, i.e. E ·B 6= 0.

1.1 Light charged modes

However, there is reason to believe that the EFT description is still incomplete when applied
to some actual physical settings. Imagine the interaction of our FFE plasma with some extra
electric charges that are moving ultra-relativistically, perhaps due to their initial conditions,
or perhaps because the magnetic field strength is much stronger than the electron rest mass
squared, as in magnetars. Under such conditions, it may be a good approximation to consider
the electron to be massless.

The massless electrons and positrons will then spin rapidly around the magnetic field lines;
quantum mechanically, they will sink into the lowest Landau level. For massless electrons, the
energy of the lowest Landau level is exactly zero1. Thus the motion of the electron transverse
to the field lines is gapped, but its motion along the field lines is gapless2. Furthermore, if we
work on scales longer than the magnetic cyclotron radius `B ∼ (eB)−

1
2 , particles moving along

different field lines should be essentially uncorrelated.
These gapless modes are expected to be present at low energies but are clearly not included

in the effective description of [10]. One way to understand this is that they are associated with
an almost-conserved axial current, which made no appearance in that discussion.

In this work we will construct an effective description of such light electric charges and their
interaction with the plasma. We are motivated primarily by practical considerations, and so
take the viewpoint that these are simply “extra” degrees of freedom that are not in equilibrium
with FFE plasma: thus we will sometimes refer to them as “non-equilibrium” charges. As
they move freely only along the two-dimensional world-sheet swept out by the field line in
spacetime, a great deal of intuition for this problem can be obtained from the bosonization
of two-dimensional fermions, where a bosonic collective mode captures the dynamics of the
fermionic charge density.

We similarly introduce a new effective 4d bosonic field Θ(x) that is essentially a bosonized
version of the electric charge current jel along each field line.

jσel = −
1
2

nµνε
σρµν∂ρΘ(x) , (1)

where here nµν is a unit-norm tensor introduced in [10] that is proportional to the electro-
magnetic field strength Fµν. We will couple this field in a universal manner to the FFE degrees
of freedom. A key technical point is the identification of a new symmetry principle that ties
Θ to the low-energy degrees of freedom of [10] in a way that confines the charges to move
along field lines.

Though our implementation in terms of EFT is novel, similar ideas have appeared before.
In particular, building on work in [15,16], [17] recently performed a microscopic construction
of a similar collective field by directly bosonizing the Landau levels of a 4d Dirac fermion along
a homogenous magnetic field. However, that work was a perturbative computation, and the

1This occurs through a cancellation between the (negative) energy associated with the Zeeman coupling of the
electron spin to the magnetic field and the (positive) energy of the zero-point cyclotron motion about the field line.
This cancellation is required by index theorems that govern the realization of the 4d axial anomaly.

2At zero EM coupling this statement is obvious. At weak EM coupling, the situation is somewhat subtle: a single
one of these zero modes – the “center of mass”, i.e. the appropriately defined uniform sum over states in the lowest
Landau level – acquires a mass by a coupling to the zero mode of the photon (see e.g. [14]) but the majority of
them remain massless.
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existence of a force-free limit and the validity of various approximations is not clear to us. Our
hydrodynamic approach is an attempt to directly arrive at an effective low-energy description.

1.2 Summary

We now summarize the remainder of the paper. In Section 2 we review some useful back-
ground material. In Section 3 we present our effective description of electric charges. In
Section 4 we specialize to a particular theory (fixing various thermodynamic functions that
appear in the general framework) and in Section 5 we present some simple applications, i.e.
we demonstrate that the scattering of magnetosonic modes results in particle creation and that
the Michel monopole is now surrounded by a halo of non-equilibrated charges. In Section 6
we conclude with some directions for future research.

2 Background

Here we review some background material. The reader who is completely familiar both with
conventional 2d bosonization and with the EFT construction of FFE in [10] should skip to
Section 3, where the addition of gapless electric charges is presented.

2.1 Review of 2d bosonization

We briefly discuss 2d bosonization. This is textbook material, see e.g. [18]. Recall the
Schwinger model, i.e. a massless 2d Dirac fermion coupled to 2d electromagnetism:

S2d =

∫

d2 x
�

ψ̄
�

i/∂ − i/A
�

ψ−
1

4e2
F2
�

. (2)

This theory has a vector and axial current, written as

jµV = ψ̄γ
µψ , jµA = ψ̄γ

µγ3ψ . (3)

The vector current is coupled to the gauge field Aµ, and is what we conventionally call “electric
charge”. The axial current is not actually conserved; a one-loop computation shows that it is
is afflicted by the well-known 2d axial anomaly:

∂µ jµA =
1

2π
εµνFµν . (4)

We can precisely reformulate this fermionic system as a theory of a single boson φ:

S2d =

∫

d2 x
�

−
1

8π
(∂ φ)2 −

1
4e2

F2 +
1

2π
Aµε

µν∂νφ

�

. (5)

In this formulation, the vector and axial currents are

jµV =
1

2π
εµν∂νφ , jµA =

1
4π
∂ µφ . (6)

Note that the bosonic field φ provides an alternative description of the dynamics of the charge
sector, which may be more convenient for certain purposes. For example, the axial anomaly
(4) is now visible at the classical level, as it is equivalent to the equation of motion of the field
φ. Note also that the vector electric current is identically conserved, unlike in the fermionic
description. Many features of this story will reappear in our construction below.

4

https://scipost.org
https://scipost.org/SciPostPhys.12.2.078


SciPost Phys. 12, 078 (2022)

2.2 Review of EFT of FFE

We now turn to FFE, which is often presented as a theory of the Maxwell field strength ten-
sor Fµν, supplemented with the condition that bare electric charges are present in sufficient
quantities to screen the electric field, but in insufficient quantities for their energy-momentum
exchange with the electromagnetic fields to matter (see e.g. [4]).

In [10], a different effective theory viewpoint on FFE was presented. We review this briefly
here, referring the reader to that work for a more in-depth discussion and motivation of what
follows.

As usual in EFT, we begin by identifying conserved quantities. One of them is the usual
stress tensor Tµν, whose conservation follows from general covariance in the presence of a
background metric gµν. More interestingly, for a theory including dynamical magnetic fields,
the magnetic flux Jµν ≡ 1

2ε
µνρσFρσ is also a conserved quantity, as the Bianchi identity guar-

antees that we have
∇µJµν = 0 . (7)

We note that the symmetry associated with this conserved quantity may be somewhat unfa-
miliar and is called a generalized global symmetry [12]. Such symmetries are present whenever
one has a conserved density of extended objects (such as magnetic field lines); they were ini-
tially understood in the context of non-Abelian gauge theory, and have recently begun to be
used to constrain hydrodynamic theories [11,13,19–27].

The main idea of [10] is to realize this symmetry not on the microscopic photon and elec-
trons, but rather on a different set of low-energy collective fields, which are taken to be two
scalar fields Φ1,2 and a vector field aµ called the worldsheet magnetic photon. The simultane-
ous level sets of Φ1,2 determine the magnetic field worldsheets, and da measures the magnetic
flux on each worldsheet. An example of a simple field configuration is given in Figure 1. This
particular choice of variables may appear unfamiliar; if so, we direct the reader to formulations
of fluid dynamics from action principles, where one discusses the motion of a density of parti-
cles using Lagrange coordinates Φ1,2,3(x), and where a scalar phase degree of freedom is used
to capture the dynamics of a conventional U(1) charge jµ bound to the particle density [28].
The logic here is similar, except that we are here discussing a density not of 0-dimensional par-
ticles but rather 1-dimensional strings – i.e. magnetic field lines – as appropriate for a theory
with a generalized global symmetry Jµν rather than a conventional particle number jµ. It will
later be shown to result in the familiar theory of force-free electrodynamics.

It is very useful to couple Jµν to an external fixed source field bµν. The symmetry associated
with J is then implemented by demanding that the theory is invariant under the following
simultaneous transformation of dynamical field a and source b:

b→ b+ dλ , a→ a+λ , (8)

where λ is an arbitrary 1-form3.
It will be very important for our later purposes that this external source b may be inter-

preted as an external electric current density via

jσel = −
1
2
εσρµν∂ρbµν . (9)

This relation is explained in detail in [11], and arises physically from the idea that the natural
source for a theory of dynamical electromagnetism is a fixed external charge density. Note
that the current is identically conserved.

3The nonlinear transformation of a is similar to that of a 1-form Goldstone mode [29,30] but the 1-form shift
(12) means that the symmetry is not spontaneously broken in this phase: this is a generalization of a similar
“chemical-shift” symmetry which plays the same role in effective actions for conventional hydrodynamics [28].
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Figure 1: Example of typical profile for fields for a homogenous magnetic field point-
ing in the ẑ direction; it is clear that the simultaneous level sets of Φ1 and Φ2 – which
defines the magnetic field line worldsheets – span the (t, z) plane.

Given the external sources b and g, we compute the conserved quantities from the action
as

Tµν ≡
2
p
−g

δS
δgµν

, Jµν ≡
2
p
−g

δS
δbµν

. (10)

In addition to this microscopic symmetry, we also demand that the theory is invariant under
the following emergent symmetries of the description:

• Field sheet relabelings, i.e reparametriztions

ΦI → Φ′I(ΦI) , (11)

• String-dependent 1-form shifts:

a→ a+ω(Φ1, 2) . (12)

Here ω is an arbitrary function of Φ1,2, and so varies from worldsheet to worldsheet. These
symmetries should be thought of as characterizing the low-energy phase that is force-free
electrodynamics. (We stress that different choices for these symmetries result in different low-
energy effective theories; see e.g. [13] for a slightly different choice of degrees of freedom
and emergent symmetry structure, which results in conventional finite-temperature magneto-
hydrodynamics, rather than force-free electrodynamics).

We now write down the most general effective action that is invariant under these symme-
tries. It is convenient to introduce the following 2-form and its magnitude.

Sµν ≡∇[µΦ1∇ν]Φ2 , s =

√

√SµνSµν

2
. (13)

We further construct the binormal n and the volume form ε on the foliation

nµν =
Sµν
s

, εµν =
1
2
εµνρσnρσ , (14)

which are normalized, i.e. which satisfy

nµνnµν = −εµνεµν = 2 , n∧ n= ε ∧ ε = 0 . (15)

Sµν is invariant only under volume-preserving reparametrizations of the φI , but both n and
ε are invariant (up to a sign) under all reparametrizations. They are the only such invariant
objects at lowest order in derivatives, and thus we will use them to construct our effective
theory.
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It will often be convenient to work with the projectors parallel and perpendicular to the
foliation:

hµν = −εµρενρ , h⊥µν = nµρnν
ρ . (16)

The only invariant scalar to lowest order in derivatives is

µ=
1
2
εµν

�

bµν − ∂µaν + ∂νaµ
�

. (17)

We note that the microscopic generalized global symmetry (8) requires that a always appear in
the combination b− da, and the string-dependent shift further requires that this be projected
against ε. We note that – as usual in the construction of such hydrodynamic actions [28] –
both n and µ are taken to be zeroth-order in derivatives; for n this is obvious as it has fixed
norm, and for µ this derivative scaling can be motivated by the that it measures a conserved
magnetic flux that should exist for arbitrarily long times [10].

We may now use this scalar to write down an invariant action. As usual for constructing
an effective theory, we will do so in a derivative expansion. For example, the leading order
action in derivatives is

S0[Φ, a; g, b] =

∫

d4 x
p

−g p(µ) , (18)

where p is an arbitrary function of µ. Borrowing terminology from hydrodynamics, we call this
the “ideal” action: from here we can use (10) to construct the ideal stress tensor and magnetic
flux as

Jµν0 = ρεµν , Tµν0 = pgµν −µρhµν , (19)

where ρ = dp
dµ . The equations of motion for this theory are simply the conservation equations

for T and J , which are:

∇µTµν =
1
2
(d b)νρσJρσ , ∇µJµν = 0 . (20)

If we further make the choice p(µ) = 1
2µ

2, this theory is precisely equivalent to usual FFE.
Recall that E ·B= 1

8εµνρσJµνJρσ; if we take J to be given by its ideal expression (19), we see
that E ·B= 0, as required for ideal FFE.

Of course, the value of the EFT formalism is that it is now possible to systematically include
corrections to FFE, simply by adding higher derivative terms to the action (18). We emphasize
one particular class of corrections, e.g. consider the following invariant second order term:

SR[Φ, a; g, b] =
1
2

∫

d4 x
p

−gR(µ)∇αεβγ(d b)αβγ . (21)

This results in the following correction JR to the ideal flux (19):

J = J0 + JR , JµνR = −3∇σ
�

R(µ)∇[σεµν]
�

. (22)

Note that on dimensional grounds we have the following expansion:

R(µ) =
µ

Λ2
+ · · · , (23)

with Λ a dimensionful UV scale.4 The EFT breaks down at this scale, which presumably de-
scribes a scale where the underlying particulate nature of the system becomes important. For
the moment we will be agnostic about its physical meaning, discussing it further in Section 4.

4All terms appearing in the expansion of R(µ) must be odd in µ, as otherwise SR is odd under orientation-
reversing worldsheet reparametrizations [10].
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In the presence of this correction, we generically have that E · B 6= 0; thus it creates an
accelerating electric field. However, this correction to J is identically conserved, meaning that
within this theory it merely alters the relationship between the flux J and the dynamical fields
without changing the equations of motion.

As one might expect, this will change once we add light electric charges for this electric
field to pull on in the next section. The full set of corrections to this theory at second order
in derivatives has been enumerated in [31]; as will be more clear in the later sections, only
terms that source a non-zero E · B 6= 0 will result in qualitatively new effects, and we will use
the term (21) to illustrate this physics.

From now on, we will refer to the theory reviewed here as the “FFE sector”, with total
action (including possible higher-derivative corrections) SFFE[Φ, a; g, b].

3 Effective theory of non-equilibrium currents

3.1 Electric charge and symmetries

We now finally turn to the addition of non-equilibrium massless charges; as motivated above,
we would like to couple the FFE EFT described above to a density of massless electric charges
which are confined to move along field lines. The dynamics of these charges will be described
by an extra degree of freedom. We will continue to work within an effective field theory
framework, so we will expand both the FFE sector and the dynamics of these charges in a
derivative expansion. As usual in EFT, the theory will be valid at low frequencies, i.e. ωΛ � 1,
where Λ is a UV scale as in (23).

We note that key object needed to perform the coupling of the charges to the FFE sector
already exists within the FFE EFT; in particular, through (9), we know that the external source
b already has the interpretation as an electric charge density.

We thus introduce a new dynamical field Θ(x), and couple it to the FFE degrees of freedom
through b. We write

b(Θ) = b̄+Θ(x)n , (24)

where b̄ is now the fixed external source, and where n is the binormal defined in (14). To get
some intuition for this choice, take n to be constant (corresponding to a constant magnetic
field): from (9) we see that the electric current arising from Θ is

jσel = −
1
2

nµνε
σρµν∂ρΘ(x) . (25)

As desired, this is exactly a current propagating along the magnetic field directions. Indeed
comparing it to the expression for the 2d vector current (6), we see that Θ plays a role very
similar to the field φ appearing in the bosonized description of the 2d Dirac fermion.

It is however not enough to demand that the current flow mostly along the worldsheet. As
motivated earlier, the current on each field-sheet should be also essentially uncorrelated, as
we are studying infrared physics on scales much longer than the magnetic cyclotron length.
To ensure that derivatives perpendicular to the worldsheet do not enter the theory, we further
demand invariance under the following symmetry:

• String-dependent scalar shift:

Θ(x)→ Θ(x) + s(x) f (Φ1,Φ2) . (26)

Here f is an arbitrary function of Φ1,2, whereas s(x) was defined in (13). As we will discuss,
this symmetry is closely related to axial charge conservation. We also discuss the rationale for
the factor of s(x) below.

8

https://scipost.org
https://scipost.org/SciPostPhys.12.2.078


SciPost Phys. 12, 078 (2022)

We now write the full action of the system as

S = SΘ[Φ, a,Θ; g, b(Θ)] + SFFE[Φ, a; g, b(Θ)] , (27)

where the notation b(Θ) serves to stress that everywhere b is written in terms of Θ as in (24).
Here SΘ is a new term that describes the dynamics of Θ itself, whereas SFFE is the FFE theory
constructed previously. Note that SFFE depends on Θ only through b(Θ). This is a kind of
“minimal coupling”, indicating that the charge degrees of freedom affect the FFE sector only
through their electric charge density (9).

We now discuss the realization of the symmetries. In particular, it is not at all clear that the
FFE sector together with the coupling (24) is itself invariant under the shift symmetry (26).
To see that it is, note that under (26), b shifts as

b→ b+ f (Φ1,Φ2)dΦ1 ∧ dΦ2 , (28)

where we have used that sn= dΦ1 ∧ dΦ2.
Now the magnetic shift symmetry (8) guarantees that b can enter the action only as d b, or

together with the magnetic worldsheet photon a in the combination (b−da). d b is manifestly
invariant under (28). Furthermore, the 1-form string-dependent shift of a (12) means that
b−da must be projected down onto the worldsheet (e.g. as in (17)). However this projection
is also invariant under (28), as dΦ1,2 is perpendicular to the worldsheet.

The upshot is that any FFE theory where b enjoys the symmetries recorded in the previous
section can be coupled to a Θ field as in (24) and is automatically invariant under (26). The
factor of s present in that expression is crucial for this invariance. One way to understand this
is that f (Φ1,Φ2) is not a scalar in the space of Φ1,2 but rather a 2-form, and s transforms in the
appropriate manner to allow us to add it to a true scalar Θ in (26).

3.2 Charge dynamics

Having coupled Θ to the magnetic field, we now turn to the dynamics of Θ itself. We would
like to construct a kinetic term for Θ. Arbitrary derivatives of Θ are clearly forbidden by the
shift symmetry (26). The 3-form d(Θn) is however invariant under all symmetries, and we
can use it to construct a kinetic term. At leading order in derivatives, the only candidate is

SΘ = −
1
4

∫

d4 x
p

−gQ(µ)∇[µ
�

nρσ]Θ
�

∇[µ
�

nρσ]Θ
�

. (29)

Here Q(µ) is an arbitrary function of µ. Again to obtain intuition consider the case where n is
constant, in which case we find

SΘ = −
1
2

∫

d4 x
p

−gQ(µ)hµν∇µΘ∇νΘ , (30)

where from (16) hµν is a projector parallel to the worldsheet; thus in equilibrium Θ becomes
effectively a collection of two-dimensional fields, each with dynamics only on the worldsheet.

We note that in situations where n is not constant, then both derivatives and electric current
off the worldsheet will appear; however the precise manner in which this happens is dictated
by the symmetry principles above, and is thus a prediction of our EFT.

We now discuss the equations of motion, starting with that for Θ. The variation of the total
action with respect to Θ takes the form

δΘS = δΘSΘ +
δS

δ b̄µν
nµν , (31)
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where the second term arises from the implicit dependence of b on Θ in (24). Putting in the
explicit form of SΘ and using the definition of J in (36), we find the following equation of
motion:

∇α
�

∇[α
�

nβσ]Θ
�

Q(µ)
�

nβσ + Jµνnµν = 0 . (32)

This is a wave equation Θ on the field-sheets, sourced by a term that depends on the magnetic
field. To understand the source term, note that within our construction, magnetic domination
means that J always points mostly in the direction of ε – indeed at ideal order, we see from
(19) that it is precisely proportional to ε. As n = ?ε, the source term Jµνnµν is essentially
proportional to J ∧ J ∼ E ·B, i.e. to the presence of unscreened accelerating electric fields. As
we describe, under some circumstances this sourced wave equation can be interpreted as pair
creation. We note that the term in Jµνnµν is identically zero in ideal FFE, but is generically
active if higher-derivative corrections such as (22) are included.

3.3 Axial anomaly and pair creation

This equation of motion is closely related to the shift symmetry (26). Recall that this is ac-
tually infinitely many symmetries, parametrized by a free function f (Φ1,Φ2); thus this leads
to infinitely many Noether charges, one on each worldsheet. As we will argue, this can be
thought of as an independent axial current on each field line.

To understand this, it is instructive to consider the contribution to this Noether current not
from the full action, but only from SΘ; denoting this by jµf , we find

jαf =∇
[α
�

nβσ]Θ
�

Q(µ)nβσ f (Φ1,Φ2)s(x) . (33)

As we have neglected the contribution from the FFE sector, this is not quite conserved, and
instead we have

∇α jαf = −Jµνnµν f (Φ1,Φ2)s(x) . (34)

In the case f = 1, this is equivalent after some manipulation to the usual Θ equation of motion
(32), though we can only write the left-hand side of that equation as a divergence if we re-
introduce the field s(x).

This non-conservation equation may be understood as a hydrodynamic manifestation of
the following microscopic Adler-Bell-Jackiw anomaly equation arising in the theory of fermions
coupled to QED:

∇µ jµA = −
1

16π2
εµνρσFµνFρσ , (35)

where jµA is the axial current density ψ̄γµγ5ψ.
We see that the role of jµA is played approximately by ∂µΘ, weighted by Q(µ) and projected

in an appropriate manner onto the worldsheet. Thus Θ is something like a worldsheet axion
[32].

It is instructive to examine how this equation relates to pair creation in a magnetic field;
our discussion here is closely related to the chiral magnetic effect [33] (see [34] for a review).
Consider pair creation of a massless e± pair by a nonzero E ·B. Energetically, the electron and
positron will want to appear in their lowest Landau level. The spin in this lowest Landau level
is correlated with the magnetic field: for the electron it is aligned and for the positron it is
anti-aligned. Under the influence of the electric field, the electron and positron will move off
in opposite directions along the magnetic field; thus for both particle and anti-particle the spin
is correlated with the motion. They both have the same helicity, and the whole process thus
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results in the creation of net axial charge. 5 Microscopically, this process is governed by the
ABJ anomaly (35), which directly relates E ·B to axial charge creation.

In our hydrodynamic setup, we are describing the same process, except at scales much
longer than the magnetic cyclotron length. Thus each field line is independent, and no charge
can move from one field line to the next, so we obtain the stronger relation (34), correspond-
ing to an independent (non) conservation law on each field line. It is extremely interesting to
see the physics of the anomaly emerging naturally from our purely hydrodynamic construc-
tion. We note also that the resulting expression is very similar to the bosonization of the 2d
axial anomaly discussed around (6), except that the structure induced by Φ1,2 provides the
information required to sew different field sheets together.

Finally, while the qualitative physics of the anomaly does appear from our construction, the
right-hand side of the equation is not precisely F ∧ F , but is only proportional to it, where the
constant of proportionality is “dynamical” in that it depends on details of the thermodynamic
function p(µ). There does not appear to be a protected anomaly coefficient. This is related to
the fact that the right hand side of the anomaly equation (35) is a dynamical operator and not
an external source (as it is in usual examples of anomalous hydrodynamics [35,36]), and thus
in a theory of dynamical electromagnetism axial current is simply genuinely non-conserved.
Similar issues related to non-universality have been studied in [37].

3.4 Effect of collective mode on FFE

Having exhaustively discussed the equation of motion of Θ, we return finally to the FFE sector.
The stress tensor and magnetic flux of the system are now obtained by differentiation of the
total action with respect to g and b̄ respectively:

Tµν ≡
2
p
−g

δS
δgµν

, Jµν ≡
2
p
−g

δS

δ b̄µν
. (36)

Note that as µ depends on b̄, both J and T receive contributions from SΘ.
As before, the the equations of motion are simply the conservation equations for the cur-

rents:

∇µTµν =
1
2
(d b̄)νρσJρσ , ∇µJµν = 0 , (37)

with the modification that generically both T and J will now receive extra contributions from
the Θ sector. We will compute these contributions for a particular choice of theory below. Note
that it is the external source b̄ that appears on the right hand side of the non-conservation
equation for T ; in most situations it is set to 0.

Finally, we discuss a general feature of the equations of motion. Let us imagine that the FFE
sector has no higher derivative corrections and is given by (18). In that case J ∝ ε, and thus
the source term in (32) is zero. It is then consistent to set Θ to 0, and thus all solutions to FFE
remain solutions of the coupled theory. Linearized fluctuations of Θ about any FFE solution
will decouple. In this sense, in the extreme infrared the addition of this charged matter does
not alter the structure of FFE.

On the other hand, let us now consider moving away from the extreme infrared, i.e. turning
on higher derivative corrections such as (21). In this case, E · B is no longer zero, and now
the source term in (32) will turn on Θ. As expected, accelerating electric fields can have a
dramatic effect on free electric charges, including the hydrodynamic manifestation of the pair

5To be more precise: in standard conventions, the particle and anti-particle both have the same helicity, but for
an anti-particle the chirality is defined to be the opposite of the helicity [33]. The left-hand side of the (integrated)
anomaly equation may be understood as (the sum of the numbers of particles and anti-particle with right-handed
helicity) minus (the sum of the numbers of particles and anti-particles with left-handed helicity).
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creation process discussed previously. We note that though they are produced by a term that
is higher-order in derivatives, they can nevertheless have a large effect at long distances due
to non-trivial kinematics. We will study some aspects of this below.

3.5 Formal aspects

We now note some formal aspects of the above construction. In particular, the sufficiently
universally-minded reader may be somewhat puzzled that after going through all the effort of
constructing an effective symmetry-based description of FFE in [10], we then perform a brutal
operation – i.e. couple in “extra” massless charges – that is motivated not by global symmetry
structure but rather mostly by phenomenological considerations.

We do not really feel that we have a completely satisfactory response to such a reader, but
we note that at a formal level this construction corresponds to gauging a particular part of the
1-form symmetry associated with magnetic flux conservation.

To be more precise, in the construction of [10], an external b field couples to the 2-form
current J . By making part of this b field dynamical as in (24),

b = b̄+Θ(x)n , (38)

and providing it with a kinetic term, we are gauging “the part of the 2-form current perpen-
dicular to the magnetic field lines.” This means that excitations of those gauged components
of J – i.e. precisely those that create E ·B – are now parts of a gauge current and not a global
one, and Θ is a new sort of gauge field for these components of J .

As usual in gauge theory, exciting gauge charges costs energy in terms of the gradients of
Θ, i.e. through the equation of motion (32), which can be thought of as Gauss’s law for the
new gauge symmetry. (One can compare this to the solution in conventional weak-coupling
electrodynamics, where excitations of the “gauged” electric charge cost energy in terms of the
gradients of the vector potential).

We find this somewhat suggestive but still incomplete, as the identification of which part
of the 1-form symmetry we gauge is made through the binormal n, which is itself still a low-
energy construct. Thus we do not see a purely universal way to characterize this gauging
procedure. It would be extremely interesting if one could be found and related to the structure
of the axial anomaly discussed in the previous subsection.

4 Specific theory

We briefly summarize. Given an EFT construction of FFE governed by an effective action SFFE,
there is a way to “minimally” couple it to free electric charges confined to move along string
worldsheets, where the dynamics of these charges is given by SΘ, as in (27):

S = SΘ[Φ, a,Θ; g, b(Θ)] + SFFE[Φ, a; g, b(Θ)] . (39)

For concreteness, in the remainder of this paper we will work with the specific theory given
by (39), where the FFE sector is given by the choice

SFFE = S0 + SR , (40)

with S0 and SR given by (18) and (21) respectively. S0 and SΘ are the unique choices at leading
order in derivatives.

One might ask why we do not begin by studying the theory described by the ideal FFE S0
alone. This is indeed the answer to leading order in derivatives, and one can obtain this from
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the results below by taking Λ→∞. As mentioned earlier, at this order the sectors described
by Θ and the FFE sector largely decouple, in that the non-equilibrium charges satisfy a free
wave equation along fixed magnetic field lines whose dynamics are given by FFE; a simple
way to see this is to note that in this case the source term for Θ in (32) is identically zero in
ideal FFE.

However, the inclusion of the higher-derivative term SR – and concommitant nonzero E ·B
– results in qualitatively new effects, i.e. the physics of pair creation; this couples the Θ field
to the magnetic sector in a novel way. SR is included to allow such physical effects; we do
not expect the qualitative physics to change from the story discussed below if generic higher
derivative corrections are added.

We now discuss length scales. This theory contains three arbitrary functions of µ:
p(µ),Q(µ), and R(µ). Using the fact that both µ and Θ have mass dimension 2 (for the latter,
see (24)) the leading order expansion of each of these quantities in powers of µ is:

p(µ) =
1
2
µ2 + · · · , Q(µ) =

Q0

|µ|
+ · · · , R(µ) =

µ

Λ2
+ · · · , (41)

where Λ is some UV mass scale. In all concrete computations from here on, we will restrict to
just the leading term in each of these expressions.

Notably, both p and Q are scale-free to leading order. The non-analytic behavior of Q(µ)
as a function of µ may seem surprising. To understand this, note that in the FFE limit the
magnitude of the magnetic field B = µ. Microscopically, the physics of Landau levels is indeed
non-analytic as a function of the magnetic field; for example, the density of states of Landau
zero modes is controlled by e|B|, and this is the ultimate origin of the non-analyticity in µ.

At the level of the EFT, Q0 is a free parameter controlling the strength of interactions of
Θ with the FFE degrees of freedom. In principle it can be determined from a UV description;
in Appendix A we discuss a preliminary attempt at matching with the microscopic treatment
of [17], where the UV completion is provided by Dirac electrons coupled to QED with electro-
magnetic coupling e. In that case we find

Q0 =
2π2

e3
. (42)

This identification comes with caveats, and we refer the interested reader to the Appendix for
a full discussion. We will keep Q0 arbitrary in what follows.

Thus this minimal theory has a single length scaleΛ−1; it controls the magnitude of possible
E · B, and thus can be interpreted as defining the scale over which the perfect screening of E
in the plasma breaks down. An unscreened E will pair-create charges (parametrized by Θ)
through the source term in (32). These charges will then move about, interacting nonlinearly
with the plasma in a way that is captured by the evolution equations below.

We will provide an extremely preliminary discussion of the possible physics arising from
this in some applications to simple geometries (wave scattering about a homogenous back-
ground, and the rotating Michel monopole) below.

4.1 Detailed expressions for stress tensor and flux

For completeness, we write down the stress tensor and flux. We find

Jµν = (ρ +ρΘ)ε
µν − 3∇σ

�

R(µ)∇[σεµν]
�

, (43)

where as before ρ = dp
dµ , but ρΘ is a scalar correction at O(Θ2) to the effective magnetic flux

arising from the µ-dependence of the Θ kinetic term:

ρΘ ≡ −
1
4

dQ
dµ
∇[µ

�

nρσ]Θ
�

∇[µ
�

nρσ]Θ
�

. (44)
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As the expression for Tµν is somewhat lengthier, we break it into several pieces:

Tµν = Tµν0 + TµνR + TµνΘ , (45)

where Tµν0 was given in (19) and where TR and TΘ arise from differentiating (21) and (29)
with respect to g respectively, and are:

TR
µν =

1
2

�

−R(µ)gµν +µ
dR
dµ

hµν

�

∇αεβγ(d b)αβγ + 3R(µ)∇[µερσ](d b)ναβ gραgσβ , (46)

where we remind the reader that b = b̄+Θn with b̄ the fixed external source, and

TΘµν = −
1
4

�
�

−Q(µ)gµν +µ
dQ
dµ

hµν

�

(∇nΘ)2

2
+ 3Q(µ)∇[µ

�

nρσ]Θ
�

∇[ν
�

nαβ]Θ
�

gραgσβ
�

, (47)

where the notation (∇nΘ)2 ≡∇[µ
�

nρσ]Θ
�

∇[µ
�

nρσ]Θ
�

.
To simplify the above computations, it was helpful to note that the variation of n with

respect to g is:

δg nµν = −
1
2

nµνh
⊥
αβδgαβ . (48)

This means that the metric variation of the combination Θn is proportional to n, and thus
takes the same form as a variation of Θn with respect to Θ. Such variations vanish on-shell,
i.e. when the Θ equations of motion (32) are imposed. In this situation it is then consistent to
set all metric variations of (Θn) to zero when computing the stress tensor. We have done so
in the above expressions, which are thus valid only on-shell. (Generically they contain other
terms proportional to the Θ equation of motion multiplying h⊥).

To recap: the degrees of freedom can be taken to be the FFE variables ε,µ together with
the charge mode Θ. The equations of motion are the conservation equations (49), which for
convenience we reproduce in the case where b̄ = 0:

∇µTµν = 0 , ∇µJµν = 0 , (49)

together with the Θ equation of motion, which we write out explicitly for arbitrary R(µ).

∇α
�

∇[α
�

nβσ]Θ
�

Q(µ)
�

nβσ − 3∇σ
�

R(µ)∇[σεµν]
�

nµν = 0 . (50)

5 Applications

In this section we present some simple applications of this formalism.

5.1 Michel monopole

We first discuss how the above theory behaves on the Michel monopole background, which is
an exact solution to conventional FFE [38]. This is a rotating magnetic monopole, and is a
toy model for the magnetosphere outside of a rotating uniformly magnetized star. One should
imagine that the core of the monopole is shielded by the star radius at r = r?.

In terms of the degrees of freedom ε and µ, the solution can be written as:

ε = d(t − r)∧ (dr − r2Ω sin2 θdφ) , µ=
q
r2

, (51)

which corresponds to

J =
q
r2

d(t − r)∧ (dr − r2Ω sin2 θdφ) . (52)
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Though it is not necessary for our purposes, a valid choice of the foliation degrees of freedom
is

Φ1 = θ , Φ2 = φ −Ω(t − r) , a =
q
r

d t . (53)

This is a solution to pure FFE. Does it remain a solution to the theory of free charges
described above? As explained in [10], in the presence of the higher derivative coupling (21),
a non-trivial E · B is created. This has no effect in the original FFE theory, but in the model
with light charges it sources the Θ field, and we can no longer set it to zero. Instead we must
solve the wave equation (50):

Q0∇α
�

∇[α
1
|µ|

�

nβσ]Θ
�

�

nβσ =
3
Λ2
∇σ

�

µ∇[σεµν]
�

nµν , (54)

where we have inserted the form of Q(µ) and R(µ).
In general, this is now a nonlinear problem that can only be solved numerically. In this

work we tackle it by taking the scale Λ−1 to be much smaller than any other scales in the
problem, giving us a small parameter in which we can perform a perturbative expansion.

5.1.1 Magnetic worldsheets and dS2

We first examine the kinetic term appearing in (54). It is convenient to define outgoing time
u= t − r and a rescaled field

Θ(t, r,θ ,φ)≡
1
r2
Θ̃(r, t,θ ,φ) . (55)

For future convenience, we define the wave operator on the left-hand side of (54) as �:

Q0∇α

�

∇[α
1
|µ|

�

nβσ]
Θ̃

r2

��

nβσ ≡ �Θ̃ . (56)

We then find:

�Θ̃ =
2Q0

3q

�

(1− r2Ω2 sin2 θ )∂ 2
r − 2(∂u +Ω∂φ + rΩ2 sin2 θ )∂r

�

Θ̃ . (57)

Note that there are no θ derivatives at all, and so each latitude completely decouples from the
rest. However the rotation does introduce a φ derivative Ω∂φ . Indeed the full dependence on
(u,φ) is now through the combination (∂u +Ω∂φ)

Curiously, the operator within square brackets is precisely the wave operator of two-
dimensional de-Sitter space written in outgoing Eddington-Finkelstein coordinates:

ds2 = −
�

1−
r2

L2

�

du2 − 2dudr , (58)

provided we make the substitution

(∂u)dS2
→
�

∂u +Ω∂φ
�

Michel , (59)

and where the de Sitter radius L is

L =
1

Ω sinθ
. (60)

In particular, the location of the (θ -dependent) de Sitter horizon is r = (Ω sinθ )−1, i.e. at the
light cylinder. Heuristically, the light cylinder is the point where an observer rotating with the
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star would have to move faster than light. It acts as a horizon for Alfvenic perturbations of the
background, and apparently also for the charge fluctuations developed in this paper.

The relevance of dS space to the Michel monopole was anticipated in [4], where it was
pointed out that the intrinsic geometry of a Michel field sheet is indeed dS2. It is thus unsur-
prising that charges that are confined to this world-sheet obey the de Sitter wave equation,
albeit with an interestingly shifted notion of dS time (59). Studying the propagation of waves
on this effective curved geometry will now require a treatment of boundary conditions at the
de Sitter horizon. We would find it extremely satisfying if the physics of de Sitter horizons
were to play an unexpected role in an understanding of the dynamics of pulsars, and hope to
return to this point in the future.

Finally, as we will require it for the next section, we note that in the case that Θ depends
only on r, the wave operator above reduces to

�Θ̃ ≡
2Q0

3q

��

1− r2Ω2 sin2 θ
�

r2∂ 2
r − 2rΩ2 sin2 θ∂r

�

Θ̃ . (61)

The two independent solutions to this equation are

Θ(r) =
1
r2
(A+ B arctanh(rΩ sinθ )) , (62)

where we have expressed them in terms of the original field Θ. Note that the term in B is
singular at the light cylinder.

5.1.2 Induced charges

We now return to our original problem of determining how the Θ field behaves in the presence
of the Michel background. In particular, we will perform a perturbative expansion in powers
of Λ−2:

Θ = Θ(0) +Θ(2)Λ
−2 + · · · , J = J(0) + J(2)Λ

−2 + · · · . (63)

Here J(0) is the force-free bare Michel solution, and it is consistent to set Θ(0) to zero. To find
the next order term, we insert this form into the wave equation (54). In terms of the wave
operator (61), the equation for the term in Λ−2 becomes

�Θ̃(2) = −
8qΩ cosθ

r3
. (64)

To solve this equation, we need to specify boundary conditions on the field. We will demand
that the solution remain regular at the light cylinder; this amounts to setting the coefficient B
to zero in (62).

At the neutron star surface r = r?, the physics is likely to be rather complicated and non-
linear, and we do not at the moment have a good understanding of the correct boundary
condition. For simplicity, we impose the Neumann boundary condition ∂rΘ = 0, noting that a
Dirichlet condition would imply an explicit breaking of axial symmetry. Our result are largely
insensitive to this choice, changing the final expression only by an O(1) factor.

With these choices, we find that to leading order in Λ−2, the Θ field is:

Θ(r) =
3q2(3r − 2r?)

Q0r2r?Λ2
Ω cosθ + · · · . (65)

Using the identification (25), the electric current is

jel = −18q2(r − r?)
Ω cosθ

r4Q0r?Λ2
(∂t +Ω∂φ) . (66)
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This induced current is proportional to the co-rotating Killing vector of the Michel geometry
∂t+Ω∂φ . It appears that the electric field created has populated space with this charge density,
which subsequently attempts to rotate with the star. This rigid rotation happens faster and
faster as we move out in r until it reaches the speed of light at the light cylinder. The current
vector is thus timelike at small r, null at the light cylinder, and spacelike outside it.

It would be very interesting to understand the consequences of this charge density in more
physically realistic situations with less symmetry. This will likely require numerical simulation.

5.2 Particle creation by wave scattering

FFE linearized about a homogenous magnetic field supports two types of linearly dispers-
ing wave excitation; the transverse Alfven mode and the longitudinal magnetosonic (or fast)
mode. The addition of the Θ field results in a new gapless mode that disperses linearly along
the field lines6. To leading order in the linearized theory, all of these modes are independent
and do not mix. In this section we demonstrate that at nonlinear order, the scattering of two
magnetosonic waves will generically result in particle creation.

Consider a homogenous background magnetic field of magnitude B pointing in the z di-
rection; this corresponds to

ε0 = d t ∧ dz , n0 = d x ∧ d y , µ= B , (67)

so that the magnetic flux is simply

J0 = Bd t ∧ dz . (68)

We first review the dispersion relation of a single magnetosonic wave (see e.g. [11]). We work
with the FFE equation of state p(µ) = 1

2µ
2.

Let the spacetime dependence of the wave be eikµxµ . We define the momentum parallel
and perpendicular to the background field to be:

kµ‖ ≡ (h0)
µ
νkν , kµ⊥ = (h

⊥
0 )
µ
νkν , (69)

where the projectors h, h⊥ were defined in (16) and are here evaluated on the homogenous
background field (67).

We now consider linearized perturbations around the background solution (67),
ε→ ε0+δεeikµxµ , µ→ B+δµeikµxµ . For convenience, let a, b run over the directions parallel
to the field t, z and let i, j run over x , y . By solving the linearized equations of motion, the
components of δε can be written in terms of the scalar perturbation δµ:

δεia = −
1

k2
⊥B

kik
bε0

baδµ . (70)

(Both δεi j and δεab identically vanish by the normalization and degeneracy constraints (15)
on ε ). For the FFE equation of state all modes propagate at the speed of light, and the
dispersion relation can be written in a manifestly Lorentz and rotationally invariant manner
as

k2
‖ = −k2

⊥ . (71)

6We can compare this with the results of [39], which studies a model of spontaneously broken axial symmetry
coupled to free Maxwell EM with a background magnetic field. They find a mixing between an unscreened E‖ and
the axial Goldstone, resulting in a quadratically dispersing mode. Our results differ because our electromagnetic
sector is governed by FFE, where E‖ is already gapped out and cannot mix with anything.
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Now we turn to the interactions with Θ. A single linearized wave does not turn on the
source term in (32); thus, as mentioned earlier, at the linearized level fluctuations of Θ and of
the FFE modes decouple.

However if we consider the superposition of two magnetosonic modes with momenta k1,
k2, then after some algebra we find for the source term

Jµνnµν(x) = ei(k1+k2)·x g(k1, k2)δµ1δµ2 , (72)

where the “interaction vertex” g(k1, k2) is the following symmetric function of the momenta:

g(k1, k2) = −
2
Λ2B

�

k2
⊥,1 + k2

⊥,2

�

k2
⊥,1k2

⊥,2

nµν0 kµ,1kν,2ε
µν
0 kµ,1kν,2 . (73)

Thus we see that non-trivial E ·B has been created, and will generically create electric charges
through the sourced wave equation (32). This is the main result of this section. It would
be very interesting to understand if this provides a systematic way to understand an energy
cascade from the magnetic field to electric charges, e.g. during FFE turbulence [40].

We briefly sketch how to go further and determine the Θ field itself. We must then solve
the sourced wave equation (32), which to lowest order in the perturbations simply reduces to:

2Q0

3B

�

∂ 2
t − ∂

2
z

�

Θ = −Jµνnµν . (74)

As usual this can be solved by introducing a Green’s function GΘ(x , y) for Θ, which is a delta
function in the transverse directions but propagates gaplessly along the field lines:

GΘ(x , y)≡
3B
2Q0

δ(2)(x i − y i)

∫

d2p
(2π)2

eihab
0 pa(x−y)b 1

hab
0 papb

. (75)

A particular solution to (74) is then simply

Θ(x) = −
∫

d4 yGΘ(x , y)Jµνnµν(y) . (76)

Combining this expression with (72), it should be clear that we are constructing a classical
solution by evaluating tree-level Feynman diagrams; in particular, we have shown that there
is an amplitude for two magnetosonic waves to scatter and create particle charge, and thus
the Feynman rules for this theory have a vertex of the form shown in Figure 2.

We note that this is a sort of “inverse pion decay”: conventionally, the π0 (which, like
Θ, is roughly a Goldstone mode for a spontaneously broken axial symmetry) decays to two
electromagnetic excitations (photons) through a channel mediated by the axial anomaly (35).
Here two electromagnetic excitations (magnetosonic modes) combine through the anomaly-
mediated channel (34) to create an excitation of Θ.

It would be very interesting to further develop and understand the physical consequences
– if any – of this diagrammatic expansion.

6 Conclusions

In this work, we showed how to couple extra light electric charges – charges that are not in
equilibrium with the plasma – to the FFE EFT of [10]. We conclude with some directions for
future work.
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Figure 2: “Feynman” diagram associated with the evaluation of the term computed
in (76); solid lines indicate magnetosonic modes (where in our kinematics the prop-
agators have been amputated) and dotted line indicates Θ propagator GΘ.

One original motivation for this study was astrophysical. Ideally, one might hope that
this model could provide a useful caricature of the dynamics of compact astrophysical ob-
jects, where open questions remain regarding (e.g.) the origins of coherent radiation and the
production of particle winds [7–9].

In particular, the truncated model described in Section 4 provides a concrete deformation
away from FFE, parametrized by a single scale Λ that controls the scale at which unscreened
electric fields can self-consistently appear. Such unscreened fields will subsequently pair-create
and accelerate charges, as captured by ripples in the collective field Θ. It would be very inter-
esting to understand the physical consequences of such nonlinear dynamics in more realistic
geometries with less symmetry than the Michel monopole. This will likely require numerical
simulation. We note that the viewpoint taken here – deforming in a controlled manner away
from FFE – is the opposite to that taken in usual particle-in-cell simulations (see e.g. [41,42]),
where one starts microscopically with free Maxwell electrodynamics coupled to charge dy-
namics and arrives (at long distances) at FFE.

One clear deficiency of the system is the fact that it provides a clean description only in
situations when the mass of the electron can be neglected. It is somewhat nontrivial to study
the electron mass as a perturbation; it seems that any attempt to do so and thus break the axial
shift symmetry (26) also ultimately correlates fluctuations on different field lines, essentially
because a massive electron has a finite transverse radius.

For any potential application to real-life systems, it is also clearly crucial to understand the
magnitude of scales such as Λ. Such higher-derivative corrections can in principle be precisely
matched to a UV description (e.g. QED) using the analogue of hydrodynamic Kubo formulas
(see e.g. [43] for a review). We hope to report on this in the future.
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A Comparison to microscopic strong-field bosonization

Here we compare our theory with the top-down construction of [17], which follows earlier
foundational work in [15] (see also [16] for a similar computation in a different context).

We briefly review [17]: there QED with electromagnetic coupling e is studied with a single
species of massive Dirac fermion on a constant magnetic field background. The fermion is
decomposed into Landau levels, and then each fermion state in the lowest Landau level is
bosonized into a massless scalarφi with a kinetic term with derivatives only along the magnetic
field directions, where i runs over the N = eBA

2π states in the lowest Landau level. It is then
assumed that all of the bosons φi move in sync, i.e.

φ1 = φ2 = · · ·= φN = Φ . (77)

An effective action is constructed for Φ and its coupling to the electromagnetic field, and it is
then assumed that the fields are allowed to vary slowly in the transverse directions to obtain a
4d dynamical theory. Derivatives of Φ in the transverse directions do not appear in this model.

This sounds structurally similar to our EFT. We now attempt a comparison: this is possible
only for small fluctuations around a homogenous background (67). Φ results in an effective
electric current of the form

jµel = −
e2

8π2
εµνρσ∂νΦFρσ . (78)

Comparing this to our (25), we see that these take the same form if we identify

Θ =
e2

4π2
µΦ . (79)

(Here µ is taken to be constant). Comparing now our kinetic term (30) with that in Eq (3.2)
of [17], we see that they agree if

Q(µ) =
2π2

e3

1
|µ|

, (80)

thus motivating the value of Q0 (42) described in the main text.
We now discuss the issues with such a comparison. Firstly as our Θ is gapless, the fermion

mass m in [17] must be ignored; as mentioned in that work, this appears to be a necessary
condition for a force-free limit in any case. A further issue is that even if m is set to zero,
linearized fluctuations of Φ coupled with the electromagnetic field are still gapped, for essen-
tially the same reason that the Schwinger model shown in (2) is gapped. This is clearly not
the case for our gapless Θ field, and we believe that this occurs because the dynamics of the
N − 1 fields φi (which remain gapless [14]) have been neglected.

We find it plausible that the gapped mode in [17] is eaten by the electromagnetic field and
helps to sustain the FFE architecture in the manner originally proposed in [15], whereas the
remaining N−1 modes remain gapless and assemble eventually into our Θ field, carrying axial
current. It would be very interesting to further verify this picture.
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