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Abstract

We study symmetry principles associated with the approximately conserved enstrophy
current, responsible for the inverse energy cascade in non relativistic 2+ 1 dimensional
turbulence. We do so by identifying the accidental symmetry associated with enstrophy
current conservation in a recently realized effective action principle for hydrodynamics.
Our analysis deals with both relativistic and non relativistic effective actions and their
associated symmetries.
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1 Introduction

Non relativistic incompressible fluid flow in two spatial dimensions supports an approximately
conserved enstrophy charge whose existence plays a crucial role in generating the inverse en-
ergy cascade of turbulent flow [1]. Planar, non relativistic and compressible flow also supports
an approximately conserved enstrophy charge as long as the equation of state is barotropic (the
pressure is a function of the mass, or particle number density), see, e.g., [2]. Likewise, an ap-
proximately conserved enstrophy charge was shown to be present in relativistic and conformal
invariant fluid flow in 2+ 1 dimensions [3].

Charges which are conserved under the equations of motion are tied, via Noether’s the-
orem, to symmetries of the underlying action. Thus, it stands to reason that there exists an
approximate symmetry responsible for the approximate conservation of enstrophy. The goal
of this work is to identify the symmetry associated with enstrophy conservation in relativistic
and non relativistic fluid flows using a recently discovered action principle for fluids [4–6].
(See also [7–19].)

In local theories charge conservation follows from current conservation. It is interesting
to contrast the approximate conservation of the enstrophy current with the behavior of the
entropy current. Recall that the entropy current is given by Jµs = suµ +O(∂ ) where s is the
entropy density, uµ is the velocity field (uµ = γ(1, v i) in a relativistic setting and the same with
γ = 1 in a non relativistic one), and O(∂ ) denotes corrections which include derivatives of
hydrodynamic variables. The entropy current is conserved in the absence of dissipative terms
and its divergence is positive semi-definite otherwise. Thus, at leading order in a derivative
expansion one may view the entropy current as being approximately conserved in the sense
that ∂µJµs =O(∂ 2) under the equations of motion. That is to say, the leading order contribution
to the entropy current is of zeroth order in a derivative expansion, but, under the equations of
motion, its divergence is second order. The approximate conservation of the enstrophy current
is of a similar type. As we will see shortly, the enstrophy current is second order in derivatives
but, under the equations of motion, its divergence is fourth order.

The analogy between the enstrophy current and the entropy current may run deeper than
a comparison of their approximate conservation at leading order. In planar, non relativistic,
incompressible or barotropic flow the enstrophy charge is conserved in the absence of dissi-
pation but its time derivative is negative semi-definite once dissipation comes into play. This
feature is crucial to the existence of an inverse energy cascade in 2+1 dimensions [1]. Whether
such a behavior persists for relativistic fluid flows is yet an open problem. It is tentalizing to
speculate that a negative semi-definite divergence of the enstrophy current may lead to an
inverse energy cascade in relativistic fluids too.

Be that as it may, it is possible to identify the symmetry principle responsible for the con-
servation of the entropy current in the absence of dissipative terms using the hydrodynamic
effective action [20–24]. In fact, one can identify the mechanism responsible for its full non
conservation for generic, dissipative, fluids [9,14,15]. This raises the hope that a similar con-
struction may be generated in order to better understand the enstrophy current. In this work
we take a first step in this direction and find the symmetry associated with enstrophy conser-
vation at leading order in the derivative expansion. Along the way we provide a rudimentary
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construction of the effective action for Galilean fluids, offering a slightly different perspective
on it than the recent comprehensive work of [25]. In addition, we identify an enstrophy cur-
rent in generic relativistic fluids, generalizing the result of [3]. We will not discuss negativity
of enstrophy production in a relativistic setting but will comment on its possible realization
where relevant.

Our work is organized as follows. In Section 2 we discuss the structure of the relativis-
tic and Galilean enstrophy currents. Our result for the relativistic enstrophy current gener-
alizes that of [3], relevant for an uncharged conformal fluid, while our expression for the
non relativistic enstrophy current has been cast in a manifestly covariant form by using the
Newton-Cartan formalism. In Section 3 we discuss how a conserved enstrophy current arises
as a Noether current of an effective action for fluid dynamics in 2+1 dimensions for both rel-
ativistic and Galilean fluid flows. We end with an outlook and discussion in Section 4. A
review of the traditional approach to the construction of the enstrophy charge and a summary
of Newton-Cartan geometry and its relation to Galilean invariant hydrodynamics have been
relegated to the appendices.

2 The enstrophy current

In 2+ 1 dimensional incompressible non relativistic fluid flow the enstrophy charge is given
by

W =
1
2

∫

p
gωi jω

i jd2 x , (1)

where ωi j is the vorticity two form

ωi j = ∂i v j − ∂ j vi , (2)

with vi the velocity of a fluid element. The argument that W is time independent in the
absence of dissipation and negative semidefinite otherwise can be found in any textbook on
hydrodynamics, e.g., [26]. We present the canonical derivation of this result in appendix A for
completeness.

The total enstrophy W in (1) may be interpreted as a volume integral over an enstrophy
density which may be thought of as the zero component of an enstrophy current,

jµ(1) =ωi jω
i juµG , (3)

with
uµG = (1, ~v) . (4)

The reason for the parenthetical (1) in (3) will become clear presently. The subscript G in
(4) stands for Galilean, to be distinguished from its Lorentzian counterpart which we will
introduce shortly. The enstrophy current jµ(1) satisfies∇µ jµ(1) = 0 at leading order in a derivative

expansion and ∇µ jµ(1) ≤ 0 otherwise.
To be somewhat more precise, there exists not one, but a family of enstrophy currents

usually written in the form
jµ(n) = (ωi jω

i j)nuµG , (5)

with n a positive integer. As was the case for jµ(1), ∇µ jµ(n) = 0 at leading order in the derivative

expansion, and, as long as n > 0, ∇µ jµ(n) ≤ 0 in the presence of dissipation. While non-
standard, it is straightforward to argue that the currents (5) can be replaced with

jµh = h(ωi jω
i j)uµG , (6)
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where h is a monotonically increasing function of its argument; one finds that ∇µ jµh ≤ 0 with
a strict equality once the viscosity is set to zero.

Slightly less familiar is the family of conserved enstrophy currents associated with non
relativistic, inviscid, compressible, and barotropic fluids,

jµG =
g(s/ρ)
s2n−1

�

ωi jω
i j
�n

uµG . (7)

Here, ρ is the particle number density, s the entropy density, and g an arbitrary function. The
barotropic condition states that P = P(ρ) where P is the pressure. Note that in incompressible
flow the particle number density and the entropy density are constant so that (3) takes the
same form as (7) in its regime of validity. The expression (7) can be replaced by

jµG h = h(s/ρ, ωi jω
i j/s2)suµG . (8)

Following standard conventions we will, throughout this work, consider the version of the
enstrophy current given in (7). Where relevant we will comment on the alternate form jµG h
mentioned above.

An uncharged, inviscid, relativistic, conformal fluid in 2 + 1 dimensions also possesses a
conserved enstrophy current given by

Jµconformal =
Ω2

ε2/3
uµ , (9)

with ε the energy density, uµ a relativistic velocity field and Ω2 = ΩµνΩ
µν where

Ωµν = ∇µ
�

ε1/3uν
�

− ∇ν
�

ε1/3uµ
�

. See [3]. In what follows we will generalize this result.
In particular, we will argue that, in the presence of a U(1) global symmetry, one can write a
conserved enstrophy current for generic fluids of the form

Jµ =
g(s/ρ)
s2n−1

(Ω2)nuµ , (10)

with
Ωµν = ∂µ

�

T f
�µ

T

�

uν
�

− ∂ν
�

T f
�µ

T

�

uµ
�

. (11)

Here, T is the temperature, µ the chemical potential, ρ a U(1) charge density, and f an
arbitrary function of its argument. The current Jµ is conserved as long as the pressure, P,
satisfies P(T, µ) = p(T f (µ/T )). In the presence of an external electric field, f becomes linear
in µ, and Ωµν in (11) receives a contribution linear in the field strength, (see (26)). As was
the case for the Galilean enstrophy current one may replace the family of conserved currents
(10) with

Jµh = h(s/ρ,Ω2/s2)suµ . (12)

2.1 The relativistic enstrophy current

Recall that the dynamical fields of hydrodynamic theory can be chosen to be the temperature
T , a velocity field uµ satisfying uµuµ = −1, and a chemical potential µ if a conserved charge
is present. The energy momentum tensor and other conserved currents of the theory can be
expressed in terms of the dynamical fields and their derivatives. This description is usually
made manifest in terms of a derivative expansion. For instance,

Tµν = ε(T,µ)uµuν + P(T,µ) (gµν + uµuν) +O(∂ ) ,
Jµc = ρ(T,µ)uµ +O(∂ ) .

(13)
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Here, ε(T,µ), P(T,µ) and ρ(T,µ) are functions of the temperature and chemical potential
which, in equilibrium, reduce to the energy density, pressure and charge density respectively.
The entropy density s(T,µ) and charge density ρ(T,µ) satisfy

s =
�

∂ P
∂ T

�

µ
, ρ =

�

∂ P
∂ µ

�

T
, (14)

and
ε+ P = sT +ρµ . (15)

In the inviscid limit, energy-momentum and charge current conservation, ∇µTµν = FνµJcµ
and ∇µJµc = 0, lead to the equations of motion E = 0, E′ = 0, and Eµ = 0 with

E = −∇µ(suµ) ,

Eµ =
(P + ε)

T
(Pαµ ∂αT + Taµ)−ρVµ ,

E′ = −∇µ (ρuµ) .

(16)

Here aµ = uα∇αuµ is the acceleration, Pαβ = gαβ + uαuβ is a projection matrix and

Vµ = Fµνu
ν − T Pνµ∂ν

�µ

T

�

, (17)

with Fµν an external field strength.
Suppose we find a closed two-form Ωµνd xµd xν which is orthogonal to the velocity field,

Ωµνu
ν = 0, (at least under the equations of motion). Such a two-form satisfies

LuΩµν = 0 , (18)

under the equations of motion, with Lu the Lie derivative in the uµ direction. Using (18) and

∇µuα =
1
2
σµα +

1
2
ωµα +

1
d
ΘPµα − uµaα , (19)

where d is the number of spatial dimensions and

1
2
σµν =

1
2

Pµ
αPν

β
�

∇αuβ +∇βuα
�

−
1
d

Pµν∇αuα ,

ωµν = Pµ
αPν

β
�

∇αuβ −∇βuα
�

,

Θ =∇αuα ,

(20)

we find that under the equations of motion

Ωµν∇α
�

uαΩµν
�

= Ωµνσν
αΩαµ +ΘΩ

2
�

1−
2
d

�

. (21)

In two spatial dimensions, the right-hand-side of (21) vanishes. That the first term is zero
follows by denoting

σν
αΩαµ +Ων

ασαµ = ενµρuρσ ,

Ωµν = εµνρuρω ,
(22)

where εµνρ is the Levi-Civita tensor, and noting that

σ∝ εµνρuρσν
αεαµλuλω= 0 . (23)
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Thus, in two spatial dimensions, and after imposing the equations of motion,

Ωµν∇α
�

uαΩµν
�

= 0 . (24)

It is now straightforward to argue that Jµ given in (10) is conserved for any value of n under
the equations of motion. Note that if n< 0, then Jµ is ill defined in equilibrium. Also, Jµ = suµ

coincides with the (inviscid) entropy current for n = 0 and g = 1. Likewise, Jµ = ρuµ

coincides with the charge current for n= 0 and g = ρ/s. The first term on the right-hand side
of (21) bears a striking similarity to the vortex stretching term of non relativistic incompressible
flow (see equation (98) in appendix A). Therefore, it is sensible to identify Jµ of (10) with
n= 1 and g = 1 with the enstrophy current and Jµ with larger n with its higher moments.

Using (24) one can also show that the current Jµh defined in (12) is also conserved under the
equations of motion. It is also possible to generalize (10) to fluids with multiple U(1) charges

whereby Jµ = g
�

s
ρ1

, . . . , s
ρm

�

(Ω2)n

s2n−1 uµ, with ρi the various charge densities, is conserved. One
might be tempted to construct an additional conserved current by contracting (24) with εµνρuρ
to generate

JµH = H(s/ρ,$/s)suµ , (25a)

with
$= uρε

µνρΩµν . (25b)

It is straightforward to show that Ω2 = 1
2$

2 +O(E) implying that JµH and Jµh are equivalent
under the equations of motion.

The enstrophy current (10) was derived on the premise that a closed two-form
Ω = Ωµνd xµd xν, satisfying Ωµνu

ν = 0 is available. To find it, let us start with the most
general exact two-form which is first order in derivatives

Ωµν = ∂µ (T f (T, ν)uν)− ∂ν
�

T f (T, ν)uµ
�

+ θ Fµν , (26)

where θ is a constant, ν = µ/T and f is an arbitrary function of its variables. A somewhat
lengthy computation yields

Ωµνu
ν = −

f T
P + ε

Eµ +
�

f ρT
P + ε

−
∂ f
∂ ν

�

T Pαµ ∂αν− T
∂ f
∂ T

Pαµ ∂αT −
�

f ρT
P + ε

− θ
�

Fµνu
ν . (27)

In order for the penultimate term on the right-hand side of (27) to vanish we need that

∂ f
∂ T
= 0 . (28)

Solving for both (28) and the requirement that the second term on the right-hand-side of (27)
vanish, we find that the equation of state must take the form

P(T, µ) = p(T f (µ/T )) . (29)

Requiring that (27) vanishes under the equations of motion implies, in addition, that

f (ν) = θν+ θ0 , (30)

with θ0 an integration constant.
Let us summarize our findings. In the presence of an external electromagnetic field, a

charged fluid must have an equation of state of the form (29) with (30) in order to possess a
conserved enstrophy current. In the absence of an electromagnetic field, we must satisfy the
somewhat less restrictive condition, (29), in order for Jµ of (10) to be conserved. Note that a
charged conformal fluid and any neutral fluid will automatically have an equation of state of
the form (29) and therefore possess a conserved enstrophy current (10).
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2.2 The Galilean enstrophy current

The conserved enstrophy current for Galilean fluids can be constructed by borrowing the tech-
niques used to construct the relativistic enstrophy current. A key feature of the construction
of the relativistic enstrophy current was the existence of a closed two-form Ωµνd xµd xν which
was orthogonal to the velocity field under the equations of motion. With this two-form at
hand, and the decomposition (19), we were lead to (21) from which enstrophy conservation
in 2+ 1 dimensions followed.

To construct such a Galilean invariant two-form, and consequently a conserved enstrophy
current, we use the Newton-Cartan formalism which allows one to couple a Galilean invariant
theory to a background spacetime in a covariant way. Galilean boost invariance is ensured by
requiring a certain “Milne invariance” of the background geometry. We summarize this and
other salient features of the Newton-Cartan geometry in appendix B.1. Briefly, Newton-Cartan
geometry is characterized by a spatial metric hµν, two timelike vectors nµ and n̄µ such that
hµνnµ = 0 and nµn̄µ = 1, and a gauge field Aµ. From these data one constructs an inverse
metric h̄µν and a projection Pµν via (108b). Fluid dynamics in a background Newton-Cartan
geometry can be described by introducing a timelike Galilean velocity field uµG which satisfies
uµGnµ = 1. We briefly review hydrodynamics in a Newton-Cartan geometry in appendix B.2.
The interested reader is referred to [27] for a detailed exposition.

In a generic Newton-Cartan background geometry the equivalent of the decomposition
(19) is

∇̃µuνG =
1
2
σµ

ν +
1
2
ωµ

ν +
2
d

P̃νµΘ+ nµaν , (31)

with the combinations

σµ
ν = h̃µα P̃νβ

�

∇̃αuβG + ∇̃
βuαG

�

−
2
d

P̃νµΘ ,

ωµ
ν = h̃µα P̃νβ

�

∇̃αuβG − ∇̃
βuαG

�

,

aν = uαG∇̃αuνG ,

Θ = ∇̃µuµG .

(32)

Here, h̃µν and P̃µν are given in (120), ∇̃µ is the Milne invariant covariant derivative con-
structed in (121), ∇̃α = hαβ∇̃β and in obtaining (32) we made repeated use of ∇̃µhαβ = 0
together with nµ∇̃αuµG = 0. The latter follows from the requirement that ∇̃µnν = 0. It is im-
portant to keep in mind that in the Newton-Cartan formalism the Christoffel connection has
torsion, see (121). Following [27], we have chosen it to be timelike.

Using the Cartan formula LuΩµν = 0, we find that, under the equations of motion,

Ωαβ∇̃µ(u
µ
GΩαβ) = −Ω

αβΩαµσ
µ

β
+ΘΩ2

�

1−
2
d

�

− 2Ωαβ T̃ναµuµGΩνβ , (33)

where T̃µ
αβ

is the torsion tensor, and we have defined

Ωµν = hµαhνβΩαβ , Ω2 = ΩµνΩµν . (34)

Since torsion is timelike, T̃µ
αβ
= −uµG F (n)

αβ
, c.f., (121), the last term on the right-hand-side of

(33) vanishes under the equations of motion,

−2Ωαβ T̃ναµuµGΩνβ = 2Ωαβ F (n)αµ uµG
�

uνGΩνβ
�

= 0 . (35)
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Thus, (33) reduces to

Ωαβ∇̃µ(u
µ
GΩαβ) = −Ω

αβΩαµσ
µ

β
+ΘΩ2

�

1−
2
d

�

. (36)

Equation (36) is the Galilean equivalent of (21): the last term on its right clearly vanishes in
d = 2 spatial dimensions. The first term on the right-hand-side of (36) is a vortex stretch-
ing term which, as we will now show, also vanishes in d = 2 spatial dimensions. Let us
work in a coordinate system where, locally, uµG = (1, 0). In this coordinate system we have

Ωαµ = δi
αδ

j
µεi jω with εi j the Levi-Civita tensor and ω a real number. It is now straightfor-

ward to compute

ΩµαΩµβ =
1
2
Ω2 P̃αβ , (37)

from which
ΩαβΩαµσ

µ

β
= 0 , (38)

follows.
Using (36), we find that in 2+1 dimensions and under the equations of motion

(∇̃µ − G̃µ)J
µ
G = 0 , (39)

where G̃µ was defined in (126) and JµG is given by

JµG = g
�ρ

s

� (Ω2)n

s2n−1
uµG . (40)

Equation (40) is a covariant version of (7). In obtaining (39) we repeatedly used the fact that
G̃µuµG = 0 and ∇̃αhµν = 0.1 As in the relativistic case, conservation of

JµG h = h(s/ρ,Ω2/s2)suµG , (41)

also follows from (36). Moreover, contraction of (36) with εµνρnρ leads to a conserved
JµG H = H(s/ρ,$/s)suµG where $ = nρε

µνρΩµν. Since Ω2 = 1
2$

2 +O(E), JµG h and JµG H are
equivalent up to terms proportional to the equations of motion.

It remains to find a closed and velocity orthogonal Ωµν. The most general U(1) and Milne
invariant closed two-form Ωµν that can be constructed using the Newton-Cartan data is given
by

Ωµν = F̃µν + ∂µ(qnν)− ∂ν(qnµ) , (42)

(up to a multiplicative constant which we set to 1 without loss of generality) where q is a
generic function of the entropy density, s, and particle number density, ρ, and F̃µν is the Milne
invariant field strength defined in (116). Contracting one of the indices of (42) with the
velocity field and using the equations of motion (127) we find

Ωµνu
ν
G =

�

1
ρ

∂ P
∂ ρ
+
∂ q
∂ ρ

�

P̃αµ ∂αρ +
�

1
ρ

∂ P
∂ s
+
∂ q
∂ s

�

P̃αµ ∂αs+
�

q+
(P + ε)
ρ

�

F (n)µν uνG . (43)

In the absence of torsion, F (n)µν = ∂µnν− ∂νnµ = 0, we find that the right-hand-side of (43)
vanishes for an equation of state of the form

P = P(ρ) , (44)

1If the torsion tensor is not timelike then G̃µuµG 6= 0. Nevertheless, it is possible to show that the enstrophy
current (40) is conserved, in the sense of (39), as long as a closed two-form Ωµνd xµd xν orthogonal to the velocity
field exists.
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and

q = −
∫

1
∂ P
∂ µ

∂ P
∂ ρ

dρ = −µ+ c0(T ) . (45)

In the presence of torsion we need to require, in addition, that

ρ = ρ(µ+ c(T )) , (46)

(where c0(T ) = −Tc′(T )).
So far we have considered generic flows. In the context of fluid flow at low velocities

it is also interesting to consider subsonic flow where the fluid becomes incompressible, see,
e.g., [28]. In this limit the particle number density becomes constant, so that the equations
of motion reduce to the incompressible Navier-Stokes equations. Put differently, incompress-
ible flow can be thought of as a particular class of solutions to the equations of motion where
the particle number density, and consequently the entropy density, are constant, and the pres-
sure becomes an independent function of the coordinates. In torsionless, incompressible flow,
equation (43) is automatically satisfied for an arbitrary choice of q. In the presence of torsion
we must require q = −(P + ε)/ρ.

To relate the covariant expressions (40), (42) and (44) to (5) and (7) we take the flat,
torsionless, spacetime limit of (40) defined in (128). The enstrophy current JµG in (40) reduces
to (7). For incompressible flow, the particle number density, and therefore the entropy density
become constant in which case (40) reduces to (5) up to an overall constant.

3 Enstrophy from symmetry

As stated in the introduction, it stands to reason that the enstrophy current of hydrodynamics
is a result of an emergent symmetry of the theory. In what follows, we will use a recently
developed formalism which allows one to construct an effective action for hydrodynamics
[4–6] in order to identify the symmetry associated with enstrophy conservation. We will start
with the relativistic enstrophy current for which the effective action has been studied in detail
and then move on to the non relativistic theory where some extra ingredients are necessary in
order to construct the effective action and derive the symmetry associated with (approximate)
enstrophy conservation.

3.1 Relativistic enstrophy from symmetry

An effective action for an ideal charged fluid can be written in terms of a set of dynamical
fields Xµ(σ) and C(σ),

Se f f (X
µ , C; β i , Λβ , gµν, Aµ) =

∫

q

−|gi j|P(T, µ)dd+1σ . (47)

The function Xµ(σ) may be thought of as a dynamical Eulerian coordinate specifying the
location of the fluid in a target space and C(σ) an equivalent function specifying its phase
under a global U(1) symmetry. The parameters β i and Λβ specify the configuration of the
fluid in the far past, and gµν and Aµ specify the metric and U(1) flavor field of the target space
where the fluid resides. The fields gi j , T and µ are defined via

gi j(X ) = ∂iX
µ∂ jX

νgµν(X ) , β i gi jβ
j = −T−2 ,

µ

T
= β i

�

∂iX
µAµ(X ) + ∂iC

�

+Λβ , (48)

and P is a real function. By computing the stress tensor one finds that P can be identified with
the pressure, T with the temperature and µ with the chemical potential. Other actions for
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ideal or inviscid fluids can be found in [29–34]. We have chosen (47) since by doubling the
fields (and adding appropriate ghosts) the action can be extended to include non dissipative
fluids. We refer the reader to [35] for an extensive discussion.

We claim that the following transformation of the dynamical fields

δXµ =
1

Ts2
Ω2uµ −

2
sp′2

EµΘ−
4

sp′
PµβΩβαaα +

4
p′

Pµβ∇α
�

1
s
Ωαβ

�

,

δC =
µ

Ts2
Ω2 − AαδXα ,

(49)

is a symmetry of the action in 2+1 dimensions. Here uµ = ∂iX
µβ i T , and the remaining objects

are related to uµ, T , µ and P as in section 2. For instance, p′ is the derivative of p with respect
to its argument (see (29)). Further, the symmetry (49) leads to a conserved current

J ′µ =
Ω2

s
uµ +

4
sp′
ΩµνEν , (50)

which we may identify with the enstrophy current (10) with g = 1 and n = 1 once the equa-
tions of motion are satisfied. We will generalize (49) and the associated (50) to obtain the
class of currents (10) shortly.

To see that (49) is indeed a symmetry and leads to (50) let us consider a generic variation
δXµ and δC of the action. The equations of motion for δXµ are energy-momentum conser-
vation in the target space and the equation of motion for δC is current conservation. Thus,

δX Se f f = −
∫

dd+1σ
q

−|gi j|
�

�

∇µTµν − Fν
µJcµ + Aν∇µJµc

�

δX ν +∇µJµc δC +
�

total
derivative

�

�

.

(51)
If the transformations δXµ and δC are a symmetry of the action, then δX Se f f = 0 indepen-
dently of the equations of motion. Therefore, if δXµ and δC are symmetries,

�

∇µTµν − Fν
µJcµ + Aν∇µJµc

�

δX ν +∇µJµc δC =∇µSµ , (52)

with Sµ a local current. The symmetries which will generate the enstrophy current should
lead to Sµ = Jµ up to possible extra terms proportional to the equations of motion. Using the
expression for Jµ in (10) with g = 1 and n= 1 we find

∇µJµ =
1
s2

EΩ2 −
2

sp′2
(EαEα)Θ+

4
sp′
ΩαβaαEβ +

4
p′
∇α

�

1
s
Ωαβ

�

Eβ − 4∇α

�

Ωαβ Eβ
p′s

�

. (53)

Inserting (53) into (52) and solving for δXµ and δC will give us transformations which can
not be written in terms of positive powers of the equations of motion or their derivatives. To
remedy this, we use Sµ = J ′µ which leads to

(Eα − T Euα − TµE′uα)δXα − E′(AαδXα +δC) =

+
1
s2

EΩ2 −
2

sp′2
(EαEα)Θ+

4
sp′
ΩαβaαEβ +

4
p′
∇α

�

1
s
Ωαβ

�

Eβ .
(54)

(Note that covariance of (54) is ensured due to δC → −δXα∂αΛ under gauge transforma-
tions.) One can check that the δXµ and δC given in (49) satisfy (54).
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Symmetries associated with conserved currents constructed from higher powers of Ω2 as
in (10), can be obtained in a similar fashion. Using Sµ = Jµ +O(E) in (52) we find that

δXµ =
(2n− 1)g

Ts2n
(Ω2)nuµ −

g ′

Ts2n−1ρ
(Ω2)nuµ −

2ng
s2n−1p′2

(Ω2)n−1EµΘ

−
4ng

s2n−1p′
(Ω2)n−1PµβΩ

βαaα +
4n
p′

Pµβ∇α
� g

s2n−1
(Ω2)n−1Ωαβ

�

,

δC =
(2n− 1)µg

Ts2n
(Ω2)n −

µg ′

Ts2n−1ρ
(Ω2)n −

g ′

s2(n−1)ρ2
(Ω2)n − AαδXα ,

(55)

leads to the conserved current

J ′µ = g
�

s
ρ

�

(Ω2)n

s2n−1
uµ + g

�

s
ρ

�

4n
s2n−1p′

(Ω2)n−1ΩµνEν . (56)

For n= 1 and g = 1 we recover (49) and (50) as expected. For completeness we note that

δXµ =
1
T

�

2ḣ
s2
Ω2 −

s
ρ

h′ − h

�

uµ −
4ḣ
sp′

PµαΩαβaβ −
2ḣ

sp′2
ΘEµ +

4
p′

Pµβ∇α

�

ḣ
s
Ωαβ

�

,

δC =
µ

T

�

2ḣ
s2
Ω2 −

s
ρ

h′ − h

�

−
s2

ρ2
h′ − AαδXα ,

(57)

generate Jµh as defined in (12). In (57) we have defined h′ and ḣ to be the derivatives with
respect to the first and second argument of h respectively.

The simplest symmetry that arises from (55) is given for n= 0 and g = 1. In that case,

δXµ = −
uµ

T
, δC = −

µ

T
− AαδXα , (58)

and the corresponding current is the entropy current Js = suµ as previously identified in [20–
24]. Analogously, for n= 0 and g = ρ/s, we have

δXµ = 0 , δC = 1 , (59)

which leads to conservation of the charge current J = ρuµ. Unfortunately, neither (49) nor
(55) nor (57) seem to provide a physically meaningful insight into the symmetry responsible
for enstrophy conservation for n 6= 0. The simplest expression we were able to extract from
(55) is

δXα =
1
p

2

4
p′
εαβρuβaρ , δC = −AαδXα , (60)

(up to the equations of motion), obtained by setting n = 1/2 and g = 1. The transformation
(60) is associated with J ′µH =

1p
2

�

$uµ + 2
p′ε

µαβ Eαuβ
�

obtained from (25) with H = 1p
2
$/s.

It is unclear whether the divergence of the latter current is sign definite.
So far we have worked with a Lagrange description of the fluid. It is possible to relate

the symmetry (49) to a symmetry of the Eulerian degrees of freedom, uµ, T and µ. This
symmetry can be easily found by considering the pushforwards of the initial state data through
the dynamical degrees of freedom Xµ and C ,

βµ = ∂iX
µβ i(σ(X )) , Λ̄β = Λβ(σ(X )) + β

µ∂µC(σ(X )) , (61)

which, under a change δXµ and δC , transform as

δβµ =−LδXβ
µ , δΛ̄β = −LδX Λ̄β + β

µ∂µδC , (62)
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where LδX is the Lie derivative in the δXµ direction with δXµ and δC defined in (49). Using
(62) and the definitions of the Eulerian variables in the target space

T =
1

Æ

−βµβνgµν
, uµ = Tβµ , µ= uµAµ + Λ̄β , (63)

the symmetry (49), or more generally (55), acts on the conventional degrees of freedom as

δuµ =− T PµνLδXβ
ν , δT = −T2uνLδXβ

ν ,

δµ=−µTuνLδXβ
ν − TAνLδXβ

ν − TLδX Λ̄β + uµ∂µδC ,
(64)

while it is inert on the target space sources

δgµν = 0 , δAµ = 0 . (65)

3.2 Galilean enstrophy from symmetry

The procedure described in the previous section for obtaining the symmetry which generates
the relativistic enstrophy current can be readily generalized to Galilean invariant systems. In
what follows we first describe the ingredients required to construct an effective action for
Galilean invariant fluids and then proceed to identify the symmetry associated with approxi-
mate conservation of enstrophy.

3.2.1 A Galilean effective action for hydrodynamics

A Schwinger-Keldysh effective action for Galilean fluids can be constructed from a higher di-
mensional relativistic one by equipping the latter with a null Killing vector [36]. This procedure
was carried out in detail in [25]. Here, we will use an alternate construction similar to the one
used to formulate the Schwinger-Keldysh effective action for relativistic fluids, or any infrared
action for that matter. Namely, we identify the symmetries and dynamical fields associated
with the fluid and then construct the most general action compatible with those symmetries.
Since a full construction of the Schwinger-Keldysh effective action for Galilean fluids is avail-
able in [25] and since the various conceptual hurdles for constructing effective actions for
fluids were described in detail in [4–19], we will be somewhat sparse in our exposition.

In a Newton-Cartan background geometry, the effective action should be invariant under
coordinate reparameterizations, xµ → xµ + ξµ, the U(1) gauge symmetry with parameter Λ,
and Milne boosts with parameter ψν. When acting on the the Newton-Cartan data, these
transformations take the form

δχnµ = Lξnµ ,

δχhµν = Lξhµν ,

δχ n̄µ = Lξn̄µ + hµνψν ,

δχAµ = LξAµ + ∂µΛ+ Pνµψν −
1
2

nµψ
2 ,

δχ h̄µν = Lξh̄µν −
�

nµPλν + nνPλµ
�

ψλ + nµnνψ
2 ,

(66)

where ψ2 = ψνψρhνρ and δχ denotes a target space coordinate reparameterization, a U(1)
gauge transformation and a Milne transformation. The inverse metric h̄µν is defined in (108b).

The dynamical fields of the Galilean invariant effective action for fluid dynamics are given
by the coordinates Xµ(σ) and a phase C(σ). As is the case for relativistic fluid dynamics,
the Xµ fields parameterize worldlines of fluid elements. They provide a mapping between a
parameter space specified by the coordinate σi which we refer to as a worldvolume and the
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space where the fluid elements live in, which we refer to as the target space. Similarly, C(σ)
is the field that captures the local phase of each fluid element. The astute reader will note
that in addition to Xµ(σ) and C(σ), one may have included a field φµ(σ) which maps Milne
transformations from the target space to the worldvolume. Worldvolume quantities which are
not Milne invariant could then be rendered as such by modifying them with appropriate factors
of φµ(σ). As we shall see shortly all worldvolume quantities are explicitly Milne invariant so
that φµ(σ) will not appear in the effective action.

The dynamical variables are bifundamental fields and as such transform under the target
space symmetries as well as under the corresponding symmetries induced on the worldvolume:
worldvolume reparameterizations labeled by ξ̂i , worldvolume U(1) gauge transformations
with parameter Λ̂, and worldvolume Milne boosts parameterized by ψ̂i ,

δ(χ,χ̂)X
µ(σ) = −ξµ(X (σ)) + ξ̂i(σ)∂iX

µ(σ) ,

δ(χ,χ̂)C(σ) = −Λ(X (σ)) + Λ̂(σ) +Lξ̂C(σ) ,
(67)

with δχ̂ denoting worldvolume transformations. Had we added φµ(σ), we would have found

δ(χ,χ̂)φµ(σ) = −Pνµ (X (σ))ψν(X (σ)) + Pνµ (X (σ))(∂iX
ν)−1ψ̂i(σ) + ξ̂

i(σ)∂iφµ(σ)−Lξφµ(σ) .
(68)

As should be clear from (67), δXµ and δC are both invariant under worldvolume Milne trans-
formations.

In addition to the dynamical fields, the effective action will depend on the initial state
data which specifies the equilibrium state of the system in the infinite past. This consists of a
timelike Killing vector, β i(σ), specifying the initial velocity and temperature, a gauge Killing
parameter, Λβ(σ), associated with the initial chemical potential, and a Milne boost one-form
ψi
β
(σ). Since the system is in equilibrium in the infinite past the mapping between the target

space and worldvolume is trivial. Thus,

δβnµ(t = −∞) = 0 , δβhµν(t = −∞) = 0 ,

δβ n̄µ(t = −∞) = 0 , δβAµ(t = −∞) = 0 ,
(69)

where δβ collectively denotes a worldvolume transformation given in (74) with parameters

{β i ,Λβ ,ψβi }. Worldvolume coordinate reparameterizations and U(1) gauge transformations
acting on the initial data take the form:2

δχ̂β
i = Lξ̂β

i ,

δχ̂Λβ = Lξ̂Λβ − β
i∂iΛ̂ ,

δχ̂ψ
β
i = Lξ̂ψ

β
i −Lβψ̂i + ψ̂i .

(70)

Notice that β i and Λβ are invariant under Milne boosts while ψβi transforms non trivially
under it.

The local effective action for Galilean fluids, Se f f , is constructed from worldvolume and
target space invariant combinations of the dynamical fields and initial state data. In practice,

2Note that it is always possible to choose a gauge where the parameters specifying the initial data are fixed.
A common choice is the static gauge where β i = b(1, ~0), with b a constant, Λβ = 0 and ψβi = 0. As a result
worldvolume transformations of the initial data will be restricted to a subset preserving the static gauge. We
refrain from choosing a gauge in order to retain an explicitly covariant formulation of the action.
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it is convenient to define the target space invariant quantities

ni(σ) = ∂iX
µnµ(X ) ,

hi j(σ) = (∂iX
µ)−1(∂ jX

ν)−1hµν(X ) ,

Ãi(σ) = ∂iX
µÃµ(X ) + ∂iC ,

h̃i j(σ) = ∂iX
µ∂ jX

νh̃µν(X ) ,

(71)

where the tilde’d quantities

Ãµ =Aµ + uGµ −
1
2

nµu2
G ,

h̃µν =h̄µν − uGµnν − uG νnµ + nµnνu
2
G ,

(72)

with
uµG(X ) =

1
β ini

β j∂ jX
µ , uGµ = h̄µνu

ν
G , u2

G = uGµuµG , (73)

are Milne invariant. Note that had we not used the target space Milne invariant variables Ãµ
and h̃µν in (71), we would have been forced to use φµ to ensure target space Milne invari-
ance of Ãi and h̃i j . It is the absence of φµ on the right-hand-side of (71) that ensures that it
does not appear in the effective action. It is straightforward to show that the target space in-
variant combinations (71) transform under worldvolume reparameterizations and U(1) gauge
transformations induced by the transformations of the dynamical fields (67) as

δχ̂ni = Lξ̂ni ,

δχ̂hi j = Lξ̂h
i j ,

δχ̂ Ãi = Lξ̂Ãi + ∂iΛ̂ ,

δχ̂ h̃i j = Lξ̂h̃i j ,

(74)

and are invariant under worldvolume Milne boosts.
The symmetries on the worldvolume can be maintained by requiring the action to be a

scalar that depends only on U(1) gauge invariant and Milne invariant quantities. At leading
order in derivatives, the unique scalar invariants are

T =
1
β ini

, µ= Tβ iÃi + TΛβ , (75)

corresponding respectively to the temperature and the chemical potential. Keeping all the
symmetries intact, we find that the most general effective action for Galilean fluids at leading
order in derivatives is

Se f f =

∫

dd+1σ
p
γ P(T,µ) , (76)

where the measure is given by the (Milne invariant) determinant of γi j = ∂iX
µ∂ jX

νh̄µν+ nin j
and P is a generic function of the temperature T and chemical potential µ.

To get a feel for this formulation of Galilean hydrodynamics let us derive the equations of
motion for (ideal) Galilean fluids by varying the effective action with respect to the dynamical
variables. A generic variation of the effective action (76) is given by

δSe f f =

∫

dd+1σ
p
γ

�

P
1
p
γ
δ
p
γ+ sδT +ρδµ

�

, (77)
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where we have defined

s =
�

∂ P
∂ T

�

µ
and ρ =

�

∂ P
∂ µ

�

T
. (78)

In order to write the variations specified in (77) in terms of variations of the dynamical vari-
ables, we first use (75) to write

δT = −Tui
Gδni ,

δµ= ui
GδÃi −µui

Gδni ,
1
p
γ
δ
p
γ=

1
p

γ̃
δ
p

γ̃= ui
Gδni +

1
2
γ̃i jδh̃i j ,

(79)

where we have defined ui
G = Tβ i and

γ̃i j = nin j + h̃i j , γ̃i j = ui
Gu j

G + hi j . (80)

To derive the last expression in (79) we have used

δh̃i j = P̃ i
k P̃ j

l δh̄kl − (uG i − niu
2
G)P̃

k
j δnk − (uG j − n ju

2
G)P̃

k
i δnk , δui

G = −ui
Guk

Gδnk , (81)

with u2
G = uG iu

i
G and P̃ i

j = hikh̃k j = δi
j − ui

Gn j . In writing the generic variations in (79) we

have not included variations with respect to the initial state data β i and Λβ since they do not
depend on the dynamical variables.

Next, consider

δni = ∂iX
µLδX nµ ,

δÃi = ∂iX
µLδX Ãµ + ∂iδC ,

δh̃i j = ∂iX
µ∂ jX

νh̃µν ,

(82)

where LδX is the Lie derivative along δXµ. Inserting (82) into (79) and then into (77) we find

δSe f f = −
∫

dd+1σ
p
γ

�

�

Eµ + (T E +µE′)nρ
�

δXρ − E′
�

δC + ÃρδXρ
�

�

(83)

up to total derivatives. In writing (83) we have repeatedly used the relation

1
p
γ
∂µ(
p
γVµ) = (∇µ − Gµ)Vµ = (∇̃µ − G̃µ)Vµ , (84)

with G̃µ defined in (126). Satisfyingly, the expressions for E, E′ and Eµ coincide with those in
(127). We reproduce them here for convenience,

Eµ = P̃αµ ∂αP −ρ F̃µαuαG + (P + ε)F
(n)
µα uαG ,

E = −(∇̃µ − G̃µ)(s uµG) ,

E′ = −(∇̃µ − G̃µ)(ρ uµG) .

3.2.2 Extracting the Galilean enstrophy from symmetry

The transformations of δXµ and δC which generate the symmetry associated with enstrophy
conservation must satisfy

(Eµ + (T E +µE′)nµ)δXµ − E′(δC + ÃρδXρ) = (∇̃µ − G̃µ)Sµ , (85)
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with
Sµ = JµG +O(E) . (86)

In 2+1 dimensions the expression in (33) reduces to

Ωαβ∇̃µ(u
µ
GΩαβ) = −2Ωµν∇̃µ

�

1
ρ

Eν

�

+ 2ΩµνF (n)µρ uρ
�

1
ρ

Eν

�

, (87)

and conservation of the enstrophy current defined in (40) reads

(∇̃µ − G̃µ)J
µ
G =
(2n− 1)g

s2n
(Ω2)nE +

g ′

ρ s2n−1

�

s
ρ

E′ − E
�

(Ω2)n

−
4ng
s2n−1

(Ω2)n−1Ωαβ∇̃α
�

1
ρ

Eβ

�

+
4ng

s2n−1ρ
(Ω2)n−1Ωαβ F (n)αµ uµG Eβ .

(88)

Defining

J ′µG = JµG +
4ng

s2n−1ρ
(Ω2)n−1Ωµβ Eβ , (89)

we find

(∇̃µ − G̃µ)J
′µ
G =

(2n− 1)g
s2n

(Ω2)nE +
g ′

ρ s2n−1

�

s
ρ

E′ − E
�

(Ω2)n

+
1
ρ

Eβ∇̃α
�

4ng
s2n−1

(Ω2)n−1Ωαβ
�

+
4ng

s2n−1ρ
(Ω2)n−1Ωαβ F (n)αµ uµG Eβ .

(90)

It is now straightforward to show that

δXµ =
1
T
(2n− 1)g

s2n
(Ω2)nuµG −

g ′

Tρ s2n−1
(Ω2)nuµG

+
1
ρ

P̃µ
β
∇̃α

�

4ng
s2n−1

(Ω2)n−1Ωαβ
�

+
4ng

s2n−1ρ
(Ω2)n−1ΩαµF (n)αν uνG ,

δC =
µ

T
(2n− 1)g

s2n
(Ω2)n −

µ

T
g ′

ρ s2n−1
(Ω2)n −

g ′

ρ2 s2n−2
(Ω2)n − ÃρδXρ ,

(91)

satisfy the condition (85) with Sµ given by J ′µG , defined in (89). For completeness we note that

δXµ =
1
T

�

2ḣ
s2
Ω2 −

s
ρ

h′ − h

�

uµG +
4
ρ

P̃µβ∇̃α

�

ḣ
s
Ωαβ

�

+
4ḣ
sρ

P̃µβΩ
αβ F (n)αν uνG ,

δC =
µ

T

�

2ḣ
s2
Ω2 −

s
ρ

h′ − h

�

−
s2

ρ2
h′ − ÃαδXα ,

(92)

lead to the conservation of JµG h defined in (41).

4 Conclusions

In this work we used the recently discovered effective action for hydrodynamics to determine
the approximate symmetry responsible for the approximately conserved enstrophy current
in 2 + 1 dimensional relativistic and Galilean flow. In the process of our analysis, we have
identified a mechanism which allows for the construction of the enstrophy current and used it
to generalize previously known results regarding its form.

The mechanism we identified for constructing the enstrophy current relies on the existence
of a closed two-form Ωµνd xµd xν orthogonal to the velocity field, Ωµνu

ν = 0, at least under
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the equations of motion. Once such a two-form is available the existence of the enstrophy
current is guaranteed. We believe that this mechanism can be used to construct an enstrophy
current for fluid flows which are not relativistic or Galilean. Fluid dynamics in the absence
of boost invariance has been studied recently in [37–39] and may be relevant to a variety of
physical systems, see, e.g., [40].

Our current analysis neglected dissipation, which, in the Galilean case, leads to a non
trivial but sign definite change in enstrophy charge over time. This fact, together with con-
servation of energy, is a key ingredient in the argument leading to the inverse energy cascade
in turbulent flow (see Appendix A). It is not known whether a relativistic enstrophy current
whose divergence is sign (semi-)definite exists. In order to study this problem one would start
with Jµ in (10) (setting, say, n = 1) and consider O(∂ 3) corrections to it such that its di-
vergence is sign (semi-)definite up to O(∂ 4). The existence of a relativistic enstrophy current
with a sign (semi-)definite divergence may have implications for relativistic turbulence in 2+1
dimensions.

In the context of holography, the existence of an enstrophy current for conformal 2 + 1
dimensional fluid flow implies its dual manifestation in asymptotically AdS4 black brane ge-
ometries. More precisely, as is the case for entropy, one may expect that asymptotically AdS4
black branes possess a geometric quantity that captures enstrophy conservation in the bound-
ary theory. There are several approaches to this problem in the literature [41–43] which may
serve as an excellent starting point for fully addressing this issue. Understanding the role of
approximate entrophy conservation in asymptotically AdS4 black branes may lead to novel
insights in holographic turbulence. Even more relevant would be to understand whether an
approximate enstrophy conservation law arises regardless of the holographic duality.
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A The non relativistic enstrophy charge

As discussed in the main text it is straightforward to argue that the enstrophy is conserved
in inviscid 2 + 1 dimensional incompressible flow. Consider the Navier-Stokes equation for
incompressible fluids in the absence of random forces

∂t ~v + ~v · ~∇~v + ~∇P =
1
R
∇2~v ,

~∇ · ~v = 0 ,
(93)

where R is the Reynolds number, P is the pressure, and ~v is the velocity field. We start by
making two observations. By dotting the Navier Stokes equation into ~v we find that

1
2
∂t v

2 +
1
2
~∇ ·
�

~vv2
�

+ ~∇ (~vP) =
1
R

�

−
1
2
ωi jω

i j +∇ j

�

vi∇ j v i − vi∇i v j
�

�

, (94)

where
v2 = ~v · ~v , ωi j = ∂i v j − ∂ j vi , (95)
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and we have used the incompressibility condition. Integrating (94) we find

∂t E = −
1
R

W , (96)

where

E =
1
2

∫

p
g v2dd x , and W =

1
2

∫

p
gωi jω

i jdd x , (97)

are referred to as the total energy and the total enstrophy respectively. In obtaining (96)
we have assumed that the fluid is on a manifold without a boundary. We will not consider
manifolds with boundaries in the remainder of this work. When R−1 = 0 then, unsurprisingly,
energy is conserved.

To understand the role of enstrophy in establishing the dynamics of the theory, let us con-
sider the equation of motion for ωi j . By taking a derivative of (93) we obtain

∂tωi j +∇k

�

vkωi j

�

+
1
2

�

ωikσ
k
j +σikω

k
j

�

=
1
R
∇2ωi j , (98)

where
σi j =∇i v j +∇ j vi . (99)

The third term from the left is referred to as a ‘vortex stretching’ term and it vanishes in 2
spatial dimensions. Indeed, let

ωikσ
k
j +σikω

k
j = εi js , (100)

and also
ωi j = εi jω . (101)

Then,
s∝ εi jωikσ

k
j =ωε

i jεikσ
k
j = σ

j
j = 0 , (102)

where the last equality follows from the incompressibility condition. The enstrophy production
equation reads

∂tW =

∫

p
gω jiω

i
kσ

k jdd x −
1
R

P , (103)

where P is the Palinstrophy,

P =

∫

p
g∇kωi j∇kωi jdd x . (104)

In the presence of the vortex stretching term the rate of change of W is not sign definite.
In this case experimental results and indirect theoretical arguments lead to

lim
R−1→0

W
R
= e0 , (105)

where e0 is a constant. With some work, (see, e.g., [44]) one can show that (105) leads to the
Kolmogorov energy cascade in turbulent flow. Once the vortex stretching term is absent, it is
easy to show that ∂tW ≤ 0. Since the enstrophy is a positive quantity, it can not diverge if it
were initially finite and (105) is no longer valid. Instead one finds, via (96), that energy will
be conserved at large Reynolds number leading, eventually, to an inverse energy cascade (and
also a direct enstrophy cascade) in two dimensional turbulent flow.
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We also note in passing that higher moments of the enstrophy are also monotonically
decreasing and conserved when R−1 = 0, viz.

∂t

∫

p
g
�

ωi jω
i j
�n

d2 x = −
n
R

∫

p
g
�

ωi jω
i j
�n−1∇kωi j∇kωi jd2 x , (106)

whenever n> 0. Alternately,

∂t

∫

p
g h
�

ωi jω
i j
�

d2 x = −
1
R

∫

p
g h′

�

ωi jω
i j
�

∇kωi j∇kωi jd2 x , (107)

is negative as long as h is a monotonically increasing function.

B Newton-Cartan geometry and hydrodynamics

Galilean invariant dynamics in a curved background, and Galilean invariant hydrodynamics in
particular, is properly described by Newton-Cartan geometry. In what follows we will briefly
summarize key elements of the Newton-Cartan formalism developed in [45] and then use it
to recast Galilean hydrodynamics in a manifestly covariant form. See [27].

B.1 Newton-Cartan geometry

In d+1 spacetime dimensions, the independent Newton-Cartan background data can be taken
to be the set (nµ, hµν, Aµ, n̄µ), where nµ is a nowhere vanishing one-form which defines the
local time direction, hµν is a rank d positive semi-definite symmetric tensor which satisfies
hµνnµ = 0 and can be seen as defining the (inverse) spatial metric, Aµ is a U(1) gauge field
associated with the conservation of particle number, and n̄µ is related to nµ via

n̄µnµ = 1 . (108a)

Based on the Newton-Cartan data, one can define a positive-definite spacetime metric γµν (and
its inverse γµν), a rank d (spatial) metric h̄µν and a projector Pµν via

γµν = n̄µn̄ν + hµν , h̄µν = γµν − nµnν , Pµν = hµρh̄νρ = δ
µ
ν − n̄µnν . (108b)

Note that h̄µνn̄ν = 0 and Pµνn̄ν = Pµνnµ = 0.
In Newton-Cartan theory different choices of n̄µ are equivalent. This is a result of the

requirement that the underlying theory is Galilean invariant. In practice, we require that the
action is invariant under a transformation n̄µ→ n̄′µ obtained via

n̄′µ = n̄µ + hµνψν , (109)

with ψν a transverse one-form, ψνn̄ν = 0. The transformation (109) is referred to as a Milne
boost. The action of Milne boosts on the metric and gauge field is given by

h̄′µν = h̄µν − (nµPρν + nνPρµ)ψρ + nµnνh
αβψαψβ ,

A′µ = Aµ + Pνµψν −
1
2

nµhνρψνψρ ,
(110)

with hµν and nµ invariant. Invariance under Milne transformations is a key requirement used
to construct Galilean invariant theories in a curved background.
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The covariant measure appearing in spacetime integrals is dd+1 x
p
γ, where γ= det(γµν),

which can be shown to be Milne invariant. The derivative that reduces to a boundary term
under the integral is given by the combination

(∇µ − Gµ)Vµ =
1
p
γ
∂µ(
p
γVµ) , (111)

where we have defined
Gµ = Tαµα = −F (n)µα n̄α , (112)

with
F (n)µν = ∂µnν − ∂νnµ . (113)

A covariant derivative ∇µ can be constructed by requiring compatibility with the Newton-
Cartan data,

∇µnν = 0 , ∇µhαβ = 0 , (114)

and restricting the torsion to be timelike, h̄λρTλµν = 0,

Γλµν = n̄λ∂νnµ +
1
2

hλρ
�

∂µh̄νρ + ∂νh̄µρ − ∂ρh̄µν
�

+
1
2

hλρ
�

nµFνρ + nνFµρ
�

,

Tλµν = Γ
λ
µν − Γ

λ
νµ = −n̄λF (n)µν ,

(115)

where we have defined the field strength

Fµν = ∂µAν − ∂νAµ , (116)

and we used the conventions

∇µVαβ = ∂µVαβ + Γ
α
ρµVρ

β
− Γρ

βµ
Vαρ . (117)

Our construction closely follows that of [45]. A more general analysis can be found in [46].
The connection (115) is not Milne invariant. Unfortunately, using only the Newton-Cartan data
it is not possible to construct a connection that is both Milne invariant and gauge invariant,
see [45]. As we will see shortly, when discussing the hydrodynamic theory, one can use the
velocity field as additional data in order to construct Milne and U(1) invariant connections,
see [27].

B.2 Fluids on a Newton-Cartan background

Let us now consider a fluid in a curved Newton-Cartan background geometry. Following [27],
we equip our theory with a Milne-invariant timelike velocity vector field uµG normalized such
that uµGnµ = 1. We also define the lower index counterpart of uµG and its norm as

uGµ = h̄µνu
ν
G , u2

G = uGµuµG , (118)

which transform under Milne boosts as

u′Gµ = uGµ − Pνµψν + nµhνρ(ψνψρ − uG νψρ) ,

(u′G)
2 = u2

G + hµνψµψν − 2hµνuGµψν .
(119)

With these quantities at hand, it is straightforward to construct the Milne invariant combina-
tions

h̃µν = h̄µν − (uGµnν + uG νnµ) + u2
Gnµnν ,

Ãµ = Aµ + uGµ −
1
2

nµu2
G ,

P̃µν = hµρh̃ρν = δ
µ
ν − uµGnν ,

(120)
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which satisfy h̃µνu
ν
G = 0 and P̃µνu

ν
G = P̃µνnµ = 0.

Using the velocity field uµG we can define a Milne and U(1) gauge invariant connection
compatible with the Newton-Cartan data

Γ̃λµν = uλG∂νnµ +
1
2

hλρ
�

∂µh̃νρ + ∂νh̃µρ − ∂ρh̃µν
�

+
1
2

hλρ
�

nµ F̃νρ + nν F̃µρ
�

,

T̃λµν = Γ̃
λ
µν − Γ̃

λ
νµ = −uλG F (n)µν ,

(121)

where we have defined the field strength

F̃µν = ∂µÃν − ∂νÃµ . (122)

The constitutive relations for Galilean fluids at leading order in a derivative expansion for
the Milne-invariant stress-energy tensor T µν, energy current Eµ and particle number current
Jµc are

T µν = P hµν +ρ uµGuνG +O(∂ ) ,
Eµ = εuµG +O(∂ ) ,
Jµc = ρ uµG +O(∂ ) ,

(123)

where P is the pressure function, ρ is the particle number density, and ε is the energy den-
sity. All these quantities are generic functions of the (Milne-invariant) temperature, T , and
chemical potential, µ, and satisfy the thermodynamic relations

ε= Ts+µρ − P , dε= T ds+µdρ , (124)

where s is the entropy density.
The equations of motion for Galilean fluids in a curved Newton-Cartan background are

captured by the conservation of the stress-energy tensor and currents

(∇̃ν − G̃ν)T µν =− hµρF (n)ρν E
ν ,

(∇̃µ − 2G̃µ)Eµ =−
1
2

�

h̃ρµT µν∇̃νu
ρ
G + h̃ρνT µν∇̃µuρG

�

,

(∇̃µ − G̃µ)Jµc =0 .

(125)

Here,
G̃µ = T̃αµα = −F (n)µα uαG , (126)

and ∇̃µ is the covariant derivative defined with the Milne invariant connection (121). See [27].
The leading order equations of motion for Galilean fluids can be obtained by inserting the
expressions (123) in (125). After some massaging, one can rewrite these equations in the
form Eµ = 0, E = 0, and E′ = 0, where

Eµ = P̃αµ ∂αP −ρ F̃µαuαG + (P + ε)F
(n)
µα uαG ,

Ẽ = −(∇̃µ − G̃µ)(s uµG) ,

Ẽ′ = −(∇̃µ − G̃µ)(ρ uµG) .

(127)

By taking the flat spacetime limit

nµ = (1,0) , hµν = δi jδ
µ
i δ
ν
j , uµG = (1, v i) , Aµ = 0 , (128)

where v i is the usual fluid velocity in Cartesian coordinates and i = 1, . . . d label the spatial
coordinates, equations (127) reduce to the conventional Euler equation, continuity equation
and entropy conservation.
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