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Abstract

We propose a novel approach to the confinement-deconfinement transition in Yang-
Mills theories in the context of gauge-fixed calculations. The method is based on a
background-field generalisation of the Landau gauge (to which it reduces at vanishing
temperature) with a given, center-symmetric background. This is to be contrasted with
most implementations of background field methods in gauge theories, where one uses a
variable, self-consistent background. Our proposal is a bona fide gauge fixing that can
easily be implemented on the lattice and in continuum approaches. The resulting gauge-
fixed action explicitly exhibits the center symmetry of the nonzero temperature theory
that controls the confinement-deconfinement transition. We show that, in that gauge, the
electric susceptibility diverges at a second order transition [e.g., in the SU(2) theory], so
that the gluon propagator is a clear probe of the transition. We implement our proposal
in the perturbative Curci-Ferrari model, known for its successful description of various
infrared aspects of Yang-Mills theories, including the confinement-deconfinement tran-
sition. Our one-loop calculation confirms our general expectation for the susceptibil-
ity while providing transition temperatures in excellent agreement with the SU(2) and
SU(3) lattice values. Finally, the Polyakov loops above the transition show a more mod-
erate rise, in contrast to previous implementations of the Curci-Ferrari model using a
self-consistent background, and our SU(3) result agrees quite well with the lattice data
in the range [0, 2Tc].
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1 Introduction

Quantum chromodynamics, the modern theory of the strong interaction, predicts a dramatic
change in the behavior of thermodynamics observables at temperatures of the order of a hun-
dred of MeV [1]. This signals a qualitative change in the nature of the relevant degrees of
freedom, from hadronic ones at low temperatures, to what is called a quark-gluon plasma at
high temperatures. In the limit of infinitely heavy quarks, where the pure non-Abelian gauge
dynamics is described by a Yang-Mills (YM) theory, this takes the form of an actual phase
transition between phases with either confined or unconfined static quarks, governed by the
spontaneous breaking of a symmetry peculiar to the nonzero temperature problem, the center
symmetry [2,3].

This confinement-deconfinement transition in YM theories has been firmly established by
means of lattice calculations [4–6] and serves as a stringent test for the various approximations
involved in continuum approaches. In this latter case, an additional difficulty comes from the
obligation to work in a gauge-fixed setting, which may not inherit the center symmetry of the
YM action. Such an explicit breaking of the center symmetry by the gauge-fixing procedure
should not alter the physical results in principle, but this is clearly an issue when approxima-
tions are involved. That is, for instance, the case in the widely used Landau gauge, where
the lack of explicit center symmetry leads to unphysical results in approximate continuum
calculations, as compared to the results of gauge-fixed lattice simulations [7,8].

One important physical ingredient in the study of the phase transition is the presence of a
nontrivial order parameter for the center symmetry, given, e.g., by the Polyakov loop [9]. The
latter involves nonperturbatively large field configurations in the (Euclidean) temporal direc-
tion A0 ∼ 1/g, where g is the coupling constant. One convenient way to cope with the issue of
properly encoding both the center symmetry of the problem and the large field configurations
associated to the order parameter is to work with background field gauge methods [10–13].
This involves an arbitrary background field configuration Ā which enters the gauge-fixing con-
dition and which, roughly speaking, acts as a sort of source term which can be chosen to favor
the desired field configurations A under the (gauge-fixed) path integral. In practice, work-
ing with two gauge fields is cumbersome and it is simpler to work with what are called self-
consistent backgrounds, which are tuned to equal the field average, Ā= 〈A〉. This has, indeed,
revealed very efficient to correctly describe the confinement-deconfinement phase transition
in YM theories in a variety of nonperturbative [13–18] and perturbative [19–24] continuum
approaches.

However, despite its many interesting advantages, this approach also comes with some
drawbacks. The main one is that it is somewhat formal because it relies on using the back-
ground field both as a gauge-fixing tool and as a dynamical variable. In particular, this makes
it difficult to implement in—and thus to compare to—lattice calculations. For instance, an
interesting question, put forward in the Landau gauge [26–35], is whether the phase transi-
tion is directly encoded in (gauge-fixed) propagators, in particular, in the electric component
(i.e., in the time direction) of the gluon propagator at vanishing momentum and frequency.
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Gauge-fixed lattice calculations in the Landau gauge show a strong increase of the electric sus-
ceptibility1 at the second order phase transition of the SU(2) theory, which is not seen in con-
tinuum calculations [7,8], probably due to the lack of proper account of the order parameter
mentioned above. Although the phase transition is correctly described using the self-consistent
background field approach, it is not clear how to compare to those lattice results in the Landau
gauge. On the other hand, the gluon propagator has been computed for the SU(2) theory in
the presence of a self-consistent background [37] and one observes a clear signal of the phase
transition. However, there exists, so far, no lattice results to compare to.

In the present article, we propose a novel, simple approach to the confinement-
deconfinement transition that exploits the advantages of both the Landau gauge and the back-
ground field gauges, while avoiding the drawbacks mentioned above. This is based on using
a background field gauge with a particular, fixed (non-dynamical) background which is in-
variant under center transformations. This yields a bona-fide gauge-fixed theory that is, first,
easily implementable in lattice calculations (with techniques currently employed for the Lan-
dau gauge, see for instance [34, 35]) and, second, explicitly center symmetric, allowing one
to keep track of this central aspect of the problem in any continuum approach even in the
presence of approximations. Also, the resulting effective action encodes, at once, the phase
transition—with the average gluon field 〈A〉 playing the role of the order parameter—and the
vertex functions of the theory, allowing for a simple study of the imprints of the former on
the latter, that is easily testable in lattice calculations. For instance, we show that the above-
mentioned electric susceptibility trivially diverges at the transition in the SU(2) theory. Finally,
the proposed gauge fixing reduces to the Landau gauge at vanishing temperature and thus can
be viewed as a simple generalization of the latter at nonzero temperature.

After describing the method, its properties and its lattice implementation, we explicitly
apply the center-symmetric gauge fixing in the context of the perturbative Curci-Ferrari (CF)
approach to infrared QCD [38–41]. The latter is motivated by two essential observations from
lattice simulations in the Landau gauge, namely, the fact that the coupling (defined in the
Taylor scheme) remains finite and under perturbative control at all scales and the fact that
the gluon propagator at zero momentum is finite, corresponding to the dynamical generation
of a screening mass [42–44]. The CF Lagrangian in the Landau gauge simply corresponds to
adding an effective tree-level gluon mass to the standard Faddeev-Popov Lagrangian. It has
been successfully used to compute various infrared properties of various YM and QCD-like
theories in the vacuum and at nonzero temperature and density [19,20,22,25,39,40,45–47].
In the latter case, it has been implemented in the framework of self-consistent background
field techniques mentioned above and gives remarkable results already at one-loop order. In
YM theories, it correctly predicts the order of the transition with transition temperatures in
good agreement with known values from lattice calculations. Here, we compute the effective
potential for constant temporal gauge fields in the proposed center-symmetric gauge at one-
loop order. We find that, again, this correctly captures the phase structure of YM theories and
we find values of the transition temperatures for SU(2) and SU(3) in remarkable agreement
with lattice values, better than in the previous (self-consistent) background field formulation.
Our results confirm that the SU(2) electric susceptibility diverges at the transition. In the
SU(3) case, the singularity is replaced by a sharp peak at the transition, which could still be
identifiable in lattice simulations. We also compute the Polyakov loop as a function of the tem-
perature, which shows various improvements over a similar evaluation in the CF model using
self-consistent backgrounds [19], for instance, a slower rise above the transition, in line with
lattice results [48–51] as well as with results obtained within the functional renormalization
group [52].

1We define the susceptibility as the zero-frequency and zero-momentum limit of the propagator. Our definition
differs from that in [36].
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2 The confinement-deconfinement transition and background
fields

2.1 Finite temperature and center symmetry

At nonzero temperature, YM theories are usually formulated in terms of the Euclidean action
∫

x

1
4

F a
µν(x)F

a
µν(x) , (1)

with F a
µν ≡ ∂µAa

ν − ∂νA
a
µ + g f abcAb

µAc
ν the Euclidean field-strength tensor and g the coupling

constant. The space-time integration is taken over a compact time interval,
∫

x ≡
∫ β

0 dτ
∫

d ~x ,
with β ≡ 1/T the inverse temperature, and the gauge field is periodic with period β:
Aa
µ(τ+ β , ~x) = Aa

µ(τ, ~x). Among the gauge transformations2

AU
µ(x) = U(x)Aµ(x)U

†(x) +
i
g

U(x)∂µU†(x) , (2)

that leave the YM action invariant, only those that preserve the periodicity of the gauge field
are actual symmetries of the theory.3 They form a group, denoted G in what follows, which
is actually larger than the group G0 of β-periodic gauge transformations that leaves physical
observables invariant. It is easily shown that G is the group of gauge transformations that
are β-periodic up to an element W of the center of the gauge group: U(τ+ β , ~x) =W U(τ, ~x)
[2, 3]. For instance, in the case of SU(N), the center elements are of the form W = w1, with
w ∈

�

ei2πk/N ; k = 0, . . . , N − 1
	

. The finite temperature theory thus possesses an enlarged
physical symmetry described by the quotient group G/G0.4 The latter is isomorphic to the
center of the gauge group and is known as the center-symmetry group [2,3].

There exist many order parameters for this symmetry, some of which will be discussed in
this article. The most popular one is the Polyakov loop [here for SU(N)]

`≡
1
N

®

trP exp

¨

i g

∫ β

0

dτAa
0(τ, ~x)ta

«¸

, (3)

which, being invariant under G0 and, thus, a physical observable, is directly measurable in lat-
tice simulations. Under any transformation U ∈ G, ` is multiplied by the corresponding center
phase w, which implies that it vanishes if the symmetry group G/G0 is unbroken and that
a nonzero value signals the spontaneous breaking of the center symmetry. The relevance of
these considerations for the deconfinement transition is that the Polyakov loop grants access to
the free-energy Fq of a static quark source `∝ e−βFq [9]. The phase of unbroken center sym-
metry, with `= 0, corresponds then to a phase where such a static quark source would have
an infinite free energy, that is the confined phase of the system. Phrased differently, studying
the spontaneous breaking of center symmetry gives access to the deconfinement transition.
When trying to export this discussion within a practical, and necessarily approximated, com-
putational scheme in the continuum, one faces the problem that typical gauge-fixed actions
break explicitly the center symmetry, which obviously hinders the analysis of its spontaneous
breaking. As we now recall, one way out is to upgrade the standard gauge fixing into a back-
ground gauge fixing.

2For a field X a in the algebra, we use the notation X ≡ X a ta, where the ta are the generators of the gauge group.
3To be qualified as an actual symmetry of the problem at finite temperature, the gauge transformations need

to preserve not only the classical action but also the integration measure and the domain of integration under the
functional integral.

4That G/G0 is a group follows from the fact that G0 is a normal subgroup within G.
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2.2 The class of Landau-DeWitt gauges

The following discussion applies in principle to any background field gauge. For definiteness,
however, we consider the background Landau (or Landau-DeWitt) gauges, defined by the
condition

D̄µ(A
a
µ − Āa

µ) = 0 , (4)

where Āa
µ is a given background field configuration and D̄ab

µ ≡ ∂µδ
ab + g f acbĀc

µ is the asso-
ciated adjoint covariant derivative. The condition (4) should be seen as defining a family of
gauges parametrized by a field Āa

µ of gauge fixing parameters. Choosing the background in one
way or another defines a specific gauge in this family. In this work, we consider two particular
choices that are convenient at finite temperature.

The relevance of background gauges lies in that, provided one allows the background Āa
µ

to be gauge-transformed, the gauge condition (4) transforms covariantly. It is then possible,
in a certain sense, to export the gauge-invariance of the YM theory (1) into the gauge-fixed
setting. For instance, introducing the usual ghost, antighost, and Nakanishi-Lautrup fields, c,
c̄, and h, respectively, the Faddeev-Popov action

S[A, Ā] =

∫

x

§

1
4

F a
µνF a

µν + D̄µ c̄aDµca + iha D̄µ(Aµ − Āa
µ)
ª

, (5)

associated to the gauge-fixing condition (4) is invariant under the simultaneous gauge trans-
formation (2) of the gauge field Aa

µ and the background Āa
µ (and the color rotationϕU = UϕU†

of the other fields ϕ = c, c̄, h that we have left implicit):

S[AU , ĀU] = S[A, Ā] . (6)

This property is of utmost importance at nonzero temperature for it encodes the center sym-
metry.

In continuum approaches, one efficient way to study the spontaneous breaking of a sym-
metry is through the effective action. In background field gauges, this is a functional Γ [A, Ā]
of both the (average)5 field Aa

µ and the background Āa
µ. The linearly realized symmetry (6)

trivially implies

Γ [AU , ĀU] = Γ [A, Ā] , (7)

for any U ∈ G [13, 21, 25]. This identity does not yet provide a full grasp on the center
symmetry, however, for it does not allow to discriminate between center-symmetric and center-
breaking states. Indeed, for a given background Ā, the state of the system is obtained as the
minimum Amin[Ā] of Γ [A, Ā] with respect to A. The symmetry identity (7) implies that, under
any transformation U ∈ G, one has AU

min
[Ā] = Amin[ĀU]. Thus, as the state is transformed, the

background that is chosen for the description of the states (and therefore the gauge fixing
itself) is changed as well. This makes it difficult to identify the center-symmetric states and
thus to decide whether or not the symmetry is spontaneously broken.

The (by now standard) proposal of Ref. [13] to fully account for center symmetry within
background field gauges relies on the use of the background effective action, defined as
Γ̃ [Ā]≡ Γ [A= Ā, Ā]. It follows from Eq. (7) that the latter is invariant under the gauge transfor-
mation of its argument, Γ̃ [ĀU] = Γ̃ [Ā], for any U ∈ G, which, in particular, includes the center
symmetry. It follows that the minima of Γ̃ [Ā]—which, in the absence of approximations, can be

5Using the standard convention, we denote with the same letter the fluctuating field that appears as an argument
of the classical action under the functional integral and the average field that appears as an argument of the effective
action.
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shown to represent the possible states of the system6—are alternative order parameters for the
confinement-deconfinement transition [21, 25, 52]. The great benefit of this approach is that
the background effective action can be easily evaluated for simple, constant background field
configurations (see below), which allows for a convenient description of the phase transition.

This also comes with some drawbacks though. The first one is that Γ̃ [Ā] is a somewhat
formal object in the sense that its argument, the background field, actually serves to define a
gauge. Changing the argument thus amounts to changing the gauge. Because of that, gauge-
fixed quantities (such as propagators and vertices) are not directly accessible from this func-
tional. Moreover, this approach relies on implicit assumptions that are not trivially satisfied
in practical calculations. One crucial such assumption, which underlies in particular the inter-
pretation of the minima of Γ̃ [Ā] as the states of the system, is the independence of the partition
function (a physical, gauge-invariant quantity) on the background field (a gauge-fixing param-
eter) [25, 37]. Finally, a related point, is that the background effective action is not directly
accessible in (gauge-fixed) lattice calculations. The proposal below aims at avoiding these
drawbacks while keeping the main advantage of the background effective action approach,
that is, the fact that, contrarily to, say, the Landau gauge, it conveniently encodes the center
symmetry of the nonzero temperature theory.

2.3 Center-symmetric effective action and effective potential

We aim at finding a gauge condition of the type (4) with a given, fixed background but with
explicit center symmetry. This is easily realized by choosing a center-symmetric background,
that we now define precisely. As emphasized above, the actual center symmetry group is not
G but rather G/G0. In a certain sense, the transformations of G0 should be seen as true (un-
physical) gauge transformations and the physical content of the symmetry group G is captured
by G/G0 once the redundancy associated to G0 has been quotiented away. Center-symmetric
backgrounds are represented by configurations Āc invariant under G modulo G0:

∀U ∈ G, ∃U0[U] ∈ G0, ĀU
c = ĀU0[U]

c . (8)

They can be identified using the notion of Weyl chambers [21, 25, 52]. Choosing such a back-
ground, we define a center-symmetric effective action as Γc[A]≡ Γ [A, Āc]. It is such that

Γc[A] = Γ [A, Āc] = Γ [A
U , ĀU

c ] = Γ [A
U , ĀU0[U]

c ] = Γ [AU−1
0 [U]U , Āc] = Γc[A

Uc ] , (9)

with Uc ≡ U−1
0 [U]U . Since Uc represents the same center transformation as U in G/G0, we de-

duce that Γc[A] is invariant under center transformations.7 In turn the minima Amin
c = Amin[Āc]

of Γc[A] are order parameters for the center symmetry, just as the minima of Γ̃ [Ā] or the
Polyakov loop `. In summary, rather than studying the transition in the A = Ā subspace of
the (A, Ā) space, we can alternatively use the Ā= Āc subspace.

One benefit of this approach is that it gives direct access to the propagator which is nothing
but the inverse of δ2Γ [A, Āc]/δAa

µ(x)δAb
ν(y) evaluated for A= Amin

c . In particular, this tells us
immediately that the inverse propagator should develop a zero mode at a continuous tran-
sition, e.g., in the SU(2) theory. As we discuss in the next subsection, this is, in principle,
easily testable in lattice simulations. In Sec. 3, we provide evidence for this expectation in the
context of the CF model.

6Note that this is not a trivial statement because Γ̃ [Ā] is not an effective action in the usual sense. In particular,
it is not the Legendre transform of the generating functional for connected correlators.

7We stress here that Γc[A] is not invariant under every transformation U ∈ G but, rather, under certain rep-
resentatives Uc of each of the transformations in G/G0 which are the physical center transformations, where the
gauge redundancy has been quotiented away. The important point for our present purposes is that each element of
G/G0 is represented and that there exists center-invariant A-configurations that define the confining configurations.
These are provided by the configurations A= Āc which are invariant under Uc owing to (8).
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To make the discussion more concrete, let us note that it is enough to restrict to constant
temporal backgrounds in the diagonal—or commuting—part of the gauge group algebra, the
Cartan subalgebra, that is,

gĀµ = r̄ j t j Tδµ0 , (10)

with [t j , t j′] = 0. The vector r̄, of components r̄ j , spans the Cartan space, which decomposes
into physically equivalent Weyl chambers, whose discrete symmetries actually represent the
various symmetries of the problem. For instance, in the SU(2) case, the Cartan subalgebra is
one-dimensional, with the single generator t = σ3/2, where σi are the Pauli matrices, and
an elementary Weyl chamber is the segment [0,2π]. A center transformation is described by
r̄ → 2π − r̄ and the center-symmetric point is thus r̄c = π. This can be generalized to an
arbitrary gauge group. We can thus choose the center-symmetric effective action, with a slight
abuse of notation as compared to Eq. (9),

Γc[A] = Γ [A, r̄c] , (11)

which is the generating functional of one-particle-irreducible vertex functions in the gauge8

defined by r̄c .
For the purpose of studying the phase transition, we only need to find the minimum Amin

c
of Γc[A]. With the choice of background (10), the latter is of the form

gAµ = r j t j Tδµ0 , (12)

and we can further simplify the analysis by restricting to such configurations, for which the
functional (11) reduces to a simple effective potential Γc[A]∝ Vc(r). The latter is invariant
under the center transformations of its argument. For instance, in the SU(2) case, we have

Vc(2π− r) = Vc(r) . (13)

Studying the dynamical breaking of the center symmetry and the possible phase transition
simply amounts to finding the minima of Vc(r). A symmetric state corresponds to rmin = π
and any departure signals the spontaneous breaking of the center symmetry. In Fig. 1, using
this simple SU(2) example, we give a graphical representation of the present proposal, using
the potential Vc(r), as compared to the usual one based on the background potential Ṽ (r̄),
obtained from the background effective action defined above for a background of the form
(10).

As mentioned before, one clear advantage of the present approach as compared to that
based on the background effective action is that the phase transition is described in terms
of a gauge-fixed effective action (or potential) and is thus directly related to standard vertex
functions. For instance, the vanishing of the second derivative V ′′c (r = π) at a second order
phase transition in the SU(2) theory (see the explicit calculation below) is imprinted in the
(electric) gluon correlator at vanishing momentum and frequency, which is proportional to
1/V ′′c (rmin), which diverges at the transition.

2.4 Lattice implementation

The center-symmetric gauge proposed in this work can easily be implemented on the lattice.
To see this, we note that it simply amounts to the standard Landau gauge fixing with, how-
ever, twisted boundary conditions for the gauge fields.9 Let us illustrate the point with the

8Note that the actual background field Āc entering the definition of the gauge in Eq. (4) is proportional to the
temperature; see Eq. (10).

9The use of twisted boundary conditions to explore the confinement-deconfinement phase transition is not new,
see for instance Ref. [53, 54] where the notions of dressed Polyakov loops and dual condensates are introduced.
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r = r = rc

r = r

r = rc

2 π

2 π

π

π
r

r

Figure 1: The two possible strategies to discuss the breaking of the center symmetry
in background field gauges (here in the SU(2) case for the purpose of illustration):
the standard approach is based on the background potential Ṽ (r̄), defined along the
(red) dashed line whereas the present proposal is based on the center-symmetric po-
tential Vc(r), defined along the (blue) dash-dotted line. Both functions have the
center-symmetry in the form x → 2π− x with x = r or x = r̄, as illustrated by the
two pairs of points connected by center symmetry.

SU(2) theory in the center-symmetric background gauge (4) with gĀa
c,µ(x) = πTδµ0δ

a3σ3/2.
Consider the transformation

U(τ) = exp
�

−iπτT
σ3

2

�

, (14)

which does not belong to G since U(β) = −iσ3U(0) and is obviously not a symmetry of the
theory. One easily checks that it transforms the background field to zero: gĀU

c,µ(x) = 0. In that
sense, the transformation (14) relates the center-symmetric gauge to the usual Landau gauge.
To see how this affects the fluctuating gauge field under the path integral, let us consider the
variable aµ = Aµ − Āµ which, as one readily checks, transforms as aU

µ (x) = U(x)aµ(x)U†(x)
under a SU(2) transformation. Now, decompose aµ(x) = aκµ(x)t

κ in the basis tκ = {t0, t±},
with t0 ≡ σ3/2 and t± ≡ (σ1 ± iσ2)/2

p
2. Using [t0, t±] = ±t±, one obtains that

[aU
µ ]
κ(x) = e−iκπτT aκµ(x) and, in particular, the field [aU

µ ]
0 remains periodic in Euclidean

time whereas the fields [aU
µ ]
± become anti-periodic.10 As announced, we conclude that the

center-symmetric background gauge is equivalent to the Landau gauge, however, with mod-
ified boundary conditions for the fields. For instance, applying the transformation (14) and
using the symmetry (6), we find (p.b.c. stands for periodic boundary conditions and a.b.c. for
antiperiodic ones)

Our proposal is here that the background Landau gauge with center-symmetric background can be easily simulated
on the lattice by implementing different boundary conditions to existing routines for gauge-fixing in the Landau
gauge.

10For the continuum formulation, the same is true for the ghost and the Nakanishi-Lautrup fields.
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∫

p.b.c. Da aκµ(x) e
−S[Āc+a,Āc]

∫

p.b.c. D[a, c, c̄, h] e−S[Āc+a,Āc]
= eiκπτT

∫

p.b.c.(0)/a.b.c.(±)Da aκµ(x) e
−S[a,0]

∫

p.b.c.(0)/a.b.c.(±)D[a, c, c̄, h] e−S[a,0]
, (15)

and, similarly,
∫

p.b.c. Da aκµ(x)a
λ
ν(x

′) e−S[Āc+a,Āc]

∫

p.b.c. D[a, c, c̄, h] e−S[Āc+a,Āc]
= eiκπτT eiλπτ′T

∫

p.b.c.(0)/a.b.c.(±)Da aκµ(x)a
λ
ν(x

′) e−S[a,0]

∫

p.b.c.(0)/a.b.c.(±)D[a, c, c̄, h] e−S[a,0]
. (16)

In particular, the two-point correlator as computed in the background Landau gauge with
center-symmetric background (and with periodic boundary conditions) is related by a trivial
phase factor to the two-point correlator computed in the Landau gauge with modified bound-
ary conditions, that is, periodic ones for the color modes along t0 [p.b.c.(0)] and antiperiodic
ones for the color modes along t± [a.b.c.(±)]. This can be trivially generalized to any gauge
group.

3 Explicit calculation in the Curci-Ferrari model

In this section, we would like to illustrate the previous considerations with some explicit cal-
culations. Of course, it is not enough to have a framework that allows one to discriminate
between the confined and deconfined phases. One also needs a good grasp on the infrared
properties that leads to the existence of a center symmetric (confining) phase at low temper-
atures. In this infrared regime, the use of the Faddeev-Popov action is inadequate due to the
existence of Gribov copies and the action (5) is expected to be modified when these copies
are properly accounted for. Here we do not aim at accounting for this modification exactly.
Rather, we consider a phenomenological take on this question based on the CF model [38]. In
recent years, the latter has proven a powerful tool for an efficient perturbative description of
many infrared facets of YM theories [39,40,45–47], including the confinement-deconfinement
transition [19, 21, 25]. There is nowadays strong evidence that the main nonperturbative ef-
fects of YM theory can be encoded in a phenomenological parameter, the rest of the dynamics
being weakly interacting and amenable to a perturbative treatment [41]. We implement the
approach proposed here in this model, using the background-field extension of the CF La-
grangian put forward in Ref. [19], namely,

S[A, Ā] =

∫

x

§

1
4

F a
µνF a

µν + D̄µ c̄aDµca + iha D̄µ(Aµ − Āa
µ) +

1
2

m2(Aa
µ − Āa

µ)
2
ª

. (17)

The mass term in (17) involves the aforementioned phenomenological parameter. It is tailored
such that the crucial identity (6) is preserved and the parameter m can be fixed e.g. by fitting
Landau gauge correlators at zero-temperature (where the center-symmetric background gauge
and the Landau gauge coincide).

We compute the effective potential V (r, r̄), obtained, up to a constant volume factor, as
the effective action Γ [A, Ā] for field configurations of the form (10) and(12). We here briefly
summarize the calculation of this potential, details will be given elsewhere. To evaluate the
potential at one loop, we expand the classical action (17) to quadratic order in the fields around
a constant, temporal and diagonal gluon configuration (12), Aa

µ → Aa
µ + ãa

µ, while taking the
background of the form (10). It proves convenient to switch from the usual Cartesian basis
ta to the Cartan-Weyl basis tκ with κ ∈ {0,+,−}, introduced above. In Fourier space, the
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quadratic part of the action reads

∑

κ

∫ T

Q

§

c̄−κ(−Q)
�

Q̄κ ·Qκ
�

cκ(Q) +
1
2

ãκµ(Q)
∗
�

Q2
κP⊥µν(Q

κ) +m2δµν

�

ãκν(Q) + hκ(Q)∗Q̄κµãκµ(Q)
ª

, (18)

with Q̄κ ·Qκ ≡ Q̄κµQ
κ
µ, where Q̄κµ =Qµ + κr̄ Tδµ0 and Qκµ =Qµ +κrTδµ0. We have also

introduced the notation
∫ T

Q f (Q) which stands for a bosonic Matsubara sum-integral

T
∑

n

∫

d3q/(2π)3 f (ωn, q), with ωn = 2πnT . The one-loop potential is proportional to the
logarithm of the determinant of the quadratic form (18), which can be evaluated using Schur’s
complement. We find

V (r, r̄) =
m2T2

2g2
(r − r̄)2 +

d − 2
2

∑

κ

∫ T

Q
ln
�

Q2
κ +m2

�

+
1
2

∑

κ

∫ T

Q
ln

�

1+
m2Q̄2

κ

(Q̄κ ·Qκ)2

�

. (19)

Since we are here interested in the dependence with respect to r, we can omit the contribution
from κ= 0. Writing Q±µ = Q̄±µ ± (r − r̄)Tδµ0, we then arrive at

V (r, r̄) =
m2T2

2g2
(r − r̄)2 + (d − 2)

∫ T

Q
ln
�

Q2
+ +m2

�

+

∫ T

Q
ln

�

1+
m2Q̄2

+

(Q̄2
+ + (r − r̄)ω̄+T )2

�

. (20)

We note that this expression boils down to that for Ṽ (r̄)≡ V (r̄, r̄) obtained in Ref. [19], as it
should. It is also straightforward to verify the symmetries discussed in Sec. 2.3.

We note that one can absorb the center-symmetric background r̄c into fermionic Matsubara
frequencies11 ω̄+ =ω+πT = (2n+ 1)πT ≡ ω̂. In this case, the last sum-integral of Eq. (20)
becomes a standard fermionic sum-integral. The evaluation of the latter requires solving quar-
tic equations, which is cumbersome, so we resort instead to a numerical evaluation. However,
this is only possible after we properly extract the divergent part of this contribution contained
in the first terms of the Taylor expansion in powers of r−π (which involve simpler Matsubara
sums that can be performed explicitly). Disregarding once more r-independent contributions,
we finally arrive at

Vc(r) =

�

m2

2g2
−

1
2π2

∫ ∞

0

dqq2

��

m2

q2
+ 2+

q2

m2

� fεq

εq
−
�

1
2
+

q2

m2

�

fq
q

��

(r −π)2T2

+
T
π2

∫ ∞

0

dqq2 ln
�

e−2εq/T − 2e−εq/T cos r + 1
�

+δVnum(r) , (21)

with

δVnum(r) =

∫ T

Q̂

�

ln

�

1+
m2Q̂2

(Q̂2 + (r −π)ω̂T )2

�

− ln

�

1+
m2

Q̂2

�

− (r −π)2T2 ω̂
2(3Q̂2 +m2)

Q̂4(Q̂2 +m2)2

�

. (22)

Here,
∫ T

Q̂ stands for a fermionic Matsubara sum T
∑

n

∫

d3q/(2π)3 f (ωn, q), with

ωn = 2π(n + 1/2)T and fε = 1/(eβε + 1) is the Fermi-Dirac distribution. The latter ap-
pears due to the presence of the confining (center-symmetric) background, which changes
the boundary conditions of those fields with κ = ± and thus the thermal distribution from
Bose-Einstein to negative Fermi-Dirac: nε±iπT = − fε. In writing (21) we have absorbed all
zero-temperature contributions proportional to (r−π)2 in the renormalization of the tree-level

11This corresponds to the change from periodic to antiperiodic boundary conditions for the charged color modes
discussed in Sec. 2.4.
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Figure 2: The potential Vc(r) in the SU(2) case (left) and in the SU(3) case (right).

term. In other words, our renormalization scheme is such that, the curvature of the poten-
tial in the r-direction at r = π, equals m2/g2 at zero temperature. We have checked that
the counterterms needed are just the usual counterterms at zero temperature, in the so-called
vanishing momentum scheme for the propagators [40]. In our numerical application below,
we shall then use the values of the parameters obtained from fitting zero-temperature prop-
agators in this scheme to the lattice data (in the Landau gauge). Again, details will be given
elsewhere.

In Fig. 2, we show the behavior of the potential Vc(r) as a function of the temperature. We
clearly observe a continous transition characteristic of the SU(2) case. The value of Tc can be
determined from solving V ′′c (π) = 0. Since δV ′′num(π) = 0 by construction, one easily deduces
that

V ′′c (π) =
m2

g2
−

1
2π2

∫ ∞

0

dq q2

��

6
m2

q2
+ 12+ 2

q2

m2

� fεq

εq
−
�

1+ 2
q2

m2

�

fq
q

�

. (23)

As compared to the determination of the transition temperature using Ṽ ′′(π) = 0, see Ref. [19],
we here need to provide both m and g. With the parameters m = 680 MeV and g = 7.5
obtained by fitting one-loop zero-temperature CF propagators to lattice data (in the same
zero-temperature renormalization scheme as the one used here) [40], we find Tc ' 265 MeV
to be compared to the result T̄c ' 227 MeV obtained with the same value of m and Ṽ (r̄), and
more importantly to the lattice value of 295 MeV [55].12

The inverse curvature of the potential at its minimum, 1/V ′′c (rmin) is nothing but the elec-
tric gluon propagator for the neutral color mode at vanishing momentum and frequency, also
called the (neutral) electric susceptibility. Here, for convenience, we shall call the curvature
V ′′c (rmin) itself the neutral electric square mass. Because this quantity is gauge variant, it does
not make sense a priori to compare it in different gauges. However, the determinations of
the electric mass in the center-symmetric and in the self-consistent background gauges should
coincide over the whole confining phase and vanish when approaching the transition. This is
because both backgrounds coincide in that phase and we check explicitly that coincidence at
low temperatures, see Fig. 3. However, due to the approximations, the very determination of
the upper end of the confining phase depends on the gauge. In fact, at the present order, we
have T̄c < Tc and the electric mass in the self-consistent background gauge never reaches zero.
Instead, in the center-symmetric background gauge, Tc is directly determined from the condi-
tion V ′′c (π) = 0 and the neutral electric mass vanishes at the transition Tc by construction (at all
orders). This is shown in Fig. 3 together with the behavior of the neutral electric susceptibility.

12In Ref. [19], T̄c ' 237 MeV was determined using the value m = 710 MeV obained by fitting tree-level CF
propagators to the lattice data.
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Figure 3: The neutral electric mass (left) and its inverse, the neutral electric sus-
ceptibility or longitudinal propagator DL(0) at vanishing frequency and momentum
(right) as functions of the temperature for the SU(2) theory (upper panel) and for
the SU(3) theory (lower panel) in the center-symmetric Landau gauge (thick, orange
curves). The thin blue curves show the corresponding results obtained in the self-
consistent background approach [37], while the dashed curves are obtained in the
absence of background [8]. T and m are given in GeV.

The discussion can be easily extended to the SU(3) case. In fact the formula for the po-
tential (19) remains the same provided one replaces the color labels κ by those of the cor-
responding Cartan-Weyl basis. In the SU(3) case, the labels κ become two-dimensional vec-
tors, with two degenerate zeros and six roots α = (±1,0), (1/2,±

p
3/2), (−1/2,±

p
3/2).

The background r̄ and the field r are also two dimensional vectors with components along
the diagonal directions 3 and 8 of the algebra and Q̄κµ and Qκµ should now be understood as
Q̄κµ = Qµ + (κ · r̄) Tδµ0 and Qκµ = Qµ + (κ · r) Tδµ0 respectively. Since YM theory is charge-
conjugation invariant, we can, without loss of generality, restrict to r8 = 0 in which case
only the first component of the roots matters that is ±1 and (twice) ±1/2. It follows that, if
we denote by ∆VSU(2)(r, r̄) the last two terms in Eq. (20), the relevant SU(3) potential writes
(r̄c = 4π/3 and r ≡ r3)

V SU(3)
c (r3) =

m2T2

2g2

�

r3 −
4π
3

�2

+∆VSU(2)

�

r3,
4π
3

�

+ 2∆VSU(2)

�

r3

2
,
2π
3

�

. (24)

The potential is shown in Fig. 2. With the parameters m = 540 MeV and g = 4.9, obtained
(in the same scheme) by fitting the one-loop zero-temperature CF propagators to the lattice
data in the Landau gauge [40], we find a first order phase transition at Tc ' 267 MeV, rather
close to the value of 270 MeV obtained in lattice simulations [55]. The estimate using the
background potential Ṽ (r̄) and the same value of the mass gives instead a transition temper-
ature at T̄c ' 197 MeV.13 We note that the agreement with the lattice value is better in the

13In Ref. [19], Tc ' 185 MeV was determined using the value m = 510 MeV obained by fitting tree-level CF
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Figure 4: SU(2) (left) and SU(3) (right) Polyakov loops as obtained using the self-
consistent background field approach [19] (dahed) or the present center-symmetric
background approach (plain).

SU(3) case than in the SU(2) case. This is in line with the fact that the perturbative expansion
in the CF model is more under control in the SU(3) case due to the fact that the coupling is
smaller [40]. As for the neutral electric mass, it is considerably reduced when approaching
the transition from below but never vanishes. This corresponds to a sharp peak in the suscep-
tibility rather than a singularity as in the SU(2) case, see Fig. 3. We mention that, although
this is not really visible in the figure, the SU(3) neutral electric mass is discontinuous at the
transition, with melec(T−c ) < melec(T+c ). Correspondingly, the peak in the susceptibility is also
(slightly) discontinous.

Finally, we compute the Polyakov loop (3). Following, for instance, Ref. [20], we introduce
a function `(r, r̄) that gives the Polyakov loop when r is evaluated at the minimum rmin(r̄) of
the potential. At the order considered here, we have, formally,

`(r, r̄) = `0(r, r̄) + g2`1(r, r̄) +O(g4) . (25)

Center-symmetry implies that `(π,π) = 0 at all orders and, thus, `1(π,π) = 0. Because, in the
present gauge, r̄ = π and rmin ≡ rmin(π) = π+O(g2), we conclude that the next-to-leading
order Polyakov loop is given by its tree-level expression `0(rmin,π), that is,

`=
1
N

tr eir j
min t j
+O(g4) , (26)

where rmin is to be evaluated from the next-to-leading-order potential (19). This is yet another
strength of the approach proposed here. The result is shown in Fig. 4 in comparison with
the results previously obtained using the self-consistent background field approach [19]. We
observe that the rise of the Polyakov loop in the deconfined phase towards its maximal value
is systematically smaller when using Vc(r), which is in line with what is observed in lattice
simulations. A comparison with lattice data requires to take into account the renormalization
of the Polyakov loop. Here, we have computed the bare Polyakov in dimensional regularization
which should be seen as the renormalized Polyakov loop in a certain scheme. Since this is not
the same scheme as the one on the lattice, we need to allow for an overall (temperature-
independent) normalization. In the SU(3) case (where the perturbative CF approach works
best), we find that the best fit is obtained over the interval [Tc , 1.5Tc], with a relative error of
4%, see Fig. 5. We note also that up until 2Tc , the relative error varies mildly and although this
is not the optimal fit, we find an error of only 5% by fitting in the range [Tc , 2Tc]. Above 2Tc ,
our result departs from the lattice one. This is expected as various effects not included here,

propagators to the lattice data.
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Figure 5: Comparison of our SU(3) Polyakov to the lattice data of Refs. [49,50].

such as the resummation of hard thermal loops [56] or renormalisation group running [52,57],
are known to play an important role in this regime. Needless to mention, this is just a very
simple one-loop calculation. Taking into account higher order corrections as well as the above
mentioned effects is work under way.

4 Conclusions

We have investigated a new approach within background field gauges at finite temperature.
It is based on the use of the effective action Γ [A, Ā= Āc] with a fixed center-invariant back-
ground Āc rather than the self-consistent background field effective action Γ̃ [Ā] = Γ [A= Ā, Ā].
In principle, the two approaches should be equivalent in the confined phase. However, the
equivalence relies on a property that is generally violated in continuum approaches, namely,
the exact invariance of the gauge-fixed partition function on the background field Ā. Our new
proposal does not rely on this property and, as such, should provide more reliable results. In
particular it allows to directly assess the impact of the deconfinement transition on the gluon
propagator and implies that the zero-momentum/frequency value of the latter diverges at the
transition in the SU(2) case. We have argued that this prediction is easily testable within
lattice simulation since the center-symmetric gauge proposed here can be implemented with
current techniques used for the Landau gauge through a twist of the boundary conditions for
the gauge fields.

We have also investigated these predictions within the CF model. We find indeed that the
SU(2) neutral electric mass vanishes at the transition. In addition, we obtain new predictions
for the transition temperature. Quite remarkably, in the SU(3) case (where the pertubative CF
model works best) the predicted value at one-loop order is already pretty close to the lattice
result. Also interesting is the fact that the rise of the Polyakov in the deconfined phase is
slower than the one previously obtained using the self-consistent background field approach.
This is in line with what is observed on the lattice (for the renomalized Polyakov loop) [48–50].
We are currently investigating the full momentum dependence of the propagators across the
transition in this novel approach. It will be also interesting to evaluate the impact of two-loop
corrections on the present results.

As a final word, let us mention that it is tempting to draw similarities between our results
in the SU(2) case and lattice results for the electric susceptibility in the Landau gauge [33,34].
One could in fact wonder whether the gauge propagator in the presence of a center-invariant
background can teach us something about the Landau gauge propagator. There are two main
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reasons why we could envisage this possibility.
The first one lies in the similarities between the perturbatives expressions for the suscep-

tibilities along the diagonal color direction in the Landau and in the Landau-DeWitt gauges.
Indeed these two quantities are given by the same perturbative diagrams, with the only dif-
ference that, in the latter case, the internal frequencies associated to the color charge of the
internal lines are shifted by a quantity proportional to the background field [21,25]. This pretty
much resembles the relation between the pressure in the Landau and in the Landau-DeWitt
gauges. For this latter quantity, since the pressure is gauge-independent, there should exist a
mechanism explaining how one can move from an infinite set of diagrams with shifted internal
frequencies, to the same diagrams with no shifted frequencies. If the same mechanism holds
for the susceptibility along the diagonal color direction, this could open a connection with the
same quantity computed in the Landau gauge.14

A second argument in favor of a connection between the propagators in the Landau and
the Landau-DeWitt gauges is that our argumentation leads to the conclusion that the back-
ground field propagator (with center-invariant background) has a pole at vanishing momen-
tum for T = Tc . Poles of YM correlation functions are expected to be gauge-independent, so
the Landau gauge propagator should also feature a pole at vanishing momentum for T = Tc .
This assumes, however, that the gauge-independence of poles extends to background gauges,
which is not clear a priori [58]. Further investigations in this direction would require studying
the background Nielsen identities.
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