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Abstract

In this paper we continue the program initiated in Part I, that is the study of entan-
glement measures in the sine-Gordon model. In both parts, we have focussed on one
specific technique, that is the well-known connection between branch point twist field
correlators and measures of entanglement in 1+1D integrable quantum field theory. Our
papers apply this technique for the first time to a non-diagonal theory with an involved
particle spectrum, the sine-Gordon model. In this Part II we focus on a different en-
tanglement measure, the symmetry resolved entanglement, and develop its associated
twist field description, exploiting the underlying U(1) symmetry of the theory. In this
context, conventional branch point twist fields are no longer the fields required, but
instead we must work with one of their composite generalisations, which can be under-
stood as the field resulting from the fusion of a standard branch point twist field and the
sine-Gordon exponential field associated with U(1) symmetry. The resulting composite
twist field has correlators which as usual admit a form factor expansion. In this paper
we write the associated form factor equations and solve them for various examples in
the breather sector by using the method of angular quantisation. We show that, in the
attractive regime, this is the sector which provides the leading contribution to the sym-
metry resolved entropies, both Rényi and von Neumann. We compute the latter in the
limit of a large region size and show that they satisfy the property of equipartition, that
is the leading contribution to the symmetry resolved entanglement is independent of the
symmetry sector.
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1 Introduction

The quantum relativistic sine-Gordon (sG) model is one of the most studied low-dimensional
quantum field theories. This interest is justified by the fact that the sG model has many de-
sirable features: it is a strongly correlated, genuinely interacting model with a rich particle
spectrum, including topological excitations. Recently, due to spectacular advances in cold
atom experiments, the sG model has been claimed to be a valid effective description of in-
teracting Bose gases under certain circumstances [1, 2]. It is also a paradigmatic example of
integrable quantum field theory (IQFT) and in particular, it provides the simplest example
of an interacting theory with non-diagonal S-matrix [3]. Due the integrability the model is
amenable to solution by the bootstrap program and consequently its exact mass spectrum,
S-matrices and matrix elements of various fields are exactly known. In particular the particle
spectrum contains two fundamental particles known as the soliton (s) and the antisoliton (s̄)
and a tower of breathers (bk) which can be interpreted as bound states of solitons and antisoli-
tons as well as bound states of lighter breathers. The number and masses of these breathers
depend on the model’s coupling constant. As already said the theory is non-diagonal in the
standard scattering matrix sense as the scattering of solitons and antisolitons is generically
accompanied by backscattering. Nevertheless the scattering in the breather sector is diagonal
yielding considerable simplifications in many cases.

In the context of the bootstrap program for IQFTs, the matrix elements of local operators,
known as form factors (FFs) of the sG model have been extensively studied by many authors
employing many different techniques and in various contexts [4–20]. Particularly interesting
operators are the branch point twist fields (BPTFs), whose form factors (FFs) in for the sG
model were derived in [21,22]. The multi-point correlation functions of these fields, which are
in principle calculable via their FFs, are directly related to entanglement entropies. Focusing
on the simplest case, i.e., the bipartitioning of a quantum system in a pure state, the bipartite

2

https://scipost.org
https://scipost.org/SciPostPhys.12.3.088


SciPost Phys. 12, 088 (2022)

entanglement of a subsystem A can be quantified by the Rényi entropies [23–26]

Sn =
1

1− n
ln Trρn

A , (1)

defined in terms of the reduced density matrix (RDM) ρA of the subsystem A. From Rényi
entropies, in the so called replica limit n→ 1 the von Neumann entropy

S = −TrρA lnρA (2)

is obtained, nevertheless the Rényi entropies for different n contain more information than S,
in particular their knowledge provides the entire spectrum of the RDM ρA [27,28].

Importantly, the Rényi and von Neumann entropies can be expressed in terms of certain
partition functions as

Sn(`) =
1

1− n
ln

�

Zn

Zn
1

�

, and S(`) = −
∂

∂ n

�

Zn

Zn
1

�

n=1

, (3)

where Zn is the partition function of the theory on an n-sheeted Riemann surface Rn, obtained
by cyclically connecting the n sheets along a subsystem A [29–31]. Throughout this paper
we take the subsystem to be a connected region of length `. In QFT the partition function
Zn can be shown to be proportional to a multi-point function of branch point twist fields,
containing as many field insertions as boundary points between subsystem A and the rest of
the system [30, 31, 33]. These fields are local fields in a replica QFT, that is a new model
consisting of n non-interacting copies of the original theory. The BPTFs satisfies non-trivial
exchange relations with other local fields of the theory [33]. Consequently, the moments of
ρA are generally equivalent to appropriate limits (i.e. for n→ 1) of multi-point functions of
BPTFs .

The computation of these multi-point functions is, nevertheless, a very difficult task. Exact
results including the scaling dimensions and multi-point functions of BPTFs are known in 2D
conformal field theories (CFTs) [30, 34–44]. In 2D off-critical, mostly integrable and free
theories, the form factor bootstrap allows for the calculation of the matrix elements of the
BPTF, which has been carried out for many IQFTs besides the sG model [21,33,45–54]. Via the
bootstrap program all matrix elements are computable, the multi-point correlation functions at
large distances are, nevertheless, usually dominated by the first few sets of form factors. This
property has been often exploited in IQFTs and the use of BPTFs and their FFs have resulted in
numerous interesting exact or very accurate predictions for the entanglement entropy under
many different physical circumstances [47–61].

Recently lot of attention was devoted to how internal symmetries of a particular model af-
fect the structure of the reduced density matrix, hence the internal structure of entanglement
measures. A new concept dubbed symmetry resolved entanglement (SRE) was introduced
which can be studied using very similar techniques as reviewed above [62–65]. Consider a
symmetry with an associated conserved charge Q̂, which commutes with the system’s Hamil-
tonian as well as with a density matrix of a symmetric state. Under general circumstances also
the restriction of the symmetry operator Q̂ to the subsystem denoted by Q̂A, commutes with
the RDM, that is,

[ρA, Q̂A] = 0 , (4)

which has important consequences. First of all Eq. (4) implies that ρA is block-diagonal and
each block corresponds to an eigenvalue of Q̂A. Moreover this fact immediately indicates that
the Rényi and von Neumann entropies can be decomposed according to the symmetry sectors
of Q̂A. Accordingly one can define the symmetry resolved Rényi and von Neumann entropies
as

Sn(qA,`) =
1

1− n
ln

�

Zn(qA)
Zn

1 (qA)

�

, and S(qA,`) = −
∂

∂ n

�

Zn(qA)
Zn

1 (qA)

�

n=1

, (5)
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via the symmetry resolved partition function

Zn(qA) = Tr
�

ρn
AP(qA)

�

, (6)

where we denoted the projector onto the symmetry sector corresponding to the eigenvalue qA
by P(qA). Once more we write the dependence on the size of the system ` explicitly. SREs
have been studied in various contexts such as conformal field theories (CFTs) [62, 63, 66–
73], free [74,75] and interacting integrable QFTs [76], holographic settings [77], microscopic
models on the lattice [62,66–68,78–86], out-of-equilibrium situations [67,84,87,88] and for
other systems exhibiting more exotic types of dynamics [89–94]. Notably, symmetry resolved
quantities can be measured experimentally [87,95].

Regarding the theoretical calculation of SREs, instead of directly computing the corre-
sponding partition functions Zn(qA), it is more natural to consider the charged moments

Zn(α) = Tr
�

ρn
AeiαQ̂A

�

, (7)

which are Fourier transforms of the partition functions Zn(qA), so that [63]

Zn(qA) = Tr
�

ρn
AP(qA)

�

=
ˆ π

−π

dα
2π

Zn(α)e
−iαqA. (8)

The charged moments have already been defined before their connection to symmetry reso-
lution was established [96–102]. As pointed out in [63], they can be naturally interpreted
as partition sums on the Riemann surface with an additional Aharonov-Bohm flux eiα intro-
duced on one of its sheets. Crucially, this picture can be rephrased for 1+1 dimensional field
theories in a very similar manner to what was discussed; one can again consider multi-point
functions of the composite branch point twist fields (CTF) in an n-copy theory. The boundary
conditions along the cut(s) are now implemented by these novel fields, which also account for
the insertion of the flux. These fields can be naturally regarded as a fusion of the standard
BPTFs related to the permutation symmetry of the replicated model, and another twist field
associated with the internal symmetry of the original theory.

In 2D CFT, the symmetry resolved entropies have been obtained as multi-point correlations
of the novel CTFs [63]. These composite twist fields have been recently identified also in some
massive theories: free massive Dirac and complex boson QFT [74,75], the off-critical Ising and
sinh-Gordon theories [76]. In particular, as demonstrated in our previous works [75,76], FFs
of the composite twist fields in IQFTs can be determined with the bootstrap program, similar
to the usual BPTFs. Using these form factors and a systematic expansion for the correlation
functions of the composite twist fields, symmetry resolved entropies can be computed.

As our title suggests, the aim of the present work is to further develop the program initiated
in [22], extending it to CTFs with the aim of studying symmetry resolved quantities. In the
sG model we will focus on the U(1) symmetry associated with the the topological charge
carried by the soliton/antisoliton. Accounting for this symmetry, we can write CTF form factor
equations, as originally proposed in [76]. Concerning the solution of these equations, we
focus as in [22], on the attractive regime of the sG model, where breathers are present in the
spectrum. Indeed, in the present work we find solutions to the form factor bootstrap equations
only for the breather sector.

This choice might seem limiting but is justified by the fact that, unlike for the standard BPTF
studied in [22] where the first breather’s one-particle form factor is zero by symmetry, in the
present case the leading contribution of the charge moments is determined by the first breather.
The solution of the bootstrap equations can actually be obtained by analytic continuation in the
coupling from the sinh-Gordon (shG) model solution for an analogous field, whose validity can
be easily checked using the ∆-sum rule [103]. From this analytic continuation, we can easily

4

https://scipost.org
https://scipost.org/SciPostPhys.12.3.088


SciPost Phys. 12, 088 (2022)

obtain the first breather FFs of the U(1) CTF, as well as higher breathers FFs from the fusion
procedure employed for instance in [22, 104, 105]. Finally we compute the U(1) charged
moments, when the subsystem is made of a single interval and the system is in the ground
state, and from the charged moments we obtain the large-system leading contribution to the
U(1) symmetry resolved entropies. We confirm equipartitioning of entanglement at the leading
order and compute the difference of the symmetry resolved and unresolved entropies as well,
which depends not only the UV regulator ε but also on the interaction strength of the sG model.

The paper is structured as follows: in section 2 we briefly review the sG and shG IQFTs and
their main features. In section 3 the definitions and some important properties of the CTFs
are listed. We also review some basic ingredients of IQFT in order to introduce a compact
and convenient notation. Finally, we present the bootstrap equations for the U(1) CTF in a
generic IQFT and specialise them to the sG model. Section 4 is devoted to CTFs in the shG
model. Besides presenting the first few FFs, non-trivial checks of these solutions are performed
by taking specific limits in which we recover either the standard BPTF or the exponential field
form factors. We also extensively employ the powerful∆-sum rule. Section 5 presents the one-
and two-particle FFs of the U(1) CTF in the sG model for the first few breathers. These are
obtained by the above-mentioned analytic continuation and fusion procedures. In section 6 we
first compute the U(1) charged moments for an interval of length ` in the ground state of the
sG model. We establish that the magnitude of leading large-distance correction to saturation is
dominated by the one-particle form factor of the first breather. We then compute, via Fourier
transform, the symmetry resolved entropies, focussing on their leading behaviour for large
system size which exhibits the property of equipartition. We conclude in section 7. Some
technical details are presented in appendices such as the determination of the shG FFs via the
angular quantisation scheme in Appendix A and additional form factor checks via the ∆-sum
rule in Appendix B.

2 The Model

2.1 Sine-Gordon model

The sine-Gordon QFT is characterized by the following euclidean action

A=
ˆ

d2 x
�

1
2
∂µϕ∂

µϕ +λ cos gϕ
�

, (9)

where λ is a coupling constants and ϕ is a compactified scalar field, which means that the field
is defined as

ϕ ≡ ϕ +
2π
g

k , (10)

for any integer k. From the action above, the model admits an interpretation as massive per-
turbation of a compactified massless free boson, that is a CFT of central charge c = 1. This
will play a role in later sections, when writing the conformal dimensions of various fields. The
particle spectrum of the theory includes, first of all, a soliton s and an antisoliton s̄ forming
a doublet of opposite U(1) or topological charge. Depending on the value of g, we can dis-
tinguish the attractive and repulsive regime of the QFT. When 4π ≤ g2 < 8π, solitons and
antisolitons repel each other, whereas if g2 < 4π, they attract each other and consequently
can form bound states. These bound states are called breathers and are topologically neutral
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particles present in the asymptotic spectrum. Defining the new coupling strength

ξ=
g2

8π− g2
, (11)

the number of different breather species is ζ(ξ) = [1/ξ], where [•] denotes the integer part.
The value g2 = 4π corresponds to the free fermion point in the quantum theory; here the sG
model is equivalent to the free massive Dirac fermion theory (as we can easily see from the
S-matrices below), and the solitons and antisolitons correspond to the fundamental fermionic
particle and antiparticle of the Dirac theory.

In the attractive regime, the masses of the breathers mk can be expressed in terms of the
soliton mass m as

mk = 2m sin
πξk

2
, with k = 1, . . . ,ζ(ξ) . (12)

As is well known the theory is integrable and hence admits factorised scattering. The corre-
sponding S-matrices have been determined explicitly [3]. Focusing first on the soliton sector
of the sG model, the relevant S-matrices can be written as

Sss
ss(θ ) =S s̄s̄

s̄s̄(θ ) = −exp

�

−i
ˆ ∞

0

d t
t

sinh πt(1−ξ)
2 sin (tθ )

sinh πtξ
2 cosh πt

2

�

=
∞
∏

k=0

Γ
�

2k+1
ξ −

iθ
πξ + 1

�

Γ
�

2k+1
ξ −

iθ
πξ

�

Γ
�

2k
ξ +

iθ
πξ + 1

�

Γ
�

2k+2
ξ + iθ

πξ

�

Γ
�

2k
ξ −

iθ
πξ + 1

�

Γ
�

2k+2
ξ −

iθ
πξ

�

Γ
�

2k+1
ξ + iθ

πξ

�

Γ
�

2k+1
ξ + iθ

πξ + 1
� ,

(13)

and

Sss̄
ss̄(θ ) = S s̄s

s̄s(θ ) =
sinh θξ

sinh iπ−θ
ξ

Sss
ss(θ ) , Sss̄

s̄s(θ ) = S s̄s
ss̄(θ ) =

sinh iπ
ξ

sinh iπ−θ
ξ

Sss
ss(θ ) , (14)

where Sss̄
s̄s(θ ) and S s̄s

ss̄(θ ) are the off-diagonal amplitudes which can be seen to vanish whenever
1/ξ is an integer. Such values are known as reflectionless points. The remaining S-matrices
are diagonal and can be expressed via the standard blocks:

[x]θ =
tanh 1

2 (θ + iπx)

tanh 1
2 (θ − iπx)

. (15)

In particular
Sb1 b1

(θ ) = [ξ]θ , Sb2 b2
(θ ) = [ξ]2θ [2ξ]θ , (16)

Sb1 b3
(θ ) = [ξ]θ [2ξ]θ , Sb1 b2

(θ ) =
�

ξ

2

�

θ

�

3ξ
2

�

θ
, (17)

where bk denotes the kth breather according the masses (12). These S-matrices have the
important property of possessing poles in the physical sheet which one can attribute to the
presence of a bound state. Similar to our previous work [22] the residue of such poles plays a
role in later sections therefore we report some of these results here. In general, we define

−i Res
θ=iπuc

ab

Sab(θ ) := (Γ c
ab)

2 , (18)

where iπuc
ab is the pole of the S-matrix corresponding to the formation of a bound state c in

the scattering process a+ b 7→ c. Based on this equation a definition of the “pole strength” Γ c
ab

can be naturally obtained. For the breather S-matrices, we have

Γ
b2
b1 b1
=
p

2 tanπξ, Γ b4
b2 b2
=

2 cosπξ+ 1
2 cosπξ− 1

p

2 tan 2πξ , Γ b3
b1 b2
=

√

√2 cosπξ+ 1
2 cosπξ− 1

Γ
b2
b1 b1

, (19)
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and Γ b4
b1 b3
= Γ b4

b2 b2
/Γ

b3
b1 b2

. Finally we note that the breather S-matrices can also be expressed
with the following integral formulae as

Sbk bp
(θ ) = exp

�

−i
ˆ ∞

0

d t
t

4 cosh πtξ
2 sinh πtkξ

2 cosh πt(1−ξp)
2 sin (tθ )

sinh πξt
2 cosh πt

2

�

, (20)

for k < p and, finally

Sbk bk
(θ ) = −exp



−i
ˆ ∞

0

d t
t

2
�

cosh πtξ
2 sinh πt(2kξ−1)

2 + sinh (1−ξ)πt
2

�

sin (tθ )

sinh πξt
2 cosh πt

2



 . (21)

Other S-matrices (like for s− bk scattering) as well as the derivation of Gamma-function rep-
resentations from integral representations can be found for instance in [6].

2.2 Sinh-Gordon model

The sinh-Gordon model is defined by the action

A=
ˆ

d2 x

�

1
2
∂µϕ∂

µϕ +
µ2

0

g2
cosh gϕ

�

, (22)

where µ0 is the bare particle mass, g is the coupling constant and ϕ is a non-compact bosonic
scalar field. As in the sine-Gordon case, the sinh-Gordon model may be viewing as a massive
perturbation of a massless free boson, albeit non-compactified in this case. Therefore, also in
this case, the central charge of the underlying CFT is c = 1. The model is probably the simplest
example of an interacting IQFT. The model is invariant under Z2 symmetry ϕ → −ϕ and its
spectrum consists of multi-particle states of a single massive bosonic particle with exact mass
m. The two-particle S-matrix is [109]

S(θ ) =
tanh 1

2(θ − i πB
2 )

tanh 1
2(θ + i πB

2 )
, (23)

where B is related to the coupling g in (22) by

B =
2g2

8π+ g2
. (24)

As we can see, this is exactly−2ξ under the replacement g 7→ i g. Indeed, we have deliberately
used the same notation g for the coupling as we did for sG to emphasise the relationship
between the two models. The action (22) can be formally obtained from the sine-Gordon
action (9) under the analytic continuation g ↔ i g but this applies to many other quantities
too. This analytic continuation is a very useful tool for relating all sort of quantities in the
shG model to those of the sG model, especially as the shG model is a much simpler theory
where quantities such as form factors are more easily accessible. Under this correspondence,
the shG S-matrix S(θ ) and the sG first breather- first breather scattering matrix Sb1 b1

(θ ) can
be obtained from one another. The same holds for the matrix elements of various operators,
that is, the form factors which we study later.

3 Twist Fields in Quantum Field Theory

Twist fields are a common feature in quantum field theory and can be simply defined as fields
associated to with an internal symmetry of the theory under consideration. In the context of
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IQFT probably the simplest example is the order fieldσ in Ising field theory, which is associated
with discrete Z2 symmetry. It is in the nature of twist fields that they are non-local or semi-
local with respect to other fields in the theory (i.e. the field σ is semi-local with respect to the
fermions in the Ising model) while at the same time being local in relation to the Lagrangian
of the theory. Another standard feature of twist fields is that they sit at branch points in space-
time, that is at the origin of branch cuts. From this feature, their semi-locality properties can
be easily understood through exchange relations such as the ones shown later in this section.
Going back to the Ising example above, the branch cut can be understood as resulting from the
infinite sum over fermions that is involved in the Jordan-Wigner transformation that relates
matrices σ± to fermions ci in the Ising spin chain whose scaling limit gives the Ising field
theory. A good description of these features in the context of the FF program for the Ising
model can be found in [106].

As discussed in Part I and originally in [33], an important twist field in the context of
entanglement measures is the BPTF associated with cyclic permutation symmetry in a replica
theory. Here, we want to focus on its generalization to a special type of composite BPTFs
which we call composite twist fields (CTFs) for short. They are the fields that are formed by
composition with another twist field. Note that composition with local (non twist) fields can
also be considered, as done in [49,50] and this is of interest in the context of the entanglement
entropy of non-unitary QFTs [52, 53]. However, in this case the exchange relations and form
factor equations are the same as for the original BPTF, that is, we are dealing with classifying
multiple distinct solutions to the same FF equations. Here, once again the ∆-sum rule plays
an important role [103].

It is instructive to present the following formal definition of a CTF as given in [49]. Let Tn
be the standard BPTF and φ be a local field in a conformal field theory, then the CTF

:Tnφ :(y) := n2∆−1 lim
x→y
|x − y|2∆(1−

1
n )

n
∑

j=1

Tn(y)φ j(x) , (25)

may be defined, whereφ j(x) is the copy of fieldφ(x) living in replica j, : • : represents normal
ordering and the power law, which involves the conformal dimension of the field φ, denoted
by ∆. The conformal dimension of the BPTF is given by [34,35],

∆n =
c

24

�

n−
1
n

�

, (26)

was derived in [49] from conformal arguments. The pre-factor n2∆−1 ensures conformal nor-
malization of the two-point function of CTFs. It is then natural to think of the CTFs we study
in this paper as off-critical versions of their conformal counterparts (25).

As discussed in the introduction, for the study of symmetry resolved entanglement a special
type of CTF is needed. This can be regarded as the composition of the standard BPTF with
a twist field of the original (non-replicated) model. In the sG model there is a twist field
associated with U(1) symmetry, which can be represented as the simple vertex operator

Vα = exp
�

iαgϕ
2π

�

, (27)

where ϕ is the sG field and g the coupling constant (see (9)). The exchange relations of this
U(1) twist field with other local fields in the theory are characterized by the semi-locality (or
mutual locality) index eiκα as introduced in [106] via the equal time exchange relations

Vα(x)φκ(y) = eiκαφκ(y)Vα(x) for y1 > x1 , (28)

= φκ(y)Vα(x) for x1 > y1 , (29)
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or, when using the radial quantisation picture,

Vα(e−2πiz, e2πi z̄)φκ(0,0) = eiκαVα(z, z̄)φκ(0,0) , (30)

with κ = ±, 0. The interpolating fields φ±,0 are associated with the creation of a soliton (+),
an antisoliton (−) or a neutral particle (0). It is important to stress that in the sG theory, the
above exchange relations with the the precise phase factor eiκα are only recovered as long as
the coupling constant g appears in the definition the vertex operator (27). This fact can be
best understood via semiclassical arguments: the U(1) charge in the sG theory is associated
with the solitons/antisolitons and a classical solitonic configuration, hence a charge unit is
given by 2π/g increment in the classical field configuration. It is also well known, that the
vertex operator is local w.r.t. fields φ± creating solitons/antisolitons for α= 2πk, k ∈ Z.

The particular mutual locality factor eiκα and its physical meaning are in agreement with
the intuitive picture associated with the insertion of the Aharonov-Bohm flux on one of the
Riemann sheets. The picture with particles carrying the inserted flux is precisely rephrased
by Eq. (30) in terms of quantum fields. Consequently, the U(1) composite BPTF denoted as
T αn (x) can be understood formally as : TnVα : (x) in the sense of (25), and in a replica theory,
is characterized by equal time exchange relations

T αn (x)Op,i(y) = e
ipα
n Op,i+1(y)T αn (x) for y1 > x1 , (31)

= Op,i(y)T αn (x) for x1 > y1 , (32)

with respect to quantum fields Op,i living on the ith replica and possessing U(1) charge p ∈ Z.
Similarly, if T̃n(x) is the hermitian conjugate of Tn(x) associated with the inverse cyclic per-
mutation, we can also define T̃n

α
with exchange relations

T̃n
α
(x)Op,i(y) = e−

ipα
n Op,i−1(y)T̃n

α
(x) for y1 > x1 , (33)

= Op,i(y)T̃n
α
(x) for x1 > y1 . (34)

Our choice for ±α/n in the exponents is motivated by the requirement, that the total phase
picked up by a charged particle (associated with a unity of charge) has to be e±iα when turning
around each of the branch points. Based on the above relations and on previous works [75,76]
we can easily write down the form factor bootstrap equations for the matrix elements of this
CTF which we present in subsection 3.2. Before doing so we review some useful definitions
and compact notations in IQFT.

3.1 Twist Field Form Factors in IQFT

For α= 0 the exchange relations (31)-(33) become those of the standard BPTFs [33]. In IQFT
one can then formulate BPTF form factor equations which generalize the standard form factor
program for local fields [5,112]. These equations were first given in [33] for diagonal theories
and then in [21] for non-diagonal ones. Here, we are interested in the further generalization to
symmetry resolved CTFs, even if many elements of the derivation and notations are common.

Our most important object are the form factors (FF), which are matrix elements of (semi-
)local operators O(x , t) between the vacuum and asymptotic states, i.e.,

FO
γ1...γk

(θ1, . . . ,θk) = 〈0|O(0,0)|θ1, . . .θk〉γ1...γk
. (35)

In massive field theories like the sG model, the asymptotic states are spanned by multi-particle
excitations whose dispersion relation can be parametrised as (E, p) = (mγi

coshθ , mγi
sinhθ ),

where γi indicates the particle species and θ its rapidity. In such models, any multi-particle
state can be constructed from the vacuum state |0〉 as

|θ1,θ2, ...,θk〉γ1...γk
= A†

γ1
(θ1)A

†
γ2
(θ2) . . . .A†

γk
(θk)|0〉 , (36)
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where A†s are particle creation operators; in particular the operator A†
γi
(θi) creates a particle of

species γi with rapidity θi . In an IQFT with factorised scattering, the creation and annihilation
operators A†

γi
(θ ) and Aγi

(θ ) satisfy the Zamolodchikov-Faddeev (ZF) algebra [107,108]which
in the non-diagonal case reads

A†
γi
(θi)A

†
γ j
(θ j) = S

δiδ j
γiγ j
(θi − θ j)A

†
δ j
(θ j)A

†
δi
(θi) ,

Aγi
(θi)Aγ j

(θ j) = S
δiδ j
γi ,γ j
(θi − θ j)Aδ j

(θ j)Aδi
(θi) ,

Aγi
(θi)A

†
γ j
(θ j) = S

δiδ j
γiγ j
(θ j − θi)A

†
γ j
(θ j)Aγi

(θi) +δγi ,γ j
2πδ(θi − θ j) , (37)

where S
δiδ j
γiγ j
(θi−θ j) denotes the two-body S-matrix of the theory and summation is understood

on repeated indices. The above discussion is general and valid for any IQFT including the sG
model, where the particle index γi can take the particular values b1, . . . , bζ and s, s̄.

In the n-copy IQFT each of the indices above is doubled, in the sense that particles are
characterized both by their species (γi , δi in the formulae below) and their copy number
(µi ,νi in the formulae below). The two-body scattering matrix is then generalized to

S
(δi ,νi)(δ j ,ν j)
(γi ,µi)(γ j ,µ j)

(θ ) =δµi ,νi
δµ j ,ν j

¨

S
δiδ j
γiγ j
(θ ) µi = µ j

δγi ,δi
δγ j ,δ j

µi 6= µ j
. (38)

To make our notations easier we introduce the multi-index

ai = (γi ,µi) , with āi = (γ̄i ,µi) and âi = (γi ,µi + 1) , (39)

where γ̄i denotes the antiparticle of γi .

3.2 Form Factor Equations for U(1) CTFs

Relying on the exchange properties of the U(1) CTFs (31) and also on earlier works [75,76]we
can easily write down the bootstrap equations for the novel composite twist fields. Importantly,
these equations include the non trivial phase e

iα
n in the monodromy properties corresponding

the Aharonov-Bohm flux. Denoting the FFs of T αn by Fαa1...ak
(θ1, . . . ,θk;ξ, n) (recall that ξ is

the sG coupling and n the replica number), the bootstrap equations can be formulated as

Fαa (θ ;ξ, n) = S
a′i a
′
i+1

ai ai+1
(θi i+1)F

α
...ai−1a′i+1a′i ai+2...(. . .θi+1,θi , . . . ;ξ, n) , (40)

Fαa (θ1 + 2πi,θ2, . . . ,θk;ξ, n) = e
iκ1α

n Fαa2a3...ak â1
(θ2, . . . ,θk,θ1;ξ, n) , (41)

−i Res
θ ′0=θ0+iπ

Fαā0a0a(θ
′
0,θ0,θ ;ξ, n) = Fαa (θ ;ξ, n) , (42)

−i Res
θ ′0=θ0+iπ

Fαā0 â0a(θ
′
0,θ0,θ ;ξ, n) = −e

iκ0α
n Sa′

â0a(θ0,θ , k)Fαa′(θ ;ξ, n) ,

−i Res
θ ′0=θ0+iūε

γδ

Fα(γ,µ0)(δ,µ′0)a
(θ ′0,θ0,θ ;ξ, n) = δµ0,µ′0

Γ εγδFα(ε,µ0)a
(θ0,θ ;ξ, n) , (43)

where several short-hand notations have been used: as usual θi j = θi − θ j , θ := θ1,θ2, ...,
θk and a := (γ1,µ1)(γ2,µ2) . . . (γk,µk). The factor in the fourth equation is an abbreviation
for

Sa′

â0a(θ0,θ , k) = Sc1d1
â0a1
(θ01)S

c2d2
c1a2
(θ02) . . . S â0dk

ck−1ak
(θ0k) . (44)
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Note that the CTF is generally spinless and therefore the form factors are functions of rapidity
differences only. The index κ in the phase factors corresponds the U(1) charge of the corres-
ponding particle, that is

κi =











1 γi = s

−1 γi = s̄

0 γi = b j

, (45)

which means that the non-trivial monodromy does not affect the breather sector of the theory.
From this point we can proceed analogously to the previous case of the standard BPTFs; we
primarily focus on one- and two-particle FFs and work on the first replica only. The one-particle
FFs when non-vanishing, are again rapidity independent and the two-particle ones depend only
on the rapidity difference. Akin to the BPTF, the novel composite field is neutral in relation to
the sG U(1)-symmetry, which implies the vanishing of any FFs involving a different number of
solitons and antisolitons. In particular one finds that

Fαss(θ ;ξ, n) = Fαs̄s̄(θ ;ξ, n) = Fαs̄bk
(θ ,ξ; n) = Fαsbk

(θ ,ξ; n) = F
α

s (ξ, n) = Fαs̄ (ξ, n) = 0 ,∀k ∈ Z+. (46)

Unlike the BPTF, however, the Z2 symmetry imposes no additional restrictions and as an im-
portant consequence we have non vanishing one-particle and two-particle FFs for all breather
combinations.

Under these considerations, Watson’s equations (40), (41) for non-vanishing two-particle
form factors and particles in the same copy can be summarised as

Fαss̄(θ ;ξ, n) = Sss̄
ss̄(θ )F

α
s̄s(−θ ;ξ, n) + S s̄s

ss̄(θ )F
α
ss̄(−θ ;ξ, n) = eiαFαs̄s(2πin− θ ;ξ, n) , (47)

Fαs̄s(θ ;ξ, n) = S s̄s
s̄s(θ )F

α
ss̄(−θ ;ξ, n) + Sss̄

s̄s(θ )F
α
s̄s(−θ ;ξ, n) = e−iαFαss̄(2πin− θ ;ξ, n) , (48)

Fαbi b j
(θ ;ξ, n) = Sbi b j

(θ )Fαbi b j
(−θ ;ξ, n) = Fαbi b j

(2πin− θ ;ξ, n) , for i − j ∈ 2Z . (49)

The kinematic residue equations (42) are

−i Res
θ=iπ

Fαss̄(θ ;ξ, n) = −i Res
θ=iπ

Fαbi bi
(θ ;ξ, n) = 〈T αn 〉 , ∀ i ∈ N , (50)

where 〈T αn 〉 is the vacuum expectation value of the CTF in the ground state of the replica
theory. Finally, the bound state residue equations (43) are

−i Res
θ=iπuc

ss̄

Fαss̄(θ ;ξ, n) = Γ c
ss̄F

α
c (ξ; n), (51)

where c is any particle that is formed as a bound state of s+ s̄ for rapidity difference θ = iπuc
ss̄.

For the breather sector it is again convenient to write the more general equation

−i Res
θ=θ0

Fαbi ,b j ,a
(θ + iu,θ0 − iũ,θ ;ξ, n) = Γ

bi+ j

bi b j
Fαbi+ j ,a

(θ ,θ ;ξ, n) , (52)

where a is any particle combination for which the FF is non-vanishing. We recall that
u + ũ = ui+ j

i j and θ = iπui+ j
i j is the pole of the scattering matrix Sbi b j

(θ ) and u and ũ are
related to the poles of Sb j bi+ j

(θ ) and Sbi bi+ j
(θ ), respectively. It is important to emphasise that

the bootstrap equations (40)-(43) or (49)-(51) for the U(1) neutral breathers are identical to
those of the conventional BPTFs, nevertheless the FFs are clearly different from those of Tn
and their computation is non-trivial as demonstrated soon.

Finally we stress that two-particle FFs with arbitrary replica indices can be straightfor-
wardly obtained from the above quantities (corresponding to particles on the same replica
only) through the relations

Fα(γ, j)(δ,k)(θ ;ξ, n) =

¨

eiακδ/nFα
δγ
(2πi(k− j)− θ ;ξ, n) if k > j ,

eiακγ/nFα
γδ
(2πi( j − k) + θ ;ξ, n) otherwise ,

(53)
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where κγ is zero for neutral breathers. The two-particle FFs of the other field T̃n
α

denoted by
F̃αa1a2

(θ ;ξ, n) can be simply written as [75]

F̃α(γ, j)(δ,k)(θ ;ξ, n) = F−α(γ,n− j)(δ,n−k)(θ ;ξ, n) . (54)

4 Form factors of the Exponential CTF in the sinh-Gordon model

As discussed in the Introduction, in this work we focus on the attractive regime of the sG model
and restrict ourselves to the breather FFs of T αn . Given our goals, and in line with the strategy
followed in Part I, we start by computing the FFs of the analogous field in the shG model. As
this model has only one particle species, the powerful ∆-sum rule (see Eq. (72)) can be used
to verify the solutions for the composite field. With these solutions at hand one can then use
the standard analytic continuation to obtain b1 FFs of the U(1) CTF in the sG theory and then
use the fusion procedure just as in [22] to compute higher breather FFs.

As shown in [22], the multi-particle b1 FFs of the standard BPTF in the sG theory can be
obtained from the corresponding BPTF FFs of the shG model by identifying the shG coupling
B with −2ξ, where ξ is the sG coupling defined in (11). The validity of the procedure was
only shown for a few form factors but is supported by the general relationship between the
lagrangians of the two theories and by a similar relation holding for other local fields, such as
shG exponential fields e

αgϕ
2π . The validity of the fusion procedure and analytic continuation for

the form factors of these fields was advocated in [12] and in general we have that

FFs of e
αgϕ
2π in shG 7→ FFs of e

iαgϕ
2π in sG , (55)

for g 7→ i g and B 7→ −2ξ. In this section, we focus on computing the first few FFs of the
exponential CTF in the shG model. We will use the notation

Fαk (θ1, . . . ,θk; B, n)≡ the FFs of T αn =: Tne
gαϕ
2π : in shG . (56)

Therefore the FFs of the exponential field are a special case of the above, namely

Fαk (θ1, . . . ,θk; B, 1)≡ the FFs of e
αgϕ
2π in shG , (57)

as are the form factors of the standard branch point twist field

F0
k (θ1, . . . ,θk; B, n)≡ the FFs of Tn in shG . (58)

Here we briefly discuss first the determination of the two-particle FF using standard methods,
from which the one-particle FF can be easily computed as well. The three- and four-particle FFs
are presented in appendix A, where they are obtained by the method of angular quantisation
[122]. To obtain the two-particle FF, we solve Watson’s equations and the kinematic pole
equation as usual

Fα2 (θ ; B, n) = S(θ )Fα2 (−θ ; B, n) = Fα2 (2πin− θ ; B, n) , (59)

and
−i Res
θ=iπ

Fα2 (θ ; B, n) = 〈T αn 〉 , (60)

where S(θ ) is the S-matrix (23) and there are no bound states, so this the full set of FF equa-
tions. These equations are the same as for the standard BPTF but the solutions we are look-
ing for must be different. In particular, they must depend on the parameter α so that when
α = 0 we should recover the known BPTF solutions [33, 48] and when n = 1 with α 6= 0 we
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must recover the form factors of exponential fields [113]. Another consistency check for form
factor solutions is provided by the fact that the conformal dimension ∆αn of the field T αn must
be [49,50,115]

∆αn =
1
24

�

n−
1
n

�

+
∆α1
n

, (61)

where ∆α1 = −
g2α2

4(2π)3 is the conformal dimension of the exponential field, which is negative in

the shG model. As expected ∆0
n =∆n as defined in (26).

Before presenting the two-particle FF solution Fα2 (θ ; B, n) that satisfies all constraints above,
it is instructive to recall the BPTF solution F0

2 (θ ; B, n), which appeared first in [33]

F0
2 (θ ; B, n) =

〈Tn〉 sin
π
n

2n sinh iπ+θ
2n sinh iπ−θ

2n

R(θ ; B, n)
R(iπ; B, n)

, (62)

where 〈Tn〉 is the vacuum expectation value (VEV) of the BPTF and the minimal FF has the
well-known formula [114]

R(θ ; B, n) = exp

�

−2
ˆ ∞

0

dt
t

sinh tB
4 sinh t(2−B)

4

sinh nt cosh t
2

cosh
�

t
�

n+
iθ
π

��

�

, (63)

and the property

R′(iπ; B, 1)
R(iπ;ξ, 1)

= 2
ˆ ∞

0
d t

cosh t sinh tB
4 sinh t(2−B)

4

sinh2 t cosh t
2

, (64)

where the prime means derivative w.r.t. n evaluated at n = 1. Various representations of this
function have been discussed in many papers, including our Part I (see subsection 5.1 and
Appendix A), so we will not repeat them here. For the exponential field, the form factors are
also known [113,114] and take the simple form

Fα2 (θ ; B, 1) = 〈e
αgϕ
2π 〉

4sin2 αB
4

sin πB
2

R(θ ; B, 1)
R(iπ;ξ, 1)

. (65)

The two-particle FF of the exponential CTF turns out to have the expected structure, namely

Fα2 (θ ; B, n) = F0
2 (θ ; B, n) + A(α, n, B)

R(θ ; B, n)
R(iπ; B, n)

, (66)

where A(α, n, B) is a constant, that is, independent of θ . This structure is easily justified. It
is in fact the most general solution to the FF equations that possesses all desired properties.
The first part obviously solves the equations, as it is the solution (62) whereas the second term
is a minimal solution of the FF equations, since it is proportional to the minimal form factor.
This additional term has no poles in the physical sheet, hence trivially satisfies the kinematic
residue equation. Such a structure for the general solution of two-particle FF equations has
been discussed for other local fields, including in [48] and in [53] for another composite field.
Since

lim
θ→∞

F0
2 (θ ; B, n) = 0 and lim

θ→∞
R(θ ; B, n) = 1 , (67)

we have that the addition of the second term in (66) fundamentally changes the asymptotic
properties of Fα2 (θ ; B, n) compared to F0

2 (θ ; B, n). This change is important an in fact desirable
because we expect

lim
θ→∞

Fα2 (θ ; B, n) =
(Fα1 (B, n))2

〈T αn 〉
, (68)
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where Fα1 (B, n) is the one-particle form factor which is rapidity-independent. This is a con-
sequence of the clustering decomposition property of form factors which is discussed in more
generality in [103]. This is consistent with the fact that, by symmetry considerations, the one-
particle form factor of the exponential CTF is non-zero (whereas it is so for α = 0). Indeed
this form factor will become, under analytic continuation in g, the one-particle form factor of
the lightest breather in the sG model.

We can now proceed to fixing the constant A(α, n, B) with the help of the following condi-
tions

A(0, n, B) = 0, A(α, 1, B) = 〈e
αgϕ
2π 〉

4 sin2 αB
4

sin πB
2

, (69)

which are consequences of (62) and (65). We also know that the two-particle form factor
above must solve a dynamical pole axion analogous to (51). A solution to these constraints is
given by

A(α, n, B) = 〈T αn 〉
2 sin π

2n sin2 αB
4n

n sin πB
4n sin π(2−B)

4n

. (70)

This solution can also be obtained using the method of angular quantisation (c.f. Appendix
A). It then follows that the one-particle form factor of the exponential CTF is

Fα1 (B, n) =

√

√

√
〈T αn 〉A(α, n, B)

R(iπ; B, n)
= 〈T αn 〉 sin

αB
4n

√

√

√

2 sin π
2n

nR(iπ; B, n) sin πB
4n sin π(2−B)

4n

. (71)

By construction Fα6=0
1 (B, 1) 6= 0 and there is a sign ambiguity in this solution (as we are taking

a square root) but this does not affect any of the results in this paper, since all quantities of
interest involve FFs squared.

4.1 Consistency Checks via ∆-Sum Rule

The final solution (66) with (70) can be further checked by using the∆- sum rule [103] which
states that the conformal dimension of a local field can be obtained from an integral involving
its two-point function with the trace of the energy-momentum tensor Θ. Let this local field be
the exponential CTF in the shG theory. Then, expanding the two-point function in terms of
form factors we have the general expression

∆αn = −
n

2



T αn
�

∞
∑

k=1

ˆ ∞
−∞

dθ1 · · ·dθk

(2π)kk!

FΘk (θ1, . . . ,θk; B)
�

Fαk (θ1, . . . ,θk; B, n)
�∗

�

∑k
p=1 m coshθp

�2 , (72)

where m is the particle mass. In the shG model, the FFs of the stress-energy tensor Θ are
non-vanishing only for even particle numbers and were computed in [114]. The two-particle
FF is

FΘ2 (θ ; B) = 2πm2 R(θ ; B, 1)
R(iπ; B, 1)

. (73)

Thus, keeping only the two-particle contribution, which usually gives very accurate results
[114], the formula above can be simplified to

∆αn ≈ −
n

32π2m2〈T αn 〉

ˆ ∞
∞

dθ
FΘ2 (θ ; B)Fα2 (θ ; B, n)∗

cosh2 θ
2

. (74)
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Table 1: The ∆-sum rule in the two-particle approximation (SR) compared with the
exact conformal dimension of the exponential CFT in the shG model (61) for various
values of α and B. These include α = 0, that is the standard BPTF and n = 1, α 6= 0
corresponding to the exponential field in shG. In all cases the agreement is very good.

(a) α= 0.7039× 2π,B = 0.2

n ∆0
n (Exact) ∆0

n (SR) ∆αn(Exact) ∆αn(SR)

1 0 0 -0.055053 -0.053919

2 0.0625 0.063569 0.034974 0.034953

3 0.11111 0.113523 0.092760 0.094216

4 0.15625 0.159907 0.142487 0.145365

5 0.2 0.204842 0.188989 0.193184

(b) α= 0.4483× 2π, B = 0.4

n ∆0
n (Exact) ∆0

n (SR) ∆αn(Exact) ∆αn(SR)

1 0 0 -0.050243 -0.048283

2 0.0625 0.064081 0.037378 0.037318

3 0.11111 0.114828 0.094363 0.096610

4 0.15625 0.161949 0.143689 0.148183

5 0.2 0.207582 0.189951 0.196531

(c) α= −0.5623× 2π, B = 0.6

n ∆0
n (Exact) ∆0

n (SR) ∆αn(Exact) ∆αn(SR)

1 0 0 -0.135506 -0.120618

2 0.0625 0.064306 -0.005253 -0.007845

3 0.11111 0.115505 0.065942 0.065666

4 0.15625 0.163049 0.122373 0.125193

5 0.2 0.20908 0.172899 0.178615

We have evaluated this sum for various values of the replica index n, the interaction para-
meter B and α and found very good agreement between the approximation (74) and (61),
as demonstrated in Table 1. In this table (and others presented in Appendix B) , the exact
and approximate sum rule (SR) dimensions of the exponential CTF are given. To judge the
quality of the match between the exact and approximated values, it is worth comparing the
data associated with the standard BPTF (α = 0) with those associated with the exponential
CTF for the same value of B. We see the same trends regarding the magnitude of the error: the
difference is larger for larger n and B and the sum rule approximation consistently overshuts.
The largest error percentage in any of the tables is of the order of %1. Altogether, the results
of this section give strong evidence for the validity of the novel FF solutions. Additional tables
with other parameter values are found in Appendix B.

5 Form factors of exponential CTFs in the sG theory

In this section we focus on the breather sector of the theory, where the S-matrices are diagonal.
Our starting point are the b1 form factors which are directly related to the FFs obtained in the
previous section and in Appendix A. Denoting by

Fαb1...b1
(θ1, . . . ,θk;ξ, n) , (75)

the k-particle form factor associated to k breathers of type b1 of the U(1) exponential CTF in
the sG model, such form factor is related to the shG form factors by

Fαb1...b1
(θ1, . . . ,θk;ξ, n) := Fαk (θ1, . . . ,θk; B = −2ξ, n) . (76)

Recall that the exponential CTF in sG can be formally written in the usual way T αn =: e
iαgϕ
2π Tn :,

and we note again the presence of the g parameter in the exponential. This factor ensures that
α ∈ (−π,π] and that a soliton/antisoliton have U(1) charge ±1.
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As discussed in Part I [22] the b1 FFs form the basis for the construction of heavier breather
solutions thanks to the fusion procedure. Fusion is nothing but the repeated use of the bound
state kinematic equation or dynamical pole axiom (51), given that each breather bk can be
seen as a bound state of k breathers b1. Interpreting each arrow as an application of fusion,
we have schematically

Fαb1 b1 b1 b1
(θ1,θ2,θ3,θ4;ξ, n) 7→ Fαb2 b1 b1

(θ1,θ2,θ3;ξ, n)

7→ Fαb2 b2
(θ ;ξ, n) or Fαb3 b1

(θ ;ξ, n) 7→ Fαb4
(ξ, n) , (77)

and
Fαb1 b1

(θ ;ξ, n) 7→ Fαb2
(ξ, n) . (78)

In [22] we argued that the above procedure (this is, step-by-step fusion) is equivalent to the
prescription of [104,105] which describes the effect of simultaneously fusing multiple breath-
ers. This can be expressed through the equation

Fα. . .
︸︷︷︸

p

bk . . .
︸︷︷︸

r

(θ1, . . . ,θp,θ ,θp+2, . . . ,θp+r+1;ξ, n) =

�k−1
∏

i=1

Γ
bi+1
b1 bi

�

× (79)

Fα. . .
︸︷︷︸

p

b1 . . . b1
︸ ︷︷ ︸

k

. . .
︸︷︷︸

r

(θ1, . . . ,θp,θ [k−1],θ [k−3], . . . ,θ [1−k],θp+2, . . . ,θp+r+1;ξ, n) ,

where θ [a] := θ − iπξa
2 . In the following we will use the minimal form factor R(θ ;ξ, n), which

satisfies the equation
R(θ ;ξ, n) = Sb1 b1

(θ )R(−θ ;ξ, n) , (80)

and can be obtained (with some abuse of notation) from R(θ ; B, n) by simply replacing B = −2ξ.
The analytic properties of this function, notably the fact that, contrary to R(θ ; B, n) it can have
poles in the physical sheet, where discussed in much detail in our Part I [22].

5.1 One-particle form factors

The one-particle form factor Fαb1
(ξ, n) can be obtained from (71) in the usual way. It is useful

for us to write it in terms of a new constant

Fαb1
(ξ, n) = −2〈T αn 〉 sin

αξ

2n
C(ξ, n) , where C(ξ, n) =

√

√

√

sin π
2n

2nR(iπ;ξ, n) sin πξ2n sin π(1+ξ)2n

.

(81)
Fig.1 shows some plots of this function, which takes real values. The one-particle b2, b3 and b4
FFs can be obtained from higher particle b1 FFs using the fusion technique [22]. In particular,
we have

Fαb2
(ξ, n) = Γ b2

b1 b1
Fαb1 b1

(−iπξ;ξ, n)

= 〈T αn 〉
Γ

b2
b1 b1

sin π
2n

n sin π(1+ξ)2n

�

cos π2n

sin π(ξ−1)
2n

−
2 sin2 ξα

2n

sin πξ2n

�

R(−iπξ;ξ, n)
R(iπ;ξ, n)

, (82)

Fαb3
(ξ, n) = Γ

b2
b1 b1
Γ

b3
b1 b2

Fαb1 b1 b1
(−iπξ, 0, iπξ;ξ, n) = 〈T αn 〉Γ

b2
b1 b1
Γ

b3
b1 b2

C(ξ, n)3 (83)

×2



sin
3αξ
2n
− sin

αξ

2n

sin π
2n

�

1+ 2 cos πξn
�

sin π(1−2ξ)
2n



× R(−iπξ;ξ, n)2R(−i2πξ;ξ, n) ,

16

https://scipost.org
https://scipost.org/SciPostPhys.12.3.088


SciPost Phys. 12, 088 (2022)

5 10 15 20

-1.0

-0.8

-0.6

-0.4

-0.2

n

F
b 1α
(ξ
,n
)

α=2π × 0.4483

0.2 0.4 0.6 0.8
-0.50
-0.45
-0.40
-0.35
-0.30
-0.25
-0.20
-0.15

ξ

F
b 1α
(ξ
,n
)

α=2π × 0.4483

Figure 1: Left: The normalized one-particle form factor F̂αb1
(ξ, n) as a function of n

for ξ = 0.9 (red), 0.8 (blue), 0.7 (green), 0.6 (magenta). Right: The normalized
one-particle form factor F̂αb1

(ξ, n) as a function of ξ for n = 5 (red), 10 (blue), 15
(green), 20 (magenta). Normalized means that it has been divided by the VEV of the
field.

and

Fαb4
(ξ, n) = Γ

b2
b1 b1
Γ

b3
b1 b2
Γ

b4
b1 b3

Fαb1 b1 b1 b1

�

−
iπ3ξ

2
,−

iπξ
2

,
iπξ
2

,
iπ3ξ

2
;ξ, n

�

=

= 〈T αn 〉C(ξ, n)4Γ b2
b1 b1
Γ

b3
b1 b2
Γ

b4
b1 b3

×2

�

cos
2αξ

n
− 4cos

πξ

2n
cos
πξ

n
cos
αξ

n

sin π
2n

sin π(1−3ξ)
2n

+ (84)

+
sin π

2n sin π(1−ξ)2n cos πξn
�

1+ 2cos πξn
�

sin π(1−2ξ)
2n sin π(1−3ξ)

2n

�

×R(−iπξ;ξ, n)3R(−i2πξ;ξ, n)2R(−i3πξ;ξ, n) .

It is easy to check that the one-particle FFs F0
b1
(ξ, n) = F0

b3
(ξ, n) = 0 and with some more

algebra one can straightforwardly show that under the same limit F0
b2
(ξ, n) and F0

b4
(ξ, n) coin-

cide with the BPTF solutions found in Part I [22]. It can be similarly checked that when n= 1,
the FFs of the standard exponential field are recovered [12].

5.2 Two-Particle Form Factors

By analytic continuation from (66) with (70) we have

Fαb1 b1
(θ ;ξ, n) = 〈T αn 〉

2 sin π
2n

n

�

cos π2n

2 sinh iπ+θ
2n sinh iπ−θ

2n

+
sin αx

2n

sin πξ2n sin π(ξ+1)
2n

�

R(θ ;ξ, n)
R(iπ;ξ, n)

. (85)

The two-particle FF Fb2 b1
(θ ;ξ, n) can be computed by fusion as

Fαb2 b1
(θ ;ξ, n) = Γ

b2
b1 b1

Fαb1 b1 b1

�

θ −
iπξ
2

,θ +
iπξ
2

,0;ξ, n
�

= 〈T αn 〉Γ
b2
b1 b1

C(ξ, n)3

×2
�

sin
3αξ
2n
+Re[Pb2 b1

(θ ;ξ, n)]
�

(86)

×R(θ −
iπξ
2

;ξ, n)R(θ +
iπξ
2

;ξ, n)R(−iπξ;ξ, n) ,
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with

Pb2 b1
(θ ;ξ, n) :=

−i
sinh 2θ−3iπξ

4n

sinh 2θ−iπ(ξ−2)
4n

�

e
iαξ
2n

2 cos πξ2n sin π
2n

sin π(ξ−1)
2n

sinh 2θ+iπ(ξ+2)
4n

sinh 2θ−iπξ
4n

+ e−
iαξ
2n

sinh 2θ+iπ(3ξ+2)
4n

sinh 2θ+iπξ
4n

�

. (87)

Note that Re[Pαb2 b1
(θ ;ξ, n)] is meant under the condition θ ∈ R. Finally we have also com-

puted the two-particle form factor Fαb2 b2
(θ ;ξ, n)

Fαb2 b2
(θ ;ξ, n) =

�

Γ
b2
b1 b1

�2
Fαb1 b1 b1 b1

�

θ −
iπξ
2

,θ +
iπξ
2

,−
iπξ
2

,
iπξ
2

;ξ, n
�

= 〈T αn 〉
�

Γ
b2
b1 b1

�2
C(ξ, n)4R(θ − iπξ;ξ, n)R(θ + iπξ;ξ, n)R(θ ;ξ, n)2

×R(−iπξ;ξ, n)2 (88)

×



2cos
2αξ

n
− 4cos

αξ

n

sin π
2n cos πξ2n

�

cos πn cos πξn − sin2 πξ
n − cosh θn

�

sin π(ξ−1)
2n sinh θ+iπ(ξ−1)

2n sinh θ−iπ(ξ−1)
2n

+2Re
�

Pb2 b2
(θ ;ξ, n)

�

+ Yb2 b2
(θ ;ξ, n)

�

,

where

Pb2 b2
(θ ;ξ, n) =

sinh θ−iπ(ξ+1)
2n sinh θ−iπ(2ξ+1)

2n sinh θ+iπξ
2n sinh θ+2iπξ

2n

sinh θ
2n sinh θ−iπ

2n sinh θ−iπξ
2n sinh θ+iπ(ξ−1)

2n

, (89)

and

Yb2 b2
(θ ;ξ, n) =

�

cos πξ2n sin π
2n

sin π(ξ−1)
4n cos π(ξ−1)

4n

�2
sinh θ+iπ

2n sinh θ−iπ
2n sinh θ+2iπξ

2n sinh θ−2iπξ
2n

sinh θ+iπ(ξ−1)
2n sinh θ−iπ(ξ−1)

2n sinh θ+iπξ
2n sinh θ−iπξ

2n

. (90)

6 Symmetry Resolved Partition Functions and Entanglement

Having obtained the one- and two-particle form factor solutions in the breather sector we now
have all we need to embark on our study of the symmetry resolved entanglement entropy.
As we will see, the one-particle FF of the lightest breather b1 provides the leading length-
dependent correction to the SRE. For this reason and for its higher technical difficulty, we
postpone a detailed study of the soliton-antisoliton sector to future work.

6.1 U(1) Charged Moments

In this subsection we discuss the U(1) symmetry resolved charged moments in the sG theory.
We restrict our analysis to a single-interval subsystem in the ground state of the full system.
The charged moments as well as entropies can then be calculated from the two-point functions
of the U(1) CTFs. Specifying the subsystem as an interval A= [0,`] the charged moments are
written as

Zn(α) = Tr
�

ρn
AeiαQ̂A

�

= ε4∆αn 〈T αn (0)T̃
α

n (`)〉 , (91)

in terms of an equal-time two-point function, where ε is the UV regulator. In principle, there
could be an additional n-dependent multiplicative constant, but this will play no role in later
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sections, so we will not include it here. As seen earlier the conformal dimension ∆αn is the
same for T αn and T̃ αn : and is given by the same formula (61) up to analytic continuation
g → i g. The conformal dimensions are the sums of the scaling/conformal dimension of the
standard BPTF and that of the U(1) twist field divided by n due to the effect of the branch
point [49,50,52,75,76]. Note that the scaling dimension depends explicitly on the interaction
parameter g of the sG model. Eq. (61) also reproduces the known results for the free Dirac
theory [74,75] at the free fermion point of the sG theory, that is when g2 = 4π or ξ= 1.

We now focus on the first few terms of the form factor expansion of the charged moments.
In the attractive regime, those terms will be determined by the one-particle form factor of the
lightest breather (that is, b1 of mass m1). We can write

Zn(α) = ε
4∆αn 〈T αn (0)T̃

α
n (`)〉= (mε)

4∆αn Dαn
�

1+Hαn (m1`) +O(e−M`)
�

, (92)

where
Dαn := m−4∆αn 〈T αn 〉

2 , (93)

and M is a mass scale which is either M = m2 if the second breather is present or M = 2m if it
is not. This is so because it is easy to show that the mass of b2 is, after m1, the smallest mass
scale that arises in the problem (this can be easily shown from the definition (12)).

Since the CTF has a non-vanishing one-particle FF contributions even when n = 1 we
have that, instead of the standard two-particle approximation, here we can obtain the next-
to-leading order behaviour in ` of the two-point function from the first breather one-particle
FF. More precisely, a standard form factor expansion, gives

〈T αn (0)T̃
α

n (`)〉 ≈〈T
α

n 〉
2 +

n
∑

j=1

ˆ ∞
−∞

dθ
(2π)

|Fαb1
(ξ, n)|2e−`m1 coshθ +O(e−M`)

= 〈T αn 〉
2
�

1+
n
π
|F̂αb1
(ξ, n)|2K0 (m1`) +O(e−M`)

�

,

(94)

where K0(x) is the modified Bessel function of the second kind and the “hatted” FF is the form
factor normalized by 〈T αn 〉. Therefore we can identify

Hαn (m1`) =
n
π
|F̂αb1
(ξ, n)|2K0 (m1`) . (95)

The n-derivative of this function evaluated at n= 1 plays a role in higher order corrections to
the symmetry resolved entanglement entropy

[∂nHαn (m1`)]n=1 =
1
π

�

|F̂αb1
(ξ, 1)|2 + [∂n|F̂αb1

(ξ, n)|2]n=1

�

K0 (m1`) , (96)

and can be computed explicitly from the results of Subsection 5.1. Since the form factor takes
real values, we can just compute

(F̂αb1
(ξ, 1))2 = 4 sin2 αξ

2
C(ξ, 1)2 =

4sin2 αξ
2

R(iπ;ξ, 1) sinπξ
, (97)

and

[∂n(F̂
α
b1
(ξ, n))2]n=1 = (98)

−(F̂αb1
(ξ, 1))2

�

1+αξ cot
αξ

2
−
π(1+ 2ξ)

2
cotπξ+

π

2
cscπξ+

R′(iπ;ξ, 1)
R(iπ;ξ, 1)

�

,
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where the derivative of R′(iπ;ξ, 1) is a real number given by (64) with B = −2ξ. Focusing
still on the contribution of the first breather, a useful result in the next section will be the small
α expansion

(F̂αb1
(ξ, n))2 = F (2)b1

(ξ, n)α2 +O(α4) , with F (2)b1
(ξ, n) =

ξ2 sin π
2n

n3R(iπ;ξ, n) sin πξ2n sin π(1+ξ)2n

.

(99)
In summary, from (92) and (94) and noting that

(mε)4∆
α
1 Dα1 = ε

4∆α1 〈e
i gαϕ
2π 〉2 , (100)

with ∆α1 =
g2α2

32π3 the scaling dimension of the sG exponential field and

∂n

�

(mε)4∆
α
n Dαn

�

n=1 = ε
4∆α1 〈e

i gαϕ
2π 〉2

�

ĉ
3

ln(mε) +
2[∂n〈T αn 〉]n=1

〈e
i gαϕ
2π 〉

�

, (101)

where ĉ := 1− 12∆α1 so we can write

[∂nZn(α)]n=1 = ε4∆α1 〈e
i gαϕ
2π 〉2

��

ĉ
3

ln(mε) +
2[∂n〈T αn 〉]n=1

〈e
i gαϕ
2π 〉

�

�

1+Hα1 (m1`)
�

+[∂nHαn (m1`)]n=1 +O(e−M`)
�

. (102)

We end this section by recalling some special limits of the formulae above, corresponding to
the standard BPTF. First, we note that (up to a constant, as mentioned at the beginning of
the section) (1− n)−1 ln(Zn(0)) is nothing but the standard Rényi entropy and, expanding the
logarithm, this can be written as

Sn(`) = −
1+ n
6n

ln(mε) +
ln D0

n

1− n
+

1
1− n

H0
n(m1`) +O(e−M`) . (103)

One of the main results of [33]was the realization that the limit n→ 1 of the function above is
non-trivial in the sense that in that limit one-particle form factor contributions are all vanishing
and the leading large-distance correction comes from two-particle form factor contributions
and takes a universal form

S(`) = −
1
3

ln(mε) + U −
y
8

K0(2M̃`) +O(e−2M̂`) , (104)

where U is the universal constant

U := [∂n(1− n)−1 ln D0
n]n=1 , (105)

and, y , M̃ and M̂ depend on the relative value of the masses of the soliton and the first breather.
More precisely, y = 2 and M̃ = m if m< m1, in which case M̂ = m1. However, for small enough
ξ we can also have m1 < m in which case the leading correction has y = 1, M̃ = m1 and the
first subleading correction will involve M̂ = m. The leading contribution was numerically
confirmed in [51] in the repulsive regime where it corresponds to the solition/antisoliton.

6.2 U(1) Symmetry Resolved Entanglement

To turn to symmetry resolved entropies, let us start by recalling the definition of the symmetry
resolved partition functions (8) in terms the charged moments (7):

Zn(q) =
ˆ π

−π

dα
2π

Zn(α)e
−iαq . (106)
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In order to perform the Fourier transform of equation (102), we generally need to know 〈T αn 〉,
which we do not know for the sG model. Luckily, the precise form of this quantity can be
ignored in many important cases, e.g. when one is interested in the difference between sym-
metry resolved and conventional entropies. This will be the focus of this section.

As we see from the (91) the integrand of (106) is proportional to (mε)4∆
α
n = e4∆αn ln(mε). As

seen earlier, ∆αn depends quadratically on the integration variable α. At the same time we are
interested in the regime where mε is a small quantity, as ε is a small UV cut-off. This means
that the leading contribution to (106) can be obtained from a saddle-point analysis. In other
words, the main contribution to the integral will come from values of α near zero. This also
means that in order to obtain the leading contribution to the integral it is sufficient to expand
the other factors in Zn(α) around α= 0. We have for instance that

Dαn = D0
n +α

2D(2)n +O(α4) , (107)

with Dn as defined after (103). The absence of an O(α) term is justified on symmetry grounds.
Combining this with (99) we can write

Zn(q)≈ (mε)4∆
0
n

ˆ π

−π

dα
2π
(mε)

∆α2
n

�

D0
n +α

2

�

D(2)n +
πD0

n

n
F (2)b1
(ξ, n)K0(m1`)

�

+O(α4)

�

e−iαq , (108)

where ∆= g2

4(2π)3 . Integrating and then expanding around mε = 0 we obtain

Zn(q) =(mε)
4∆0

n





D0
n
p

n e
−nq2

4∆| ln(mε)|

2
p
π∆

p

| ln(mε)|

+

�

D(2)n +
πD0

n

n
F (2)b1
(ξ, n)K0(m1`)

�

n3/2e−
nq2

4∆| log(mε)| (nq2 − 2∆| ln mε|)
8
p
π∆5/2| ln(mε)|5/2

+O
�

| ln(mε)|−
5
2 , q2| ln(mε)|−

7
2 , (mε)

π2∆
n | ln(mε)|−1, e−M`

�i

,

(109)

making the assumption that | ln(mε)| � (mε)
π2∆

n q2, which allows us to simplify our expres-
sions by taking the limiting values of some erf functions or equivalently, to extend the range of
integration from [−π,π] to (−∞,∞). The O(q2| ln(mε)|−

7
2 ) term originates from the neg-

lected α4 part in (107) and by demanding that q2 � | ln(mε)| it can be safely omitted. This
way we arive at

Zn(q) =(mε)
4∆0

n e
−nq2

4∆| ln(mε)|

�

D0
n
p

n

2
p
π∆

p

| ln(mε)|

+

�

D(2)n +
πD0

n

n
F (2)b1
(ξ, n)K0(m1`)

�

n3/2(nq2 − 2∆| ln mε|)
8
p
π∆5/2| ln(mε)|5/2

+O
�

| ln(mε)|−
5
2 , (mε)

π2∆
n | ln(mε)|−1, e−M`

�i

,

(110)

where we kept only the leading q-dependence besides the Gaussian factor. From either (109)
or (110) we can then work out an expression for the symmetry resolved Rényi entropies (5),
that is

Sn(q,`) = −
n+ 1
6n

ln(mε) +
ln
p

nD0
n

1− n
−

1
2

ln
∆| ln(mε)|

π
+O(| ln(mε)|−

1
2 , e−m1`) . (111)

If we subtract from this, the standard Rényi entropy (103) we find that the leading terms are
cancelled out and we obtain

Sn(q,`)− Sn(`) =
1
2

ln n
1− n

−
1
2

ln
∆| ln(mε)|

π
+O(| ln(mε)|−

1
2 , e−m1`) . (112)
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One can easily determine from (109) also the leading term with q-dependence, which reads
for Sn(q) as

Sn(q,`)− Sn(q = 0,`) =
1

1− n

�

D(2)n

D0
n

n2 −
D(2)1

D0
1

n3

�

q2

4∆2| ln(mε)|2
+O(| ln(mε)|−3) , (113)

and we remind ourselves that the above formula is valid when | ln(mε)| � q2 and ` is large.
From these expressions we can also obtain the corresponding von Neumann entropies, that is

S(q,`) = −
1
3

ln(mε)−
1
2
+ U −

1
2

ln
∆| ln(mε)|

π
+O(| ln(mε)|−

1
2 , e−2m`) , (114)

where the order e−2m` is justified for the same reasons as in the standard entanglement entropy.
The difference between the symmetry resolved and standard von Neumann entropies is

S(q,`)− S(`) = −
1
2
−

1
2

ln
∆| ln(mε)|

π
+O(| ln(mε)|−

1
2 , e−2M̃`) . (115)

At this order, we observe equipartition of entanglement, namely that Sn(q,`) and S(q,`) do
not depend on q, in other words the symmetry resolved entanglement is equally distributed
among symmetry sectors of the theory. The equipartition is, nevertheless, broken explicitly for
finite ε with the largest subleading term

S(q,`)− S(q = 0,`) = −

��

D(2)n

D0
n

�′

+
D(2)1

D0
1

�

q2

4∆2| ln(mε)|2
+O(| ln(mε)|−3) , (116)

which is suppressed in | ln(mε)| as | ln(mε)|−2 when | ln(mε)| � q2 and ` is large. Our results
(112) and (115) are consistent with the findings of [74]. In particular, Eqs. (112) and (115)
reproduce the expressions for the Dirac field theory at the free fermion point. This corres-
ponds to setting g2 = 4π. It is important to note that when ξ approaches zero, so does g2,
which results in a logarithmic singularity at ξ= 0 in the difference of symmetry resolved and
conventional entropies. This limit, nevertheless, is not physically sensible since it corresponds
to the real non-compactified massive free boson theory, for which U(1) symmetry is no longer
present.

Finally we mention that the total von Neumann entropy can be written as the sum of the
configurational and fluctuation (or number) entropy as [119]

S =
∑

qA

p(qA)S(qA)−
∑

qA

p(qA) ln p(qA) = Sc + S f , (117)

as well, where p(qA) = Z1(qA) equals the probability of finding qA as the outcome of a meas-
urement of the symmetry operator restricted to a subsystem Q̂A. The contribution Sc denotes
the configurational entanglement entropy and measures the total entropy due to each charge
sector weighted with the corresponding probability [64, 120]. S f denotes the fluctuation en-
tanglement entropy and is associated with the entropy due to the fluctuations of the value of
the charge in the subsystem A [64,90,121,123]. One can notice that in Eqs.(112) and (115)
the ln ln term is actually necessary in the symmetry resolved entropy in order to cancel the
same contribution to the total entropy originating from S f .

7 Conclusions

In this paper we have extended our study of entanglement measures in the sine-Gordon model
to the symmetry resolved entanglement entropy. It has been known for some time [63] that the
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symmetry resolved entropies can be expressed in terms of correlation functions of composite
branch point twist fields. Composition here is meant in the sense first described in [49,50,53],
namely that a composite twist field can be defined as the leading field in the operator product
expansion of a branch point twist field and another primary field in CFT. The composite twist
fields considered in this paper can been seen as massive extensions of such operators. In
particular, when branch point twist fields are composed with another field which is also a
twist field, the resulting form factors satisfy a new set of equations, first formulated in [76].
Here, for the first time we extend that formulation to non-diagonal theories and adapt it to the
U(1) twist field which implements the relevant internal symmetry of the sine-Gordon model.

Starting from these equations we find their solutions for the breather sector of the theory.
This sector is neutral with respect to the U(1) symmetry so that the form factor equations
reduce to those of the standard branch point twist field and we can solve them for instance by
using the angular quantisation method, as reviewed in Appendix A. Even if the equations are
the same, we still find new solutions compared to those presented in Part I. This is because
the asymptotic properties of the form factors of composite twist fields are necessarily different.
This holds even for the two-particle form factors, where there are now additional terms that
ensure these are non-vanishing in the limit of infinite rapidity. This non-vanishing limit is
equivalent to non-vanishing one-particle form factors, which we compute for the first four
breathers. We test our solutions against the ∆-sum rule, finding very good agreement within
the two-particle approximation. In this part of the work we use extensively the correspondence
between the sinh-Gordon and sine-Gordon models under analytic continuation of the coupling
constant. This allows us to use form factor solutions in the sinh-Gordon model as a basis for
the construction of solutions in the sine-Gordon theory.

Finally, we employ these solutions to study the symmetry resolved entanglement entrop-
ies. We compute the corresponding charged momenta in terms of the two-point function of
composite twist fields and use a saddle point approximation around charge zero to evalu-
ate their transform, that is the corresponding partition function. For the charged momenta
we show that for large region size they saturate to a mass/gap dependent function and that
size-dependent corrections to this saturation constant are dominated by the one-particle form
factor contributions in the breather sector, with the first breather providing the leading ex-
ponentially decaying contribution. This holds for replica index n ∈ R and n ≥ 1 since the
one-particle form factors are analytic functions of n and therefore the analytic continuation to
n = 1 is trivial for these terms. As mentioned above, the quantities we consider here involve
two-point functions only and therefore our results are expected to hold for the Thirring model
as well.

An important open problem remaining from this study is the computation of form factors
of the CTF in the soliton/antisoliton sector. In this paper we have not addressed this problem
for two main reasons: first, because form factor contributions to the symmetry resolved en-
tropies from the soliton/antisoliton sector will always be subleading compared to those from
the breather sector, thus they are not essential for the main application we considered in this
paper and, second, because the study of the soliton/antisoliton sector is technically much more
challenging. Concerning their more challenging nature, this is due to the fact that they satisfy
truly distinct equations where the U(1) phases are involved. This seemingly small change in
the monodromy properties of the form factors, introduces a major challenge when it comes to
solving the FF equations. Examining the FF solutions given in [12] for the exponential field
gives a clue as to the difficulty. The FFs do no longer depend on simple integer powers of the
variables eθ (or e

θ
n in the replica model) but rather on powers involving the U(1) charge and

the sG coupling ξ. This expands the space of possible functions, making the functional form of
the FFs much harder to constrain and renders standard FF solution methods based on simple
ansatzs quite inadequate. In fact, it is in this context that the power of the angular quantisa-
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tion method becomes apparent, as it allows for determining the FFs unambiguously. We hope
to return to this problem in the future and to extend the angular quantisation approach to the
exponential CTFs.
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A Angular quantisation scheme for the sinh-Gordon model

In this appendix we present a compact and straightforward derivation of the FFs Fαk (θ ; B, n)
of the exponential composite branch point twist field for any particle number. The present
derivation is based on the free field representation technique [11], which was first applied for
the shG model in [122] and was generalised to obtain the FFs of conventional BPTFs of the
shG model in [33]. We review this construction only for the specific case of the shG model in
a similar fashion to that of appendix A in [33].

In the angular quantisation scheme, one quantise the model on radial half-lines starting
from some fixed point in space. Accordingly the Hilbert space in this quantisation is understood
as a subspace of the space of field configurations on those radial half-lines and the Hamiltonian
(usually associated with time translations) generates rotations in this scheme. The main ad-
vantage and the power of this method is that for many integrable models, the angular Hilbert
space has a simple structure, in particular it is a Fock-space F generated by bosonic oscillator
modes. Additionally, for many models an explicit embedding is known for the states living in
the conventional Hilbert space H in the usual quantisation scheme into the space of operators
acting on the Fock-space F . The correspondence between quantum states of H and operators
of End(F) is particularly useful to compute FFs as we demonstrate below.

Specifying our treatment to the shG model, we consider the free oscillator modes λν sat-
isfying the following commutation relations

[λν,λν′] = δ(ν+ ν
′) f (ν) , with f (ν) =

2sinh πBν
4 sinh π(2−B)ν

4

ν cosh πν2
. (118)

These oscillator modes can be regarded as the modes of a free field. Additionally, therefore,
we have to encounter the zero modes of the field P and Q as well, which satisfy the usual
relation

[P,Q] = −i . (119)

The Hamiltonian of the system, which we denote by K , can be written in terms of the oscillator
modes as

K =
ˆ ∞

0
dν

ν

f (ν)
λ−νλν , (120)

and hence

[K ,λν] = −νλν , (121)

as in free theories. The Fock-space, i.e., the angular Hilbert space can be naturally written as

F = ⊕
p
Fp , (122)
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where p is the eigenvalue of the zero mode P and Fp is spanned by the creation operators.
To elaborate on the embedding of H into End(F) first we note that vacuum expectation

values of operators O in H can be identified with traces on F , as a consequence of changing
quantisation scheme [122]. Consequently we can write

〈0|O|0〉=
Tr
�

e−2πKω(O)
�

Tr (e−2πK)
=: 〈〈ω(O)〉〉 , (123)

where O is a product of local fields on the representation on H and ω(O) is composed of the
same field represented on F . The embedding is reflected by the Zamolodchikov-Faddeev (ZF)
operators Z(θ ), which now act on the angular Hilbert space F and their products correspond
to the usual asymptotic states of H. The operators Z(θ ) are defined as follows

Z(θ ) = −iC
�

eiπP/QΛ+(θ + iπ/2)− e−iπP/QΛ−(θ − iπ/2)
�

, (124)

with
Q= B/(2g) , (125)

and

Λη(θ ) =: e−iη
´

dνλνei(θ−iπ/2)
: , (126)

which ensure the exchange relations of the ZF algebra as well. This way we have obtained a
representation of the ZF algebra in terms of free bosonic field.

Concerning the representation ω(O) on F , it is expected that any field O at the origin
that is local with respect to the fundamental field, ω(O) commutes with the ZF operators.
In particular, the FFs of the exponential fields egαϕ/(2π) at the origin are obtained by choos-
ing ω(egαϕ/(2π)) to be a projector on P with eigenvalue p = gα/(2π), and the projector
is multiplied by the VEV of the exponential field as well [122]. Before demonstrating how
the FFs of exponential fields can be obtained, we eventually need to compute quantities like
〈〈Z(θ1)Z(θ2)〉〉. Evaluating first the trace for the oscillator modes, we find that

〈〈λνλν′〉〉=
f (ν)

1− e−2πν
δ(ν+ ν′) , (127)

from which, together with the expectation value of exponentials of free fields

〈〈: e
´

dνλνa(ν) :: e
´

dνλνb(ν) :〉〉= exp
�
ˆ

dνdν′a(ν)b(ν′)〈〈λνλν′〉〉
�

, (128)

it follows that

〈〈Λη1(θ1 + iη1π/2)Λ
η2(θ2 + iη2π/2)〉〉=

exp

�

−2η1η2

ˆ ∞
0

dt
t

sinh πB
4 sinh π(2−B)

4

sinh t cosh t
2

cosh
�

t
�

1+ i
θ1 − θ2

π
−

1
2
(η1 −η2)

��

�

=











R(θ1 − θ2; B, 1) if η1 = η2

Φ(θ1 − θ2; B, 1)R(θ1 − θ2; B, 1) if η1 = −η2 = 1

Φ(2πi − θ1 + θ2; B, 1)R(θ1 − θ2; B, 1) if η1 = −η2 = −1

, (129)

with

Φ(θ ; B, n) = −
cos π(B−1)

2n − cos π−2iθ
2n

2i sin π−iθ
2n sinh θ

2n

. (130)
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Denoting the projector associated with the p = gα/(2π) eigenvalue of P by P(gα/(2π)) we
can define

Zα(θ ) =P(gα/(2π))Z(θ )P(gα/(2π)) ,
Zα(θ ) =− iC

�

eiπαB/(4π)Λ+(θ + iπ/2)− e−iπαB/(4π)Λ−(θ − iπ/2)
�

,
(131)

and the FFs of the exponential field egαϕ/(2π) can now be expressed in terms of (129) and
Wick’s theorem as

〈0 | e
α

2π gϕ | θ1, ...θk〉= 〈〈Zα(θ1) . . . Zα(θk)〉〉

= 〈e
α

2π gϕ〉Ck
∑

η1,...,ηk

exp

�

(iπαB/(4π)− iπ/2)
k
∑

l=1

ηl

�

∏

i< j

〈〈Ληi (θi + iηiπ/2)Λ
η j (θ j + iη jπ/2)〉〉 .

(132)

The FFs of the standard BPTF can be obtained via angular quantisation as well [33]. It
was noticed in [33] that for twist fields associated with a symmetry one can write

ω(Tσ(0)) = 〈Tσ〉σF , (133)

where σF is the action of the symmetry on the Fock-space, since the equal-time slices of an-
gular quantisation are just the half lines originating from (0,0). To turn the case of BPTFs let
us now consider the n-copy sinh-Gordon model. We have a new angular quantisation Hilbert
space

⊕
j
F ( j) , (134)

where F ( j) corresponding to the different replicas are isomorphic to F . Accordingly we have
different ZF operators Z j(θ ), for j = 1, 2, ..., n, which are made up the bosonic modes λ j,ν,
with now j = 1,2, ..., n . These operators commute for different values of j. Specifying the
symmetry as σ : j↔ j + 1 mod n, we can write for generic FFs

〈0|Tn(0, 0)|θ1, . . .θk〉µ1...µk
= 〈Tn〉Ck

σ〈〈Zµ1
(θ1) . . . Zµk

(θk)〉〉σ , (135)

with

〈〈•〉〉σ =
〈〈σF•〉〉
〈〈σF 〉〉

. (136)

In the above formula, we have introduced a new constant Ck
σ, because we implicitly re-defined

normal ordering to ensure that the computation of the trace of Z products goes as before. This
change of normal-ordering merely changes the normalisation, and the operators Λ±µ(θ ) in a

uniform manner. As shown in Ref. [33] σFλ j,νσ
−1
F = λ j+1,ν, and due to the cyclic properties

of the trace one finds that

〈〈λ j,νλ1,ν′〉〉σ =
e−2πν( j−1) f (ν)

1− e−2πnν
δ(ν+ ν′) . (137)
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As for the BPTF, that the eigenvalue of P is zero we have due to (137) that

〈〈Λη1
1 (θ1 + iη1π/2)Λ

η2
1 (θ2 + iη2π/2)〉〉σ =

exp

�

−2η1η2

ˆ ∞
0

dt
t

sinh πB
4 sinh π(2−B)

4

sinh t cosh t
2

cosh
�

t
�

n+ i
θ1 − θ2

π
−

1
2
(η1 −η2)

��

�

=











R(θ1 − θ2; B, n) if η1 = η
Φ(θ1 − θ2; B, n)R(θ1 − θ2; B, n) if η1 = −η2 = 1

Φ(2πni − θ1 + θ2; B, n)R(θ1 − θ2; B, n) if η1 = −η2 = −1

(138)

and consequently the FFs of the BPTF can be obtained as

〈0 | Tn(0, 0) | θ1, ...θk〉1...1 =

= 〈Tn〉CkCk
σ

∑

η1,...,ηk

exp

�

iπ/2
k
∑

l=1

ηl

�

∏

i< j

〈〈Ληi
1 (θi + iηiπ/2)Λ

η j

1 (θ j + iη jπ/2)〉〉σ ,
(139)

where all the particles live on the first replica.
It is now easy to generalise the above construction to obtain the composite exponential

branch point twist fields. We can retain and compute the average 〈〈•〉〉σ but choose the eigen-
value of P as p = gα/(2πn) or equivalently use the projectors P(gα/(2πn)) to restrict to the
corresponding Fock-module Fp instead of F0 . We can again define the operators

Zµ j ,α(θ ) =P(gα/(2π))Zµ j
(θ )P(gα/(2π)) ,

Zµ j ,α(θ ) =− iC
�

eiπαB/(4π)Λ+µ j
(θ + iπ/2)− e−iπαB/(4π)Λ−µ j

(θ − iπ/2)
�

,
(140)

by which we can easily express any FF Fαk of the composite field as

〈0 | T αn | θ1, ...θk〉1...1 = 〈T αn 〉C
k
σ〈〈Z1,α/n(θ1) . . . Z1,α/n(θk)〉〉σ

= 〈T αn 〉C
kCk
σ

∑

η1,...,ηk

exp

�

(iπαB/(4nπ)− iπ/2)
k
∑

l=1

ηl

�

∏

i< j

〈〈Ληi
1 (θi + iηiπ/2)Λ

η j

1 (θ j + iη jπ/2)〉〉σ ,

(141)

when all particles live on the 1st replica.
The square of the unknown constants C , Cσ and can be unambiguously fixed by requiring

the fulfilment of the kinematical pole equation

−iRes
θ=0

F̃2(θ + iπ) = 1 , (142)

where F̃bb is any two-particle FF divided by the VEV of the corresponding field. We therefore
have

C2 =
1

sin Bπ
2 R(iπ; B, 1)

,

C2
σ =

sin π
2n

2n sin πB
4n sin π(2−B)

4n

sin
Bπ
2

,
(143)
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from which we get the constant C(B, n) = CCσ defined first in (81).
We can now easily compute the 1-,2-,3- and four-particle FFs of the composite field via Eq.

(141). For the one-particle FF, we get

Fα1 (B, n) =〈T αn 〉
�

eiπαB/(4nπ)−iπ/2 + e−iπαB/(4nπ)+iπ/2
�

C(B, n)

=〈T αn 〉2sin
αB
4n

C(B, n) .
(144)

For the two-particle FF, we have

Fα2 (θ ; B, n) =〈T αn 〉C(B, n)2
�

−2cos
αB
2n

R(θ ; B, n) +
1

R(θ − iπ; B, n)
+

1
R(θ + iπ; B, n)

�

=〈T αn 〉C(B, n)2
�

−2+Φ(2πni − θ ; B, n) +Φ(θ ; B, n) + sin2 αB
4n

�

R(θ ; B, n) ,
(145)

from which (85) follows by analytic continuation.
For the three- and four-particle FFs, we obtain, as expected, rather complicated formulae:

Fα3 (θ1,θ2,θ3; B, n) = 〈T αn 〉C(B, n)3





e
iαB
4n R2

�

θ+13,θ13; B, n
�

− e−
iαB
4n R2

�

θ−23,θ23; B, n
�

iR3

�

θ+12,θ+13,θ−23; B, n
�

+
e

iαB
4n R2

�

θ+23,θ23; B, n
�

− e−
iαB
4n R2

�

θ−13,θ13; B, n
�

iR3

�

θ−12,θ−13,θ+23; B, n
�

+
iR (θ12; B, n) e−

iαB
4n

R2

�

θ−13,θ−23; B, n
� −

iR (θ12; B, n) e
iαB
4n

R2

�

θ+13,θ+23; B, n
� − 2 sin

3αB
4n

R3 (θ12,θ13,θ23; B, n)

�

,

(146)

where θi j = θi − θ j , θ
±
i j := θi j ± iπ and we introduced the slightly shorter notations

R2(θ1,θ2; B, n) := R(θ1; B, n)R(θ2; B, n) ,

R3(θ1,θ2,θ3; B, n) := R(θ1; B, n)R(θ2; B, n)R(θ3; B, n) , (147)

for the products of two and three R-functions. Also

Fα4 (θ1,θ2,θ3,θ4; B, n) = 〈T αn 〉C(B, n)4 {R3 (θ12,θ13,θ23; B, n) (148)

×

�

2cos
αB
n
R3

�

θ14,θ24,θ34; B, n
�

−
e−

iαB
2n

R3

�

θ−14,θ−24,θ−34; B, n
� −

e
iαB
2n

R3

�

θ+14,θ+24,θ+34; B, n
�

�

+

1
D(θ−14,θ−24,θ34;B,n) − e−

iαB
2n D

�

θ14,θ24,θ+34; B, n
�

D
�

θ−13,θ−23,θ12; B, n
� +

1
D(θ+14,θ+24,θ34;B,n) − e

iαB
2n D

�

θ14,θ24,θ−34; B, n
�

D
�

θ+13,θ+23,θ12; B, n
�

+

1
D(θ−24,θ−34,θ14;B,n) − e−

iαB
2n D

�

θ24,θ34,θ+14; B, n
�

D
�

θ+12,θ+13,θ23; B, n
� +

1
D(θ+24,θ+34,θ14;B,n) − e

iαB
2n D

�

θ24,θ34,θ−14; B, n
�

D
�

θ−12,θ−13,θ23; B, n
�

+

1
D(θ−14,θ−34,θ24;B,n) − e−

iαB
2n D

�

θ14,θ34,θ+24; B, n
�

D
�

θ−12,θ+23,θ13; B, n
� +

1
D(θ+14,θ+34,θ24;B,n) − e

iαB
2n D

�

θ14,θ34,θ−24; B, n
�

D
�

θ+12,θ−23,θ13; B, n
�







,
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where

D(θ1,θ2,θ3; B, n) =
R(θ1; B, n)R(θ2; B, n)

R(θ3; B, n)
, (149)

and we recall that that R(θ±; B, n) can be rewritten using Φ(θ ; B, n) of Eq. (130) as

R(θ + iπ; B, n)−1 =Φ(θ ; B, n)R(θ ; B, n , )

R(θ − iπ; B, n)−1 =Φ(2πni − θ ; B, n)R(θ ; B, n) .
(150)

B ∆-Sum Rule Checks

In this Appendix we provide some more tables complementing the results of Subsection 4.1
for additional parameter values. Recall that the exact conformal dimension of the CTF in the
shG model is

∆αn =
1

24

�

n−
1
n

�

+
∆α1
n

, with ∆α1 = −
B (α/(2π))2

2− B
= −

α2 g2

4(2π)3
. (151)

Recall that ∆0
n is the dimension of the conventional BPTF.

Table 2: The ∆-sum rule in the two-particle approximation (SR) compared with
the exact conformal dimension of the exponential CFT in the shG model (61) for
α1 = 0.7039× 2π,α2 = 0.4483× 2π and α3 = −0.5623× 2π and various values of
B. For comparison, the tables include α = 0, that is the standard BPTF and n = 1,
α 6= 0 corresponding to the exponential field in shG. In all cases the agreement is
very good.

(a) α1 = 0.7039× 2π, α2 = 0.4483× 2π, α3 = −0.5623× 2π, B = 0.2

n ∆0
n (Exact) ∆0

n (SR) ∆α1
n (Exact) ∆α1

n (SR) ∆α2
n (Exact) ∆α2

n (SR) ∆α3
n (Exact) ∆α3

n (SR)

1 0 0 -0.055053 -0.053919 -0.022330 -0.022084 -0.086131 -0.079370

2 0.0625 0.063569 0.034974 0.034953 0.051335 0.0519333 0.019434 0.018051

3 0.11111 0.113523 0.092760 0.094216 0.103668 0.105683 0.082401 0.083705

4 0.15625 0.159907 0.142487 0.145365 0.150667 0.154005 0.134717 0.138935

5 0.2 0.204842 0.188989 0.193184 0.195534 0.200112 0.182774 0.189689

(b) α1 = 0.7039× 2π, α2 = 0.4483× 2π, α3 = −0.5623× 2π, B = 0.4

n ∆0
n (Exact) ∆0

n (SR) ∆α1
n (Exact) ∆α1

n (SR) ∆α2
n (Exact) ∆α2

n (SR) ∆α3
n (Exact) ∆α3

n (SR)

1 0 0 -0.126843 -0.117032 -0.050243 -0.048283 -0.079045 -0.074810

2 0.0625 0.064081 -0.00092 -0.00281 0.037378 0.037318 0.022977 0.022135

3 0.11111 0.114828 0.068830 0.069041 0.0943634 0.09661 0.084763 0.086215

4 0.15625 0.161949 0.124539 0.127284 0.143689 0.148183 0.136489 0.140313

5 0.2 0.207582 0.174631 0.179727 0.189951 0.196531 0.184191 0.190206

(c) α1 = 0.7039× 2π, α2 = 0.4483× 2π, α3 = −0.5623× 2π, B = 0.6

n ∆0
n (Exact) ∆0

n (SR) ∆α1
n (Exact) ∆α1

n (SR) ∆α2
n (Exact) ∆α2

n (SR) ∆α3
n (Exact) ∆α3

n (SR)

1 0 0 -0.217445 -0.182639 -0.086131 -0.079370 -0.135506 -0.120618

2 0.0625 0.064306 -0.046222 -0.049837 0.019435 0.018051 -0.0052531 -0.007845

3 0.11111 0.115505 0.038630 0.036031 0.082401 0.083705 0.065942 0.065666

4 0.15625 0.163049 0.101889 0.102516 0.134717 0.138935 0.122373 0.125193

5 0.2 0.20908 0.156511 0.160304 0.182774 0.189689 0.172899 0.178615
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