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Abstract

Entropic uncertainty is a well-known concept to formulate uncertainty relations for con-

tinuous variable quantum systems with finitely many degrees of freedom. Typically, the
bounds of such relations scale with the number of oscillator modes, preventing a straight-
forward generalization to quantum field theories. In this work, we overcome this diffi-
culty by introducing the notion of a functional relative entropy and show that it has
a meaningful field theory limit. We present the first entropic uncertainty relation for a
scalar quantum field theory and exemplify its behavior by considering few particle excita-
tions and the thermal state. Also, we show that the relation implies the multidimensional
Heisenberg uncertainty relation.
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1 Introduction

The uncertainty principle is one of the most well-known features of quantum mechanics. It
is a consequence of the non-commuting nature of certain quantum observables and makes
a statement about how precisely two observables A and B can be prepared or measured at a
certain instance of time [1-3].

If we explicitly consider the case of the continuous variables position X and momentum
P of a single mode, which fulfill the usual commutation relation [X,P] = i, the famous
variance-based uncertainty relation by Heisenberg and Kennard reads [1, 2]

2 2
GXGPZ

. (1)

ENII

During the last decades, uncertainty relations have mainly been studied from a quantum
information theoretic perspective, emerging in the wide field of entropic uncertainty relations
(see [4-6] for reviews). The entropic analog to Eq. (1) was formulated by Bialynicki-Birula
and Mycielski for the probability densities f (x) and g(p) [7-10]

S(f)+S(g)=1+1Inm, 2

where S(f) =— f dx f(x)Inf(x) is the differential entropy.

Nowadays, many entropic uncertainty relations have been proven and studied, for example
the Maassen-Uffink entropic uncertainty relation for observables with discrete spectrum for-
mulated in terms of Shannon entropies [11-14], the information exclusion principles in terms
of mutual information [15-17], for Rényi entropies [13, 18], for Wehrl entropies [19,20], in
terms of conditional entropies in the presence of (quantum) memory [14,21-24], to quantify
uncertainty between energy and time [25] or in a more general setting of complementary
operator algebras [26-28]. Furthermore, the two different cases of discrete and continuous
variables have been unified in [29, 30].

In this work, we extend the concept of entropic uncertainty to scalar quantum field theories,
for which our motivation is threefold. First, the information theoretic point of view has lead to
many insights into quantum field theories, most prominently in the contexts of entanglement
[31-33], thermalization [34-36] and black hole physics [37-39]. As the uncertainty principle
is central to every quantum theory of nature, a rigorous entropic formulation for quantum
fields is essential for a deeper understanding of quantum field theories.

Second, uncertainty relations play an important role for witnessing entanglement, especially
for continuous variable quantum systems. Besides the prominent second-order inseparability
criteria by Simon [40] and Duan et al. [41], there exist stronger entropic criteria [42-44]
based on entropic uncertainty relations. Also, entropic uncertainty relations can be used to
formulate steering inequalities [45, 46], or, by including (quantum) memory [24], one can
derive bounds on entanglement measures [47]. For experimental applications of entropic
criteria see e.g. [45,47].
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When trying to extend notions of entanglement measures from the case of finite number
of modes to field theories one encounters the problem that these measures diverge even for
the vacuum state [48]. Also, formulating criteria to certify entanglement for quantum fields
requires a different line of reasoning compared to their finite dimensional analogs. Therefore,
a well-defined notion of entropic uncertainty for quantum fields paves the ground for field-
theoretic entropic entanglement witnesses, which could potentially be applicable to a large
class of experimental setups.

Third, the transition from quantum mechanics to quantum field theory is known to be
non-trivial. Several divergencies of different origins arise when taking the continuum and
infinite volume limits, requiring a careful analysis of all quantities. Hence, the extension of
entropic uncertainty for a finite number of modes to continuous fields can be considered an
interesting task by itself.

To that end, we propose the use of relative entropy, which keeps many of its useful properties
also in limiting cases. In particular, when considering the relative entropy between a discrete
distribution p(x) and some reference p(x), which is defined as [49]

S(plIp) = Y ,p(x) (Inp(x) —Inp(x)), 3)

one can take the continuum limit p(x) — f(x)dx,p(x) — f(x)dx, where f(x) and f(x)
denote probability density functions, to obtain the differential relative entropy

S(FIF) =J dx f(x)(In f (x) = 1n f(x)) . )]

A similar line of reasoning fails for the Shannon entropy S(p), in the sense that the differential
entropy S(f) can only be obtained from S(p) when adding an infinite constant [50]. As a
consequence, the differential entropy S(f) is not non-negative, as opposed to the Shannon
entropy S(p). In contrast, the relative entropies S(pl||p) and S(f||f) are both non-negative and
zero if and only of the two arguments agree. Hence, the notion of distinguishability measured
in terms of relative entropy may be considered to be more universal than the notion of missing
information measured in terms of entropy.

Motivated by these properties of the relative entropy, we have unified discrete and con-
tinuous entropic uncertainty relations in Ref. [51], leading to an upper bound for a sum of
two relative entropies with respect to maximum entropy model distributions. In this work,
we extend this idea to free scalar quantum fields, to obtain the relative entropic uncertainty
relation given in eq. (52), which holds for a collection of oscillators as well as for (possibly
averaged) scalar quantum fields. While many traditional (entropic) uncertainty relations are
lower bounds on sums of entropies (cf. e.g. (1) and (2)), the relative entropic uncertainty
relation (52) provides a non-trivial upper bound for a sum of two relative entropies in terms
of differences of two-point correlation functions. In this relation the uncertainty principle is
encoded in the sense that this upper bound is finite, similar to the finite lower bound in (2).

We will develop the idea of a field-theoretic relative entropic uncertainty relation by means
of a free scalar field theory. In this case, the field operator and the conjugate momentum
field operator fulfill a bosonic commutation relation (analogous to position and momentum
in quantum mechanics) and the vacuum state has a Gaussian Schrodinger functional. Our
relation (52) holds for all states within this setup and one can expect that the construction can
be generalized to interacting scalar theories at least in the perturbative regime, with the caveat
that the bound may acquire additional terms containing higher-order correlation functions.
For field theories constrained by other algebras, for example non-abelian gauge theories, the
bound may differ substantially.
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The remainder of the paper is organized as follows. In section 2 we introduce the Schrédinger
functional formalism together with functional probability distributions of selected states, such
as coherent, excited and thermal states. Also, we briefly mention the multidimensional Heisen-
berg relation in quantum field theory. Then, we show that the notion of a functional entropy is
ill-defined, which serves as a motivation for the functional relative entropy as a meaningful
measure for entropic uncertainty with respect to coherent states in section 3. We derive our
relative entropic uncertainty relation and demonstrate its independence of the number of oscil-
lator modes by considering examples, namely excited states and the thermal state, also in the
field theory limit. Furthermore, we show that the relative entropic uncertainty relation implies
the Heisenberg relation and discuss in which sense our findings are accessible in experiments.
Finally, we summarize our findings and give an outlook in section 4.

Notation. Throughout this paper we employ natural units # = ¢ = kg = 1 and disregard
operator hats. Instead, we use capital letters for operators and small letters for their eigenvalues
and eigenvectors, the only exception to this rule being creation and annihilation operators
a’,a, respectively. As a consequence, we also denote random variables by small letters. Also,
we refer to vacuum quantities by using a bar, e.g., F[¢].

2 Functional probability densities

We start with an introductory section, where we set up the discrete as well as the continuous
theory, define the notion of functional probability densities within the Schrédinger functional
formalism and introduce the multidimensional Heisenberg uncertainty relation.

2.1 From oscillator modes to a quantum field theory

To keep the connection to quantum mechanics rather close, let us begin with a collection
of coupled harmonic oscillators on a one-dimensional spatial lattice. This approach has the
advantage that the dependence on the number of modes N of the bound of an entropic
uncertainty relation becomes manifest. We choose a one-dimensional model out of convenience,
and it should be noted that the following discussion can easily be generalized to an arbitrary
number of spatial dimensions.

The Hamiltonian of our interest reads

H:%ZE[”?‘FE%(%—%—JZ"‘WZ‘.{)?], (5)
j
where j € {1,...,N} labels spatial positions with N being an integer. Therein, the displace-
ment from the equilibrium position of the jth oscillator is denoted by the real field ¢; (the
corresponding conjugate momentum is 7t;) and we assume periodic boundary conditions, i.e.,
¢n = ¢o. Furthermore, ¢ is the lattice constant, such that 1/¢ provides an ultra-violet regulator.
The lattice constant has been introduced as a precursor for the continuum limit € — 0. In
contrast, the oscillator picture can be recovered by setting ¢ = 1.
The Hamiltonian (5) can be diagonalized by performing a discrete Fourier transform

Ak ipreei 7 AK _inkte; -
qu:;EeIA [qut)e’ nj:;Ee iA fs]ne, (6)

where the integer valued index —% << % labels the momentum modes. The length of

the system is L = N¢ and the lattice spacing in k-space is Ak = ZT” Note also the relations

(]5; = (]5_@ and ﬁfz = ﬁ_e.


https://scipost.org
https://scipost.org/SciPostPhys.12.3.089

Scil SciPost Phys. 12, 089 (2022)

At this point, we note that the coordinates ¢ and 7 are complex quantities. As we wish to
work only with real valued configurations, we employ another unitary transformation

bi=5A+Dé+3A-D,

1 1 (7)
fp==A—1)m+-(1+i)m_y,
(=50=Dm+5(A+D)my
with ¢, 1, € R. In terms of these quantities, the Hamiltonian reads
_1 Akr 5 242
H_E;E[nﬁ—i_wﬁqbf]’ (8)
with frequencies
4 Akl
wy EQ—Zsin2 (—E)erz. )
€ 2

Eq. (8) corresponds now to a Hamiltonian of decoupled modes. To emphasize the oscillator
picture, one can set L = 1, which implies Ak = 2.

The quantization procedure is straightforward. We impose canonical commutation relations
on the hermitian quantum field operators in momentum space

2n

q> H/ =1
(D0, 11,/] lAk

5@[/, [@e,ég/]Z[He,H@,]ZO. (10)

Then, we define creation and annihilation operators as

1 .
ay = (CO@‘I’[ + lne) ,
2(1)[
(11)
al = ! (e, ®) —ill))
= eFL )
¢ 20)[

which satisfy [ay, az,] = % Oy¢pr- In terms of these ladder operators, the Hamilton operator

takes the form Ak 12
T
H=)» —w,|da +——), 12
Ze:Zn w‘( (U5 Ak (12)

where the second term contains the well-known divergence of the vacuum energy in the field
theory limit.

The chain of N coupled harmonic oscillators shall, in the following discussion, serve as
a model which allows us to make any dependencies on the number of modes N explicit. By
taking the continuum limit of the discrete theory defined in (5), i.e., taking ¢ = 0, N — 00
and keeping L = N¢ fixed, leading to ¢; = ¢(¢j) — ¢(x) with x € [0, L] (similar for the
conjugate field 1), we obtain a relativistic quantum field theory for a free massive scalar field
with periodic boundary conditions. In this case, the momenta are still discrete, but are drawn
from an unbounded set, i.e. £ € Z.

The infinite volume limit is obtained by taking L — oo (or equivalently Ak — 0) and
N — oo, with ¢ = £ fixed. In this limit, ¢, = ¢p(AkL) — ¢(p) with p € [-Z,Z] and the

g’ ¢
commutation relations in (10) have to be understood under an integral with integral measure
g—f[, ie.,

[®(p),TI(q)]=i0(p—q),

[8(p), ®(¢)] = [T1(p), T1(q)] = 0. (13)
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The field theory limit corresponds to taking both the continuum as well as the infinite volume
limit, such that the discrete Fourier transform in (6) becomes

p(x) = J g—p eP*p(p), m(x)= f dp e P*fi(p). (14)
1 27

In this case, we obtain a relativistic quantum field theory on an infinite interval with Hamiltonian

H= %de [72(x) + (8, P (x))* + m?p>(x) ], (15)
and relativistic dispersion relation w(p) = 4/ p2 + m2.

2.2 Schrodinger functional formalism

Often, quantum field theory is treated within the Heisenberg picture, i.e., time-dependent
observables but time-independent states. In this work, we employ the Schrodinger picture,
such that observables are time-independent while states depend on time. More precisely, the
state represented by a density operator p is defined on a Cauchy hypersurface %,, for example
at an instance of time t.

It is convenient to introduce complete orthonormal sets of eigenstates at this time ¢, which
are the eigenstates of the field operator,

P lp)=¢19), (16)

as well as of the conjugate momentum field operator
I, |n) =nyln), (17)

where ¢, and 7, represent the corresponding eigenvalues, which are real-valued (cf. (7)).

Throughout the remainder of this work, the indices £ and m denote momentum modes
and have to be understood in terms of a regularized theory as discussed in subsection 2.1.
At some particular points we may wish to emphasize certain properties of the continuum (or
additionally the infinite volume) limit explicitly, in which case we employ the usual continuum
notation for momenta, i.e. p and q. However, for most expressions (especially for bilinear
forms) the field theory limit can be employed straightforwardly.

In the Schrodinger picture!, the momentum operator can be represented as a functional
derivative

I, = —i5j)m , (18)
and the matrix representation of the density operator p reads [35,52]
plor, d_1=(dilpld_) . (19
The density of this matrix defines the functional probability distribution
Fl¢pl=ple, 1= (¢lpold), (20)

which formally corresponds to the probability density of finding the quantum field &, in the
configuration ¢, if measuring in the field basis |¢) at time t.

The functional probability distribution is non-negative F[¢ ] = 0 and normalized to unity
f D¢ F[¢p]=Tr{p} = 1. For any pure state p = ) (y| the entries of the density matrix in

!Without loss of generality we consider the field ¢ in the following, but all steps can be repeated for the conjugate
field 7.
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the eigenfield basis reduce to a scalar product of ordinary Schrédinger wave functionals, which
are defined as ¥[¢ ] = (¢ |y). Thus, we obtain Born’s probability rule [53] for the probability
density functional of a quantum field

Fl¢1=2[o]P, (21)

justifying the physical intuition stated above.
In the Schrodinger functional formalism, expectation values can be computed from func-
tional integrals

(de) =JD¢ P Flo],

opld+, 9]
OPm

Therein, the functional integral measure is given by

fIszr]fd¢[\§%. (23)
14

The more general n-point correlation functions can be computed analogously. For the special
case of n = 2, we denote the connected two-point correlators by

Mypm =1 bm) — (D¢} () »

Mm = <7T€7Tm> - <7T€> (nm> P

(22)
(Tfm> = _IJ D¢

$i=p =¢

(24)

which will play a crucial role for the relative entropic uncertainty relation.

What we have described so far is known as a homodyne measurement, that is measuring
the state p in the field and momentum field eigenbases. There also exists the possibility of a
heterodyne measurement, as described by the Husimi Q-functional, a joint functional probability
density in the field theory phase space. It is defined as the measured distribution when
employing a positive operator-valued measure with respect to pure coherent state projectors
p = |a) {(a|, with a = (¢ +im)/v2,

Ql¢,n]=Tr{p|a)(al} = {(alp|a) . (25)

We will report elsewhere on the formulation of a relative entropic uncertainty relation associated
with the latter functional density and proceed here with the marginal functional density (20)
and a similarly defined object for conjugate momenta 7.

2.3 Functional probability densities for selected states

Let us now introduce the functional probability densities for those states to which we will apply
our relative entropic uncertainty relation in section 3. We start with the vacuum and coherent
states of the scalar quantum field theory, proceed with constructing excited states and finish
with a discussion of the thermal state.

2.3.1 Vacuum and coherent states

The vacuum wave functional ¥[¢] can be obtained by solving the stationary Schrédinger
equation H¥[¢ ] = E¥[ ¢ ] with the Hamiltonian H given in Eq. (8) and by using the functional
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derivative representation of the momentum operator (18) (analogously for the momentum
field ), leading to

B[] = \/_exp(——z Z qu),
4 (26)
_ 1 Ak Ak -
U[rn]= exp| —= — N e |,
(7] \/Z_ P( 422752275@ tm m)
T /4 m
with normalization constants
_ T _
Z¢:l_[ (,()_e, anl_[vnw(, (27)
¢ ¢
and, for a discrete set of modes,
- 21 - 2m 2
M = AR 2©0m> Nim = A_kw_eé"m' (28)
Inverting the latter matrices according to
21
MIAIM =6 (29)
V4 In>
— m Ak
leads to discrete covariance matrices
- 2w 1 - 21T Wy
My, =——6,., N, —o 30
Im Ak 2(0@ Im (m = Ak 2 I{m ( )

In the field theory limit we instead obtain expressions which have to be understood in a
distributional sense, i.e.,

d _ _
fﬁ M (p,Q)M(q, k) =2n5(p—k), (31)

and

M(p,q)=——=6(p—q), N(p,q) =nw(p)s(p—q). (32)

( )

Note also that in this case the formally infinite normalization constants Z » and Z,. decompose
into an infinite product over discrete vacuum contributions.

Compairing eqgs. (30) and (32) reveals the difficulties of the field theory limit. While the
discrete covariance matrices have well-defined diagonal elements, the distributional character
of the continuous covariance matrices implies that formally M(p,p) ~ §(0). Therefore,
covariance matrices have to be understood under an integral in the field theory limit.

Also, the two Schrodinger wave functionals in eq. (26) are of the same form, which turns
out to be a generic feature. Therefore, we only state expressions for the field ¢, in the following,
keeping in mind that the corresponding expressions for the momentum field ,,, can be obtained
analogously when replacing the covariance matrix accordingly.

The vacuum functional probability density can be obtained using Born’s rule (21) and reads

Fl¢]= —exp (——Z Z / ;,,iqu) : (33)

The vacuum is a special case of a coherent state, a class of states which minimize all uncertainty
relations and are therefore of special interested to us (see section 3). Coherent states follow

8
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from displacing the vacuum state in phase space. Consequently, they are parameterized by a
complex field a,, which is given by

1
Ay = E ((]521 + iﬂf?) 5 (34)

where we used the notation (¢,), = ¢ and (r;), = 7, such that the vacuum corresponds to
¢ = m; = 0. Then, the coherent wave functional reads

Fl$]= %exp(—%;ﬁ—ﬁgﬁ—:(m O 0) NS

where the covariances agree with the vacuum covariance.

2.3.2 Excited states

An interesting class of states are excited states as they typically allow for a (quasi-)particle
interpretation, also in the field theory limit. An excited state with n; excitations in mode
k can be obtained by acting with n; creation operators a;; defined in (11) on the vacuum
(see e.g. [52]). In the Schrodinger picture, the creation and annihilation operators can be
represented in terms of a functional derivative using (18),

19)
we¢e+57)e)s

1
a, =
¢ LV, 26()5 (
5 1
r

a, = \/2_@[(6%(]55—%).

(36)

To allow for several modes being excited simultaneously, possibly also multiple times, we
introduce an index set J, such that every mode k € J carries n; excitations, while all other
modes remain in their respective ground states. Then, the wave functional ¥[ ¢ ] of such a state

is
1 Ak 4\ -
wel=] | = (\ ﬂak) ¥$], 37)

ked

where the involved factors guarantee the correct normalization. One can show that the latter
wave functional can be rewritten using the probabilist’s Hermite polynomials. Then, the
corresponding functional probability density reads

1 b ) -
Fl¢]= —H,%( - )pm, (38)
an! “\ vV My

wherein the probabilist’s Hermite polynomials H,, (¢;) are given by

LnTkJ (=1)" ¢£k_27/

Hy, (¢1) = ny! (39)

Syt (=212

It should be noted that normalizing excited states in the field theory limit requires additional
formally infinite factors compared to the vacuum state, which is again a consequence of
M(k, k) ~ 5(0). Mathematically, this is due to the fact that ®(p) and II(p), respectively, are
not operators but rather operator-valued distributions. Some implications of this property are
discussed in subsection 3.7. However, we will later show that this will not introduce additional
problems when it comes to relative entropic uncertainty.

9
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2.3.3 Thermal state

Another interesting example is the thermal state. It follows from the maximum entropy principle
for a fixed energy expectation value [54-57] or equivalently from the recently introduced
principle of minimum expected relative entropy [58]. It reads

1 _
pr=-¢", (40)

where 8 = 1/T denotes the inverse temperature and Z is the canonical partition function.
The resulting functional distribution is again of Gaussian form

Frl¢]= exp( Z ZAkfﬁz(M )" ¢m), (41)

with the thermal covariance given by
M = (14 2npp(w)) My, (42)

wherein ngp(w,) = 1/(ef“t —1) > 0 denotes the Bose-Einstein distribution. One should note
that in the zero temperature limit 3 — oo we have ngg(w;) — 0 for all w, > 0, such that we
obtain

lim Fr[¢]=F[]. (43)

2.4 Multidimensional Heisenberg uncertainty relation

For a finite number of modes, there exists a second-moment uncertainty relation for a scalar
quantum field ¢, and its conjugate field 7,,, which is the multi-dimensional generalization of
(1). It reads [4,59,60]

det(M - N)

det (M ‘N )
which is a divergence-free formulation also in the field theory limit.

For a quantum field, the latter relation has to be understood in a matrix sense: the spectrum

of the correlator product M - N is bounded from below by the (single) vacuum eigenvalue 1/4
as M-N = %]l (see also Refs. [31,35,61,62]). For pure coherent state projectors p = |a) {al,
the relation becomes tight. Note that also squeezed coherent states minimize the relation
(44), but exhibit disproportionate uncertainties in the quadratures. In both cases the state can
be constructed from the vacuum by a unitary transformation, clearly leaving the uncertainty
relation invariant. Furthermore, mixed correlations which typically arise in interacting quantum
field theories, or for non-equilibrium states, can be incorporated in eq. (44) by using the full
covariance matrix in the field theoretic phase space (see e.g. Refs. [4,60]).

>1, (44)

3 Relative entropic uncertainty relation

We continue with introducing the concept of functional relative entropy to overcome the
divergence of the functional entropy and to quantify entropic uncertainty in a quantum field
theory. Then, we state and discuss our relative entropic uncertainty relation and provide some
examples.

10
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3.1 Divergence of the functional entropy

The entropy corresponding to a functional probability density is in our case a functional entropy.
By this we mean an entropy of an infinite dimensional random variable. More precisely, the
underlying random variable is the quantum field itself. Therefore, an associated classical
entropy is defined via a functional integral over all field configurations as

S[F]=—JD¢F[¢]1HF[¢]~ (45)

For d = 0 + 1 spacetime dimensions this expression reduces to the differential entropy S(f) of
the position distribution f (x) of a single mode.

For a finite number of modes N € N, the entropic uncertainty relation (2) can be generalized
in a straight forward manner [4]

S[F1+S[G]=N(1+In7), (46)

Since the bound on the right hand side scales with the number of oscillator modes N, neither
the continuum limit nor the infinite volume limit, which both require N — o0, are well-defined.

More precisely, independent of the state under consideration, the functional entropy S[F]
diverges in the field theory limit. A similar divergence appears typically for the vacuum energy
expectation value E = Tr{gH} of a quantum field. For the scalar theory defined in (15), it
diverges according to

E=%fdpco(p)5(0)—>oo. (47)

This shows that a physically reasonable notion of energy can only be formulated as a difference
to the vacuum energy, which remains finite for finitely many excitations. The choice of the
vacuum p as a reference state appears to be natural, as it uniquely minimizes the Hamiltonian.

The divergence of the functional entropy is of similar origin. We explicitly compute the
functional entropy of the vacuum functional distribution (33) in the field theory limit, which
formally yields

S[F1=1nZ, +%Tr{/\;l_1/\;l}:1n2¢+%fdp 5(0) — 0o, (48)

As for the vacuum energy E, the vacuum functional entropy S[F] is divergent as infinitely many
equal and finite contributions are added up. However, in contrast to the vacuum energy, the
set of states minimizing the functional entropy also comprises coherent states (for convenience
we only consider states symmetric in the quadratures), which follows from the fact that the
functional entropy is invariant under a displacement of field expectation values.

3.2 Functional relative entropy

In analogy to the energy, questions about entropic uncertainty should be asked with respect to
suitable coherent states. This leads to the notion of a functional relative entropy as a measure
of entropic uncertainty. We define the functional relative entropy between F[¢ ] and some
reference distribution F[¢ ] in complete analogy to the finite dimensional case

S[FIIF]=JD¢F[¢](lnF[¢]—lnF‘[¢])~ (49)

It is a non-negative quantity being zero if and only if the two distributions agree and has to
be set to +00, if the support condition supp(F) C supp(F) is violated. Furthermore, it is not

11
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symmetric and does not obey a triangle inequality, such that it should not be considered a true
distance measure, but rather a divergence.

In the same way the discrete relative entropy S(p||p) in Eq. (3) is extended to the differential
relative entropy S(f || f ) in Eq. (4), one can think of the functional relative entropy S[F||F] as the
consequent generalization of the differential one. Note again that in the limit p(x) — f(x)dx
the Shannon entropy S(p) does not converge to the differential entropy S(f) but instead tends
to infinity [50], which is similar to the problems we encountered when we considered the
field theory limit. In contrast, the relative entropy can always be considered a measure of
distinguishability of two distributions. As a consequence, all of its properties are preserved
under both continuum limits. In this sense, Eq. (49) suggests that relative entropy can be
directly defined in the continuum field theory without the need for introducing an ultraviolet
regulator. However, we leave a more detailed investigation in the context of algebraic quantum
field theory for future work.

As for the differential relative entropy, the support condition supp(F) C supp(F) is always
fulfilled by Gaussian reference distributions. Therefore, the functional relative entropy with
respect to Gaussian reference distributions remains finite. This motivates the formulation of an
entropic uncertainty relation for quantum fields in terms of functional relative entropies.

3.3 Deriving the relative entropic uncertainty relation

Let us start from the entropic uncertainty relation (46). To reformulate it as a relative entropic
uncertainty relation, it is convenient to consider reference distributions F[ ¢ ] that maximize the
functional entropy S[F] under some given conditions [51]. For the particular application to a
quantum field theory, we propose to employ coherent distributions as references F[¢]=F,[¢],
as they are known to minimize the entropic uncertainty relation (46). Then, the reference
distributions are of the Gaussian form (35) and maximize the functional entropy S[F] for a
fixed covariance matrix M and a given field expectation value o)

As a consequence, the functional relative entropy of any distribution F[¢ ], with covariance
matrix M, and field expectation value ¢, with respect to a coherent distribution F,[¢],
decomposes linearly into differences of entropies and constrained quantities [51],

S[FIIF,] = —S[F]+1nZy + ~Tr { MM}
2 . (50)
=—S[F]+S[F]+ 5Tr{/\?rl (M=M)}+ FSMls.

Therein, we used the first line of (48) together with S[F,] = S[F] and defined the difference
of the field expectation values as s; = ¢ — @/

Such a decomposition appears whenever the reference distribution is a maximum entropy
distribution under a particular constraint. If the constrained quantities of the actual and
reference distributions agree, a relative entropy equals a difference of entropies. If not, terms
of differences are added, which increase the distinguishability of the actual distribution with
respect to the reference distribution [51].

In this sense, the above functional relative entropy measures deviations from minimum
uncertainty distributions in terms of covariance matrices and field expectation values. For a
given distribution F[ ¢ ] with field expectation value ¢,, we can always choose a unique coherent
reference distribution F,[¢ ] with the same field expectation value, such that s, = ¢, — ¢ =0.
We refer to this particular coherent distribution as the optimal coherent reference distribution, as
the functional relative entropy S[F||F,] is minimized with respect to s,.

Following up on these considerations, we reformulate (46) solely in terms of differences of
functional entropies

S[F]—S[F]+S[G]—S[G]=>0. (51)
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Now, plugging in (50) for both entropy differences and optimal coherent reference distributions
yields our main result, the relative entropic uncertainty relation (REUR)

SIFIIF,]+S[GlIG,] < %Tr{/\;l_l(/\/l N+ NI — AN} (52)

Let us emphasize that the functional probabilities F[¢ ] and G[ 7] correspond to some arbitrary
quantum field theoretic density operator p, while F,[ ¢ ] and G,[ ] are Gaussian, corresponding
to a coherent state |a). We have assumed that this coherent state has the same expectation
values of fields and conjugate momenta as the state p, otherwise additional terms like the last
term on the right hand side of eq. (50) would appear in (52).

3.4 Discussion of the relative entropic uncertainty relation

Let us make a few remarks regarding the relative entropic uncertainty relation (52) and its
interpretation.

Bound is independent of number of modes. The resulting bound in Eq. (52) does only
involve differences of the actual and the vacuum covariance matrices. As a consequence, the
bound does not depend explicitly on the number of oscillator modes. Thus, we claim that
the relative entropic uncertainty relation (52) accurately describes entropic uncertainty for all
kinds of variables and degrees of freedom. In particular, it makes a non-trivial statement about
entropic uncertainty for quantum fields.

Sum of relative entropies is bounded from above. In contrast to entropic uncertainty
relations, the sum of relative entropies has an upper bound instead of a lower bound, which is
similar to the relation we reported in [44]. This is due to the fact that we have chosen reference
distributions which correspond to maximum entropy distributions. More precisely, the right
hand side of (52) encodes the additional knowledge available about the actual distribution in
terms of M with respect to the maximum missing information encoded in the optimal coherent
reference distribution, which is completely determined by the vacuum covariance M.

If the state of interest is a (squeezed) coherent state itself, the relation becomes tight. In
fact, if one finds that the two-point correlators M and N of an arbitrary state agree with the
vacuum ones, one can conclude from (52) that this state must be coherent, while for squeezed
coherent states the two sides of (52) agree but remain finite. In any other case, we get a
non-trivial bound on the distinguishability of the actual distributions F[¢ ] and G[ 7] with
respect to the optimal coherent ones. Therefore, despite the fact that the bound carries some
state-dependence, the relation (52) is equally tight as (46).

Bound is of quantum origin. To understand in which sense the uncertainty principle is
encoded in (52), let us consider the classical limit for the bounds. For illustration purposes, we
start with (2), for which we have to assume a finite number of modes again. To analyze the
classical limit, we restore 71, such that we may take the limit & — 0 afterwards. We obtain?

S[F]+S[G] > élndet(h/\;l N) = —00, (53)

in the classical limit i — 0, which is in accordance with the fact that classically both distributions
can be arbitrarily localized simultaneously.

2We refer to [5, 6] for the subtleties regarding an /1 inside a logarithm.
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For the bound in our relative entropic uncertainty relation (52) we can have an arbitrary
number of modes. With units restored we find
M1
h

\/—1
(M—hM)+NT(N—m\7)} —+oo,  (54)

S[FIIF,] + S[GlIGo] < %Tr{

showing that the bound diverges to + 00 in the classical limit # — 0. This means that classically
one can distinguish some distributions from optimal coherent distributions arbitrarily well.
In this sense, the relation (52) emphasizes the relevance of coherent states for the notion of
uncertainty and provides a bound that can be calculated even if the relative entropies can not.
Hence, we can conclude that the bound is of quantum origin and can be interpreted as the
maximum (joint) distinguishability with respect to minimum uncertainty states allowed by the
uncertainty principle.

3.5 Examples

To exemplify the independence of the bound in (52) on the number of modes N, we consider
excited states and the thermal state for discrete as well as continuous degrees of freedom.

3.5.1 Excited states

We start with a state that carries finitely many excitations corresponding to free (quasi-)particles,
introduced in subsection 2.3. For example, exciting a single momentum mode in a relativistic
quantum field theory generates a freely moving, completely delocalized particle with definite
momentum. For a finite number of excitations, the relation (52) makes a non-trivial statement
about entropic uncertainty, which is what we will show in the following.

As excited states have vanishing field expectation values, the vacuum serves as an optimal
reference distribution in the relative entropic uncertainty relation (52). In order to determine
the bound, we have to compute the covariance matrix, which follows from the corresponding
functional distribution (38). We find the relation

ked kk

The latter expression contains Gaussian integrals over all modes. To solve them, we make a
distinction of cases. First, using the fact that Gaussian integrals of odd polynomials evaluate to
zero, we immediately obtain that M is — just as its vacuum counterpart M — a diagonal matrix
(possibly in a continuous sense). Furthermore, if ¢, is a non-excited mode, i.e., if £ ¢ J, the
corresponding variance M, is equal to the vacuum variance M.

This leaves us with the last possibility, namely the case where ¢, is an excited mode for
which we have to calculate the variance M,,. We use the orthogonality relation between the
probabilist’s Hermite polynomials defined in (39),

+00
f dey Ho(¢0)Hp(d)e 2% = V2mal &, (56)
—00
together with their recurrence relation
Hg1(¢¢) = Hi(¢1)Ho(Pe) —aH,—1(¢e), (57)
which leads to )
Mu :Mu (1+2Tl4), (58)

for¢ 7.
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Combining all the above considerations, the covariance matrix of a general excited state
can be written as

M[m ZMgm-i-Z 2_le Mgk/\;lmk. (59)
key 7V kk
This result has a very clear interpretation. The diagonal components of the vacuum covariance
acquire an additive term accounting for the n; excitations in the excited mode k. Components
corresponding to unexcited modes remain unmodified.
Then, we obtain for one of the terms in the bound of the relative entropic uncertainty
relation (52)

1 - - Ak Ak - ng - -
"M M=M= — —Me,,ll - mk
2 ; 21 21 o Mk
= (60)
ke Mkk
=Sn,
kel

where we used (29). In the field theory limit, the expression above is still well-behaved as all
divergencies cancel out. Employing (31), we obtain

dp dq _
—Tr{M IM=-M)} = f M (p,q) D, —=——M(p,k)M(q,k)
; M(k, k)
=> ——M(k,k
,; IR
=, (61)
ked

showing that the bound remains unmodified.

In order to render all quantities finite and well-defined during the calculation of the bound
of the relative entropic uncertainty relation, one can use suitably chosen wave packet states,
as demonstrated in subsection 3.7 for the free one-particle state. As it is not essential for our
investigation, we abstain from a detailed discussion of this issue for the case of the more general
excitations.

After performing an analogous calculation for the covariance matrix A/, the bound of the
relative entropic uncertainty relation (52) evaluates to

—Tr{M IM=M)+ NIV =)} = 2ng. (62)

ked

As anticipated, the bound does not scale with the number of oscillator modes N, but linearly
with the total number of excitations. Thus, we have shown that the right hand side of (52) is
finite.

Let us now consider the left hand side of (52). We omit the calculation of the functional
relative entropies for general excitations, which is a highly non-trivial task®. As a simple and
instructive example, let us consider a single excitation in the mode k, which corresponds to
a freely moving particle with energy w(k) in the field theory limit. After a straightforward
exercise in Gaussian integration one finds

S[F1IIF1+S[G,|IG]=4—1n4—2y, (63)

3See Refs. [63-65] for the differential entropy of number eigenstates in various dimensions. Note that in contrast
the Wehrl entropy, which is the entropy associated with the Husimi Q-distribution defined in (25), can be calculated
easily for arbitrary excitations [20].
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where y ~ 0.577 is the Euler-Mascheroni constant. The uncertainty deficit, i.e., the difference
between the right hand side and the left hand side of the REUR (52) is in agreement with the
one-dimensional result [63]. Therefore, we find that the entropic uncertainties of a free particle
in a quantum field theory and a single excited oscillator mode attain the same numerical values.
The latter result is expected to generalize to arbitrary excitations.

3.5.2 Thermal state

As a second example we consider the thermal state, where again the vacuum acts as an optimal
reference distribution. With the thermal covariance matrix at hand (cf. eq. (42)) we can
calculate the bound of the relative entropic uncertainty relation (52), which yields in the
discrete case

1 - _ Ak
5Tr{M (M = M)} =L;§nBE(we). (64)

In the continuum limit, the bound remains finite due to the exponential fall-off of the Bose-
Einstein distribution ngp(w,). However, the bound is also proportional to the length L of the
interval under consideration. Therefore, in the infinite volume limit we obtain

S MM )} = 2n5(0)f 2 ngp((p)), (65)

where L = % — 2716(0) represents an infinite volume factor. Since the integral remains finite
for non-negative inverse temperatures and masses 3, m > 0, the bound is still well-defined up
to this infinite volume factor.

Such infinite volume factors appear generically for thermal states in a quantum field theory,
in particular also for the energy difference with respect to the vacuum E; — E ~ §(0). This
problem is typically circumvented by considering energy densities instead of absolute energies,
or by treating the quantum field in a finite volume. A similar line of reasoning can be used
to obtain functional relative entropy densities, leading to a divergence-free notion of entropic
uncertainty.

Since the thermal state is of Gaussian form, one can easily calculate the left hand side of
the relative entropic uncertainty relation (52), which gives for a discrete set of modes

SUFIF1+S[GrIG1 =1 Y 2 [2ngs(co) ~In(1 + 2nps(w)]. (66)
L

To exemplify the behavior of the relative entropic uncertainty relation in this case, we consider
one mode, i.e. N =L =€ =1 and Ak = 27, with a given frequency w (cf. Figure 1). The
uncertainty deficit is non-negative and approaches zero in the zero temperature limit § — oo
as ngg(wy) — 0.

3.6 Relation to the Heisenberg relation

For a single mode, the relation by Biatynicki-Birula and Mycielski (2) is stronger than and
therefore implies the Heisenberg uncertainty relation (1) (see e.g. [4,66]). Thus, we ask the
question how the relative entropic uncertainty relation (52) is related to the second-moment
uncertainty relation (44).

We begin with reformulating the left hand side of relative entropic uncertainty relation (52).
Instead of choosing the optimal coherent functional densities as reference distributions for the
relative entropies, we instead consider Gaussian reference distributions F[¢ ] and G[ 7] which
have the same expectation values and two-point correlation functions as the actual functional
densities, i.e., M = M and ¢, = @, (analogously for the momentum field 7).
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Figure 1: Both sides of (66) are shown as a function of  for one mode with fixed
frequency w. For large f3, the thermal state p; approaches the ground state p and
the bound becomes tight. For small f3, the state p+ is highly mixed and therefore the
uncertainty grows. For 8 — 0 the state approaches the uniform distribution in which
case the entropic uncertainty is unbounded.

These reference distributions can be considered the optimal Gaussian reference distributions
measured in terms of the relative entropies (cf. subsection 3.3). Using (50) and (51), the
relative entropic uncertainty relation (52) can be rewritten as

S[F||F]1+S[G|IG] < AS[F]+ AS[G], (67)
where 1. detM
~ ~ — (S
S[F]=S[F]—S[F] 2 ndetM, (68)

is the functional entropy difference between the optimal Gaussian reference distribution and
the vacuum (or any coherent state). The right hand side of this uncertainty relation can be
calculated explicitly

. ~. 1 det :
AS[F]+ AS[G] = £ 1n SLMN) (69)
2 det(M-N)
Then, we can reformulate the uncertainty relation as
det(M-N)  astrIFIsiGoD s 1 | 70)

det(M~J\7)

Hence, the relative entropic uncertainty relation (52) is stronger and implies the relation (44)
in the same sense as in the one-dimensional case. Moreover, the latter chain of inequalities
shows that deviations of the distributions from Gaussianity increase the uncertainty product.

3.7 Averaged fields and measurability

At last, let us discuss the measurability of the fields ® and IT and their corresponding functional
probability densities F[¢ ] and G[7t]. We note that a quantum field taken at a single point in
space or at a definite momentum is not a proper observable. Mathematically, the object ®(x) or
®(p), respectively, is an operator-valued distribution rather than an operator. Physically, a field
at a single point can never be resolved with arbitrary precision by any measurement device as
this would require infinite energy. As a consequence, the functional probability densities F[¢ ]
and G[ ] also do not constitute proper observables.

In order to render the field an observable, we have to average ®(p) with a test function [67,
68]. A convenient choice for a class of test functions are the Schwartz functions A(p) € & (R).
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These include, for example, normalized Gaussian functions. By choosing a narrow Gaussian
with expectation value u, = k, denoted by .A;(p), we can approximate an excitation in a single
momentum mode k. Then, the averaged field operator is defined as

d
B(A) = f ﬁ Ac(p)@(p). 71)

For a discussion of the Heisenberg uncertainty relation for similarly defined averaged fields,
see [69].

To illustrate the behavior of the relative entropic uncertainty relation (52) for averaged
fields, we define a wave packet one-particle state as

el = —2Ad g, 72

VM(k, k)
with ¢ [ A, ] the eigenvalue of the averaged field operator (A, ) defined in (71). The probability
density of this state reads
LA
M(k, k)

and is now a proper, measurable functional of the field. The corresponding normalization

constant Z qlb is still proportional to the vacuum normalization Z b>

Fi[¢]= [¢], (73)

Z;) :Z¢ M(k, k), (74)
where the proportionality constant
_ dp Ax(p)
Mk )= | BT (75)
21 w(p)

is now finite.

On the level of the relative entropic uncertainty relation, considering the wave packet
one-particle state renders all involved quantities finite. This can be seen best by writing out the
bound

dp AP) _

21 w(p) - (76)

1 - - T

—=Tr M_l Ml -M = ——" ,

ST (M= M)} = s

where in the second step two finite instead of two infinite quantities canceled out.
Therefore, the relative entropic uncertainty relation accurately describes entropic uncer-

tainty also for averaged fields. Specifically, the bound once again remains unmodified, exempli-

fying its generality.

4 Conclusion and Outlook

In summary, we have presented a relative entropic uncertainty relation describing entropic
uncertainty between a scalar field and its conjugate momentum field with respect to optimal
coherent states. Motivated by the pathological behavior of the Shannon entropy in the contin-
uum limit, and the divergence of the vacuum energy in a quantum field theory, we suggested
the use of functional relative entropies to quantify entropic uncertainty.

Due to the independence of the resulting relative entropic uncertainty relation from the
number of modes, we obtained a well-defined and divergence-free entropic uncertainty relation
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in the field theory limit. This was shown exemplary by considering arbitrary excitations and
the thermal state. While in the former case we obtained finite results for the continuum as well
as the infinite volume limit, in the latter case we argued to consider either finite volumes or
relative entropy densities.

For future theoretical work it is particularly interesting to formulate other known entropic
uncertainty relations in a field theory sense, for example the relation by Frank and Lieb [29]
or the Wehrl-Lieb inequality [70, 71]. Furthermore, one may extend the relative entropic
uncertainty relation to include (quantum) memory (cf. Refs. [24,72]).

As entropic uncertainty relations play a crucial role in the context of quantum entanglement,
we propose to employ our relative entropic uncertainty relation to constrain entanglement
in quantum field theories. In this way, one may be able to obtain criteria being capable of
certifying entanglement between spacetime regions.

Another direction for further research is to study other field theories, which can be divided
into two major directions. First, one may consider field theories of a different type, e.g.
fermionic degrees of freedom or gauge fields. While the former may be interesting especially for
experimental applications, the latter introduces the challenge that not all field configurations
contribute independently to the functional integral. Second, one may study interacting theories.
We expect that the main results of this work can be extended at least into the perturbative
regime.

Furthermore, one may investigate the functional relative entropy in the context of algebraic
quantum field theory to see whether one can find a generic formula in terms of expectation
values of relative modular operators.

Lastly, it would be of great interest to study the relative entropic uncertainty relation
in experimental setups. For example, one could investigate Bose-Einstein condensates and
estimate the bound on entropic uncertainty of a freely travelling phonon.
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