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Random quench predicts universal properties
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Abstract

Amorphous solids display numerous universal features in their mechanics, structure,
and response. Current models assume heterogeneity in mesoscale elastic properties, but
require fine-tuning in order to quantitatively explain vibrational properties. A complete
model should derive the magnitude and character of elastic heterogeneity from an ini-
tially structureless medium, through a model of the quenching process during which the
temperature is rapidly lowered and the solid is formed. Here we propose a field-theoretic
model of a quench, and compute structural, mechanical, and vibrational observables in
arbitrary dimension d. This allows us to relate the properties of the amorphous solid to
those of the initial medium, and to those of the quench. We show that previous mean-
field results are subsumed by our analysis and unify spatial fluctuations of elastic moduli,
long-range correlations of inherent state stress, universal vibrational anomalies, and lo-
calized modes into one picture.
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1 Introduction

At Kelvin-scale temperatures, glasses universally present mechanical and vibrational anomalies
with respect to crystalline solids: below 1K , the heat capacity behaves as C(T )∝ T , to be
compared with C(T ) ∝ T3 for crystals [1]. It is accepted that the anomalous behavior of
C(T ) in glasses is caused by quantum mechanical tunneling between nearby energy minima
in phase space, the two-level systems (TLS) initially proposed as a phenomenological model
[2]. Recently, a microscopic picture of the TLS has begun to emerge, thanks to numerical
simulations in which quasi-localized vibrational modes have been identified and counted [3–
9].

Moreover, near 10K , glasses display an excess of vibrational modes over phonons, the so-
called ’boson peak.’ It is not agreed what is the cause of the modes near the boson peak: the
glass-specific behavior has variously been attributed to soft localized modes [10, 11], generic
stiffness disorder [12, 13], proximity to jamming [14–16], and proximity to elastic instability
[16].

The jamming approach predicts a regime in which the density of vibrational states g(ω)
scales as g(ω) ∝ ω2 in any dimension d, sufficiently close to jamming and elastic insta-
bility [16]. The corresponding modes are extended but not plane waves, instead showing
vortex-like motion at the particle scale. This law has been confirmed in numerical simula-
tions [16–19], but is found to break down below some frequency ω0, below which there are
only phonons and quasi-localized modes [7,17,19]. The latter, now confirmed to be present in
many glass models, has a density following g(ω)∝ωα where 3≤ α≤ 4 [3–8,19–22]. Some
authors argue that α= 4 in the thermodynamic limit [22], while others argue that smaller ex-
ponents are possible due to interactions between localized instabilities [8]. Microscopic theory
is needed to clarify these results.

The frequency ω0 setting the lower-limit of the jamming regime is controlled by the dis-
tance to elastic instability [16]. It was proposed that glasses dominated by repulsive interac-
tions lay close to elastic instability due to the quench dynamics [15, 16]. This suggests that a
model faithful to the physics of the quench might shed light on the density of quasi-localized
modes and the frequency ω0 below which they become important. Ideally, any such model
should also reproduce the universal vibrational features captured in prevous models [13,16],
such as the dip in sound speed and crossover in acoustic attenuation observed in many exper-
iments [23–26].

Here we present such a model. Following a crude but principled model of an overdamped
quench into an inherent state (IS), we derive universal vibrational properties characterized by
complex elastic moduli and the density of vibrational states. We recover the exact equations
governing mean-field vibrational properties discussed previously [16]. As a bonus, our model
predicts other universal mechanical features, namely short-range correlations in elastic moduli
and long-range correlations in the IS stress, as observed recently in simulations [27–32] and
experiments 1 [37]. Ultimately, the model fails to predict the universalω4 law discussed above,

1These are inferred from strain measurements in colloidal glasses [33–35] and granular media [36].
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thus indicating the minimal features needed to recover mean-field results, while highlighting
routes towards a more complete model.

2 Random quench model

Consider the elasticity equation

ρ
d2~ui

d t2
− ∂ j

�

Si jkl∂k~ul

�

= ~Fi , (1)

where ρ is density, ~ui is a displacement field, and Si jkl = Ci jkl + δikσ jl in terms of the elastic
modulus tensor Ci jkl and the IS stressσ jl . The elastic Green’s function Gi j is the solution to (1)
for a Dirac-delta function forcing, ~F j(~r) = ~f jδ(~r), that is, ~ui(~r) = Gi j(~r) · ~f j . This is one of the
fundamental observables in linear elasticity and captures many properties of linear response,
including sound speed, damping due to the disorder, and the density of vibrational states, as
discussed below.

At the mesoscale, the elastic moduli and the stress tensor σi j can be considered to be
spatially fluctuating fields. Vibrational properties can be derived from the disorder-averaged
Green’s function G i j , for different models of random disorder. The model of Schirmacher
corresponds to random Gaussian fluctuations of elastic moduli [12,13].

From the jamming approach, Ref. [16] employed a microscopic lattice model, which does
not directly correspond to (1). However, elastic instability is caused by the destabilizing ef-
fect of stress in particulate matter with short-range repulsive interactions [15, 16]. Its pro-
posed importance highlights stress as an important control parameter for vibrational proper-
ties. Moreover, it has been shown that the stress also plays a crucial role in the emergence of
quasi-localized modes [5]. These works suggest that one should consider a model in which
the IS stress σi j is randomly fluctuating. Such an effort must immediately confront a no-go
theorem of Di Donna and Lubensky [38]. In a comprehensive treatment of non-affine corre-
lations in random media, the latter authors showed that a random IS stress alone does not
yield non-affine motion, and therefore cannot give rise to anomalous vibrational properties: a
material that behaves affinely is a homogeneous continuum, the continuum limit of a crystal.
How can we reconcile the importance of destabilizing stress with its apparently mild effect on
non-affine motion?

We propose that the solution is to consider the quench itself. Indeed, as shown in [38],
if random forces are added to an initially featureless continuum, then the relaxation to an
IS will produce both a random IS stress and fluctuations in elastic moduli. The latter cause
anomalous vibrational properties.

To probe how fluctuations in stress and elastic moduli are created during the final de-
scent into an IS, we consider the following idealized model of a quench. We begin with the
dense liquid in its natural state at the parent temperature T0. This state is characterized by a
stress tensor field σ̃i j(~r), which we call the quench stress. In the case of a pair potential, this
corresponds to (e.g. [39])

σ̃i j(~r) =
∑

a

δ(~r − ~ra)



mva
i va

j +
1
2

∑

b 6=a

rab
i f ab

j



 , (2)

where ~va is the velocity of particle a, ~rab = ~ra − ~r b, and ~f ab is the force exerted by particle b
on particle a.

From this state we then instantaneously quench the temperature to 0, so that the velocity
field vanishes. Since the state is not in mechanical equilibrium, it will relax under the action

3

https://scipost.org
https://scipost.org/SciPostPhys.12.3.090


SciPost Phys. 12, 090 (2022)

(a) (b)

σ̃ij σij

Figure 1: Illustration of random quench model. From (a) an initial disordered state
with quench stress σ̃i j , we allow the system to relax to an inherent state with stress
σi j , (b). Illustrated here are σ̃x y andσx y for µ/λ= 0.1. The long-range correlations
in σx y are apparent .

of the quench stress σ̃i j until it finds a state of mechanical equilibrium, as depicted in Figure 1.
The process ends as soon as a state of mechanical equilibrium is found. We will then compute
the disorder-averaged Green’s function of the IS.

Since our aim is to model the emergence of structure in the glass, we wish to consider
the simplest possible model of the dense liquid. Only the short-time response of the liquid is
relevant, so we consider the latter as an initial homogeneous elastic continuum with elastic
constants λ̃ and µ̃, which gives the elastic modulus tensor Ci jkl = λ̃δi jδkl+ µ̃(δikδ jl+δilδ jk).
We assume, for simplicity, that these constants are spatially uniform. When the temperature is
removed, the continuum deforms under the quench stress, just as a crumpled elastic membrane
will relax when external constraints are removed. For simplicity we ignore inertia during the
quench, so our model is one of an overdamped quench. This is equivalent to gradient descent
as performed in numerical simulations.

Although crude, this model is perhaps the simplest that captures the final stages of de-
scent into an IS; more advanced models could allow the liquid to have non-trivial structural
correlations and consider inertia in the quenching process.

We aim to describe universal properties of this process. Since we work in the continuum,
the relevant distribution of σ̃i j(~r) can be inferred using field-theoretical arguments [40, 41].
Indeed, under our assumption of a featureless liquid, under coarse-graining the quench stress
field will retain only short-range correlations. As we eventually seek the small q behaviour
of the solid, we take this small length scale to 0 immediately to obtain a simple Gaussian
distribution of the symmetric tensor field σ̃i j(~r):

P[σ̃]∝ exp

�

−1
2

∫

r

�

s1
˜6σi j

˜6σi j + s2σ̃iiσ̃ j j

�

�

, (3)

where ˜6σi j = σ̃i j −
1
dδi jσ̃kk is the deviatoric stress, and s1 and s2 are parameters related to the

magnitude of quench stress by

˜6σi j(~r)˜6σi j(0) =
d2 − 1

s1
δ(~r) , (4)

σ̃ii(~r)σ̃ j j(0) =
1
s2
δ(~r) , (5)

in d dimensions. The constant component of the quench stress will be treated separately.
Standard renormalization arguments [40,41] predict that corrections to (3) will introduce

a length scale a which is on the order of the relevant microscopic length, namely the particle
radius. We therefore expect our model to be valid on scales much larger than this size. In
particular, the Gaussian distribution (3) should be valid, so long as the liquid state does not

4

https://scipost.org
https://scipost.org/SciPostPhys.12.3.090


SciPost Phys. 12, 090 (2022)

have relevant long-range correlations. In our continuum treatment, we will employ a cutoff
Λ≈ 2π/a in momentum space, so that corrections to (3) need not be explicitly incorporated.

Consider the displacement field ui(~r) along the quench. At any moment, there is an instan-
taneous stress field σi j[~u](~r). In an overdamped quench, a new IS will be found as soon as σi j
is in mechanical equilibrium. (If inertia were considered, the system could jump over shallow
minima before finding a resting state.) Di Donna and Lubensky found the new IS stress σi j(~r)
and the elastic modulus tensor C ′i jkl(~r) = Ci jkl + δCi jkl(~r) around the IS, to leading order in
ui , for arbitrary quench stress fields σ̃i j(~r) with zero spatial average. The result is a pair of
linear functionals

δCi jkl(~q) =Si jklmn(~q)σ̃mn(~q) , (6)

σi j(~q) =Pi jkl(~q)σ̃kl(~q) , (7)

in Fourier space, where S and P depend on the elastic moduli and the momentum ~q. Explic-
itly, these take the form

Si jklmn(~q) =−
1

2(1− c)
[2c(δi jδkeδl f +δklδieδ j f )

+ (1− c)(δikδ jeδl f +δ jlδieδk f +δilδ jeδk f +δ jkδieδl f )]Ve f mn , (8)

Pi jkl(~q) =
1
2

PT
ikPT

jl +
1
2

PT
il P

T
jk −

1
1+ 2µ

PT
i j q̂kq̂l , (9)

where c = 1/(1+ 2µ), PT
i j = δi j − q̂i q̂ j , and

Ve f mn = q̂e(δ f mq̂n +δ f nq̂m) + q̂ f (δemq̂n +δenq̂m)− 2(1+ c)q̂eq̂ f q̂mq̂n . (10)

Ref. [38] did not include any constant component of the quench stress, but this is easily added.
To leading order in u, we find that if σ̃i j(~r) = pδi j , then this is equivalent to replacing the Lamé
moduli by λ= λ̃− dp and µ= µ̃+ p.

2.1 Stress correlations & elastic moduli fluctuations:

Combining Eqs.(6),(7) with (3) immediately yields predictions for the distribution of local
elastic moduli and the distribution of IS stress.

The derivation of the IS stress distribution is nontrivial because of mechanical equilibrium,
which is satisfied by σ but not by σ̃. The derivation is sketched in Appendix 1.

The result is conveniently represented in terms of a gauge field [40–42]. In d = 2 we
can write σi j = εikε jl∂k∂lψ, where ε is the antisymmetric tensor with ε12 = −ε21 = 1 and
ε11 = ε22 = 0, and we predict

P[σ[ψ]]∝ exp

�

−1
2 η̃

∫

r
tr2σ

�

, d = 2 , (11)

with

η̃=
(1+ 2µ)2s1s2

4(1+µ)2s2 + 2µ2s1
, d = 2 . (12)

Similarly, in d = 3 we can write σi j = εiklε jmn∂k∂mΨln and we predict

P[σ[Ψ]]∝ exp

�

−1
2

∫

r

�

η tr2(σ) + g trσ2
�

�

, d = 3 , (13)
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where

η= −
s1

2
4µ2s1 + (9− 12µ2)s2

8µ2s1 + 3(3+ 2µ)2s2
, d = 3 , (14)

g =
s1

2
. (15)

Eq.(11) and Eq.(13) are in precise agreement with [40, 41] when boundary effects are ne-
glected. We emphasize that σ is a functional of ψ in d = 2 and Ψ in d = 3 and thus these
distributions are nontrivial. As shown in Appendix 1, these gauge fields are necessary to en-
force the constraints on the stress tensor σT = σ and ∇ · σ = 0. They predict anisotropic
long-range correlations in the stress field, as discussed at length in [40,41].

We can also determine the distribution of local elastic moduli. We focus here
on the bulk modulus fluctuation δK = δCiikk/d

2 and shear modulus fluctuation
δµ = [dδCi ji j − δCii j j]/(d3 + d2 − 2d). These are predicted to be Gaussian, with fluctua-
tions

〈δK(~r)δK(0)〉=
2

s1d4

�

d̄ + (5c d̄ + 4)2 +
s1 − ds2

d2s2
(d + 1+ 5c d̄)2

�

δ(~r) , (16)

〈δµ(~r)δµ(0)〉=
2

s1d2(d + 2)2 d̄

�

(d2 + 1)2 + d̄(2d + 4+ c(d2 − 2d − 5))2 (17)

+ d̄(d2 − 2d + 5+ c(d2 − 2d − 5))2
s1 − ds2

d2s2

�

δ(~r) ,

with d̄ = d − 1 and c = 1/(1 + 2µ). The strictly local nature of these correlations is a con-
sequence of the local quench stress correlations. We expect corrections to these correlations
only at the particle scale, as observed in generic models [27,29].

Eqs. (12), (14), (15), (16), and (17) can be used to relate the strength of stress correlations
and elastic moduli fluctuations to the quench stress, and to each other.

2.2 Green’s function & effective medium theory:

We now proceed to determine the Green’s function G i j . We consider response at frequency ω
and write the elasto-dynamic equation as a tensorial linear operator Â(ω;σ) acting on ~u,

Ail(ω)≡ −ρω2δil − (∂ jSi jkl)∂k − Si jkl∂ j∂k .

We need to compute the Green’s function Ĝ(~r;~r0), the solution to

Â(ω) · ~u= ~F0δ(~r) .

This is a challenging task because Ĝ depends on the specific realization of the quenched stress

field, which plays the role of disorder. We would be content to compute Ĝ, the disorder-
averaged Green’s function. In our model, this cannot be done exactly. We employ the effective
medium theory (EMT), a mean-field approximation that determines the optimal complex elas-
tic moduli µE(ω) and λE(ω) to represent the effect of scattering by disorder.

This task is similar to that faced in strongly interacting quantum systems, where one would
like to compute the Green’s function averaged over quantum fluctuations [43]. In that con-
text, effective medium techniques have been developed under the name dynamical mean-field
theory [44], which was shown to be exact in the limit of infinite dimensions, the mean-field
limit [45].
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We derive a self-consistent equation for the effective elastic modulus tensor SE
i jkl(ω) under

the effective medium approximation. We decompose the full elastic moduli into the effective
moduli and the remainder ∆Si jkl ≡ Si jkl − SE

i jkl(ω). The key step is to choose SE
i jkl(ω) such

that the disorder-average of the true Green’s function equals the EMT Green’s function:

Gi j(~r;~r0) = GE
i j(~r − ~r0) , (18)

where GE
i j(~r−~r0) is the Green’s function in terms of SE

i jkl(ω). Here we assume that homogeneity
and isotropy are restored in the effective Green’s function, thus

GE
i j(~r) =

∑

α=T,L

∫

q
Gα(q,ω) Pαi j ei~q·~r , (19)

where GT (q,ω) = 1/(−ρω2 + µE(ω)q2), GL(q,ω) = 1/(−ρω2 + λE(ω)q2), PT
i j = δi j − q̂i q̂ j ,

P L
i j = q̂i q̂ j , and

∫

q =
∫

ddq/(2π)d over the region q < Λ. ( T and L stand for transverse and
longitudinal, respectively. )

Let us note that the equation (18) cannot be imposed exactly, except in very simple models.
One example of the latter is when a lattice has only a single bond with heterogeneity [16].
EMT is therefore a small-disorder (mean-field) approximation.

The EMT introduces one parameter, v, the correlation volume over which the EMT G i j is
attained; we take v = 1/

∫

q 1 which is derived from comparison with previous results on spring
networks [16]. This corresponds to a correlation volume on the order of the particle size.

The derivation of the EMT within the field theory formalism is sketched in Appendix 3.
We find that the final disorder-averaged Green’s function depends on a random d×d matrix

in the Gaussian orthogonal ensemble (GOE) [46]. Here we report results for the limit µ� 1,
for which λE = 1+O(µ): to leading order, the longitudinal Lamé modulus is not modified by
the quench. Physically this limit means that the system is fragile like molecular glasses and
weakly jammed materials, but it is adopted only for simplicity here. In this regime the key
control parameter is

e =
�

v(d + 2)3s1µ
4/4

�−1
, (20)

which measures the strength of moduli fluctuations. Introducing a fluctuating shear modulus
µr(x) = µ+ e1/2µx d̄/d we find that µE satisfies

0=

∫

d x
κ(x)(µE −µr(x))

1− (1− µr (x)
µE
) d̄

d

�

1+ρω2v
∫

q GT (q,ω)
� , (21)

where κ(x) is the convolution of a Gaussian with the spectral density of the GOE matrix. Note
that the random variable x can be interpreted as a normalized space-dependent shear modulus
as discussed in Appendix 3. We emphasize that the GOE matrix whose spectrum appears in
(21) is not put into the model, but emerges from its solution.

Remarkably, Eq.(21) exactly matches the form of an equation derived in [16], under the
identifications µE → k‖, an effective longitudinal stiffness; µr → kα, a fluctuating stiffness;
and z0 = 2d2/ d̄, a lattice parameter. In [16], and in companion works [47,48], the stiffnesses
kα were microscopic spring constants, whose distribution P(kα) was assumed to take simple
tractable forms. In contrast, here we derive the relevant distribution κ(x) from our model of
quench dynamics.
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μμc μr(x)

Figure 2: Schematic distribution of fluctuating shear modulus µr . In d =∞, the
distribution is a semi-circle; in finite dimensions, this develops a tail, which can lead
to instability in large systems .

2.3 Wigner semicircle:

The simplest limit is d →∞, for which we expect EMT to be exact [44]. In d =∞ the GOE
spectrum is given by the Wigner semicircle law ρW (x) =

p
2d − x2/(πd) and κ(x) = ρ(x) up

to irrelevant corrections of relative order 1/d2. Using the fact that ρW is supported on a finite
interval (−

p
2d,
p

2d), we can determine the relevant scaling e ∼ 1/d and x ∼ 1 for large
d. Defining ω̃ = ω

p

Ad/µ with Ad = vρ
∫

q q−2, we take ω̃ ∼ 1. Then we can derive a cubic
equation for y = µE/µ:

0= y3 − y2 + d
2 e
�

y + Ad
µ ω

2
�

. (22)

The same equation has recently been derived for a lattice EMT, and analyzed in detail [49].
Translating these results, we find: (i) the solid is stable for e < ec = 1/(2d); (ii) near ec and
at small ω, x satisfies a quadratic equation equivalent to that derived in [16], giving

µE(ω) =
1
2µ− i

Ç

µAd
2 (ω2 −ω2

0) , (23)

where the onset frequency is

ω0 =
r

µd
Ad
(ec − e) . (24)

In this limit the vibrational properties are thus equivalent to those discussed in [16]. In particu-
lar, the density of vibrational states is g(ω) = (2ω/π)ImG ii(0)≈ −(2 d̄ω/π)Im[µE]

∫

q q−2/|µE |2,

from which it follows that for ω>ω0 Eq.(23) gives the non-Debye law g(ω)∝ω2 discussed
in the introduction.

Scattering experiments measure the dynamic structure factor, from which one can ex-
tract, at each frequency ω, a sound speed ν(ω) = |µE |/Re[µ1/2

E ] [16] and the sound atten-
tuation Γ (ω) ≈ −ωIm[µE]/Re[µE] [16]. In experiments [50, 51] and simulations [17] the
sound speed is non-monotonic in frequency, showing a dip in the boson peak range where the
sound attentuation crosses over fromωd+1 toω2 behaviour; these features are reproduced by
Eqs.(22),(23). Representative plots for these quantities in d = 3 are shown in Fig.3.

Quantitatively, we find Γ (ω) ≈ (πdµe/4)vρω2 g(ω)/Re[µE]. In deriving Eq.(22), we ig-
nored the hydrodynamic pole in the Green’s function, which leads to the Debye law
g(ω) ∼ ωd−1 for ω < ω0. This thus leads to Γ (ω) ∼ ωd+1, which is Rayleigh scattering.
Its amplitude is proportional to the variance of elastic moduli fluctuations, as observed [30].

2.4 Finite-dimensional corrections:

GOE matrices have a spectrum whose bulk resembles the Wigner semicircle in all dimensions,
with oscillatory corrections. Eq.(22) and its consequences can then be used in any dimen-
sion d to determine the leading physics. However, for d <∞, there is a new phenomenon
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0
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g
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0

Γ
(ω

)

∝ ω4

∝ ω2

ω

Figure 3: (a) Sound speed ν(ω) and (b) sound attenuation Γ (ω) for indicated values
of e/ec , in d = 3.

completely absent in the Wigner semicircle: the spectrum develops an exponentially-decaying
tail, as shown in Figure 2. This tail, which is Gaussian in d = 2 and d = 3, adds new ex-
citations, which we expect to be localized. Formally, the tail extends to ±∞, implying that
there are now unstable modes. Indeed, from Eq.(21), one can determine a stability condi-
tion µr > µc = −Re[µE]/ d̄ [49]; the smallest modulus can be negative, but small, scaling as
1/d. However, our results are derived for systems in the thermodynamic limit. Since x corre-
sponds to a spatially fluctuating modulus, in a system of N particles there are approximately

N values of x sampled from κ(x). Define x∗ from 1/N =
∫ x∗

−∞ d x κ(x). When µr(x∗) > µc ,
corresponding to small systems, the tail is irrelevant and the system is stable. In this case,
using [52], we find that µE has a contribution δµ ∼ −iω2 in the regime 0 < ω < ω0, which
will lead to g(ω) ∼ ω3, on top of the Debye contribution. Instead, when µr(x∗) < µc , our
quench has ended in an unstable state, and must further relax to a true inherent state. If κ(x)
is modified ad-hoc to vanish at µr(xc) = µc as κ(x) ∼ (x − xc)β , then instead we find that
g(ω)∼ω2β+1 [49].

These results are in qualitative agreement with previous findings, which indeed found a
density of localized modes g(ω) ∼ ωα with α < 4 in small systems [22]. In our model, the
global stability of the system is controlled by the parameter e. However, we do not enforce
local stability of the final state. Since α= 4 is typically observed, these results imply that our
assumption of an overdamped quench cannot be realistic in large systems. Future work should
explicitly incorporate a condition of local mechanical stability in the IS, to properly predict the
form of κ(x) in realistic systems.

3 Conclusion

We propose a model for universal properties of amorphous solids based on the quench into an
inherent state. Under a single universal distribution of quench stress, our model predicts (i)
short-range correlations of elastic moduli, as observed [27,29,30]; (ii) long-range correlations
of the IS stress, as observed [28, 31, 32]; (iii) exact reduction to previous models, shown
to reproduce universal vibrational anomalies [16, 49]; and (iv) a tail of potentially unstable
modes, beyond mean-field predictions, which leads to g(ω) ∼ ω3 in small systems and can
rationalize larger exponents g(ω)∼ωα in large, stable systems.
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New results include the relationship between the elastic-moduli fluctuations and the stress
correlations; explicit expressions for the stress correlations in arbitrary dimension; justification
of mean-field models which formerly were derived from lattice models; and the inevitable
extension of mean-field models to have an eigenvalue tail in finite dimensions.

Our model is based on an overdamped quench, which enforces mechanical equilibrium
in the IS, but does not enforce stability. This allows unstable configurations, like a pencil
standing on its head. At the global level, stability is ensured by choosing parameters such that
all vibrational modes have a positive real frequency; in particular we should have e < ec as
described above. However, we do not enforce stability at each point in space. In particular, the
Hessian field Hi j(~r,~r ′) = ∂ 2E/(∂ ui(~r)∂ u j(~r ′)) that controls local stability could have regions
where it is not positive-definite. We predict Gaussian fluctuations of local elastic moduli, as
observed in [27,29], while it has very recently been argued that the moduli have a power-law
tail due to localized modes [30]. We expect that these modes are created by local relaxation in
regions of an unstable Hessian. To rigorously predict the density of small-frequency localized
modes in large systems, and their potential modifications to elastic moduli fluctuations, future
work should thus add local stability as a remaining feature to the model.

In addition, we have assumed for simplicity that the initial pre-quenched liquid state has
homogenous short-time elastic constants. It would be useful and relevant to allow these to
have short-range Gaussian fluctuations, which will be transformed under the quench and may
alter the elastic properties of the glass.
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A Derivation of stress correlations

Here we show how to derive the distribution of the inherent stress field. In particular we show
that our model predicts the observed long-range stress correlations, and moreover connects
the magnitude of these correlations to the coefficients controlling vibrational properties. We
use · to denote a disorder average, not to be confused with the Grassmann-conjugation defined
elsewhere.

The distribution of σ is

P[σ] =
∏

i j

δ
�

σi j −Pi jklσ̃kl

�

=

∫

D τ̂exp

¨

i

∫

q
τi j(q)

�

σi j(q)−Pi jkl(q)σ̃kl(q)
�

«

=

∫

D τ̂exp

�

i

∫

q
τi j(q)σi j(q)

�

exp

�

−i

∫

q
τi j(q)Pi jkl(q)σ̃kl(q)

�

=

∫

D τ̂exp

�

i

∫

q
τi j(q)σi j(q)

�

exp

�

−
∫

q
τi j(q)P

′
i jkl(q)τkl(−q)

�

,
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where

P ′
i jkl(q) = b1

�

2µ
1+ 2µ

�2

PT
i j P

T
kl +

b2

2
PT

ikPT
jl +

b2

2
PT

il P
T

jk +
b2

(1+ 2µ)2
PT

i j P
T

kl

≡ b′1PT
i j P

T
kl +

b2

2

�

PT
ikPT

jl + PT
il P

T
jk

�

,

and the inverse tensor K−1
klmn = b1δklδmn + b2δkmδln is determined by the relation

Ki jkl K
−1
klmn = δimδ jn. Then we have

b1 = −
1

ds1s2

�

s2 −
s1

d

�

,

b2 =
1
s1

.

Since P ′
i jkl(q)qi = P ′

i jkl(q)qk = 0, it is useful to perform a tensorial Helmholtz de-
composition. We change the variable as τi j(q) = −iqiφ j(q) − iq jφi(q) + Ψi j(q), where
qiΨi j(q) = q jΨi j(q) = 0.

Thus, we have

P[σ] =
∫

DφDΨ exp

¨

i

∫

q

�

−iqiφ j(q)− iq jφi(q) +Ψi j(q)
�

σi j(q)

−
∫

q
Ψi j(q)P

′
i jkl(q)Ψkl(−q)

«

=

∫

DφDΨ exp

�

i

∫

r
∂iφ j(r)

�

σi j(r) +σ ji(r)
�

−
∫

q

�

Ψi j(q)P
′
i jkl(q)Ψkl(−q)− iΨi j(q)σi j(q)

�

«

.

Decomposing Ψ and σ as Ψ = (Ψ+ΨT )/2+(Ψ−ΨT )/2= ΨS +ΨA and σ = σS +σA, we have

P[σ] = δ
�

σi j(r)−σ ji(r)
�

δ
�

∂iσi j(r)
�

×

×
∫

DΨS exp

¨

−
∫

q

�

ΨS
i j(q)P

′
i jkl(q)Ψ

S
kl(−q)− iΨS

i j(q)σi j(q)
�

«

≡ δ
�

σi j(r)−σ ji(r)
�

δ
�

∂iσi j(r)
�

PS[σ] .

The δ−functions here are exactly the equations of mechanical equilibrium. The remaining
symmetric part PS[σ] further simplifies to

PS[σ] =

∫

DΨS exp

¨

−
∫

q

�

ΨS
i j(q)

�

b′1δi jδkl + b2δikδ jl

�

ΨS
kl(−q)− iΨS

i j(q)σi j(q)
�

«

,

where we used qiΨ
S
i j(q) = 0.

In d = 2, setting ΨS
i j(q) = −εikε jlqkqlψ(q), we have

PS[σ] =

∫

Dψexp

¨

−
∫

q

�

εimε jnεkpεlq

�

b′1δi jδkl + b2δikδ jl

�

qmqnqpqqψ(q)ψ(−q)

+iεikε jlqkqlσi j(q)ψ(q)
�

�

=

∫

Dψexp

¨

−
∫

q

�

(b′1 + b2)q
4ψ(q)ψ(−q) + iεikε jlqkqlσi j(q)ψ(q)

�

«

.
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To match the notation of [40,41], we set 1/2η̃= b′1 + b2. Thus,

PS[σ] =

∫

Dψexp

¨

−
η̃−1

2

∫

q
q4
�

ψ(q) + iεikε jl q̂kq̂lq
−2η̃σi j(q)

�

×

×
�

ψ(−q) + iεmpεnqq̂pq̂qq−2η̃σmn(−q)
�

−
η̃

2

∫

q
εikε jl q̂kq̂lσi j(q)εmpεnqq̂pq̂qσmn(−q)

«

=
1
Zσ

exp

�

−
η̃

2

∫

q
εikε jl q̂kq̂lσi j(q)εmpεnqq̂pq̂qσmn(−q)

�

=
1
Zσ

exp

�

−
η̃

2

∫

r
tr2σ(r)

�

,

where Zσ is the normalization constant and we used qiσi j(q) = 0. The coefficient η̃ is given
by

η̃=
(1+ 2µ)2

2{4µ2 b1 + [1+ (1+ 2µ)2]b2}
.

In d = 3 the computations are similar. The relevant tensorial Helmholtz decomposition is
discussed in [40].

B Derivation of elastic moduli fluctuations

B.0.1 Bulk modulus

Here, we derive fluctuations in bulk modulus. The fluctuating part of Si jkl reads

δSi jkl = (Si jklmn +Pikmnδ jl)σ̃mn .

When we consider a homogeneous bulk deformation εkl = εδkl/d, the pressure fluctuation is

δp =
1
d
δSiiklεkl =

1
d2
δSiikkε .

Thus, the bulk modulus fluctuation is

δK = δp/ε =
1
d2
(Siikkmn +Pikmnδik)σ̃mn

= −
1
d2

�

[4+ 5c(d − 1)]q̂mq̂n + PT
mn

	

σ̃mn ≡Kmnσ̃mn .

The probability distribution function of δK can be written as

P[δK] = δ[δK −K : σ̂]

=

∫

Dτexp

¨

i

∫

q
τ(−q)[δK(q)− K̂ (q) : σ̂(q)]

«

=

∫

Dτexp

�

i

∫

q
τ(−q)δK(q)

�

exp

¨

−2

∫

q
τ(q)τ(−q)K̂ (q) : K−1 : K̂ (−q)

«

.
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Using the definition of K̂ , we have

Ki j(q)K
−1
i jklKkl(−q) =

1
d4

�

b1[4+ (5c + 1)(d − 1)]2 + b2[4+ 5c(d − 1)]2 + b2(d − 1)
	

≡
Kµ,d

4β
.

Finally, we obtain

P[δK] =
1
ZK

exp

�

−
β

2Kµ,d

∫

r
δK(r)2

�

.

Thus, the correlation of the bulk modulus is

〈δK(r)δK(0)〉=
1

2β
Kµ,dδ(r) .

This is always short range.

B.0.2 Shear modulus

The shear modulus fluctuation is

δµ=
1

(d + 2)(d − 1)

�

Si ji jmn −
1
d

Siikkmn +Piimnδ j j −
1
d

Pikmnδik

�

σ̃mn ≡Mmnσ̃mn ,

(B.1)

where

(d + 2)d(d − 1)Mmn = −[(d − 1)(d2 − 2d − 5)c + 2(d2 + d − 2)]q̂mq̂n + (d
2 + 1)PT

mn .

As in the case of δK , the probability distribution of δµ is

P[δµ] = δ(δµ−M : ˆ̃σ)

=

∫

Dτexp

�

i

∫

q
τ(−q)δµ(q)

�

exp

�

−2

∫

q
τ(q)τ(−q)M (q) : K−1 : M (−q)

�

.

Performing the contractions of M , we have

β(d + 2)2d2(d − 1)2M (q) : K−1 : M (−q)

= β b1{[(d − 1)(d2 − 2d − 5)c + 2(d2 + d − 2)] + (d2 + 1)(d − 1)}2

+ β b2[(d − 1)(d2 − 2d − 5)c + 2(d2 + d − 2)]2 + β b2(d
2 + 1)2(d − 1)

≡
1
4
(d + 2)2d2(d − 1)2Mµ,d .

Thus,

P[δµ] =
1

ZM
exp

�

−
β

2Mµ,d

∫

r
δµ(r)2

�

.

Thus, the correlation function is

〈δµ(r)δµ(0)〉=
1

2β
Mµ,dδ(r) .

The results of δK and δµ are consistent with the numerical observation of ordinary glasses,
where indeed these moduli have short-range correlations.
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C Derivation of Effective medium theory

Here we derive the effective medium theory. We will eventually need the following relations:










Ve f mn = Vf emn = Ve f nm = Vmne f

Veemn = 2(1− c)q̂mq̂n

Ve f mm = Ve f mnq̂mq̂n = 2(1− c)q̂eq̂ f

. (C.1)

We have
�

ÂE(ω) +∆Â(ω)
�

· ~u= ~F0δ(~r) , (C.2)

where ÂE
il(ω) = −ρω

2δil − SE
i jkl∂ j∂k and ∆Ail(ω) = −∂ j∆Si jkl∂k. In Fourier space, the left

hand side of (C.2) is

�

AE
il(ω) +∆Ail(ω)

�

∫

q
ei~q·~rul(~q)

=

∫

q
ei~q·~r

�

(−ρω2δil + SE
i jklq jqk) + [qkq j∆Si jkl − iqk(∂ j∆Si jkl)]

�

ul(~q)

≡
∫

q
ei~q·~r �AE

il(~q) +∆Ail(~q;~r)
�

ul(~q) .

Then, (C.2) is written as

~u(~q) = ĜE(~q) · ~F0 −
∫

r,q′
e−i(~q−~q ′)·~r ĜE(~q) ·∆Â(~q ′;~r) · ~u(~q ′) ,

where ĜE(~q) = ÂE(~q)−1 is the effective disorder-averaged Green’s function. Solving this equa-
tion by iteration, we obtain

~u(~q1) = ĜE(~q1) · ~F0 +

∫

r1,q2

e−i(~q1−~q2)·~r1 ĜE(~q1) ·
�

−∆Â(~q2;~r1)
�

· (ĜE(~q2)) · ~F0

+

∫

r1,r2,q2,q3

e−i(~q1−~q2)·~r1−i(~q2−~q3)·~r2 ĜE(~q1) ·
�

−∆Â(~q2;~r1)
�

· ĜE(~q2) ·
�

−∆Â(~q3;~r2)
�

· ĜE(~q3) · ~F0 + · · ·

= ĜE(~q1) · ~F0 +
∞
∑

n=1

∫

r1,··· ,rn
q2,··· ,qn+1

e−i(~q1−~q2)·~r1−···−i(~qn−~qn+1)·~rn ĜE(~q1) ×

� n
∏

m=1

�

−∆Â(~qm+1;~rm)
�

· ĜE(~qm+1)

�

· ~F0

≡ ĜE(~q1) · ~F0 +
∞
∑

n=1

Ân · ~F0 . (C.3)

So far our manipulations are exact. The term of order n in this expansion is a contribution
to response from scattering across disorder at n sites ~r1, . . . ,~rn. To motivate the coherent
potential approximation, consider the case when there is only a single defect in the medium:
∆Â(~qm+1;~rm) =

˜̂A(~qm+1)δ(~rm − ~r0). In that case all the ~ri integrals can be done immediately
and we have

Ân =

∫

q2,··· ,qn+1

e−i(~q1−~qn+1)·~r0 ĜE(~q1) ·

� n
∏

m=1

�

− ˜̂A(~qm+1)
�

· ĜE(~qm+1)

�

= −
∫

qn+1

e−i(~q1−~qn+1)·~r0 ĜE(~q1) ·
�

−
∫

k

˜̂A(~k) · ĜE(~k)

�n−1

· ˜̂A(~qn+1) · ĜE(~qn+1) , single-defect.
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This leads to a contribution to the response from scattering n times off the defect.
Now, for a general∆Â, there are also contributions from scattering off multiple defects. In

the coherent potential approximation, these are neglected. We first write, exactly,

Ân =

∫

r1,··· ,rn
q2,··· ,qn+1

e−i
∑n

m=1(~qm−~qm+1)·~rm vn−1
n−1
∏

m=1

�

v−1 −δ(~rm − ~rm+1) +δ(~rm − ~rm+1)
�

ĜE(~q1) ·

� n
∏

m=1

�

−∆Â(~qm+1;~rm)
�

· ĜE(~qm+1)

�

.

A constant v, with units of volume, has been inserted. If v is the correlation volume of the
disorder, then the term v−1 − δ(~rm − ~rm+1) will average to zero, typically, since when one of
the position coordinates is integrated out, the δ−function equates the disorder between the
two defects, and the first term, by definition, picks up a contribution of the correlation volume.
Thus the CPA is generated by neglecting the terms v−1 − δ(~rm − ~rm+1). The above procedure
mimics the T-matrix construction used in lattice models [16,53,54].

Then

Ân =

∫

r1,··· ,rn
q2,··· ,qn+1

e−i
∑n

m=1(~qm−~qm+1)·~rm vn−1
n−1
∏

m=1

δ(~rm − ~rm+1)

ĜE(~q1) ·

� n
∏

m=1

�

−∆Â(~qm+1;~rm)
�

· ĜE(~qm+1)

�

+ · · ·

=

∫

r1,q2,··· ,qn+1

e−i(~q1−~qn+1)·~r1 vn−1ĜE(~q1) ·

� n
∏

m=1

�

−∆Â(~qm+1;~r1)
�

· ĜE(~qm+1)

�

+ · · ·

= −
∫

r,q′
e−i(~q1−~q ′)·~r ĜE(~q1) ·

�

−v

∫

k
∆Â(~k;~r) · ĜE(~k)

�n−1

·∆Â(~q ′;~r) · ĜE(~q ′) + · · · .

This expression is seen to be a generalization of the single-defect form above. When we
neglect higher order terms, (C.3) simplifies to

~u(~q)' ĜE(~q) ·

�

1−
∫

r,q′
e−i(~q−~q ′)·~r

∞
∑

n=1

�

−v

∫

k
∆Â(~k;~r) · ĜE(~k)

�n−1

·∆Â(~q ′;~r) · ĜE(~q ′)

�

· ~F0

= ĜE(~q) ·

�

1−
∫

r,q′
e−i(~q−~q ′)·~r

�

1+ v

∫

k
∆Â(~k;~r) · ĜE(~k)

�−1

·∆Â(~q ′;~r) · ĜE(~q ′)

�

· ~F0 .

Thus, the total Green’s function is written as

Ĝ(~q) = ĜE(~q)− ĜE(~q) ·
∫

r,q′
e−i(~q−~q ′)·~r

�

1+ v

∫

k
∆Â(~k;~r) · ĜE(~k)

�−1

·∆Â(~q ′;~r) · ĜE(~q ′) . (C.4)

When we take the disorder average, Â(~k;~r) and Â(~q ′;~r) in the second term no longer depend
on ~r. Thus,

Ĝ(~q) = ĜE(~q)− ĜE(~q) ·
∫

r,q′
e−i(~q−~q ′)·~r

�

1+ v

∫

k
∆Â(~k;~r) · ĜE(~k)

�−1

·∆Â(~q ′;~r) · ĜE(~q ′)

(C.5)

= ĜE(~q)− ĜE(~q) ·
�

1+ v

∫

k
∆Â(~k;~r) · ĜE(~k)

�−1

·∆Â(~q;~r) · ĜE(~q) . (C.6)
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When we assume that the disorder average of the total Green’s function can be written as

Ĝ(~q) = GT (q)PT + GL(q)q̂q̂, we have

(d − 1)GT (q) = (d − 1)GE
T (q)− GE

T (~q)
2tr

(

�

1+ v

∫

k
∆Â(~k;~r) · ĜE(~k)

�−1

·∆Â(~q;~r) · PT

)

and

GL(q) = GE
L (q)− GE

L (~q)
2tr

(

�

1+ v

∫

k
∆Â(~k;~r) · ĜE(~k)

�−1

·∆Â(~q;~r) · q̂q̂

)

.

We assume that the disorder average of the total Green’s function is equal to ĜE(~r) under the
effective medium approximation. Thus, we have two equations:

tr

(

�

1+ v

∫

k
∆Â(~k;~r) · ĜE(~k)

�−1

·∆Â(~q;~r) · PT

)

= 0 , (C.7)

tr

(

�

1+ v

∫

k
∆Â(~k;~r) · ĜE(~k)

�−1

·∆Â(~q;~r) · q̂q̂

)

= 0 . (C.8)

To continue, we use an identity for a matrix X with a parameter z

d
dz

logdet X = tr
�

X−1 ·
d
dz

X
�

.

From this, we have

δ

δJα(q)
logdet

�

1+ v

∫

k
∆Â(~k;~r ′) ·

�

(GE
α + Jα)P

α
�

��

�

�

�

Jα=0

= vtr

¨

�

1+ v

∫

k
∆Â(~k;~r ′) · GE

α(~k)P
α

�−1

·∆Â(~q;~r) · Pα
«

,

where α = T or L, and P̂ L = q̂q̂. Using this identity, (C.7) and (C.8) can be expressed by a
single equation

0=
δ

δJα(q)
logdet

�

1+ v

∫

k
∆Â(~k;~r) · (GE

α + Jα)Pα
��

�

�

�

Ĵ=0

=
δ

δJα(q)
lim
n→0

1
n

�

det n

�

1+ v

∫

k
∆Â(~k;~r) · (GE

α + Jα)Pα
�

− 1

��

�

�

�

Ĵ=0

=
δ

δJα(q)
lim
n→0

1
n

det n

�

1+ v

∫

k
∆Â(~k;~r) · (GE

α + Jα)Pα
�

�

�

�

�

�

Ĵ=0

. (C.9)

To express this determinant by a Gaussian integral, we will use anticommuting Grassmann
variables, satisfying

θiθ j = −θ jθi .

All our notations and definitions follow [55]. We introduce a second set of variables θ i , anti-
commuting with the θi , but independent. The key identity is

det M =

∫

∏

i

dθidθ ie
Mi jθ iθ j .
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Importantly, these identities hold for arbitrary non-singular M . Using this identity, the gener-
ating functional in (C.9) can be rewritten as

Wn[J] = det n

�

1+ v

∫

k
∆Â(~q;~r) · (GE

α + Jα)P
α

�

=

∫

DθDθ exp

¨

�

1+ v

∫

k
∆Â(~q;~r) · (GE

α + Jα)P
α

�

i j

θ
a
i θ

a
j

«

, (C.10)

where a = 1, . . . , n is the replica index.

C.0.1 Evaluation of Wn[J]

∆Â(~q;~r) is written as

∆Ail(~q;~r) = −SE
i jklqkq j + (qkq j − iqk∂ j)Si jkl

= ρω2δil − SE
i jklqkq j −ρω2δil +

∫

q′
ei~q ′·~r(q j + q′j)qkSi jkl(~q

′)

= −AE
il(~q)−ρω

2δil +

∫

q′
ei~q ′·~r(q j + q′j)qkSi jkl(~q

′) .

Thus, the exponent in (C.10) is
�

1+ v

∫

q
∆Â(~q;~r) · (GE

α + Jα)P
α

�

i j

= δi j − v

∫

q

�

AE
il(~q) +ρω

2δil

�

(GE
α + Jα)P

α
l j(~q)

+ v

∫

q,q′
ei~q ′·~r(qm + q′m)qkSimkl(~q

′)(GE
α + Jα)P

α
l j(~q)

= δi j

�

1− v
�

1−
1
d

�

µE IT −
v
d
(λE + 2µE)IL

�

+ v

∫

q
qkql

�

(GE
T + JT )P

T
mj(~q) + (G

E
L + JL)q̂mq̂ j

�

∫

q′
ei~q ′·~rSiklm(~q

′)

= δi j

�

1− v
�

1−
1
d

�

µE IT −
v
d
(λE + 2µE)IL

�

+ v

�

1
d
δklδmj IT +

∫

q
q2(GE

L + JL − GE
T − JT )q̂kq̂l q̂mq̂ j

�

∫

q′
ei~q ′·~rSiklm(~q

′) , (C.11)

where Iα =
∫

q q2(GE
α + Jα). We used the fact that GE

α(q) and Jα(q) only depend on q = |~q| and
∫

q f (q)q̂i q̂ j = δi j

∫

q f (q)/d, where f (q) = GE
α(q) or Jα(q). We can rewrite the integral

∫

q
q2(GE

L + JL − GE
T − JT )q̂kq̂l q̂mq̂ j = a(δklδmj +δkmδl j +δlmδk j) ,

since the integrands depend on |~q| only, and the tensorial part is completely symmetric. But
by taking a contraction, we see

∫

q
q2(GE

L + JL − GE
T − JT )q̂i q̂i q̂ j q̂ j = a(d2 + d + d) ,
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which fixes the value of a. Then (C.11) becomes

δi j

�

1− v
�

1−
1
d

�

µE IT −
v
d
(λE + 2µE)IL

�

+
v

d(d + 2)

�

Aδklδmj + B(δkmδl j +δlmδk j)
�

∫

q′
ei~q ′·~rSiklm(~q

′)

= δi j C̃ +
v

d(d + 2)
×

×
∫

q′
ei~q ′·~r �A(Sikk jmn +Pikmnδk j) + B(Sik jkmn +Pi jmnδkk +Si jkkmn +Pikmnδ jk)

�

σmn ,

(C.12)

where A= (d + 1)IT + IL , B = IL − IT , and

C̃ = 1+ v
�

1−
1
d

�

(µ−µE)IT +
v
d
(1+ 2µ−λE − 2µE)IL .

We next need to perform the contractions of S and P in (C.12). To this end, we simplify (8)
and (9). Using (C.1), we have

PT
jmPT

ln + PT
jnPT

lm − 2cPT
jl q̂mq̂n = −Vjlmn +δ jmδln +δ jnδlm − 2cδ jl q̂mq̂n .

Thus, the tensor S +Pδ simplifies to

Si jklmn +Pikmnδ jl =−
1

2(1− c)
[2c(δi jδkeδl f +δklδieδ j f )

+ (1− c)(2δikδ jeδl f +δ jlδieδk f +δilδ jeδk f +δ jkδieδl f )]Ve f mn

+ 1
2δik(δ jmδln +δ jnδlm − 2cδ jl q̂mq̂n) .

Using this, the contractions in (C.12) are evaluated as follows:

Sikk jmn +Pikmnδk j = −
1
2(d + 2cr − 1)Vi jmn +

1
2(δimδ jn +δinδ jm − 2δi j q̂mq̂n) , (C.13)

Sik jkmn +Pi jmnδkk = −
1
2(d + 2cr − 2)Vi jmn +δi j[δmn − (cd + 2(1− c))q̂mq̂n] , (C.14)

Si jkkmn +Pikmnδ jk = −
1
2 ((cr − 2)d + 5)Vi jmn +

1
2(δ jmδin +δ jnδim − 6cδi j q̂mq̂n) . (C.15)

For later convenience, we further consider two contractions here. The first one is

A(Sikk jmm +Pikmmδk j) + B(Sik jkmm +Pi jmmδkk +Si jkkmm +Pikmmδ jk)

= −
2
cr
{[d2 + (cr + 1)d − 4]IT + (cr d + 4cr + 2)IL}q̂i q̂ j +

2
cr
(d − cr + 1)(−IT + IL)δi j . (C.16)

The second one is

Vi jmnVklmn = 2Vi jkl − 4c(1− c)q̂i q̂ j q̂kq̂l . (C.17)

C.0.2 Disorder average

From the results of the previous sections, we can write

Wn[J] =

∫

DθDθ eC̃θ
a
i θ

a
i exp

¨

∫

q
ei~q·~rXmnσ̃mn

«

,
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where

Xmn = v[A(Sikk jmn +Pikmnδk j

+ B(Sik jkmn +Pi jmnδkk +Si jkkmn +Pikmnδ jk)]θ
a
i θ

a
j /d(d + 2) . (C.18)

Averaging out σ̃, we obtain

Wn[J] =

∫

DθDθ eC̃θ
a
i θ

a
i exp

�

∫

q
X (~q) : K−1 : X (−~q)

�

=

∫

DθDθ eC̃θ
a
i θ

a
i exp

�

∫

q
b1(Xmm)

2 + b2(X
2)mm

�

. (C.19)

Using (C.16), the term proportional to b1 is

b1

∫

q
(Xmm)

2 =
b1v

d3(d + 2)3c2
r
θ

a
i θ

a
j θ

b
kθ

b
l [P(δikδ jl +δilδ jk) +Qδi jδkl] ,

where

P =4{[d2 + (cr + 1)d − 4]IT + (cr d + 4cr + 2)IL}2 (C.20)

Q =4{[2(d2 + 2d − 1− cr)IT − (d2 + (3− 2cr)d − 6cr)IL]
2

− 2(d + 2)(d − cr + 1)2(IT − IL)
2} . (C.21)

From (C.13), (C.14), and (C.15), we can set

ASikk jmn + B(Sik jkmn +Si jkkmn)

= −1
2{[d

2 + (cr + 1)d − 4]IT + (cr d + 4cr + 2)IL}Vi jmn +
1
2(dIT + 2IL)(δimδ jn +δinδ jm)

+ (IL − IT )δi jδmn −
1
cr
{2(d − cr + 1)IT + [(cr − 2)d + 4cr − 2]IL}δi j q̂mq̂n

= X Vi jmn + Y (δimδ jn +δinδ jm) + Zδi jδmn +Wδi j q̂mq̂n .

The second term of the integrand in (C.19) is given by

b2

∫

q
(X 2)mm =

b2v2

d2(d + 2)2
θ

a
i θ

a
j θ

b
kθ

b
l

∫

q
[X Vi jmn + Y (δimδ jn +δinδ jm)

+ Zδi jδmn +Wδi j q̂mq̂n]

[X Vklmn + Y (δkmδln +δknδlm) + Zδklδmn +Wδkl q̂mq̂n] .

The integrand is

[X Vi jmn + Y (δimδ jn +δinδ jm) + Zδi jδmn +Wδi j q̂mq̂n]

[X Vklmn + Y (δkmδln +δknδlm) + Zδklδmn +Wδkl q̂mq̂n]

= 2X (X + 2Y )Vi jkl − 4c(1− c)X 2q̂i q̂ j q̂kq̂l + 2[(1− c)X (Z +W ) + Y W ](q̂i q̂ jδkl +δi j q̂kq̂l)

+ 2Y 2(δikδ jl +δilδ jk) + (4Y Z + dZ2 + 2ZW +W 2)δi jδkl .

Integrating this, we obtain
∫

q
[X Vi jmn + Y (δimδ jn +δinδ jm) + Zδi jδmn +Wδi j q̂mq̂n]

[X Vklmn + Y (δkmδln +δknδlm) + Zδklδmn +Wδkl q̂mq̂n]

=
1

vd(d + 2)c2
r
[R(δikδ jl +δilδ jk) + Sδi jδkl] ,
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where

R= d(d + 2)c2
r

�

2Y 2 +
1
d

4X (X + 2Y )−
4c(1− c)X 2

d(d + 2)
−

4(1+ c)X (X + 2Y )
d(d + 2)

�

, (C.22)

S = d(d + 2)c2
r

§

4
d
[(1− c)X (Z +W ) + Y W ] + (4Y Z + dZ2 + 2ZW +W 2)

−
4(1+ c)X (X + 2Y ) + 4c(1− c)X 2

d(d + 2)

�

. (C.23)

From (C.20), (C.21), (C.22), and (C.23), we obtain

Wn[J] =

∫

DθDθ eC̃θ
a
i θ

a
i exp

�∫

k′
b1(Xmm)

2 + b2(X
2)mm

�

=

∫

DθDθ eC̃θ
a
i θ

a
i

exp

�

v
d3(d + 2)3c2

r
[(b1Q+ b2S)θ

a
i θ

a
i θ

b
j θ

b
j + (b1P + b2R)(θ

a
i θ

a
j θ

b
i θ

b
j + θ

a
i θ

a
j θ

b
j θ

b
i )]

�

= C̃dn

∫

DθDθ eθ
a
i θ

a
i

exp

�

v
d3(d + 2)3c2

r

�

A′

C̃2
θ

a
i θ

a
i θ

b
j θ

b
j +

B′

C̃2
(θ

a
i θ

a
j θ

b
i θ

b
j + θ

a
i θ

a
j θ

b
j θ

b
i )
�

�

,

where we changed the Grassmann variables as θ ,θ → θ/
p

C̃ ,θ/
p

C̃ , and

A′ = −
16

(−1+ c)4
{b1(−1+ c)2[(−35+ 2c + c2)I2

L − 2(−17+ 8c + c2)IL IT + 8(−1+ c)I2
T ]

+ b2[(1+ 66c − 38c2 + 2c3 + c4)I2
L − 2(5+ 14c − 26c2 + 6c3 + c4)IL IT

+ 4(−1+ c)2(1+ c)I2
T ]} −

8d
(−1+ c)4

×

× {b1(−1+ c)2[(−15− 34c + 5c2)I2
L − 4(9− 15c + 4c2)IL IT + (21− 30c + 13c2)I2

T ]

+ b2[(−13+ 66c + 8c2 − 34c3 + 5c4)I2
L − 4(2− 27c + 32c2 − 19c3 + 4c4)IL IT

+ (−1− 42c + 84c2 − 54c3 + 13c4)I2
T ]}

+
4d2

(−1+ c)4
{b1(−1+ c)2[(−23+ 38c + c2)I2

L − 4(−17+ 16c + c2)IL IT + 8(−1+ c)I2
T ]

+ b2[(13− 2c − 58c2 + 38c3 + c4)I2
L − 4(−5+ 43c − 50c2 + 15c3 + c4)IL IT

+ 4(1− 5c + c2 + c3)I2
T ]}

+
d3

(−1+ c)3
{8b1(−1+ c)2[2(1+ c)I2

L − 8cIL IT + 7(−1+ c)I2
T ]

+ 4b2[(−1− 7c + 4c2 + 4c3)I2
L − 8(1− 2c − 2c2 + 2c3)IL IT

+ (−5+ 41c − 42c2 + 14c3)I2
T ]}

+
4d4

(−1+ c)2
{b1(−1+ c)2(IL − 2IT )

2 + b2[c
2(IL − 2IT )

2 + 4c(IL − 2IT )IT + 2I2
T ]} (C.24)
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and

B′ =
16

(−1+ c)2
[(−5+ c)IL − 2(−1+ c)IT ][b1(−5+ c)IL − 2b1(−1+ c)IT + b2(−3+ c)IL

− 2b2(−1+ c)IT ]

+
16d

(−1+ c)4
{b1(−1+ c)2[−2(−5+ c)I2

L + (11− 4c + c2)IL IT − 2(3− 4c + c2)I2
T ]

+ b2[−2(−12+ 9c − 6c2 + c3)I2
L + (−13+ 8c + 8c2 − 4c3 + c4)IL IT

− 2(−3+ c)(−1+ c)2cI2
T ]}

+
4d2

(−1+ c)4
{b1(−1+ c)2[4I2

L + 4(8− 7c + c2)IL IT + (1+ 10c − 7c2)I2
T ]

+ b2[2(19− 6c + 3c2)I2
L + 4(10− 14c + 19c2 − 8c3 + c4)IL IT

+ (−21+ 38c − 36c2 + 26c3 − 7c4)I2
T ]}

+
8d3

(−1+ c)4
{b1(−1+ c)3 IT [−2IL + (−3+ c)IT ]

+ b2[2I2
L + (15− 16c + 7c2 − 2c3)IL IT + c(1+ 5c − 5c2 + c3)I2

T ]}

+
2d4

(−1+ c)3
IT [2b1(−1+ c)3 IT − 8b2 IL + b2(−11+ 7c − 6c2 + 2c3)IT ]

+
4d5

(−1+ c)2
b2 I2

T . (C.25)

Using these results, we can further simplify Wn[J] as follows:

Wn[J] = C̃dn

∫

DθDθ eθ
a
i θ

a
i exp[Ãθ

a
i θ

a
i θ

b
j θ

b
j + B̃(θ

a
i θ

a
j θ

b
i θ

b
j + θ

a
i θ

a
j θ

b
j θ

b
i )]

= C̃dn
∑

m=0

Ãm

m!

∫

DθDθ (θ
a
i θ

a
i )

2meθ
a
i θ

a
i exp[B̃(θ

a
i θ

a
j θ

b
i θ

b
j + θ

a
i θ

a
j θ

b
j θ

b
i )]

= C̃dn
∑

m=0

Ãm

m!

∫

DθDθ

�

d
d t

�2m

etθ
a
i θ

a
i

�

�

�

�

t=1
exp[B̃(θ

a
i θ

a
j θ

b
i θ

b
j + θ

a
i θ

a
j θ

b
j θ

b
i )]

= C̃dn eÃ d2

d t2

�

�

�

�

t=1

∫

DθDθ etθ
a
i θ

a
i exp[B̃(θ

a
i θ

a
j θ

b
i θ

b
j + θ

a
i θ

a
j θ

b
j θ

b
i )] ,

where Ã = vA′/d3(d + 2)3c2
r C̃2 and B̃ = vB′/d3(d + 2)3c2

r C̃2. By the Hubbard-Stratonovich
transformation, we obtain

∫

DθDθ etθ
a
i θ

a
i exp[B̃(θ

a
i θ

a
j θ

b
i θ

b
j + θ

a
i θ

a
j θ

b
j θ

b
i )] =

=

∫

Dse−si jsi j

∫

DθDθ exp
nh

tδi j +
p

2B̃(si j + s ji)
i

θ
a
i θ

a
j

o

=

=

∫

Dse−si jsi j det n
h

tδi j +
p

2B̃
�

si j + s ji

�

i

.
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Taking the limit of n→ 0, we have

lim
n→0

Wn[J]
n

= eÃ d2

d t2

�

�

�

�

t=1

∫

Dse−si jsi j lim
n→0

1
n

C̃dn
n

det n
h

tδi j +
p

2B̃(si j + s ji)
i

− 1
o

= eÃ d2

d t2

�

�

�

�

t=1

∫

Dse−si jsi j log det
h

t C̃δi j +
p

2C̃2B̃(si j + s ji)
i

= eÃ d2

d t2

�

�

�

�

t=1

∫

∏

i≤ j

�

ds′i j
p

2π
2d

�

e−trŜ′2/2 log det
�

t C̃ Î + 2
p

C̃2B̃Ŝ′
�

,

where Ŝ′ is a symmetric matrix. Diagonalizing this symmetric matrix, we obtain

lim
n→0

Wn[J]
n

= eÃ d2

d t2

�

�

�

�

t=1

∫

� d
∏

i=1

d x i

�

|Vd({x i})|e−
∑d

i=1 x2
i /2

d
∑

i=1

log
�

C̃ t + 2
p

C̃2B̃x i

�

,

where Vd({x i}) is the Vandermonde polynomial, and we ignored irrelevant coefficients. Using
the eigenvalue distribution ρ(x) of the Gaussian orthogonal ensemble (GOE), this integral
simplifies to

lim
n→0

Wn[J]
n

= eÃ d2

d t2

�

�

�

�

t=1

∫

d xρ(x) log
�

C̃ t + 2
p

C̃2B̃x
�

=

∫

d xρ(x)e
Ã

4B̃
d2

d x2 log
�

C̃ + 2
p

C̃2B̃x
�

=

∫

d x
�

e
Ã

4B̃
d2

d x2 ρ(x)
�

log
�

C̃ + 2
p

C̃2B̃x
�

.

C.0.3 Small-µ limit

To simplify (C.24) and (C.25), we assume µ� 1. When we assume µE = O(µ) and λE = O(1),
we see IT = O(µ−1) and IL = O(1), and hence we obtain I ′T = µIT = O(1). In this limit, we
have

A′ = −
2b2d2 I ′T

2

µ6
+O(µ−5) , (C.26)

B′ =
b2d3 I ′T

2

µ6
+O(µ−5) , (C.27)

C̃ = 1+ v
�

1−
1
d

�

�

1−
µE

µ

�

I ′T +
v
d
(1−λE)IL +O(µ) . (C.28)

Note that the relation A′ = −(2/d)B′ always holds when we ignore higher order terms. More-
over, in this limit, λE only enters in C̃ . Thus, we can easily obtain λE = 1+O(µ). As a result,
we have

lim
n→0

Wn[J]
n
'
∫

d x
�

e−
1

2d
d2

d x2 ρ(x)
�

log

�

1+
�

1−
1
d

�

�

1−
µE

µ

�

vI ′T +
p

evI ′T x

�

=

∫

d x
�

e−
1

2d
d2

d x2 ρ(x)
�

log

�

1
p

evI ′T
+

1
p

e

�

1−
1
d

�

�

1−
µE

µ

�

+ x

�

+ log I ′T ,

(C.29)
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where

e =
4b2

v(d + 2)3µ4
=

4
v(d + 2)3µ4s1

. (C.30)

The distribution κ(x)≡ e−
1

2d
d2

d x2 ρ(x) can be rewritten as a convolution of ρ(x) and a Gaussian

κ(x) =

∫

dl
2π

e
l2
2d e−il x

∫

d x ′eil x ′ρ(x ′)

=

∫

dl
2π

∫

d x ′e−l x ′ρ(x ′)e−
l2
2d el x

=

∫

d x ′ρ(x ′)
1

p

2π/d
exp

�

−
(x − x ′)2

2/d

�

. (C.31)

Differentiating (C.29) with respect to JT , the self-consistent equation for µE reads

vI ′T =

∫

d y
κ(x)

1
vI ′T
+
�

1− 1
d

�

(1− y) +
p

ex
, (C.32)

where y = µE/µ.
Before solving (C.32), we compare it with the EMT equation for spring networks. Further

transformations of (C.32) yields

0=

∫

d x
κ(x)

��

1− 1
d

� �

µE −µ
�

−
p

eµx
�

1− vIT

��

1− 1
d

�

(µE −µ)−
p

eµx
�

and

vIT = v

∫

q

q2

µEq2 −ρω2
=

1
µE

�

1+ρω2v

∫

q

1
µEq2 −ρω2

�

.

When we denote the variance of x by σ2
v , a new random variable µr ≡ µ+

p
eµx/(1− 1/d)

also follows the same distribution κ(x) with the mean µ and the variance eµ2σ2
v/(1− 1/d)2.

Thus, we have

0=

∫

dµrσ(µr)
µE −µr

1− µE−µr
µE

�

1− 1
d

�

�

1+ρω2v
∫

q
1

µEq2−ρω2

� . (C.33)

This is the same equation as the one in [16]. To emphasize the correspondence, we change
the notation as follows: µE → k‖ and µr → kα, and set trG (0,ω) = dv

∫

q
1

µEq2−ρω2 and
2d/z0 = 1− 1/d. Using these notations, we have

0=

∫

d xσ(kα)
k‖ − kα

1− k‖−kα
k‖

2d
z0

�

1+ ρω2

d trG (0,ω)
� . (C.34)

This is exactly the self-consistent equation of the standard EMT for a disordered spring. Thus,
the random variable x can be interpreted as a normalized space-dependent shear modulus.
This justifies previous studies of the EMT applied to simple spring networks and determine
the natural distribution κ(x) that the shear modulus of glasses follows, i.e., the convolution
of the Gaussian distribution and the GOE eigenvalue distribution, at least without stability
conditions.
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