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Abstract

The recent progress in engineering topological band structures in optical-lattice systems
makes it promising to study fractional Chern insulator states in these systems. Here we
consider a realistic finite system of a few repulsively interacting bosons on a square
lattice with magnetic flux and sharp edges, as it can be realized in quantum-gas micro-
scopes. We investigate under which conditions a fractional Chern insulator state corre-
sponding to the Laughlin-like state at filling ¥ = 1/2 can be stabilized and its fractional
excitations probed. Using numerical simulations, we find an incompressible bulk density
at the expected filling for systems, whose linear extent is as small as 6-8 sites. This is
a promising result, since such small systems are favorable with respect to the required
adiabatic state preparation. Moreover, we also see very clear signatures of excitations
with fractional charge in response both to static pinning potentials and dynamical flux
insertion. Since the compressible edges, which are found to feature chiral currents, can
serve as a reservoir, these observations are robust against changes in the total particle
number. Our results suggest that signatures of both a fractional Chern insulator state
and its fractional excitations can be found under realistic experimental conditions.
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1 Introduction

In recent years, we have seen tremendous progress in realizing artificial gauge fields and topo-
logically non-trivial band structures in systems of ultracold atoms [1-5]. This includes, the re-
alization of artificial magnetic fields [6-9] and spin-orbit coupling [10,11], the measurement
of the quantum anomalous Hall effect [12] and topological invariants [13-20], as well as the
observation of chiral edge currents [21-29]. Since atomic quantum gases in optical lattices are
highly controllable, especially allowing for the ability to manipulate and observe the system
with single-lattice-site resolution in the so-called quantum-gas microscopes [30-33], it is an
intriguing perspective to combine the realization of topologically non-trivial band structures
with strong interactions in these systems, for the purpose of stabilizing fractional Chern insu-
lator (FCI) states (i.e. the lattice analogues of fractional quantum Hall states) [34,35], as well
as to probe and manipulate individually their anyonic excitations.

As a paradigmatic model that describes a square lattice with homogeneous magnetic fluxes,
the Harper-Hofstadter (HH) model is known to exhibit topologically non-trivial bands [3, 36,
37]. In the presence of strong interactions, up to the limit of hard-core bosons, this system
is predicted to host FCI ground states [38-44]. Various realistic protocols were proposed for
both the detections of the FCI states [45-57], and their adiabatic preparations [57-68] (see
also Ref. [69] for rapid state preparation via magnetic flux ramps). Experimentally, the HH
model has been realized by using bosonic atoms in optical lattices [13, 70, 71]. Moreover, the
dynamics of two interacting particles has recently been investigated in a ladder geometry [25]
without encountering driving induced heating (see, e.g., [72]) on the experimental time scale.
These achievements suggest that it will be possible to stabilize and probe fractional Chern
insulator states of (at least a few) interacting bosons on a lattice in a quantum-gas microscope.

In this paper, we consider realistic system geometries with open boundary conditions with
a quarter of a flux quantum per plaquette. We focus on the regime, where a Laughlin-like
state at a filling of v = 1/2 particles per flux quantum is expected. Using numerical simula-
tions based on DMRG [73-77], we compute experimentally accessible quantities and explore
in which parameter regimes they show signatures of a FCI state. In particular, we (i) investi-
gate the minimal system sizes required to show homogeneous bulk behavior at the filling factor
expected for the FCI state, (ii) find that the edges serve as a reservoir for particles allowing for
variations of the total particle number, (iii) show that both static local pinning potentials and
dynamical flux insertion can be employed to probe charge fractionalization, and (iv) point out
that FCI behavior is robust against various parameter variations. Our results are complemen-
tary to those of the recent paper by Repellin et al. [50], which discusses FCI signatures in the
Hall drift and the density response to variations of the magnetic flux.
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2 Model

We consider strongly-interacting/hard-core bosons in a two-dimensional (2D) square lattice,
described by the Harper-Hofstadter-Hubbard model under Landau gauge:

A —ibnat n At N
H —Z (—Jxe l¢"am+1’nam,n —Jya, 1 Qmn t h.c.)
m,n
U, s .
+ E Z nm,n(nm,n - 1) + Z Wm,nnm,n . (1)
m,n m,n

Here d;’ ,(dm ) are the bosonic creation (annihilation) operators and #,, ,, = &jn’ 2am n are the
number operators on sites (m,n), with integer site indices m = 0,1,...,L, — 1 and
n=0,1,...,L, —1 along the directions x and y, respectively. They define a rectangular sys-
tem of L, x L, sites with open boundary conditions that will be occupied by N particles. The
hopping terms between nearest neighbors has the strength J,. (J y) in the x (y) direction. The
Peierls phase factors for the hoppings in x-direction give rise to a magnetic flux of ¢ = 27a per
plaquette. In this work, we mainly focus on a = 1/4 since the Harper-Hofstadter model with
this value has been readily realized in cold atom experiments [13,21,25,71]. Here h.c. refers
to the Hermtian conjugations. The Hubbard parameter U quantifies the on-site interactions
between the particles. In the following we assume hard-core bosons, where an infinitely large
positive value of U suppresses doubly occupied lattice sites completely (We have also checked
that qualitatively similar results are found for large values of U, as exemplified in Section
5). Finally, we also consider different on-site potentials W,, , that will be specified later. The
energies and angular frequencies will be measured in unit of J,, i.e. i=1and J, = 1.

3 Ground state properties

The Hofstadter model for single particles is a paradigmatic model that exhibits topological non-
trivial bands characterized by non-zero Chern numbers [3]. By introducing strong interactions
and partially filling the lowest band, the ground state is predicted to be a FCI state analogous
to a Laughlin state [38-41,43,45-50,65,66]. In this section, we explore signatures of v =1/2
FCI state which could be the ground state with flux @ = 1/4 in open boundary conditions and
W,.n = 0. For this purpose, we employ the DMRG algorithm from the TenPy library [77].

As a first experimentally observable quantity, we study the ground-state density
Npn = (fAy,n). We choose the particle number N which satisfies the half filling condition
N/Ng = v =1/2, where Ny, = a(L, —1)(L, —1) is the number of flux quanta piercing the
lattice. Note that for a finite system with open boundary conditions N, is noticeably differ-
ent from the value N’ = aL,L y found for periodic boundary conditions. The corresponding
incompressible FCI ground state is expected to feature a uniform density distribution in the
bulk, with an average density of p = av = 1/8 particles per site. In Fig. 1(a) we plot the
density distribution of a system with N = Ny /2 = 14 particles on 17 x 8 sites. We can observe
that this finite system features already a flat density distribution at the expected bulk density
p =1/8inits center. This can be seen more clearly also in the upper panel of Fig. 1(b), where
we plot the density n,, 5 along the central row (n = 3) versus the x-coordinate m. This is a
first indication of the expected incompressible behavior of the FCI state. Further evidence for
incompressibility is gathered when plotting the density also for different total particle numbers
in Fig. 1(b): While the density increases close to the boundary, the bulk remains at p = 1/8
for up to N = 16 particles. Thus, compressible boundaries serve as a reservoir for the center
of the system. For N > 17 or N < 10, we find noticeable density oscillations also in the cen-
ter, suggesting a break-down of the FCI state. This observation also confirms that we should,
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Figure 1: (a) Spatial density and current distributions of the ground state of hard-core
bosons in a lattice of size 17 x 8 with N = 14, a = 1/4 and J,, = 1. The magnitudes
of current in the white circle are zoomed in by a factor of 3 for a clear visualization.
(b) Densities (upper panel) of the middle row n = 3 and vertical currents (lower
panel) on the middle links connected by n = 3 and n = 4. The horizontal dashed
lines locates the expected p = 1/8 and j = 0. (c) Horizontal currents on the middle
bonds connected by m = 8 and m = 9. The legend is the same as that in (b). The
black circle is used to highlight that the currents with opposite chirality are almost
independent of N. (d) Imbalance in the n-th row Z, as a function of evolution time.

indeed, consider particle numbers N that are close to Ny /2 = 14, rather than ones close to
N, /2=17.

A second observable that we study is the particle current between neighboring sites. The
current leaving site (m, n) in positive x and y direction is given by the operators

% =ir(e9mal aper,—he), )
3 =11, (&), am e —hec), 3)

respectively, as can be confirmed by writing out the time derivative of n,, , [78]. We denote
their mean by j,?l,n = (]A,?ln) with n = x,y. Such currents have been measured recently in
systems of ultracold atoms in optical lattices [21]. The v = 1/2 FCI state is expected to
feature chiral edge currents in the presence of open boundary conditions. This behavior is also
confirmed in Fig. 1(a), where the currents are indicated by orange arrows, whose direction
and size indicate direction and magnitude of the current, respectively. In the lower panel of
Fig. 1(b), we plot the y current in the center (n = 3), j,}T'l,S, as a function of the x-coordinate
m. We can see that to a good approximation it vanishes in the center of the system, where we
also found signatures of incompressibility in the density distribution.

An interesting observation is that when moving inwards from the boundary to the bulk, the
chiral current not only decays in magnitude, but also reverses its sign in an oscillatory fashion.
In order to make this effect more visible, we have enlarged the size of the current arrows by a
factor of 3 inside the white ring in Fig. 1(a). It can also be seen in Fig. 1(c), where the typical
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currents jé , in center horizontal links (between the sites m = 8 and m = 9) are plotted versus
the y-coordinate n. For various particle numbers, it is a robust observation that the current
at the second row (n = 2) away from the boundary (n = 0) is opposite to the current at the
boundary. Another feature, which seems to be related to these edge current oscillations, is the
formation of current vortices around the plaquettes close to the corner. Similar behavior also
shows up in larger systems (see Appendix A).

The current can be measured in various ways [21, 79-86], for example, by suddenly iso-
lating two neighboring sites and subsequently observing the change of the density imbalance
in linear order with respect to time. It can also be inferred from the spatial density imbalance
7, in the n-th row of the system [45],

()= D tpa)= D nya(t), @

m<L,/2 m>L, /2

as it builds up with time after releasing a single particle from the center of that row. Such an
extra particle can be created by preparing the ground state of the system in the presence of
a large potential dip (V = —20) at site (m = 8, n), which is then suddenly switched off. The
time evolution of Z, for this scenario is plotted in Fig. 1(d). The change of the imbalance that
builds up for short times (t < 4) directly after the quench is consistent with the computed
ground state currents.

For the adiabatic preparation of FCI insulator states, it will be favorable to consider small
systems [65,66,87]. In order to estimate the minimal linear extent permitting the observations
of FCI signatures, we compute the ground state for systems of different widths L,. Keeping
L, =17 and a = 1/4 fixed and targeting the v = 1/2 state, the particle number is always
chosen as N = Ny = 2(L,, —1). For small L, the system can be viewed as a flux ladder, as
they were investigated recently in various experiments [20,22-29]. In this one-dimensional
(1D) limit the FCI states are predicted to be adiabatically connected to charge density waves
(CDW) [62,87-92]. The spatial density and probability current distributions are plotted in
Fig. 2(a). One can observe density oscillations are consistent with CDW behavior in the “bulk"
(i.e. the inner sites) for L, smaller than 5. When L, % 6, a homogeneous bulk density is
formed at the filling of p = 1/8 particles per site expected for the FCI state. In order to
quantify this statement we plot the mean [Fig. 2(b) ] and standard deviation [Fig. 2(c)] of the
density n,, ,, averaged over the central sites (m = 4,...8) of the middle row (e.g. n = 2 for
L, = 5). One can clearly see that the filling approaches 1/8 for L, X 6 and the standard
deviation becomes (very) small for L, Z 6 (8). This suggests that a linear extent of 6 to 8
lattice sites should be sufficient to observe FCI bulk behaviour.

4 Fractional excitations via pinning potentials

In this section, we investigate signatures of charge fractionalization. In order to probe the
fractional “charge” of 1/2 and —1/2 of the anyonic quasiparticle (QP) and quasihole (QH)
excitations of the v = 1/2 FCI, we compute the ground state of the system in the presence of
local potential dips and bumps of strength —V and V (to be specified below) by setting the cor-
responding local potential terms W, ,,. These lower the energy of localized quasiparticle and
quasihole excitations, respectively, so that above a threshold value of V, we expect an excited
state with such excitations to become the new ground state of the system. Such pinned exci-
tations have been used to estimate the spatial extent of QHs in various FCI models [47,93,94]
and also for extracting their anyonic statistics [48,95-99]. For probing the fractional charge
of the excitations, we will compare the ground-state density distribution of the system with
and without such pinning potentials. As a signature of the formation of the FCI, we expect the
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Figure 2: (a) Density and current patterns in the ground state for increasing values
of the vertical extent L, show a crossover from CDW to FCI behavior. The mean
(b) and the standard deviation (c) of the particle number density on the middle row
with m from 4 to 12. Other parameters are v =1/2, a =1/4,J, =1, L, =17 and
N =2(L, —1) in the hard-core limit.

particle number in the vicinity of these local defects to change in steps of the fractional charge
1/2. The results presented here extend an earlier study based on exact diagonalization [46],
which was limited to rather small systems of 4 particles only. We will see that not only the
expected fractional charges can be observed very clearly, but also that this behaviour is robust
against the variation of various system parameters, like the magnetic flux, the particle number,
or a tunneling anisotropy. These results are very promising regarding a possible experimental
observation of charge fractionalization in FCIs.

In the first set of simulations, we consider systems with a = 1/4 and a horizontal extent
of L, = 21. We vary the vertical extent L, and the particle number N, so that N takes integer
values close to av(L, —1)(L, —1) = (L, —1)5/2. In the center of the left and right half of the
system, respectively, we place a potential bump and a potential dip [as sketched in Figs. 3(c)
and (f)]. Namely, on 2x 2 or 3 x 1 neighboring sites, the potential is changed by £V /4 or £V /3
(In all later plots, we choose the 2 x 2 configuration). The choice of such a pair of defects is
motivated by the desire to keep the average filling away from the defects constant. We will
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see below, however, that the effect can also be observed for single defects, since the edge can
provide/absorb the required charge. For every value of V, we then compute the ground state
and compare how the particle number in the vicinity of the pinning potentials changes with
respect to the ground state with a homogenous bulk (V = 0). We define the accumulated
charge as

Quy = Z [{ng) ey — (ne)v=o] - ()

LeDy(r)

Here, the region D, (r) includes all the sites £ = (m, n) within a disc of radius r that is co-
centred with the local impurity. The radius r has to be chosen big enough so that the regions
D, (r) and D_(r) essentially contain the whole pinned QH and QP excitation, respectively. In
sufficiently large systems the precise choice of r should not matter, as long as this condition is
fulfilled. This is indeed, what we observe [see Figs. 3(b) and (e) and the discussion below].
In the following we choose r = 4.

In Figs. 3(a) and (d) we plot Q. for various L, > 6 as a function of V for 2 x 2 and
3 x 1 pinning potentials, respectively. We can clearly observe two effects. Firstly, the den-
sity is hardly affected by a small pinning potential. This is another confirmation of the bulk
incompressibility expected for the FCI state. Secondly, once V is raised above a threshold,
the accumulated charge quickly changes to values close to +1/2 at which it stays to form an
extended plateau with respect to V. This confirms the fractional charges of the elementary
QP and QH excitations of the system. Moreover, the results not only show that it is a robust
way to create QP and QH excitations by using pinning potentials, but also indicate that the
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Figure 3: (a) Charges of QP/QH induced by negative/positive four-site pinning po-
tentials as a function of pinning strength V. We have fixed v = 1/2, L, = 21,
a =1/4,J, =1 and adapted N = (L, —1)(L, — 1)av ~ 13,15, 18,20, 23,25 for
L, =6,7,8,9,10,11 respectively. (b) Integrated charges in the vicinity of nega-
tive/positive pinning potentials |[V| = 5 as a function of the radius r of the counted
disc. The black hexagon dots correspond to L, = 5, which shows a small system fails
to give expected fractional charges. The legend in (b) is the same as that in (a) and
lines are guide for the eye. (c) Distribution of the density and current differences
between the ground states with V =5 and V = 0 in a system of 21 x 10 with N = 23.
The impurities of strength £V /4 are distributed over four sites of a plaquette, as in-
dicated by the solid and empty green circles respectively. The red circles are used to
locate the counting region D(r) with radius r. The dashed circles with r = 2 and
3 capture the currents of opposite chirality. (d-f) Same plots as (a-c), but using a
three-site pinning. The shaded area in (a) and (c) indicate the regime of pinning
strength that is able to pin the expected fractional charges.
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shape of topological excitations could be tailored by designing the pinning potentials. While
we can identify plateaus already for L, = 6, Q. remains closer to +1/2 for larger system sizes.
Choosing V =5 as a value in the middle of the plateau, we compare results for different radii
r in Figs. 3(b) and (e) and find that they saturate close to +1/2 for r > 3.

A typical density and current distribution, as it is found for V = 5 (in the middle of the
plateau) is presented in Figs. 3(c) and (f) for L, = 10. The extent of the QP is larger than
that of the QH, which can be most clearly seen in the probability currents surrounding these
localized excitations. When moving away from the center of the QP or QH, we observe that
both the excess density and the chiral currents oscillate and change sign. These oscillations
are more prominent for the QP excitation on the right hand side.

As discussed in the previous section, where we investigated ground-state properties with-
out pinning potential, the edge of the system can serve as a reservoir for excess particles. Thus,
we can expect that it is also possible to create not only charge-neutral pairs of QP and QH, but
also individual excitations in the bulk. This scenario is investigated in Fig. 4. By applying only
one potential dip in a system that otherwise agrees with the one studied in Fig. 3(c), we find
the same signatures of incompressibility and charge fractionalization in the response of the
ground-state density as before. The additional charge required for the creation of a QP by the
potential dip is provided by the compressible edges. Note that this implies that the reservoir
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Figure 4: (a) Charges integrated in the vicinity of negative four-site pinning poten-
tials at r = 4 as a function of V. The discrete points correspond to the case of a single
potential dip, while the solid lines are obtained by applying both potential dips and
bumps as in Fig. 3. The inset shows the charges at V =5 as a function of the radius r,
where the circles and squares respectively represent the charges in the left and right
regions as defined in Fig. 3(a). We have used N = 23 in a system of 21 x 10. (b) A
typical charge and current distributions at V = 5. The currents within the circle are
zoomed in by a factor of 6 for clear visualization. (c) Charges as a function of V for
different systems with negative 2 x 2 pinning potentials. The numbers N are given by
10, 18, 22 for system size 10 x 10, 17 x 10, 17 x 12, respectively, to achieve v =1/2
particle per flux quantum. (d) Charges as a function of radius r at V = 5. Note that
the drop at r = 5 for L, = 10 is due to extra excitations appearing in the edge. (e)
A typical charge distribution at V = 5 in system of size 10 x 10 with N = 10. Other
parameters are a = 1/4,J, = 1.


https://scipost.org
https://scipost.org/SciPostPhys.12.3.095

Scil SciPost Phys. 12, 095 (2022)

given by the compressible edges can also host (and thus exchange with the system) fractional
charges in units of ¥ = 1/2. Such a behavior can already be observed in a smaller system of
10 x 10 sites, see Fig. 4(c-e). By performing simulations with a single potential bump, we also
find similar signatures for the creation of a single QH (not shown).

We will now investigate the robustness of the fractionalized ground-state response to pin-
ning potentials, when changing various system parameters. Starting from a scenario like the
one investigated in Fig. 3, with a pair of 2 x 2 pinning potentials of opposite sign and a system
size of 21 x 10 sites, in Fig. 5 we show results for different total particle numbers, plaque-
tte fluxes, and anisotropic tunneling matrix elements. In panel (a), we plot the accumulated
charges Q. as a function of V for different particle numbers. Again the precise choice of r = 4
does not significantly influence the results, as can be inferred from (b), where r is varied for
fixed V = 5. Optimal particle numbers are expected to lie close to va(L, —1)(L, —1) = 22.5.
And, indeed, we can see very clear signatures of charge fractionalization for a range of particle
numbers N = 21,22, 23. However, when the particle number becomes too small (large), the
threshold value of V at which a QH (QP) is created shifts to smaller values. Moreover, for
the smallest particle number considered, N = 20, we even find the creation of a second QH
excitation at a second threshold value of V.

The fact that the charge fractionalization expected for the FCI state breaks down when the
global filling N/N, = N/[a(L, —1)(L, —1)] deviates too much from the bulk value » =1/2
of the FCI, can also be observed by varying the plaquette flux quantified by the number of flux
quanta per plaquette a. This is investigated in Figs. 5(c) and (d). In panel (c) we observe that
the threshold for the creation of a QH (QP) is shifted to smaller values of V, when a increases
(decreases). Moreover, for the value of a = 0.23, no QP of fractionalized charge 1/2 can be
observed. In panel (d), we plot the pinned charges versus a (comparing different values of
V) and find that the fractionalization of both QH and QP can be observed for a between 0.25
and 0.27. The quantization of QH (QP) alone can, moreover, be observed for values of a as
small (large) as 0.24 (0.29).

Finally, we investigate the effect of a tunneling anisotropy. The robustness of charge frac-
tionalization with respect to a variation of J,, relative to J, = 1 is investigated in Figs. 5(e)
and (f) 1. We find charge fractionalization for values of J y between 0.7 and 1.5. All in all, we
can see that signatures of charge fractionalization can be observed in an extended parameter
regime, which is good news for a possible experimental observation of charge fractionalization
in small bosonic FCIs.

5 Effect of finite interactions

So far, we have focused on the hard-core limit. However, similar behaviour is found also
for sufficiently strong, but finite interactions U. In order to test the robustness of charge
fractionalization with respect to different interaction strengths, we have considered a system
of 17 x 8 sites with 14 particles (like the one studied in Fig. 1) and calculated the response
to two local defect potentials of oppositie sign [like the ones depicted in Fig. 3(c)]. For the
calculation we truncated the maximum possible occupation of each lattice site to four particles.
In Fig. 6, one can observe clear signatures of charge fractionalization for interaction strengths
U/J = 15.

We consider values of J, that are both smaller and larger than 1. In systems with boundaries and defect
positions that are symmetric with respect to both lattice directions, it would be sufficient to increase J, relative to
J, = 1. However, since we are working in a rectangular system that is elongated in x direction and possesses two
defects that are separated in x direction, increasing and decreasing J,, from 1 can lead to different results.
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Figure 5: (a) Charges integrated at radius r = 4 as a function of pinning strength V
for different particle numbers N. (b) Charges as a function of r at V =5 for different
N. We use the same legend in (a) and (b) and a = 1/4, J,=1. (9 Charges as
a function of V for different a and (d) charges as a function of a for different V
with N = 23,J, = 1. (e) Charges as a function of V for different J, and (f) charges
as a function of J, for different V with N = 23,a = 1/4. In all cases we have
simultaneously applied both negative and positive four-site pinning potentials in a
system of size 21 x 10.
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Figure 6: (a) Change of charge induced by a pair of 2 x 2 pinning potentials of
opposite strength £V, measured in two circular regions of radius r centered around
the pinning potentials. (b) Same as (a), but for fixed V = 5 and different radii
r. We use the same legend for interaction U in (a) and (b). Other parameters are
LyxL,=17x8,a=1/4,J,=1,and N = (L, —1)(L, —1)av = 14. (c) A typical
charge distributions at V =5 for U = 20. The particle number per site was truncated
to a maximum value of 4 (allowing for larger occupations did not change the results).

6 Fractional charge pumping

As another hallmark of quantum Hall states, quantized charge pumping can be induced by
quanta of adiabatic flux insertion [ 100,101]. The realization of this famous Laughlin gedanken-
experiment in 2D optical lattices has been proposed [102] and its application in interacting
systems of small size has also been addressed [46]. In this section, we confirm that such a
local-flux insertion can also be exploited to create and to manipulate fractional excitations in
2D FClIs.

After applying additional phases 6 ¢ on the links between a target plaquette and the system
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boundary, as sketched in Fig. 7(a), only the flux of the target plaquette is modified to be ¢ +5¢.
After linearly ramping 6 ¢ from O to 27 within time 7, as expected, a fractional charge of 1/2
is populated from the bulk to the edge of the system with v = 1/2 particle per flux quantum
[Figs. 7(c,d)]. After the flux insertion, the created edge excitation follows a chiral motion,
which is robust against the corner defects [Figs. 7(e-g)]. Note that all these signatures survive
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Figure 7: Sketch of modifying the flux in one single plaquette (a) and two plaque-
ttes (b) in the bulk. The arrows denote additional tunnelling phases ¢, and the
fluxes of the plaquettes labelled by ®, ® are modified to be ¢ £ ¢ respectively. (c)
The particle number difference (‘charge’) AN(t) = N(t) — N(t = 0) integrated in
the disc r = 3 centred at the modified plaquette as a function of §¢(t). The inset
shows AN(7) as a function of integrated radius r. (d) Snapshots of the respective
changes in spatial densities at the end of ramp with t = 7 = 30 (d), and after the flux
insertion at (e) t = 46, (f) t =71, (g) t = 90. The red arrows are used to indicate
the chiral motion. Simulations of (c-g) are performed for a system of size 12 x 10
with N = 12,a = 1/4,J, = 1 and v = N/N, ~ 1/2. Tiny pinning potentials of
strength V = 1/4 have been distributed over the four sites of the modified plaque-
tte to prevent the bulk excitations from dispersing. (h) Particle number difference
AN(t) integrated in the disc with r = 4 centred at the modified plaquettes as a func-
tion of 6¢(t). The dependence of charges AN(7) as a function of r are shown in
the inset. Snapshots of the respective density changes within the ramp at (i) t =4,
(4 t =20, (k) t = T = 40. Simulations of (h-k) are performed for a system of size
21 x 10 with N =23,a=1/4,J, =1 and v=N/N, ~1/2.
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even for a system of 12 x 10 with 12 particles, which is a promising setup within the reach of
present-day’s experiments [25]. Last but not least, by modifying the fluxes of two plaquettes
to be ¢ £ ¢, as depicted in Fig. 7(b) and shown in Figs. 7(h-k), QP and QH excitations with
charges +1/2 can be created in the bulk. Interestingly, we observe fluctuating densities (like
a ring structure) in the vicinity of modified plaquettes during the ramp [Fig. 7(j) ], which is
different from the quantized charge pumping in integer Chern insulators [102].

7 Conclusion and outlook

We have numerically investigated the fate of FCI states as the ground state of the hard-core
bosonic Harper-Hofstadter model in realistic finite system geometries with open boundary
conditions, which can be realized in quantum-gas microscopes. Already for small system sizes
starting from linear extents of about 6-8 lattice sites, we find robust measurable signatures
that are consistent with the expected behavior of a Laughlin-like FCI state at filling v = 1/2.
In particular, we find chiral edge transport, an incompressible bulk at the expected filling,
as well as fractionally charged QP and QH excitations that can be created either by pinning
potentials or via local flux insertion. Thanks to the fact that the edges of the system serve as
particle reservoirs, these features are rather robust against modifications of both the plaquette
flux and the total particle number. Also finite tunneling anisotropies are not detrimental. Qur
results provide a guide for future experiments with interacting atoms in optical lattices with
artificial magnetic flux.
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A Counter-propagating currents and imbalance measurement

To further confirm the existence of robust counter-propagating probability currents as shown
in Fig. 1 in the main text, here we provide more data obtained from simulating a larger system
of size 21 x 10. In Figs. 8(a-d), we plot the distributions of both density and currents of
the ground states for different particle numbers N. The densities of the middle row n = 4
and the vertical currents on the middle links connected by n = 4 and n = 5 are plotted in
Figs. 8(e) and (f), respectively, which represent more pronounced signatures of FCI ground
states in the larger system considered here. While the currents in row n = 1 change their
directions with increasing N, the direction of currents in row n = 2 remains fixed, and they
are always in opposite direction with the currents in the outermost edges. From Fig. 8(g), one
can see the amplitude of the counter-propagating currents are almost independent of N, which
indicate their robust existence. By initially trapping extra one [Fig. 8(h)] or three [Fig. 8(i)]
particles in the centre of given row, the density imbalances formed after the quench of on-site
trapping present clear negative imbalance on the row n = 2 which could be readily measured
in experiments.
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Figure 8: (a-d) Spatial density and current distributions of the ground state of hard-
core bosons in a lattice of size 21 x 10 with N = 22,23,24,25 respectively. The
magnitudes of currents in the white circle are zoomed in by a factor of 3 for a clear
visualization. (e) Density of the middle row n = 4 and (f) vertical currents on the
middle links connected by n = 4 and n = 5. The horizontal dashed lines locates the
expected p = 1/8 and j = 0. (g) Horizontal currents on the middle bonds connected
by m = 10 and m = 11. (e-g) share the same legend. The black circles are used
to highlight that the currents with opposite chirality are almost independent of N.
Imbalance in the n-th row Z, as a function of evolution time with (h) one and (i)
three extra particles initially trapped in the centre of given rows. Consistent negative
7, appear after roughly three tunneling time. Other parameters are a = 1/4 and
J,=1.
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