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Abstract

Synchronization is a phenomenon where interacting particles lock their motion and
display non-trivial dynamics. Despite intense efforts studying synchronization in sys-
tems without clear classical limits, no comprehensive theory has been found. We de-
velop such a general theory based on novel necessary and sufficient algebraic criteria
for persistently oscillating eigenmodes (limit cycles) of time-independent quantum mas-
ter equations. We show these eigenmodes must be quantum coherent and give an exact
analytical solution for all such dynamics in terms of a dynamical symmetry algebra.
Using our theory, we study both stable synchronization and metastable/transient syn-
chronization. We use our theory to fully characterise spontaneous synchronization of
autonomous systems. Moreover, we give compact algebraic criteria that may be used to
prove absence of synchronization. We demonstrate synchronization in several systems
relevant for various fermionic cold atom experiments.
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1 Introduction to Quantum Synchronization

Understanding complex dynamics is arguably one of the main goals of all science from biology
(e.g. [1, 2]) to economics (e.g. [3, 4]). Synchronization is a remarkable phenomenon where
multiple bodies adjust their motion and rhythms to match by mutual interaction. It is one of the
most ubiquitous behaviours in nature and can be found in diverse systems ranging from simple
coupled pendula, neural oscillations in the human brain [5], epidemic disease spreading in the
general population, power grids and many others [6]. Understanding this phenomenon has
been one of the major successes of dynamical systems theory and deterministic chaos [7,8].

Intense work in the last decade has extended these non-linear results to the semi-classical
domain of certain quantum systems with an infinite or very large local Hilbert space, e.g. quan-
tum van der Pol oscillators, bosons, or large spin-S systems [9–31]. These systems are usually
understood successfully through mean-field methods or related procedures that neglect the full
quantum correlations. By contrast, strongly interacting systems that have finite-dimensional
local Hilbert spaces, such as finite spins, qubits or electrons on a lattice, can most often not be
adequately treated with mean-field methods [32] and semi-classical limits cannot be directly
formulated for them [33–35]. For the sake of brevity, we will call such systems “quantum” and
the previous ones “semi-classical”. Very recently, these systems with finite-dimensional local
Hilbert spaces have attracted much attention as possible platforms for quantum synchroniza-
tion [36–49]. Crucially, the subsystems that are to be synchronized in such quantum systems
do not have easily accessible h̄→ 0 or equivalent large parameter (semi-classical) limits.

Quantum synchronization holds promise for technical applications. For instance, synchro-
nizing spins in a quantum magnet would allow for homogeneous and coherent time-dependent
magnetic field sources. Developing sources of homogeneous and coherent time-dependent
magnetic fields has the significant potential to improve the resolution of MRI images [50].
Additionally, recent studies have explored the role of synchronization in the security of quan-
tum key distribution (QKD) protocols [51–53]. It is foreseeable that a better understanding
of quantum synchronization could help improve security against specialist attacks that exploit
the dependence of several QKD schemes on synchronization during calibration. Despite the
intense recent study and the promise it holds, a general theory of quantum synchronization
has been lacking until now.

An important theoretical concept in physics is that of symmetries and algebraic structures.
Using algebraic methods, it is often possible to analytically understand the dynamics of sys-
tems without providing full solutions. This is vitally important because obtaining full solu-
tions is, in general, impossible for the many-body and strongly correlated systems of interest.
In this paper, we develop an algebraic theory for quantum synchronization in such systems.
This extends the algebraic approach of dynamical symmetries [54] which has been success-
fully used for studying the emergence of long-time dynamics in various quantum many-body
systems, such as time crystals [55–86], quantum scarred models [87–107], Stark many-body
localization [108], and models with quantum many-body attractors [109]. Our work provides
necessary and sufficient conditions for quantum synchronization to occur in terms of a com-
pact set of algebraic criteria that may be checked based on the underlying symmetry structure
of the system. We also rigorously demonstrate that if synchronization occurs, it must be due
to the presence of quantum coherence. We fully solve these dynamics in terms of an elegant
algebraic framework. These results provide a general theory for studying quantum synchro-
nization and characterize the phenomenon. Through this, we have provided a framework for
future efforts in the field.

In the rest of the introduction, we give a general discussion and brief history of the study
of synchronization before focusing more closely on the details of quantum synchronization.
We finally highlight the key results of this article.
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1.1 An Overview of Synchronization

1.1.1 General Synchronization

Before presenting our theory of quantum synchronization, it is instructive to first discuss syn-
chronization in general, with some historical background, to demonstrate the numerous sub-
tleties surrounding the concept and make it clear what we will be referring to as synchroniza-
tion.

The term synchronization, or more specifically synchronous, has its roots in the ancient
Greek words ‘syn-’ meaning “together with” and ‘kronous’ meaning “time”. Thus events are
described as synchronous if they occur at the same time. The scientific study of synchronous
(or synchronized) dynamical systems dates back to 1673 when Huygens studied the motions of
two weakly coupled pendula [110]. He observed that pendula clocks hanging from the same
bar had matched their frequency and phase exactly. Following this observation, he explored
both synchronization and anti-synchronization where the pendula with approximately equal
(or opposite for anti-synchronization) initial conditions would, over time, synchronize so that
their motions were identical (resp. opposite). Since Huygens, synchronization has been a
topic of significant interest in an ever-expanding range of scientific and technological fields.
From a theoretical point of view, synchronization is a central issue in the study of dynamical
and chaotic systems and is currently an area of very active research.

Broadly speaking, studies into classical synchronization of multiple, often chaotic, systems
can be split into synchronization within driven and autonomous systems. Throughout the
remainder of this work, we will consider exclusively synchronization within autonomous sys-
tems, often called spontaneous synchronization, as this is the form of synchronization most
often studied in quantum systems and is where our theory is applicable. For more details re-
garding synchronization in driven systems, especially the most commonly studied master-slave
systems, we direct the reader to [111–113]. We should also mention the related topic of Syn-
ergistics, first introduced by Haken to initially study lasers and fluid instabilities [114–116].
Synergetics studies how circular causality between microscopic systems and macroscopic or-
der parameters can lead to self-organization within open systems that have been driven far
from equilibrium [117,118]. In the years since its inception, the theory has been applied to a
wide range of disciplines such as studying human ECG activity, and machine learning [119].

We now focus on spontaneous1 synchronization, which can be further divided into two
main classes, which intuitively capture how the two subsystems are related.

(i) Identical/Complete synchronization

For a system comprising of identical coupled subsystems. Corresponding variables in each of
the subsystems become equal as the subsystems evolve in time.

(ii) Phase synchronization

For a system comprising of non-identical coupled subsystems. The phase differences between
given variables in the different subsystems lock while the amplitudes remain uncorrelated.

1From now on, all synchronization will be spontaneous synchronization in undriven systems.
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One important additional constraint, which applies to both classes is that synchronization
must be robust to small perturbations in the initial conditions. This is important to exclude
many cases of trivially synchronized systems that arise simply through the fine-tuning of initial
conditions.

In many ways, identical synchronization is the most fundamental and is what Huygens
originally studied with his coupled pendula. It is also what many people conjure to mind
when thinking about synchronization. As expected, it has been extensively studied in the past,
both theoretically [8, 120–124], and for its applications [125–128]. Much of this progress,
which has been primarily focused on controlling synchronization within chaotic systems, has
built upon the seminal work of Pecora and Carroll [8] who formulated criteria based on the
signs of Lyapunov exponents. We also note that identical synchronization can be extended
to non-identical subsystems by choosing appropriate, often de-dimensionalized, variables or
coordinates for the different subsystems.

A useful order parameter for identical synchronization is the Pearson indicator [129] de-
fined for two time-dependent signals, f (t), g(t) as

C f ,g(t,∆t) =
δ f δg

q

δ f 2 δg2
, (1)

where ∆t is some fixed parameter and

X =
1
∆t

∫ t+∆t

t
X (t)d t, δX = X − X . (2)

This measures the correlation between the two variables in an intuitive way and has been
widely applied to classical [7,130] and in some cases quantum [36,42,131,132] synchroniza-
tion. We can see that C f ,g takes the value +1 for ‘perfect’ synchronization and −1 for ‘perfect’
anti-synchronization. Notably the Pearson indicator is effective when the signals f and g are
not periodic. While synchronization is often understood through periodic systems, such as
pendula etc, this is not strictly necessary for identical synchronization. The notion of two vari-
ables that become equal over the period of evolution could just as well apply to two particles
following unbound trajectories as to two particles that remain within some finite region. We
can also easily present examples of quasi-periodic behaviour, that is a superposition of Fourier
modes with non-commensurate frequencies. In practice, most systems that we are studying
exhibit periodic or at least quasi-periodic behaviour.

In contrast to identical synchronization, phase synchronization generally requires peri-
odic motion to define a relative phase difference between the two subsystems meaningfully.
However, extensions can be considered with simply a time delay rather than an actual phase
difference. This class of synchronization is weaker than identical synchronization, even under
the natural extension to non-identical subsystems, as it requires no direct correlation between
the variables describing the subsystems. Following work on cryptography using chaotic maps
[133], phase synchronization was applied as a method for secure communication [134,135].
Phase synchronization has also been studied in the quantum setting through the use of Arnold
tongues, and Hussimi-Q functions [37,129]. These methods are usually aimed at probing the
response of the system to driving rather than mutual synchronization between subsystems.
We should also mention the interesting related case of amplitude-envelope synchronization in
chaotic systems [136] where there is no correlation between the amplitude and phases of the
motion within the two systems, but instead, they both develop periodic envelopes at a matched
frequency. In the remainder of our work, we will focus on studying identical synchronization
between subsystems of an extended quantum system, although many of the results presented
are just as applicable to phase synchronization.
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Before discussing quantum synchronization in more detail, we make a short remark about
the language used in the rest of this article. We will use the term synchronized to refer to
any pair of time-dependent signals that are equal or sufficiently similar, usually after some
transient time. The term synchronization will refer to the non-trivial process of two subsystems
becoming synchronized in a way that is stable to perturbations in the initial conditions. In
systems with multiple observable quantities within each subsystem, we will say the subsystems
are completely synchronized if all observable quantities are synchronized, and at least one is
non-constant. Consequently, we will use identical synchronization for the identical/complete
synchronization discussed above to avoid confusion. These definitions will be formalized in
Section 2.

1.1.2 Quantum Synchronization

Let us now focus more closely on synchronization in many-body quantum systems.
Synchronization is usually studied in open quantum systems. This is because, in closed sys-

tems, a generic initial state will excite a large number of eigenfrequencies with random phase
differences, which will oscillate indefinitely and lead to observables that behave like noise.
Only in sufficiently large systems does the Eigenstate Thermalisation Hypothesis [137] predict
that these oscillations will rapidly dephase, causing observables to become effectively station-
ary. As a result, previous studies have focused on the open quantum system regime, where
interactions with the environment cause decoherence and decay within the density operator
describing the state, leaving only a handful of long-lived oscillating modes. These systems have
previously been studied in a case-by-case manner, with various measures of quantum synchro-
nization having been introduced. These measures have been based primarily on phase-locking
of correlations, or Husimi Q-functions [36,37]. However, such measures are often unscalable
to many-body problems.

The generic set-up we will consider is an extended system made up of arbitrarily, but
finitely, many individual sites that can interact with each other and with an external bath that
we often call the environment. This scenario is depicted in Fig 1. The restriction of having
only finitely many sites is reasonable because if two subsystems are infinitely far apart, then
locality will prevent them from ever being causally connected, thus rendering synchroniza-
tion impossible. Alternatively, sites infinitely far apart could be redefined as belonging to the
environment and thus taken into account in that manner. For our purposes, these individual
sites will have finite-dimensional Hilbert spaces and thus have no well defined semi-classical
limit. Importantly, these sites will also have identical local Hilbert space dimensions. We will
then consider synchronizing the signals of observables measured on different sites or groups of
sites of the system. Following our discussion above regarding synchronization in general, we
will classify whether the sites are synchronized based on the dynamics of expectation values
of these observables on each site over time. In this way, we have captured the fundamental
essence of synchronization as discussed above intuitively within the quantum regime.

1.2 Overview of the Paper, Summary of Key Results and Relation to Previous
Work

In this final part of the introduction, we will outline the structure of the rest of the article and
draw attention to the key results which we present.

In Sec. 2 we will introduce the Lindblad formalism as the most general type of smooth
Markovian quantum evolution. This formalism is particularly useful since we recover an ap-
pealing and intuitive interpretation of the evolution equation in the limit of weak system bath
interactions and under assumptions that the bath is Markovian. This section will also formal-
ize our earlier discussion and explicitly define what we mean by synchronization in a quantum
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Figure 1: An arbitrary interacting quantum many-body system of N sites (illustrated
as yellow spheres) which may interact with each other along the blue bonds. The sites
also interact with the background environment, illustrated by the red arrows. The
sites each have a finite local Hilbert space, illustrated as dimension d on one of the
sites (i.e. each site has exactly d levels). This is the general system of interest we will
be focusing on. The goal will be to synchronize observables between different sites
in the system. Crucially, the sites that are to be synchronized do not have h̄→ 0 or
equivalent large parameter (semi-classical) limits. Rather we make no assumptions
on the size of the local Hilbert space.

system. This will be the natural extension of the ideas we presented above and will distinguish
between stable and meta-stable synchronization, which may further be robust to our choice of
initial conditions or measurements.

In order to develop an algebraic theory of quantum synchronization, we will in Sec. 3.1
first develop a complete algebraic theory of the purely imaginary eigenvalues of quantum Li-
ouvillians and their corresponding oscillating eigenmodes that we relate to limit cycles. This
theory will be closely related to dynamical symmetries [54], thus demonstrating their impor-
tance for understanding long-time non-stationarity in open quantum systems. Previous works
on Liouvillian eigenvalues have been based on finding the support of the stationary subspaces
or diagonalizing the Hamiltonian [138–141]. However, in the case of many-body systems,
both of these calculations are generally impossible except in very specific cases. Although in
some cases analytic tools can be used to find non-equilibrium steady states, it remains an open
problem to efficiently find the support of a generic stationary state [142]. Therefore, our crite-
ria, based purely on the symmetry structures within the Liouvillian, are easier to work with for
a many-body quantum system and can further be used to find systems that present persistent
oscillations and limit cycles, an absence of relaxation and synchronization. Additionally, being
necessary, our conditions can also be used to prove the absence of such phenomena. The re-
sults of this section, which completely characterize all possible purely imaginary eigenvalues
of quantum Liouvillians, are far more wide-reaching than just quantum synchronization. In
particular, they are also directly relevant for dissipative time crystals [57] and, more generally,
any study which is concerned with long-time non-stationarity in an open system.

In Sec. 3.2 we will apply the above theory to stable synchronization, i.e. that exists for
infinitely-long times. We will again show that symmetries can be used to provide conditions
under which synchronization can occur. These results will highlight the importance of uni-
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tal evolutions, i.e. those which preserve the identity operator, for quantum synchronization.
Further, within the Lindblad formalism, these unital evolutions are easy to construct by con-
sidering dephasing or independent particle loss and gain. This can also explain why several
previously studied cases of quantum synchronization are in systems where the evolution is
indeed unital.

Having considered infinitely-long lived synchronization, we then proceed in Sec. 4 to pro-
vide a perturbative analysis of purely imaginary eigenvalues, again with a focus on the conse-
quences for quantum synchronization. We classify the resulting cases into ultra-low frequency,
quantum Zeno and dynamical metastable synchronization. As we show, ultra-low frequency
metastable synchronization is rather unsatisfactory for experimental purposes since the time
period of the resulting oscillations is exceptionally long. We further prove that dynamical
metastable synchronization has the longest lifetime and has oscillations that occur on rele-
vant experimental timescales. Thus we conclude this is the most desirable form of metastable
synchronization. Arguably, we have at this point covered all possible cases of quantum syn-
chronization.

In Sec. 5 by taking the converse approach, we extend our algebraic theory so that it can
be used to prove the absence of quantum synchronization in a given system. This is useful
for easily identifying which systems should not be considered when looking for candidates for
quantum synchronization.

Having completely characterized quantum synchronization through an analysis of Liouvil-
lian eigenvalues, in Sec . 6 we apply our theory in a simple example where we show how two
qubits may be anti-synchronized complementing the recent claim that qubits cannot synchro-
nize [143]. We further use our results to demonstrate that the regularly studied example of
quantum synchronization in the Fermi-Hubbard model with spin-agnostic heating [36] is, in
fact, one specific example of a wide range of systems that can be expected to exhibit quantum
synchronization. We will relate this discussion to more experimentally relevant set-ups with a
less strict symmetry structure. Our theory then allows us to give simple predictions to explain
experimental results previously found by [144].

Finally, we present a conclusion. Detailed proofs of our results together with additional
analysis of existing examples of quantum synchronization are presented in the appendices.

We note that criteria for purely imaginary eigenvalues of quantum Liouvillians have been
given in other papers, e.g. [138, 139]. However, they require either diagonalizing the Hamil-
tonian or the stationary state to check and use. Both of these steps are prohibitively difficult
for many systems once their size becomes sufficiently large. Moreover, they do not allow
for the exact form of the corresponding eigenmodes (quantum limit cycles). Our work will
rely on dynamical symmetries and immediately gives the form of the corresponding eigen-
modes if the symmetries are known. Dynamical symmetries, first introduced in the context
of quantum Liouvillians [54], have been applied before to studying certain cases of quantum
synchronization [36]. In these works, dynamical symmetries were shown to be sufficient for
the existence of purely imaginary eigenvalues, and synchronization enabled by these symme-
tries was studied. In this work, we will give both necessary and sufficient algebraic conditions
for the existence of purely imaginary eigenvalues which can then be directly related to suffi-
cient criteria for quantum synchronization. Moreover, we show that the previously identified
compact sufficient condition is also necessary for quantum synchronization in unital quantum
Liouvillians, which for example, includes those that have thermal stationary states.
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2 Definitions and Methods

In this section, we will first present the natural definitions of synchronization in quantum sys-
tems, as follow from our previous discussion and then introduce the Lindblad Master equation
framework as the most general description of the evolution of a quantum state.

2.1 Definitions of Quantum Synchronization

To recap our discussion above, for two systems to be identically synchronized, we require that
their matching motion be non-stationary and long-lasting. For an extended quantum system,
we will interpret the ‘motion’ via the behaviour of some local observable, Oj , which is measured
in the same basis on every site. Note that we will use subscripts to denote the subspaces/sites
on which the operator acts non-trivially i.e. Oj = 11... j−1 ⊗ Oj ⊗ 1 j+1...N with N being the
number of subsystems/sites. We will also consider only the strictest notion of identically syn-
chronized signals whereby after synchronization has occurred, the two synchronized signals,
〈Oj(t)〉 & 〈Ok(t)〉, are identical and do not differ by any overall phase, scale factor, or constant.
This is stricter that the definition provided by considering the Pearson indicator from Eq. (1).
The results we present can be suitably adapted to consider these alternative cases, in partic-
ular phase synchronization. We will indicate in Sec. 3.4 how alternate considerations can be
made, but as the technical discussions do not provide any additional insight or understanding,
we will work largely with these very strict definitions given below.

In line with previous works, we consider stable and metastable synchronization to be where
the signals remain synchronized and non-stationary for infinitely long or finitely long times,
respectively. In the case of metastable synchronization, we require some perturbative param-
eter within the system that controls the lifetime of the synchronized behaviour. Finally, we
must allow some initial transient time period during which the process of synchronization can
take place. These considerations lead naturally to the following definitions.

Note that equality in these definitions, and in the remainder of this work, is understood as
equality up to terms which are exponentially small in time and for brevity, we do not continu-
ously write “+O(e−γt)”. These terms will always be present for finite-dimensional systems but
are negligible on the longer time-scales we will be concerned with.

Definition 1 (Stably synchronized). We say that the subsystems j and k are stably synchronized
in the observable O if for some initial state and after some transient time period τ we have
〈Oj(t)〉 = 〈Ok(t)〉 for all t ≥ τ. Further we require that 〈Oj(t)〉 does not become constant, i.e
∂t〈Oj(t)〉 6≡ 0.

Definition 2 (Metastably2 synchronized). We say that the subsystems j and k are metastably
synchronized in the observable O if for some initial state during the interval t ∈ [τ, T] where
T >> τ we have 〈Oj(t)〉 = 〈Ok(t)〉 and again ∂t〈Oj(t)〉 6≡ 0. Further, the cut-off time T must
be controllable by some perturbative parameter in the system

These definitions do not require that the system has an internal mechanism that synchro-
nizes the two sites. Since we simply require the existence of some initial state for which the ob-
servables are synchronized, this initial state can be finely tuned so that, in fact, the observables
on the two subsystems are initially equal, and their evolutions are identical. To characterize
synchronization that is robust to variation in initial conditions, we make the further definition.

2Metastable synchronisation of this form has also been previously referred to as transient synchronisation
[44,145].
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Figure 2: Visualization of the different definitions of synchronization. If we have
equality in the expectation value of some non-stationary observable on different sites
for some initial state, then we classify the signals as either stably or metastably syn-
chronized. If, in fact, we have equality on the operator level, then they are robustly
synchronized. Finally, if this holds for all non-stationary operators, then we say the
subsystems are completely synchronized.

Definition 3 (Robustly synchronized). If the subsystems j and k are stably or metastably
synchronized in the observable O, this synchronization is robust if Oj(t) = Pj,kOk(t)Pj,k and
∂tOj(t) 6≡ 0 on the operator level (i.e. in the Heisenberg picture). Here Pj,k is a permutation
operator exchanging subsystems j and k. As with the definitions of stable and meta-stable
synchronization, these requirements must hold for the same respective time periods.

This definition ensures that after the transient dynamics have decayed, regardless of the
system’s initial state, the observable on subsystems j and k will be equal and for a large class of
initial states will be non-stationary. Robustly synchronized systems are of the most significant
interest since these are the ones where some internal mechanism causes the synchronization
process. However, as demonstrated in the appendices, several previously studied examples of
quantum synchronization are, in fact, not robust and require fine-tuning of the initial state.
This highlights the importance of making these considerations and definitions when studying
quantum synchronization. We also remark that we have restricted ourselves to the case of
identical subsystems so that robustness can be defined in this way. If one were to study syn-
chronization between a spin-1/2 and a spin-1, for example, it is unclear how robustness could
be defined in a similarly straightforward manner.

Notice that we have defined synchronization with respect to some observable. For most
applications of synchronized motion, it is sufficient for just one observable to be synchronized.
We can, however, say that the two subsystems are completely synchronized if they are robustly
synchronized, whether stably or metastably, for all non-stationary observables [16].

These definitions are visualized in Fig. 2 and characterize the possible cases of identical
synchronization within a quantum system. As earlier remarked, the results we present can
be straightforwardly adapted to also consider phase synchronization provided the long-lived
oscillations are periodic. Moreover, we can easily extend our analysis to other measures of
synchronization [146]. For instance, we may define limit cycle dynamics over a phase space
composed of 〈Ok(t)〉 and another observable 〈Qk(t)〉 that obeys [Qk, Ok] 6= 0.

Having now made explicit what we mean when referring to quantum synchronization and
introduced some of the notation, we can begin to study these systems in more detail.
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2.2 Lindblad Formalism

We describe the quantum state by a time dependent density operator, ρ(t), acting on the
Hilbert space of the system, H. The most general quantum evolution is described by a com-
pletely positive, trace preserving channel T̂t so that after a time t the state has evolved via

ρ(t) = T̂t[ρ(0)]. (3)

It is known [147] that any smooth, time-homogeneous, completely positive, trace-preserving
quantum channel T̂t[ρ] which obeys the natural semi-group property

T̂t · T̂s = T̂t+s, (4)

can be expressed as
T̂t[ρ] = etL̂[ρ], (5)

and thus
d
d t
ρ = L̂[ρ]. (6)

Here L̂ is a quantum Liouvillian of the form

L̂[ρ] = −i[H,ρ] +
∑

µ

�

2LµρL†
µ − {L

†
µLµ,ρ}

�

, (7)

for some Hermitian operator H. If we are considering a system which weakly interacts with
a Markovian environment then equations (6-7) are usually referred to as the Lindblad master
equation and we can interpret the operator H as the system’s Hamiltonian and the Lµ oper-
ators, now called Lindblad jump operators, model the influence of the environment’s noise
on our system. Such operators may, for example, be particle creation/annihilation operators
to describe random particle gain/loss, or number operators to describe dephasing [148]. By
formulating our theory of quantum synchronization with respect to evolutions described by
Eqs. (6-7) the resulting theory is as general as possible and can be intuitively understood in
the weak coupling, Markovian limit. However, evolution of the quantum state according to
Eqn. (7) is not restricted exclusively to the weak coupling limit, although at strong coupling
the jump operators lose their intuitive interpretation. By formulating our theory within the
Lindblad formalism we are able to capture the widest class of possible quantum evolutions
which are relevant to undriven systems which interact with an environment.

We remark that it is possible to also include some non-Markovian effects in this formalism
by considering an enlarged Hilbert space containing part of the environment, as we outline
further in Appdx K. Although this is usually unpractical for large many-body systems, the
example in Sec 6.1 will in effect use this idea when anti-synchronizing two spin-1/2s. With
this one exception, however, our work considers exclusively Markovian dynamics.

A formal solution to the Lindblad equation can be obtained by finding the eigensystem of
the Liouvillian. This is defined as the set {ρk,σk,λk}, where λk are the eigenvalues of L̂ and
ρk,σk are the corresponding right and left eigenstates respectively. The eigensystem obeys
the relations,

L̂[ρk] = λkρk, L̂†[σk] = λ
∗
kσk,

〈〈σk|ρk′〉〉= δk,k′ ,
(8)

where 〈〈σ|ρ〉〉 = Tr(σ†ρ) is the Hilbert-Schmidt inner product. Note that for operators L̂
which generate a CPTP map and thus describe physical quantum evolutions, the eigenvalues,
λk, can lie only in the left half of the complex plane with Re(λk) ≤ 0. In the familiar way,
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assuming diagonalizability of L̂ we can express the evolution of the expectation value of some
observable Ô, given that the system is initialised in the state |ρ0〉〉 as

〈Ô〉(t) =
∑

k

etλk〈〈Ô|ρk〉〉〈〈σk|ρ0〉〉. (9)

We now see that in order to achieve long-lived oscillations in some observable, there must
exist eigenvalues λk with non-zero imaginary part and vanishingly small real part. Note that in
general, L̂ may not be diagonalizable, but that its restriction to the asymptotic subspace always
is (Appendix F). Therefore in the long-time limit, we can assume that (9) is the evolution
equation for all cases.

The above observation motivates the next section, where we present algebraic results for
the existence of purely imaginary eigenvalues in quantum Liouvillians. Following these results,
we shall use them to provide spectral and symmetry-based conditions for quantum synchro-
nization as described by our previous definitions. We will then demonstrate these conditions
in a variety of paradigmatic and insightful examples before concluding.

3 Imaginary Eigenvalues of Quantum Liouvillians and
Stable Synchronization

In this section, we present a series of algebraic results on the existence of purely imaginary
eigenvalues, give the structure of the corresponding eigenmodes, and relate them to stable
quantum synchronization. These are important not only for quantum synchronization, but
also for dissipative time crystals [54,57,67,70–72,149–155] and more generally any study of
non-stationarity in open quantum systems. All proofs for the following results can be found in
the Appendices. As mentioned previously, we will focus on systems with an arbitrarily large
but strictly finite number of local levels (i.e. a finite local Hilbert space).

3.1 Necessary and Sufficient Conditions for Purely Imaginary Eigenvalues and
the Structure of the Oscillating Coherent Eigenmodes

Our first theorem completely characterizes all purely imaginary eigenvalues of Liouvillian
super-operators in terms of a unitary operator A and a proper non-equilibrium steady state
(NESS) of the system ρ∞ which obeys L̂[ρ∞] = 0. Note that by ‘proper’, we mean that ρ∞
is a density operator and can thus represent an actual quantum state of the system.

Theorem 1. The following condition is necessary and sufficient for the existence of an eigenstate
ρ with purely imaginary eigenvalue iλ, L̂ρ = iλρ, λ ∈ R.

We have ρ = Aρ∞, where ρ∞ is a NESS and A is a unitary operator which obey,

[Lµ, A]ρ∞ = 0, (10)
�

−i[H, A]−
∑

µ

[L†
µ, A]Lµ

�

ρ∞ = iλAρ∞, λ ∈ R. (11)

The necessity direction of the proof in Appx. A is a consequence taking the polar decompo-
sition of ρ = AR and then showing that the unitary part, A, must satisfy the stated conditions,
while the positive-semidefinite part, R, satisfies L̂[R] = 0 and is thus a proper NESS. The suffi-
ciency direction can be obtained by rearranging Eqs. (10) and (11) and does not require that
A be unitary. Note that we have solved for the eigenmode in terms of A and ρ∞. We also
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emphasize that the necessity of the conditions in Th. 1 does not hold for infinite-dimensional
systems (e.g. bosons), but the sufficiency does. From this theorem, we can also obtain alter-
native necessary conditions for the existence of a purely imaginary eigenvalue.

Corollary 1. The Liouvillian super-operator, L̂, admits a purely imaginary eigenvalue, iλ only if
there exists some unitary operator, A, satisfying

−iρ∞A†[H, A]ρ∞ = iλρ2
∞, (12)

ρ∞A†[L†
µ, A]Lµρ∞ = 0, ∀µ, (13)

ρ∞[L
†
µ, A†]Lµρ∞ = 0, ∀µ. (14)

In which case the eigenstate is given by ρ = Aρ∞.

In Appx. B this is shown by rearranging the conditions in Eqs. (10) and (11).
We next make the connection between these results and strong dynamical symmetries

[54] which have previously been shown as sufficient for the existence of purely imaginary
eigenvalues. Using Thm. 1, we can, under certain conditions, strengthen the results of [54]
and demonstrate that strong dynamical symmetries are both necessary and sufficient.

Theorem 2. When there exists a faithful (i.e. full-rank/ invertible) stationary state, ρ̃∞, ρ is
an eigenstate with purely imaginary eigenvalue if and only if ρ can be expressed as,

ρ = ρnm = Anρ∞(A
†)m, (15)

where A is a strong dynamical symmetry obeying

[H, A] =ωA (16)

[Lµ, A] = [L†
µ, A] = 0, ∀µ , (17)

and ρ∞ is some NESS, not necessarily ρ̃∞. Moreover the eigenvalue takes the form

λ= −iω(n−m). (18)

Furthemore, the corresponding left eigenstates, with L̂†σmn = iω(n − m)σmn, are given
by σmn = (A′)mσ0

�

(A′)†
�n

where A′ is also a strong dynamical symmetry and σ0 = 1.

The proof of the necessity direction in Appx. C makes extensive use of the results and
proofs from [139, 156, 157] regarding the asymptotic subspace of the Liovillian, As(H) and
the projector, P, into the corresponding non-decaying part of the Hilbert space, H. Impor-
tantly, when a full rank stationary state exists, this projector must be the identity operator,
P = I. Compared with Thm. 1 there is now no ambiguity about the unitarity of A. The simple
manipulation

[H, A] =ωA

A−1HA−H =ω1 Assuming A is invertible

0=ωTr(1) Taking trace

(19)

shows that A must not be invertible and thus cannot be unitary when ω 6= 0. Additionally,
taking the trace of Eq. (16) shows A must be traceless for ω 6= 0. We also remark that the
requirement of a faithful stationary state, i.e that ρ∞ has full rank, is immediately satisfied if
the Liouvillian is unital, defined as L̂[1] = 0 where 1 is the identity operator. This simplifies
to
∑

µ[Lµ, L†
µ] = 0 which in particular is true for pure dephasing where Lµ = L†

µ. We will give
further discussion of unital maps and their relevance for synchronization later. Importantly,
the quantum limit cycle eigenmodes ρnm are, by construction, off-diagonal in the basis of ρ∞
indicating that they are quantum coherent (cf. also quantum phase synchronization [158]).
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3.2 Stable Quantum Synchronization

The criteria for persistent oscillations we gave in the previous subsection are necessary for
stable quantum synchronization because the sites in a system cannot lock persistently into
phase, frequency and amplitude if the frequency is trivially 0. The sufficient criteria depend on
the precise definition of synchronization, as we will now examine. We will use the terminology
introduced in Sec. 2.1. Recall that the crucial feature of quantum synchronization is that the
various parts of the subsystem lock into the same phase, frequency and amplitude. Let Pj,k be
an operator exchanging subsystems j and k and let P̂ j,k(x) := Pj,k x Pj,k. We note that P2

j,k = 1.
We can then prove the following corollary.

Corollary 2. Fulfilling all the following conditions is sufficient for robust and stable synchroniza-
tion between subsystems j and k with respect to the local operator O:

• The operator Pj,k exchanging j and k is a weak symmetry [159] of the quantum Liouvillian
L̂ (i.e. [L̂, P̂ j,k] = 0)

• There exists at least one A fulfilling the conditions of Th. 1

• For at least one operator A fulfilling the conditions of Th. 1 and the corresponding ρ∞ we
have tr[OjAρ∞] 6= 0

• All A fulfilling the conditions of Th. 1 also satisfy [Pj,k, A] = 0

The proof detailed in Appx. D follows because under the assumption that the exchange
operator, Pj,k, is a weak symmetry we find that all NESSs, ρ∞, with L̂[ρ∞] = 0 commute
with Pj,k. Thus when we write the general evolution in the long time limit we have

lim
t→∞
〈Oj(t)〉= tr

�

Oj

∑

n

cnAnρ∞,neiλn t

�

= tr

�

Oj P
2
j,k

∑

n

cnAnρ∞,neiλn t

�

= tr

�

Pj,kOj Pj,k

∑

n

cnAnρ∞,neiλn t

�

= tr

�

Ok

∑

n

cnAnρ∞,neiλn t

�

= lim
t→∞
〈Ok(t)〉,

(20)

where: cn = 〈〈σn|ρ(0)〉〉 for an arbitrary initial state ρ(0), the operators An all satisfying the
conditions of Th. 1 and L̂ρ∞,n = 0.

The most straightforward example of a weak symmetry is when [H, Pj,k] = 0 and P̂ j,k maps
the set of all the Lindblad operators {Lµ} into itself, though more exotic cases are possible
(e.g. [160–164]). Thus systems satisfying the conditions of Cor. 2 are, for instance, those for
which Pj,k is a reflection operator, the Lindblad operators act on each subsystem individually,
and the system Hamiltonian is invariant under reflections.

We may further relax these requirements in quite general cases and achieve total synchro-
nization across the system, i.e. synchronization between all pairs of subsystems. In Appx. E
we prove the following refinement of Cor. 2.
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Corollary 3. The following conditions are sufficient for robust and stable synchronization between
subsystems j and k with respect to the local operator O:

• The Liouvillian, L̂ is unital (L̂(1) = 0)

• There exists at least one operator A fulfilling the conditions of Th. 1

• For at least one A fulfilling the conditions of Th. 1 and the corresponding ρ∞ we have
tr[OjAρ∞] 6= 0

• All such A fulfilling the conditions of Th. 1 also satisfy [Pj,k, A] = 0

Furthermore, if all A are translationally invariant, [A, Pj, j+1] = 0,∀ j, then every subsystem is
robustly and stably synchronized with every other subsystem.

This further illustrates the power and utility of unital maps in achieving total synchroniza-
tion. Examples are 1D models that are reflection symmetric, have only one A operator, and
experience dephasing. This includes the cases discussed before in [36,54].

3.3 Multiple Frequencies and Commensurability

Before moving on, we make some brief remarks about the issues of multiple frequencies and
commensurability. Firstly, since our theory allows for multiple A operators, each of which
needs not correspond to the same imaginary eigenvalue, the theorems above explicitly include
the case of multiple frequencies. In general, if the multiple purely imaginary eigenvalues are
not commensurate, i.e. are not all integer multiples of some fixed value, then the resulting
oscillations will not be periodic. This alone does not preclude quantum synchronization since
we have not required that the long-lived dynamics be periodic.

However, if there are “too many” incommensurable purely imaginary eigenvalues, they will
generically dephase, leading to observables that are effectively stationary - at least within ex-
perimentally accessible and measurable limits. This is similar to eigenstate dephasing, which
is often considered the generic mechanics for thermalization in closed systems [137,165]. Al-
ternatively, the system may display chaotic dynamics. This means that in systems obeying the
conditions for synchronization but with a large number of incommensurable purely imaginary
eigenvalues, additional analysis must be carried out to determine if the synchronization sur-
vives the dephasing process and whether the dynamics become chaotic. Importantly, if all the
strong dynamical symmetries or A-operators satisfy the conditions for Cors 2 or 3 the dynamics
will be synchronized at late times even if the evolution is chaotic or relaxes to stationarity. For
a more detailed discussion of such spectral problems from a more mathematical perspective,
see [165].

It should also be noted that the situation is more straightforward in unital evolutions,
where each purely imaginary eigenvalue can be related to a strong dynamical symmetry, A,
and thus by Thm. 2 is an integer multiple of some fixed frequency corresponding to A. Generi-
cally in open quantum systems with sufficiently many Lindblad jump operators, there are very
few, if any, dynamical symmetries, and thus any purely imaginary eigenvalues will be integer
multiples of a few fixed values.

3.4 Extensions to Weaker Definitions of Synchronization

As we have emphasised throughout, our definitions pertain only to the strictest notion of syn-
chronization, where the two signals must be identical. However, if we were to use the Pearson
indicator from Eqn. (1), this would instead allow for two signals which differ by an overall
additive constant or multiplicative factor. It is immediate from Eqn. (20) how Cor. 2 should
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be adapted to give sufficient conditions for this relaxed notion of synchronization. Firstly we
no longer need exchange superoperator P̂ j,k to be a weak symmetry and we do not need all
A-operators to satisfy [Pj,k, A] = 0. Instead we require that if ρn = Anρ∞,n has a non-zero,
purely imaginary eigenvalue, then Pj,kρn = αρnPj,k for some α which corresponds to the con-
stant multiplicative factor between the two signals. Note that inhomogeneity of the NESSs
under exhange, Pj,kρ∞,nPj,k 6= ρ∞,n leads to an additive constant between the two signals.

As an extension to this we can also see how alternate modes of synchronisation can occur.
For instance if there were only a single A operator and the condition [Pj,k, A] = 0 were replaced
by Pj,kA− eiθAPj,k = 0 then we would have

lim
t→∞
〈Oj(t)〉= lim

t→∞
〈Ok(t + θ/λ)〉, (21)

corresponding to phase synchronisation

The results in this section have considered only the cases of purely imaginary eigenvalues.
Thus they correspond to infinitely long-lived synchronized oscillations, i.e. stable quantum
synchronization. In the next section, we will analyze the behaviour of Liouvillian eigenvalues
under perturbations and discuss the relation of these results to metastable quantum synchro-
nization.

4 Almost Purely Imaginary Eigenvalues and Metastable
Quantum Synchronization

Let us now suppose that our Liouvillian is perturbed analytically so that we may write

L̂′(s) = L̂+ sL̂1 + s2L̂2 +O(s3). (22)

For simplicity and to avoid unwanted technicalities, we will assume that this series expansion
has an infinite radius of convergence. This is almost always the case in relevant examples
where the Hamiltonian or Lindblad jump operators are generally perturbed only to some finite
order.

As explained in Sec. 2.1, metastable quantum synchronization requires eigenvalues with
vanishingly small real part. Under a perturbation of the form in equation (22), it is known that
the eigenvalues, λ(s) vary continuously with s [138]. Therefore in order to obtain vanishingly
small real parts, it is clear that we must perturb those eigenvalues already on the imaginary
axis. At this point we divide our analysis into two regimes, the first where λ(0) = 0 and the
second where λ(0) = iω, ω ∈ R \ {0}.

4.1 Ultra-Low Frequency Metastable Synchronization

In the first regime, we consider the case of perturbing a state with zero eigenvalue at s = 0.
Since there always exists a Liouvillian eigenstate with zero eigenvalue, this is only possible
when the null space of L̂ is degenerate. This regime has been studied in depth by Macieszczak
et al. [166]. It was shown that when L̂′(s) is perturbed away from s = 0 the degeneracy in
the 0 eigenvalue is lifted in such a way that the eigenvalues are at least twice continuously
differentiable,

λ(s) = iλ1s+λ2s2 + o(s2), (23)

where λ1 ∈ R and Re(λ2) ≤ 0. This gives rise to periodic oscillations with time period ∼ 1/s
and lifetime ∼ 1/s2.
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In many ways, this is somewhat unsatisfactory for the purposes of synchronization in an
applicable sense since as we extend the lifetime of our synchronization, the periodic behaviour
becomes harder to observe as a consequence of the extended time period. We also remark
that generically the order of s only differs by one between the decay rate and the oscillation
frequency.

4.2 Quantum Zeno Metastable Synchronization

A more relevant variant of the ultra-low frequency case is when,

L̂′[ρ] = −i[H,ρ] + γD̂[ρ] +O
�

1
γ

�

, (24)

for some large γ. In this case the evolution is dominated by the dissipative term

D̂[ρ] =
∑

µ

2LµρL†
µ − {L

†
µLµ,ρ}. (25)

In this set up quantum Zeno dynamics are possible. Physically this can, for example, correspond
to experimental set-ups in regimes where it is difficult to suppress the effects of dephaing
such as the example considered later in Sec 6.3. For more detailed derivations and in-depth
discussions of the quantum Zeno effect, see [167–170]. We now re-scale the full quantum

Liouvillian as ˜̂L= 1
γ L̂
′, and consider s = 1/γ as the perturbative parameter. If the 0 eigenvalue

is split then as in the above section we have

λ̃= iωs+λ2s2 + o(s2)

= iω
1
γ
+λ2

1
γ2
+ o(s2).

(26)

Transforming back to the unscaled Liouvillian we now have

λ= iω+λ2
1
γ
+ o

�

1
γ

�

, (27)

and thus we see that the oscillations occur on the relevant Hamiltonian time-scales for all γ.
In this case the purely imaginary eigenvalues must come from stationary phase relations [138]
of the dissiaptive Liouvillian D̂. These are stationary states that fulfil the conditions of Th. 1
with trivial eigenvalue ω = 0. If all the A operators and D̂ fulfil the conditions of Cor. 2 or 3,
then robust metastable synchronization occurs with a lifetime ∼ 1

γ .

4.3 Dynamical Metastable Synchronization

We now analyse the case where λ(0) = iω, with ω 6= 0, which we label dynamical metastable
synchronization. This is physically distinct from the case where ω = 0 as we are now consid-
ering perturbations to a system which already exhibits long-lived dynamics. By adapting the
analysis of [166], in Appx. F we prove the following theorem.

Theorem 3. For analytic L̂′(s) with λ(0) = iω, ω ∈ R we have

λ(s) = iω+ iλ1s+λ2s
1+

1
p + o

�

s
1+

1
p

�

, (28)

for some integer p ≥ 1. We also find that λ1 ∈ R and λ2 has non-positive real part.
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Crucially, this means that at first order in s the perturbed eigenvalues remain purely imag-
inary, while the real part, which would contribute to decay, is higher order in s.

When considering the synchronization aspects, we first note that the conditions for robust
metastable synchronization remain the same as in Cor. 2 and 3 in the leading order, i.e. for
L̂ (see Appx. J). For sake of simplicity we assume that L̂1 is such that it explicitly breaks the
exchange symmetry Pj,k between the sites we wish to synchronize, i.e. P̂ j,kL̂1P̂ j,k = −L̂1. This
is the most relevant and standardly studied case in quantum synchronization. For instance, this
case occurs if the subsystems j, k are perfectly tuned to the same frequency in L̂ in the leading
order, and we introduce a small detuning (e.g. [36]). In that case, we find the remarkable fact
that,

Corollary 4. For anti-symmetric perturbations L̂1 which explicitly break the exchange symme-
try, and thus synchronization, between sites j and k, i.e. P̂ j,kL̂1P̂ j,k = −L̂1, the frequency of
synchronization ω is stable to next-to-leading order in s, i.e. λ1 = 0.

This counter-intuitive result, proven in Appx. G implies that the frequency at which syn-
chronized observables oscillate is more stable to perturbations that disturb the synchronization
through explicitly breaking the exchange symmetry than those which preserve this symmetry.

The preceding theorem may be strengthened in the case where λ(0) is non-degenerate
or where the perturbation of L̂′(s) corresponds to at least a second-order perturbation of the
jump operators as follows

Corollary 5. For a Liouvillian of the form in Eq. (7) with

H(s) = H(0) + sH(1) +O(s2),

Lµ(s) = L(0)µ +O(s2), ∀µ,
(29)

the exponent in Theorem 3 has p = 1 so that the eigenvalues are twice continuously differentiable
in s.

The proof can be found in Appx. H and follows from noticing that L̂(1) = −i[H(1), (·)]
generates unitary dynamics. This result should be contrasted with the ultra-low frequency
case. Under these type of perturbations we see that time period of the oscillations does not
grow as s → 0 and instead remains O(1). We also observe that there are two orders of s
between the decay rate and oscillation frequency, demonstrating that these are more stable
and thus easier to observe experimentally and more relevant for utilisation than the ultra-low
frequency case.

4.4 Analogy With Classical Synchronization

Before continuing to the examples, we pause to discuss the relationship between quantum syn-
chronization in our sense and classical synchronization. Although there is no well-defined clas-
sical limit for the quantum systems and the microscopic observables we study, certain analogies
can be drawn.

Firstly, classical synchronization, by definition, requires stable limit cycles [171]. More
specifically, suppose that a finite perturbation in the neighborhood of a limit cycle 〈O(t)〉 leads
to a new trajectory 〈Õ(t)〉. The limit cycle is exponentially stable if there exists a finite a > 0
such that |〈Õ(t)〉 − 〈O(t)〉|® e−at . In our case, provided the conditions of Th. 2 hold, any
perturbation of the state ρ(t) + δρ that does not change the value of the strong dynamical
symmetry, i.e. Tr(δρA) = 0 renders the limit cycle of 〈O(t)〉 exponentially stable provided
that the Jordan normal form is trivial. Otherwise, it is stable. This follows directly by linearity
from Eqs.(8), (9) and Th. 2. We have previously used this fact implicitly to guarantee syn-
chronization for generic initial conditions. Perturbations for which Tr(δρA) 6= 0 generically
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change the amplitude of the limit cycle due to the finite-dimensionality of the Hilbert space
and linearity. This is an unavoidable implication of our results and constitutes an important
fundamental difference between the linear time evolution of a quantum observable O and the
time evolution of a classical observable.

Secondly, stability to noise for classical synchronization follows directly from exponential
stability - noise may be understood as a random series of perturbations. Quantum mechani-
cally, the influence of fully generic noise is fundamentally different as it induces decoherence
and relaxation to stationarity. We have shown in Th. 3 that quantum synchronization is stable
to arbitrary noise/dissipation at least to the second-order in perturbation strength. Moreover,
as we have shown, in the quantum case symmetry-selective (not arbitrary) noise is fundamen-
tally necessary to induce synchronization.

Thirdly, the stability of the frequency of classical synchronization is neutral, which means
that a perturbation can change the frequency, but in a way that neither grows nor decays
in time [171]. In our case Th. 3 guarantees precisely this, and Cor. 4 shows that when a
perturbation explicitly breaks the synchronization, the frequency is, counter-intuitively, one
order more stable than to a perturbation that does not break synchronization. This elucidates
quantum synchronization as a cooperative dynamical stabilization phenomenon analogous to
classical synchronization.

5 Proving the Absence of Synchronization and Persistent Oscilla-
tions

We have provided a general theory of quantum synchronization based on necessary and suffi-
cient algebraic conditions that may naturally be applied to quantum many-body systems. The
following question remains: how can one easily show an absence of synchronization in a quan-
tum system? Apart from calculating the long-time dynamics or diagonalizing the Liouvillian,
which may be analytically or even numerically intractable for an extensive system, we can use
the theory we have developed to provide the following theorem.

Theorem 4. If there is a full rank stationary state ρ∞ (i.e. invertible) and the commutant3 is
proportional to the identity, {H, Lµ, L†

µ}
′ = c1, then there are no purely imaginary eigenvalues

of L̂ and hence no stable synchronization. If this holds in the leading order, there are no almost
purely imaginary eigenvalues and no metastable synchronization.

As shown in Appx. I, this is a consequence of the strong dynamical symmetry of Thm. 2 not
being unitary forω 6= 0. The absence of such a non-trivial commutant is implied by {H, Lµ, L†

µ}
forming a complete algebra of B(H). This can be shown straightforwardly in numerous cases.
For instance, if we have a system of N spin-1/2 and L+k = γkσ

+
k , L−k = γkσ

−
k , and arbitrary H,

the map is unital (1 is a full rank stationary state) and e.g. [L+k , (L+k )
†] = σz

k form a complete
algebra of Pauli matrices on B(H). Further, the results of Evans and Frigerio [172–175] tell
us that a trivial commutant is equivalent to the stationary state being unique.

As a broad set of examples to which this idea can be applied, under the mild assumption
of having a full rank NESS, any 1D spin-1/2 system with nearest-neighbour interaction under-
going Markovian dissipation modelled by on-site non-Hermitian Lindblad operators cannot
have purely imaginary eigenvalues. This follows from our result and the construction of the
complete algebra given in Sec. 2.1 of [176]. Note that the spin-1/2 example we give later
does not have a full rank NESS.

3The commutant of a set of linear operators on a Hilbert space A ⊂ B(H), denoted A′, is the set of O ∈ B(H)
which commute with all A ∈ A. Note that all multiplies of the identity trivially belong to the commutant of any
set.
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Figure 3: Anti-synchronizing two spin-1/2 (sites 2, 3) via a non-Markovian bath. The
bath is the site 1 spin and the L = γσ−1 loss term (the blue box).

6 Examples

To demonstrate the application of our theory and to showcase the results of Sections 3 and 4
we now present two examples. The first is a straightforward demonstration of how to anti-
synchronize two qubits using a third ancilla qubit. While being an interesting result in its own
right, since it has previously been implied that two qubits cannot synchronize in the sense
of [38], this example should provide a pedagogical explanation of how our theory works. We
then move on to discuss the Hubbard model with spin-agnostic heating. This example has
been used several times to study long-time non-stationarity in open quantum systems, and
here we use it as a springboard to construct a family of more generalized models that will
exhibit quantum synchronization. These generalized models are of interest for their relation
to experiments involving particles of spin S > 1/2. Note that there are further applications of
our theory to analyze additional examples from existing literature in the Appendices.

6.1 Perfectly Anti-Synchronizing Two Spin-1/2’s

In [38] it was argued that the smallest possible system that can be synchronized is a spin-1,
and this was then extended in [37] to two spin-1’s. Here, using our theory, we complement
this result by showing how it is, in fact, possible to anti-synchronize two spin-1/2’s through
what is effectively a non-Markovian bath. Letσαj ,α= +,−, z be the standard Pauli matrices on
the site j. Take any 3-site Hamiltonian which non-trivially couples the three sites, is reflection
symmetric around the first site, P2,3HP2,3 = H, and further conserves total magnetization
Sz = 1

2

∑

j σ
z
j , [H, Sz] = 0. The Hamiltonian can then be decomposed into blocks of conserved

total magnetization. Furthermore, the block with eigenvalue Sz = −1/2, i.e. one spin-up and
the other two spin-down, has one eigenstate, |φ〉, with a node on site 1, i.e. σ−1 |φ〉= 0. To see
this explicitly, consider the most general ansatz for an eigenstate with just a single excitation,

|ψ〉=
∑

j

a j | j〉 , (30)
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Figure 4: Evolution of the model described in Sec. 6.1 with parameters ∆ = 1,
B = 0.5 and γ = 2. The system is initially described by a randomly chosen density
matrix. In the top plot we compare a randomly generated Hermitian observable on
sites 2 and 3 (blue and red curves respectively). While they oscillate out of phase
they have an offset equilibrium value which disrupts the perfect anti-synchronization.
In the bottom plot we now compare the σx observable on each site and see perfect
anti-synchronization since 〈σz

1〉 → 0 as t →∞.

where j means there is a spin-up on-site j and all other spins are down. Then to be an eigen-
state with H |ψ〉= E |ψ〉 we see,

(31)

H(P2,3 |ψ〉) = P2,3HP2,3P2,3 |ψ〉
= P2,3H |ψ〉
= EP2,3 |ψ〉
= E(P2,3 |ψ〉).

Thus
(32)|φ〉= |ψ〉 − P2,3 |ψ〉

= (a2 − a3) |2〉+ (a3 − a2) |3〉 ,

is an eigenstate of H with energy E and it has a node on site 1. Provided the Hamiltonian
non-trivially couples the three sites, this state will be the unique eigenstate in the Sz = −1/2
sector with a node on site 1. We may exploit this by considering site 1 with a pure loss Lindblad
L = γσ−1 as the bath and the sites 2 and 3 as the system. This is illustrated in Fig. 3.

In this case we have two stationary states,

ρ1,∞ = |0, 0,0〉 〈0,0, 0| (33)

ρ2,∞ =
1
2
(|0,0, 1〉 − |0,1, 0〉)(〈0, 0,1| − 〈0,1, 0|). (34)

Note that these are pure states and form a decoherence-free subspace [177]. The A operator
satisfying Th. 1 is,

A= (|0, 0,1〉 − |0,1, 0〉) 〈0, 0,0| . (35)

The frequency ω will depend on the specific choice of the Hamiltonian. Taking, for example,
the XXZ spin chain,

H =
3
∑

j=1

σ+j σ
−
j+1 +σ

−
j σ
+
j+1 +∆σ

z
jσ

z
j+1 + Bσz

j , (36)
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Figure 5: Bloch sphere representation of the evolution of the model described in Sec.
6.1 with parameters ∆ = 1, B = 0.5 and γ = 2 and a randomly chosen initial state.
We define the reduced density matrix for each site by taking the partial trace over the
other sites, ρk = TrA,B 6=k(ρ). We then find and plot the corresponding Bloch sphere
representation, ~a(k) for the reduced states as ρk =

1
2(I+~a

(k) · ~σ)where ~σ are the usual
Pauli matrices. The initial point of each trajectory is marked with a cross. We see
the second and third sites reach a limit cycle which they orbit perfectly out of phase,
while the first site rapidly decays to the ~a = (0,0, 1) point on the Bloch sphere. This
demonstrates the anti-synchronization between only sites 2 and 3. Note that since
the reduced states are note pure the trajectories live within the sphere.

with implied periodic boundary conditions, we have ω = −1+ 2B − 4∆. Note that there are
persistent oscillations even in the absence of an external field B = 0. In that case the interaction
termσz

jσ
z
j+1 (corresponding in the Wigner-Jordan picture to a quartic term) picks out a natural

synchronization frequency. Since A is antisymmetric, P2,3AP2,3 = −A, the oscillating coherences
will also be antisymmetric. The symmetric stationary state ρ1,∞ spoils anti-synchronization
between site 2 and 3 by offsetting the equilibrium value. However, an observable that is
zero in this state tr

�

Okρ1,∞
�

= 0, k = 2,3, will be robustly and stably anti-synchronized
limt→∞〈O2(t)〉= − limt→∞〈O3(t)〉 with frequencyω. A possible choice is the transverse spin
Ok = σx

k , k = 2,3. This is demonstrated in Figure 4.
Using this example, we can further make a link to previous studies of quantum synchro-

nization, which focused on limit cycles in phase space. In Figure 5 we show the limit cycles
of the second and third spins in the phase space defined by the usual Bloch sphere represen-
tation of a qubit. We see that the two limit cycles are perfectly out of phase, as expected for
anti-synchronization. We can also see clearly that the first site is not synchronized to either
the first or second site since its phase space trajectory quickly decays to a fixed point rather
than the common limit cycle of sites 2 and 3.
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6.2 Lattice Models with Translationally Invariant non-Abelian Symmetries: Sta-
ble and Metastable Synchronization

We will now proceed to explore examples of many-body models that exhibit robust and
stable/meta-stable synchronization between every site due to their symmetry structure. We
first discuss the Fermi-Hubbard model as a base case and then explore its generalizations to
multi-band and higher spin versions before commenting on how our theory can be applied to
existing experimental set-ups. We will also explain how systems can be engineered using the
theory in this work to create long-lived synchronization.

6.2.1 Fermi-Hubbard Model with Spin Agnostic Heating

The standard Fermi-Hubbard model has been previously shown to exhibit synchronization in
the presence of spin agnostic heating [36,54,57]. We can now understand the appearance of
synchronization in this model as a consequence of Cor. 3 as follows.

Consider a generalized N -site, spin-1/2 Fermi-Hubbard model on any bipartite lattice,

H = −
∑

〈i, j〉

∑

s∈{↑,↓}

(c†
i,sc j,s + h.c) +

∑

j

U jn j,↑n j,↓

+
∑

j

ε jn j +
B j

2
(n j,↑ − n j,↓),

(37)

where c j,s annihilates a fermion of spin s ∈ {↑,↓} on site j and 〈i, j〉 denotes nearest neighbor
sites. The particle number operators are n j,s = c†

j,sc j,s, n j =
∑

s n j,s. This model includes on-
site interactions U j , a potential ε j and an inhomogenous magnetic field B j,s in the z-direction.
We further include dominant standard 2-body loss, gain and dephasing processes, naturally
realized in optical lattice setups [178–183],

L−j = γ
−
j c j,↑c j,↓ (38)

L+j = γ
+
j c†

j,↑c
†
j,↓ (39)

Lz
j = γ

z
j n j , (40)

with j = 1, . . . N .
From previous studies relating to time crystals, [54,57,59] it is now well appreciated that

in a homogenous magnetic field B j = B the total spin raising operator S+ =
∑

j c†
j,↑c j,↓ is a

strong dynamical symmetry with,

[H, S+] = BS+, [Lαj , S+] = 0. (41)

For γ−j = γ
+
j we have

∑

α, j

[Lαj , (Lαj )
†] = 0, (42)

so we find the map is unital. Provided that S+ and its conjugate S− are the only operator
satisfying the conditions of Th. 2, as is generically the case unless γ−j = γ

+
j = γ

z
j = 0, we may

apply Cor. 3 and conclude that every site is stably, robustly synchronized with every other
site because S+ and S− have complete permutation invariance. We emphasise that the on-site
potentials, ε j , need not be the same in this case. This explicitly demonstrates how our theory
can be applied non-perturbatively to non-homogeneous systems.

Metastability can be achieved by, for example, allowing detuning between the on-site mag-
netic field and considering perturbations from the average value of B j B̄ := 1/N

∑

j B j , i.e.
s j = B j − B̄. As per Cor. 4 the synchronization will be stable to second order, i.e. ∼max(s2

j ).
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This model hints at a general framework to construct more elaborate examples of systems
that exhibit quantum synchronization based on their symmetries. We give details on this gen-
eral framework in Appx. M, which can in principle be applied to a broad class of models,
including fermionic tensor models relevant for high energy physics and gauge/gravity duali-
ties, [184], and U(2N) fermionic oscillators [101]. We will now discuss the case of multi-band,
and SU(N) Hubbard models, which have previously been explored in cold atoms [185–188].

6.3 Generalised Fermi-Hubbard Model with SU(N) Symmetry and Experimental
Applications

For concreteness, we will first consider the model studied in [188] describing fermionic alkaline-
earth atoms in an optical lattice. These atoms are often studied as they have a meta-stable
3P0 excited state, which is coupled to the 1S0 ground state through an ultra-narrow doubly-
forbidden transition [189]. We will refer to these levels as g (ground) and e (excited). We will
further label the nuclear Zeeman levels as m= −I , . . . , I on-site i, where N = 2I+1 is the total
number of Zeeman levels of the atoms. For example, 87Sr has N = 10. It is further known that
in these atoms, the nuclear spin is almost completely decoupled from the electronic angular
momentum in the two states {g, e} [189]. Thus to a good level of approximation, one can
describe a system of these atoms in an optical trap using a two-orbital single-band Hubbard
Hamiltonian [188],

H = −
∑

〈i, j〉

∑

s,m

Js(c
†
i,s,mc j,s,m + c†

j,s,mci,s,m)

+
∑

j,s

Ussn j,s(n j,s − 1) + V
∑

j

n j,g n j,e

+ Vex

∑

j,m,m′
c†

j,g,mc†
j,e,m′ c j,g,m′ c j,e,m.

(43)

Here the ci,s,m operator annihilates a state with nuclear spin m and electronic orbital state
s ∈ {g, e} on site i. Further n j,s =

∑

m c†
j,s,mc j,s,m counts the number of atoms with electronic

orbital state s on site j. This model assumes that the scattering and trapping potential are
independent of nuclear spin, which gives rise to a large SU(N) symmetry.

Defining the nuclear spin permutation operators as

Sm
n =

∑

j,s

c†
j,s,nc j,s,m, (44)

which obey the SU(N) algebra,

[Sm
n , Sp

q ] = δmqSp
n −δnpSm

q , (45)

we find that the Hamiltonian in equation (43) has full SU(N) symmetry,

[H, Sm
n ] = 0 ∀n, m. (46)

We can also introduce the electron orbital operators as,

Tα =
∑

j,s,s′,m

c†
j,s,mσ

α
ss′ c j,s′,m, (47)

where α = x , y, z and σα are the Pauli matrices in the g, e basis. These operators obey the
usual SU(2) algebra and are independent of the nuclear spin operators, [Tα, Sm

n ] = 0. In the
specific case Je = Jg , Uee = Ug g = V, Vex = 0 these are also a full symmetry of the system,
[H, Tα] = 0.
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If we now introduce dephasing of the nuclear spin levels via the on-site Lindblad operators

L(m)j = γ(m)j Sm
m , (48)

we break the SU(N) nuclear-spin symmetry, while the electronic orbital symmetry is promoted
to a strong symmetry [159] since the operators Tα all commute with the Lindblad operators.
This may be accomplished by scattering with incoherent light that does not distinguish be-
tween various energy levels of the internal degree of freedom s [178,190]. In particular, this
represents the fact that the light has transmitted information to the environment about the
location of an atom, but not its internal degree of freedom that remains coherent. The rates
γ
(m)
j can be made larger by introducing more light scattering.

In the presence of a field that only couples to the electronic degrees of freedom,

Hfield =ωT z , (49)

the electronic orbital SU(2) symmetry is broken to a dynamical symmetry with frequency ω.
Since the T± operators are translationally independent, all the conditions of Cor. 3 are satisfied
to guarantee robust, stable synchronization between all pairs of sites.

In realistic set-ups, this strict symmetry structure is unlikely to be perfectly maintained.
In particular certain cold atom species may have a finite exchange term Vex between the spin
levels, e.g. [191,192]. Thus we would expect metastable synchronization to be present when
the conditions Je = Jg , Uee = Ug g = V, Vex = 0 do not hold perfectly or there are some
inhomogeneities in the additional field. More generally, we could consider cases of interacting
systems where the nuclear and electronic degrees of freedom are coupled through scattering
processes, such as in the experiment conducted by [144]. Generically such systems will lack
the symmetries required for robust, stable quantum synchronization, and thus the timescale
over which synchronization can be maintained will be a measure of how much the symmetries
are broken through these imperfections.

One possible approach for achieving metastable synchronization in more complex systems
is to proceed as follows. Ignoring interactions, we can diagonalize the single site Hamiltoni-
ans to obtain eigenstates |n〉 j and energy levels En, j for each site, j. These give trivial onsite
dynamical symmetries An,m

j = |n〉 〈m| j for En, j 6= Em, j . We then introduce dephasing operators
on each site which break all but a few of these dynamical symmetries. When we reintroduce
interactions between neighbouring sites, we search for translationally invariant linear combi-
nations of the remaining on-site strong dynamical symmetries, which are as close as possible
to dynamical symmetries of the whole model. These linear combinations can, in principle, be
further optimized by adjusting the experimental parameters of the system. These consider-
ations emphasize the importance of our theory when engineering long-lived synchronization
in more complex systems. Our theory tells us that to produce quantum systems that exhibit
long-lived synchronization, the symmetries must be carefully controlled.

Another aspect of our theory that can be applied to these more complicated systems, even
if they do not admit the symmetries required for synchronization, is to give the scalings of
decay rates and frequencies of the meta-stable oscillations. As an example, we consider the
experimental set-up investigated by [144,193], where fermionic atoms with nuclear spin-9/2
were confined to a deep optical lattice. In their experiment, they initialized the system so that
every site contained two atoms, one with m= 9/2 and the second with m= 1/2, and observed
oscillations across the whole system between this initial state and the state in which the two
atoms had spins m= 7/2 and m= 3/2. These oscillations were most pronounced in the limit
where the optical lattice was very deep, corresponding to minimal hopping. It is known that
deep optical lattices can often cause dephasing processes to occur, so it is likely that in the
limit of no hopping, the system also experiences strong dephasing processes. Thus we apply
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the results of Sec. 4.2 to predict that as the trap becomes shallower, the frequency should vary
as,

ω=ω0 +
λ

γ
+ o(1/γ), (50)

for some constant λ, where γ = U/J is the ratio between the interaction strength and the
hopping. This ratio is known to be related to the lattice depth in a 1D sinusoidal lattice in the
deep lattice limit as [194],

γ∼ exp(
p

V0), (51)

for V0 the lattice depth, measured in units of Er . The 1D approximation is valid because the
other two dimensions of the optical lattice are kept at very deep values V⊥ = 35Er [144]. Thus
we obtain

ω(V0) =ω0 +λexp(−
p

V0). (52)

Our simple results appear to be in better agreement with the experimental measurements than
the numerical simulations in [144].

7 Conclusions

We have introduced a general theory of quantum synchronization in many-body systems with-
out well-defined semi-classical limits. So far, although a subject of great interest, quantum
synchronization has been studied on an ad-hoc basis without a systematic framework. The
advantage of our theory is that it provides an algebraic framework based on dynamical sym-
metries from which to systematically study quantum synchronization in many-body systems.
Symmetries are useful in quantum physics, especially many-body physics, as they allow for ex-
act results and statements without resorting to challenging and often infeasible analytical or
numerical computations. Our framework also allows for exact solutions of all such dynamics
in terms of this dynamical symmetry algebra.

We introduced definitions of stable and metastable synchronization, which align with the
notion of identical synchronization in classical dynamical systems. Stable synchronization lasts
for an infinite amount of time, whereas metastable lasts only for very long times compared to
the system’s characteristic timescale and is the one usually studied in the literature. In addition,
we defined robust synchronization to capture the robustness of the synchronized behaviour to
the initial conditions. This is important to identify systems where the synchronization process
is performed by some internal mechanism rather than fine-tuning of the initial state. We
further divided the cases of metastable synchronization into those for which the observable
dynamics take place on relevant time scales or not. We have demonstrated the synchronization
is associated with quantum coherence.

We provided several examples, both new ones and from existing literature, and have shown
how to use our theory to understand and extend them. Curiously, even though it was implied
that the smallest system that can be synchronized is a spin-1 [38], we have used our theory
to find an example of two spin-1/2’s that anti-synchronize through interaction with a non-
Markovian bath without contradicting the results of [38]. We then studied the Fermi-Hubbard
model and its generalizations to explore how to generate models which can be expected to
exhibit quantum synchronization. We also discussed how these results relate to experimental
set-ups and demonstrated why robust quantum synchronization requires careful engineering
and controlling experimental imperfections. Apart from higher symmetry fermionic quantum
gases we discussed, similar considerations can also be directly applied to other complex cold
atom systems with high degrees of symmetry and a large number of degrees of freedom, such
as quantum spinor gases [195–197]. This demonstrates how our theory provides a guideline

26

https://scipost.org
https://scipost.org/SciPostPhys.12.3.097


SciPost Phys. 12, 097 (2022)

for achieving synchronization that would be difficult to predict without using an algebraic
perspective.

Our results provide several illuminating insights which help generate models that exhibit
synchronization. The first is that the most straightforward way to synchronize quantum many-
body systems is to use unital maps, e.g. dephasing. This is because we may then reduce the
problem to eliminating dynamical symmetries that lack the required permutation symmetry
structure for synchronization. Our results also indicate the importance of interactions. For
instance, if a model has only quadratic ’interacting’ terms corresponding to hopping or on-
site fields, dynamical symmetries that are not translationally invariant are possible [36]. In
particular free-fermion models admit a host of non-translationally invariant conservation laws
[H,Qk] = 0, and these ruin the translation invariance in the long-time limit [198]. Adding
interactions generally leaves only translationally invariant A operators.

We also note that there has been recent debate about the related phenomenon of limit
cycles in driven-dissipative systems with finite local Hilbert space dimensions (in particular
spin-1/2 systems). Mean-field methods find evidence of limit cycles (e.g. [199]), whereas in-
cluding quantum correlations with some numerical methods seems to indicate an absence of
limit cycle phases in these models (e.g. [200, 201]). However, other methods [202] account-
ing for quantum correlations do show limit cycles, making the issue controversial. We note
that limit cycles correspond to persistent dynamics and purely imaginary eigenvalues of the
corresponding quantum Liouvillians. Thus our general algebraic theory should apply to these
systems and can be used to prove either presence or absence of limit cycles.

One direct generalization of our work should be to quantum Liouvillians with an explicit
time dependence that would allow for the study of synchronization to an external periodic
drive. In this case, one could also study discrete time translation symmetry breaking and
discrete time crystals under dissipation [203, 204], which would correspond to purely imagi-
nary eigenvalues in the Floquet Liouvillian or equivalently to eigenvalues of the corresponding
propagator lying on the unit circle. A further direction that should be explored is the synchro-
nisation of sites which have differing local Hilbert space dimension, such as synchronising a
spin-1/2 with a spin-1. Our framework should be applied in the future for generating new
models that have synchronization. Finally, extensions to more general types of synchroniza-
tion such as amplitude envelope synchronization and those models with infinite-dimensional
Hilbert spaces should also follow.
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Appendices

We now provide proofs of the results in Sections 3 and 4 along with additional analysis of
previously studied examples of quantum synchronization and a discussion of how to construct
more elaborate models which exhibit quantum synchronization using symmetry structures.

A Proof of Theorem 1

Theorem. The following condition is necessary and sufficient for the existence of an eigenstate ρ
with purely imaginary eigenvalue iλ, L̂ρ = iλρ, λ ∈ R.

We have ρ = Aρ∞, where ρ∞ is a NESS and A is a unitary operator which obey,

[Lµ, A]ρ∞ = 0, (53)
�

−i[H, A]−
∑

µ

[L†
µ, A]Lµ

�

ρ∞ = iλAρ∞, λ ∈ R. (54)

Proof. Sufficiency can be checked directly by calculating L̂[ρ] = L̂[Aρ∞]. To prove the con-
verse we first observe that ρ is also an eigenstate of the corresponding quantum channel
T̂t = etL̂ with eigenvalue eiλt . Since this lies on the unit circle we may apply Theorem 5
of [156] to deduce that ρ admits a polar decomposition of the form ρ = AR where A is unitary
and R is positive semi-definite with T̂tR = R. In particular this implies L̂[R] = 0 so that R is
a steady-state of L̂ which we now call ρ∞ = R. Note that this also implies ρ∞ is Hermitian
and may be scaled to have unit trace.

Writing the channel in Kraus form as

T̂t[x] =
∑

k

Mk(t)x M†
k (t), (55)

we can apply Theorem 5 of [156] again to find

Mk(t)Aρ∞ = eiλtAMk(t)ρ∞. (56)

Now note that the adjoint channel is given by T̂ †
t [x] =

∑

k Mk(t)† x Mk(t), and so we can
compute the adjoint Liouvillian as,

L̂†[x] =
dT̂ †

t

d t
|t=0

=
∑

k

Ṁ†
k (0)x Mk(0) +M†

k (0)x Ṁk(0).
(57)

Using the of derivative equation (56) and the requirement that Kraus operators satisfy
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∑

k M†
k Mk = I we can calculate,

L̂†[A]ρ∞ =
∑

k

Ṁ†
k (0)AMk(0)ρ∞

+M†
k (0)AṀk(0)ρ∞

=
∑

k

Ṁ†
k (0)Mk(0)Aρ∞

+M†
k (0)Ṁk(0)Aρ∞

+ iλM†
k (0)AMk(0)ρ∞

=
∑

k

d
d t

�

M†
k (t)Mk(t)

�

t=0 Aρ∞

+ iλ
∑

k

M†
k (0)Mk(0)Aρ∞

= iλAρ∞.

(58)

A similar calculation using the conjugate equations, noting that ρ∞ is Hermitian, yields

ρ∞L̂†[A†] = −iλρ∞A†. (59)

We will now also introduce the dissipation function [147,157], defined for any operator x as

D[x] = L̂†[x† x]− L̂†[x†]x − x†L̂†[x]

=
∑

µ

[Lµ, x]†[Lµ, x]. (60)

Then by unitarity of A and the above results for L̂†[A], L̂†[A†] we compute

0= ρ∞D[A]ρ∞ =
∑

µ

ρ∞[Lµ, A]†[Lµ, A]ρ∞. (61)

Since this sum is positive definite we must have [Lµ, A]ρ∞ = 0 ∀µ. We now compute
L̂[Aρ∞] = iλAρ∞ using L̂[ρ∞] = 0 and [Lµ, A]ρ∞ = 0 to obtain

�

−i[H, A]−
∑

µ

[L†
µ, A]Lµ

�

ρ∞ = iλAρ∞, (62)

as required.
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B Proof of Corollary 1

Corollary. The Liouvillian super-operator, L̂, admits a purely imaginary eigenvalue, iλ only if
there exists some unitary operator, A, satisfying

−iρ∞A†[H, A]ρ∞ = iλρ2
∞, (63)

ρ∞A†[L†
µ, A]Lµρ∞ = 0, ∀µ, (64)

ρ∞[L
†
µ, A†]Lµρ∞ = 0, ∀µ. (65)

In which case the eigenstate is given by ρ = Aρ∞.

Proof. We may use the unitarity of A and [Lµ, A]ρ∞ = 0 ∀µ to easily obtain

ρ∞A†[L†
µ, A]Lµρ∞ = 0, ∀µ. (66)

We then left multiply equation (62) by ρ∞A† and use (66) to obtain

−iρ∞A†[H, A]ρ∞ = iλρ2
∞ (67)

as stated. We get ρ∞[L†
µ, A†]Lµρ∞ = 0,∀µ by using (66) and the unitary of A, [L†

µ, A†A] = 0

C Proof of Theorem 2

Theorem. When there exists a faithful (i.e. full-rank/ invertible) stationary state, ρ̃∞, ρ is an
eigenstate with purely imaginary eigenvalue if and only if ρ can be expressed as,

ρ = ρnm = Anρ∞(A
†)m , (68)

where A is a (not necessarily unitary) strong dynamical symmetry obeying

[H, A] =ωA

[Lµ, A] = [L†
µ, A] = 0, ∀µ

(69)

and ρ∞ is some NESS, not necessarily ρ̃∞. Moreover the eigenvalue takes the form

λ= −iω(n−m) . (70)

Furthemore, the corresponding left eigenstates, with L̂†σmn = iω(n − m)σmn, are given by
σmn = (A′)mσ0

�

(A′)†
�n

where A′ is also a strong dynamical symmetry and σ0 = 1.

Proof. We will make use of [156], [139] and [157]. The asymptotic subspace of the Liouvillian
As(H) is defined as a subspace of the space of linear operators B(H) such that all initial states
ρ(0) in the long-time limit end up in ρ(t →∞) ∈ As(H). The projector P (P2 = P = P†) to
the corresponding non-decaying part of the Hilbert space H is uniquely defined [139,157] as,
for all ρ(t →∞) ∈ As(H),

ρ(t →∞) = Pρ(t →∞)P
tr(P) = max

ρ(t→∞)
{rank{ρ(t →∞)}}. (71)

It follows therefore if there is a full rank ρ̃∞ that P = 1.
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From the proof of Proposition 2 of [139] and Theorem 4 (Eqs. (2.39-2.40)) of [157] we
know that for a left eigenmode with purely imaginary eigenvalue A†L̂= −iωA†, we have,

[PHP, PAP] =ωPAP,

[P LµP, PAP] = [P L†
µP, PAP] = 0.

(72)

Which reduces to
[H, A] =ωA,

[Lµ, A] = [L†
µ, A] = 0.

(73)

Since P = I. The left eigenmode A† is also the eigenmode of the dual map T̂ †
t = exp

�

L̂† t
�

.
Since A† corresponds to a peripheral eigenvalue of T̂ †

t , by Lemma 3 of [156], the corresponding
right eigenmode with eigenvalue iω is ρ′ = Aρ∞. By the same Lemma, to every oscillating
coherence Aρ∞ there corresponds a left eigenvector of the form Aρ∞ρ̃

−1
∞ = A′, which must

also satisfy the conditions (73). Now we find that we can write ρ′ = A′ρ̃∞ where A′ satisifes
the conditions of (73). We now have the same criteria as those given in [54] and the statement
of the theorem follows. The converse was shown in [54]. It is a straightforward calculation to
show that σnm = An

�

A†
�m

is a left eigenmode with the desired eigenvalue.

D Proof of Corollary 2

Corollary. The following conditions are sufficient for robust and stable synchronization between
subsystems j and k with respect to the local operator O:

• The operator Pj,k exchanging j and k is a weak symmetry [159] of the quantum Liouvillian
L̂ (i.e. [L̂, P̂ j,k] = 0)

• There exists at least one A fulfilling the conditions of Th. 1

• For at least one A fulfilling the conditions of Th. 1 and the corresponding ρ∞ we have
tr[OjAρ∞] 6= 0

• All such A fulfilling the conditions of Th. 1 also satisfy [Pj,k, A] = 0

Proof. In the long-time limit we have,

lim
t→∞
〈Oj(t)〉= tr

�

Oj

∑

n

cnAnρ∞,neiλn t

�

, (74)

where cn = 〈〈σn|ρ(0)〉〉 for an initial state ρ(0) which we assume to be arbitrary and An are
all operators satisfying the conditions of Th. 1 and L̂ρ∞,n = 0 forming a complete basis for
the eigenspaces with purely imaginary eigenvalues. Clearly,

lim
t→∞
〈Oj(t)〉= tr

�

Oj P
2
j,k

∑

n

cnAnρ∞,neiλn t

�

, (75)

and we just need to commute the Pj,k to the left to use Ok = Pj,kOj Pj,k which results in
limt→∞〈Oj(t)〉 = limt→∞〈Ok(t)〉 for any initial state. By assumption, [An, Pj,k] = 0,∀n. We
just need to show that [ρ∞,n, Pj,k] = 0,∀n. To do so we use the fact that Pj,k is a weak
symmetry of the Liouvillian [P̂ j,k, L̂] = 0. The two eigenvalues of Pj,k are +1,−1 and it has
orthogonal eigenspaces. This implies that the Liouvillian is block reduced to the eigenspaces
B1 = {+1,+1}⊕{−1,−1} and B2 = {+1,−1}⊕{−1,+1} corresponding to the two +1 and −1
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eigenvalues of P̂ j,k, respectively [159]. The only possible eigenmodes with eigenvalue 0 as
per Theorem 18 of Baumgartner and Narnhofer [138] are either operators that are diagonal
in some basis or stationary phase relations. The diagonal subspace B1 contains all matrices
that are diagonal. To see this consider ρ2 ∈ B2. It can be written as ρ2 = P+1ρaP−1+ P−1ρaP

1

where

P± =
1
2

�

I± Pi, j

�

(76)

are the corresponding projectors which commute, [P+1, P−1] = 0, and are mutually diagonaliz-
able. We have either P+1 |ψ+〉= |ψ+〉 , P−1 |ψ+〉= 0 or the reverse. Therefore 〈ψα|ρ2 |ψα〉= 0.
For ρ∞,n ∈ B1 we immediately have [ρ∞,n, Pj,k] = 0. All the eigenmodes with eigenvalue
0 which belong to B2 are stationary phase relations because they only contain off-diagonal
elements. It remains to show that all stationary phase relations, ρ∞,n ∈ B2, either satisfy
[ρ∞,n, Pj,k] = 0 or vanish. This directly follows from Proposition 16 of Baumgartner and
Narnhofer [138] that states the existence of a stationary phase relation implies the existence
of a unitary U such that [H, U] = [Lµ, U] = 0,∀µ. However, such a U must intertwine between
the subspaces +1 and −1 of Pj,k, with projectors P1 and P−1, respectively, i.e. U P+1 = P−1U
and therefore [U , Pj,k] 6= 0. However, U satisfies all the conditions for an A operator from Th.
1, and by assumption does not exist. Thus there are no non-zero ρ∞,n ∈ B2.

E Proof of Corollary 3

Corollary. The following conditions are sufficient for robust and stable synchronization between
subsystems j and k with respect to the local operator O:

• The Liouvillian, L̂ is unital (L̂(1) = 0)

• There exists at least one A fulfilling the conditions of Th. 1

• For at least on A fulfilling the conditions of Th. 1 and the corresponding ρ∞ we have
tr[OjAρ∞] 6= 0

• All such A fulfilling the conditions of Th. 1 also satisfy [Pj,k, A] = 0

Furthermore, if all A are translationally invariant, [A, Pj, j+1] = 0,∀ j, then every subsystem is
robustly and stably synchronized with every other subsystem.

Proof. We return to Eq. (75) and wish to show that [ρ∞,n, Pj,k] = 0 but without the assump-
tion of weak symmetry. If L̂ is unital, then all An satisfy conditions of Th.2 and therefore it
straightforwardly follows that AnA†

n is a strong symmetry [159,205] of the Liouvillian and that
the projectors to the eigenspaces of AnA†

n, Pn,a, are stationary states L̂Pn,a = 0. By assumption
[Pj, j+1, AnA†

n] = [Pn,a, Pj, j+1] = 0. By Theorem 3 of [138] Pn,a are projectors to enclosures. The
existence of more minimal enclosures that do not satisfy the symmetry requirement would im-
ply that there are more operators A (as projectors to enclosures satisfy the conditions of Th. 1
trivially), and this cannot happen by assumptions of the corollary. Therefore, Pn,a are projec-
tors to minimal enclosures. By Theorem 18 of [138] all the minimal diagonal blocks Pn,aρPn,a
contain a unique stationary state, which must be up to a constant Pn,a. The lack of stationary
phase relations and oscillating coherences that do not commute with Pj,k follows from the fact
that by Theorem 18 of [138] the unique stationary state in each off-diagonal block is of the
form of U Pn,a. This intertwiner, like in the proof of Cor. 2, satisfies the conditions for an A and
therefore must commute with Pj,k by assumption.
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F Proof of Theorem 3

Theorem. Let L̂′(s) generate a CPTP map and depend analytically on s with Taylor series

L̂′(s) = L̂+ sL̂1 + s2L̂2 +O(s2). (77)

Suppose there exists someω ∈ R\{0} and ρ0 such that L̂ρ0 = iωρ0. Then for s sufficiently small
λ(s) is an eigenvalue of L̂′(s) given by

λ(s) = iω+λ1s+λ2s
1+

1
p + o

�

λ2s
1+

1
p

�

, (78)

where λ1 is purely imaginary, p is some positive integer and λ2 has non-positive real part.

Proof. We first note that if λ(0) is a non-degenerate eigenvalue, then it is known that λ(s) is
analytic; thus, the above result is trivial. In fact, in this case, we also find that the eigenstate
ρ(s) also depends analytically on s.

For the case where iω is an m-fold degenerate eigenvalue of L̂0 we define the ‘ω-rotating
stable manifold’ (ω-RSM) as the eigenspace spanned by the m eigenmode corresponding to
iω. We next prove the following lemma

Lemma 1. The purely imaginary eigenvalues of L̂ have one-dimensional Jordan blocks.

Proof. Let the CPTP map generated by L̂ be T̂t = etL̂. Note that the eigenspace of L̂ with
eigenvalue iω is also an eigenspace of T̂t with eigenvalue eitω which has unit modulus. Thus by
proposition 6.1 of [206] the Jordan blocks corresponding to eitω in T̂t are all one-dimensional.
It follows that the Jordan blocks of L̂ corresponding to iω are also all one-dimensional.

Since iω is a semi-simple eigenvalue and we can directly apply Theorem 2.3 of [207] to
write

λ(s) = iω+λ1s+λ2s
1+

1
p + o

�

s
1+

1
p

�

(79)

for some integer p ≥ 1. Finally we observe that since L̂(s) always generates a CPTP map, we
must have ℜ(λ(s)) ≤ 0 for all s ∈ R and thus immediately we can deduce that λ1 is purely
imaginary and λ2 has non-positive real part.

G Proof of Corollary 4

Corollary. For perturbations L̂1 which explicitly break the exchange symmetry, and thus syn-
chronization, between sites j and k, i.e. P̂ j,kL̂1P̂ j,k = −L̂1, the frequency of synchronization ω
is stable to next-to-leading order in s, i.e. λ1 = 0.

Proof. We begin by noting that the projector to the λ(s) group is differentiable to leading order
(83). We may write the eigenmode equation L̂′(s)ρ(s) = λ(s)ρ(s) in the first order as,

L̂P̂1 + L̂1P̂0 = λ0P̂1 +λ1P̂0, (80)

which we multiply by the corresponding left eigenvector of L̂ 〈〈σ(0)| and obtain,

λ1 = 〈〈σ(0)|L̂1P̂0, (81)

which is clearly zero as P̂0 ∈ B(B1), L̂1 ∈ B(B−1) and 〈〈σ(0)|∈ B1, where the indices of Bp

denote the p = ±1 eigenspaces of the exchange superoperator P̂ j,k.
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H Proof of Corollary 5

Corollary. Suppose our Liouvillian L̂′(s) has Hamiltonian H(s) and jump operators Lµ(s). If the
perturbation is such that

H(s) = H(0) + sH(1) +O(s2)

Lµ(s) = L(0)µ +O(s2)
(82)

then we find that p = 1 in the result of Theorem 3.

Proof. We follow the reduction method of [207] and [166]. From [207] we recall that the
eigenvalues perturbed away fromω (called theω-group) are not in general analytic. They are
instead branches of analytic functions and the corresponding eigenstates may contain poles.
However the projection onto the span of the ω-group eigenstates is analytic and thus the
restriction of L̂(s) to this subspace is also analytic. Let us write this projection operator as
P̂(s) and thus the restricted Liouvillian is given by [L̂(s)]P̂(s) = P̂(s)L̂(s)P̂(s). We can use the
result from Section II.2 of [207] to write

P̂(s) = P̂ + sP̂1 +O(s2), (83)

where
P̂1 = −ŜL̂1P̂ − P̂L̂1Ŝ. (84)

Here P̂ is the zero order projector onto the ω-RSM and Ŝ is the reduced resolvent of L̂(s) at
iω which obeys ŜP̂ = P̂Ŝ = 0 and Ŝ(L̂− λI) = (L̂− λI)Ŝ = I − P̂ . We also write (as on
page 78 of [207])

�

L̂(s)
�

P̂(s) = iωP̂ + s[L̂1]P̂ +O(s2‖L̂2‖). (85)

Since L̂1 = −i[H(1), ◦ ] we can see that L̂1 generates unitary dynamics, and thus its projection
to theω-RSM, [L̂1]P̂ also generates unitary dynamics and thus has purely imaginary eigenval-
ues which are semi-simple. By the reduction arguments in Section II.3 [207], we can deduce
that the eigenvalue λ(s) is twice differentiable,

λ(s) = iω+ iλ1s+λ2s2 + o
�

s2
�

, (86)

corresponding to p = 1 in Thm 3.

I Proof of Theorem 4

Theorem. If there is a full rank stationary state ρ∞ (i.e. no zero eigenvalues, invertible) and
the commutant {H, Lµ, L†

µ}
′ = c1, then there are no purely imaginary eigenvalues of L̂ and hence

no stable synchronization. If this holds in the leading order, there are no almost purely imaginary
eigenvalues and no metastable synchronization.

Proof. Suppose, that there exists a state ρ with purely imaginary eigenvalue iω. Since ρ̃∞
has full rank, by Thm. 1 we can write ρ = Aρ∞ where [H, A] =ωA, [L, A] = [L†, A] = 0 and
L̂[ρ∞] = 0. We then see that A†A and AA† both belong to the commutant {H, Lµ, L†

µ}
′, and so

A†A= c1I, AA† = c2I. (87)

Taking the trace trivially gives c1 = c2 = c. Notice that c 6= 0, since c = 1
d Tr(A†A) = 1

d ‖A‖
2,

and so c = 0 would correspond to A= 0. Now we compute,

Tr
�

A†[H, A]
�

= TrωA†A (88a)

Tr
�

A†HA− A†AH
�

=ωTr A†A (88b)

0=ωTr(A†A) . (88c)
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Hence ω= 0. Consequently, no non-zero purely imaginary eignenvalue can exist.

J Conditions For Meta-stable Synchronization

In Sec. 2.2 it was stated that in the long time limit the dynamics of an observable Ô are
described by

〈Ô〉(t) =
∑

k

etλk〈〈Ô|ρk〉〉〈〈σk|ρ0〉〉. (89)

This is because the purely imaginary eigenvalues of L̂ are semi-simple and thus have trivial
Jordan normal form. Since we consider a system of finite size, there is also some µ > 0
such that all eigenvalues λ with non-zero real part have Re(λ) < −µ. This Liouvillian gap
determines the time period during which transient dynamics occur, and after which the system
is synchronized, i.e. the system will be synchronized for t >> 1/µ provided the relevant
criteria of Cor 2 or 3 apply.

When we introduce perturbations, writing

L̂′(s) = L̂+ sL̂1 + s2L̂2 +O(s2), (90)

the eigenvalues vary continuously with the perturbative parameter s, and as a result so too will
the gap µ. Provided the pertubration is small enough that the gap does not close, i.e µ9 0,
in the long time limit we need only consider perturbations to the eigenvalues of L̂ which lie
on the imaginary axis. Since these are semi-simple we may diagonalise L̂ over this subspace.
Now using the Baker-Campbell-Hausdorff (BCH) formula we can write

etL̂′(s) = etL̂etsL̂1+o(st) , (91)

where etL̂ is diagonalisable over the subspace of purely imaginary eigenvalues. Thus for
t < O(1/s) the dynamics are determined by L̂ and we can apply the results of Cor. 2 & 3
to L̂ to determine whether meta-stable synchronization occurs.

If the perturbation is of the form

H(s) = H(0) + sH(1) +O(s2)

Lµ(s) = L(0)µ +O(s2),
(92)

then by Cor. 5 the eigenvalues of L̂ + sL̂1 are semi-simple. In this case we can proceed as
above and use the BCH formula to write

etL̂′(s) = et(L̂+sL̂1)ets2L̂2+o(s2 t), (93)

where now et(L̂+sL̂1) is diagonalisable. Consequently for t <O(1/s2) the dynamics are deter-
mined by L̂+ sL̂1 and we can apply the results of Cor. 2 & 3 to L̂+ sL̂1 to determine whether
meta-stable synchronization occurs.

K Application of our Theory to Non-Markovian Systems

This appendix indicates how our theory can be applied to systems where the environment is
not Markovian. Let the full system-environment Hamiltonian be Htot, and suppose we can
partition the full system-environment into (i) The system we are interested in, (ii) a part of
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the environment that can be modelled as Markovian and (iii) a part of the environment which
is non-Markovian. We can write this as

Htot = HS̃ +HE +HS̃,E , (94)

where S̃ contains both the system and the non-Markovian environment and E contains exclu-
sively the Markovian portion of the environment. Labeling the reduced density operator for the
system and the non-Markovian environment as ρ̃ we can trace out the Markoivan environemnt
to obtain the Lindblad equation for ρ̃,

d
d t
ρ̃ = −i[HS̃ , ρ̃] +

∑

µ

2Lµρ̃L†
µ − {L

†
µLµ, ρ̃}. (95)

We can now apply the results of the main text to determine that the long-time dynamics of ρ̃
are given by

ρ̃(t)→
∑

k

eiωk t ckÃkρ̃k,∞ , (96)

where ck are constants determined by the initial conditions andωk, Ãk, & ρ̃k,∞ are as in Thm.
1. In this form we can study synchronization by directly applying our results to the operators
Ãk, & ρ̃k,∞. This is illustrated in the example in Sec 6.1.

We can also trace out the non-Markovian environment to obtain the reduced density matrix
of the system as

ρ(t)→
∑

k

eiωk t ck TrẼ

�

Ãkρ̃k,∞
�

. (97)

Unfortunately, it is not possible to draw general conclusions directly about the dynamics of
the system without knowing the details of the non-Markovian bath and applying our results
to the combined system. If the fine details of the non-Markovian bath were inaccessible or too
difficult to study our theory would likely not be generally applicable but this would require a
case by case analysis. Other more systematic approaches to non-Markovian generalisations of
the Lindblad equation can be found in [208,209].

L Analysis of Additional Examples of Quantum Synchronization

To further demonstrate our theory, we now provide additional analysis of previously studied
examples of quantum synchronization. We will focus on the model of two weakly coupled,
driven-dissipative spin-1 systems as previously studied in a synchronization setting by [37]. In
the absence of external interactions, two coupled spins, labelled A and B, evolve according to
the Hamiltonian

H =ωASz
A+ωBSz

B +
iε
2

�

S+A S−B − S+B S−A
�

, (98)

where for convenience we define the detuning ∆ = ωA − ωB. We then consider the inde-
pendent interactions of each spin with some external bath which in the absense of spin-spin
interactions drives the spins towards their own non-equilibrium steady states. These system-
bath interactions are modeled by the Lindblad operators

Lu, j = γ
u
j S
+
j Sz

j , Ld, j = γ
d
j S−j Sz

j , j = A, B . (99)

Using the theory we have developed, we will analyze three examples which were shown
by [37] to exhibit quantum synchronization. The first example considers driving the two spins
in opposite directions without any detuning, the second example introduces detuning but also
takes the quantum Zeno limit of large driving, and the third considers driving two detuned
spins in opposite directions.
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L.1 Inverted Limit Cycle: Metastable ultra-low frequency
anti-synchronization

We first analyse the so called inverted limit cycle. We take∆= 0 and invert the driving on the
two spins so that

γu
A = γ

d
B = γ, γd

A = γ
u
B = µ, (100)

and consider the limiting case µ → 0. As in [37] the system is initialised in the state
ρ(0) = ρ(0)A ⊗ ρ(0)B where ρ(0)j is the NESS of spin j in the absence of spin-spin couplings.
Thus we can consider this as a quench of the system where the weak spin-spin interaction are
instantaneously turned on. We find that in the absence of spin-spin interactions, i.e ε= 0, and
with µ= 0 the independent spins have degenerate stationary states

ρ
(0)
A = pA |0〉A 〈0|A+ (1− pA) |1〉A 〈1|A ,

ρ
(0)
B = pB |0〉B 〈0|B + (1− pB) |−1〉B 〈−1|B ,

(101)

for p j ∈ [0, 1]. This degeneracy is lifted as soon as µ becomes strictly positive and we find
pA = pb = 1 in Eq. (101). Thus, to avoid this degeneracy and simplify discussions, in the fol-
lowing we consider µ infinitesimally small but still strictly positive. Consqeuently we consider
both µ and ε as perturbative parameters while ω, γ remain O(1).

To understand the evolution of the system it is sufficient to consider those eigenstates of L̂
which are excited by ρ(0), and in particular which of these have eigenvalues with small real
part compared to ω and γ. We find that only 4 eigenmodes with small real parts are excited,
with corresponding eigenvalues

λ= 0, −2µ+O(µ2,ε2,εµ),

−µ± 2iε+O(µ2,ε2,εµ) .
(102)

Of these, the relevant eigenvalues for synchronized oscillations areλ±= −µ±2iε+O(µ2,ε2,εµ)
since they are the only one with a non-zero imaginary part at leading order. We conclude that
is that this is an example of ultra-low frequency synchronization since both the real and imag-
inary parts of λ± are O(ε,µ). The consequences of this are shown in Figure 6a where we
consider the SZ

j observables. We see that the observable appears almost stationary on short
time scales, t ∼ O(1). When, in Figure 6b, we consider significantly longer timescales, how-
ever, we see the behaviour which we consider metastable synchronization. We further find that
the decay rate is inversely proportional to ε2 at the next lowest order, as indicated in Sec. 4.1.
Consequently, there is only one power of ε between the decay rate and the frequency of the
signal unless ε is sufficiently small that µ > ε2 in which case the decay rate is propositional to
µ. This example demonstrates why we generally discount ultra-low frequency synchronization
since it is unfeasible to observe experimentally.

L.2 Inverted Limit Cycle: Anti-synchronization in the Quantum Zeno Limit

We again consider the same system as above, but now detuned, ωA 6= ωB, and with strong
dissipation, γu

A = γ
d
B = γ >>ω j ,ε. We find that the dissipation operator

D̂[ρ] =2S+A Sz
AρSz

AS−A + 2S−B Sz
BρSz

BS+B
− {Sz

AS−A S+A Sz
A,ρ} − {Sz

BS+B S−B Sz
B,ρ}

(103)

has a stationary subspace with 16-fold degeneracy. Thus, when we lift the degeneracy of this
subspace by introducing comparatively weak unitary dynamics, we introduce several eigen-
values with O(1) imaginary parts and O(1/γ) real parts. This leads to metastable dynam-
ics on timescales relevant to the Hamiltonian. In Fig. 7 we see that for the initial state
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Figure 6: Evolution of Sz observable on sites A (blue) and B (red) for the Spin-1,
inverted limit cycle model with ω = γ = 1, µ = 0.0001, ε = 0.01. In (a) we see
over short time periods the observables gradually move away from 0 while in (b) we
see that over much longer time scales decaying oscillations can be measured. As per
(102) the frequency of these oscillations is 2ε

ρ(0) = |0〉A 〈0|A ⊗ |0〉B 〈0|B there are clean, synchronized oscillations in the Sz observable.
When initialised in this particular state, this metastable anti-synchronization occurs for any
ω,ε << γ.

Unlike the previous example, we find that this meta-stable anti-synchronisation is robust
to initialising the system in arbitrary states. This can be seen by noting that the eigenstates of
the dissipation operator, D̂, are coherences between the states

|0, 0〉 , |1,−1〉 , |0,−1〉 , |1,0〉 . (104)

Under strong dissipation, the system rapidly decays onto the space spanned by these eigen-
states before the slower dynamics take over. Since this space spanned by coherences of the
above eigenstates is invariant under the transformation Sz

A←→−SB
z , all dynamics within this

space will satisfy 〈Sz
A(t)〉 = −〈S

z
B(t)〉 regardless of the initial state. However, we find that the

system is not completely anti-synchronized since if we measure instead the observable S x
j we

find that the measurements on the two sites are now uncorrelated.
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Figure 7: Metastable anti-synchonisation of the inverted limit cycle model in the
Quantum Zeno limit for γ = 100, µ = 0, ωA = 0.5, ωB = 1.5 and ε = 2 when
the system is initialised in ρ(0) = |0〉A 〈0|A⊗ |0〉B 〈0|B. This is a consequence of the
unitary dynamics lifting the degeneracy in the stationary subspace of the dissipation.
Comparison with Fig. 6 shows that in the Zeno limit the oscillations are now on
timescales relevant to the Hamiltonian.

L.3 Pure Gain or Loss: Stable Limit Cycles, but no Robust, Stable Synchroniza-
tion

We now set γd
j = 0, γu

A 6= γ
u
B 6= 0. In that case we find three proper (density matrix) stationary

states,

ρ1,∞ = |−1,0〉 〈−1,0|

+
iε

ωA−ωB
(|−1, 0〉 〈0,−1| − |0,−1〉 〈−1, 0|), (105)

ρ2,∞ = |−1,−1〉 〈−1,−1| , (106)

ρ3,∞ =
1
2
(|0,−1〉 〈0,−1|+ |−1,0〉 〈−1, 0|) . (107)

Solving for the conditions of Th. 1, we may find the A,

A1 = a1 |−1,−1〉 〈−1, 0|
+ i(a2 − a3) |−1,−1〉 〈0,−1| , (108)

A2 = AT
1 , (109)

A3 = −i(a2 + a3) |−1,0〉 〈−1,0|
+ a1 |−1,0〉 〈0,−1|

− a1
a2 + a3

a3 − a2
|0,−1〉 〈−1,0|

+ i(a2 − a3) |0,−1〉 〈0,−1| , (110)

where a1 = 2ε and a2 = (ωA−ωB), a3 =
p

4ε2 + (ωA−ωB)2. The corresponding frequencies
are, ω1 =

1
2(ωA +ωB − a3), ω2 =

1
2(ωA +ωB + a3), ω3 = a3. There is no permutation or

generalized symmetry between sites A and B and so although we do have persistent oscillations
and a limit cycle the sites are not robustly synchronized as seen in Fig. 8.
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Figure 8: Evolution of S x observable on sites A (blue) and B (red) for the Spin-1,
pure gain model. We have non-zero detuning and interaction, ∆,ε 6= 0 and asym-
metric driving, γu

A 6= γ
u
B. Initialising the system in a random state, we see that while

persistent oscillations occur the two sites do not synchronize. This can be understood
through the absence of generalised symmetry between sites A and B.

M A General Framework for Constructing Models which Exhibit
Quantum Synchronization

In Sec. 6.2 we studied models of many-body systems which exhibit quantum synchronization.
In particular, the Fermi Hubbard model with spin-agnostic heating hinted at a general frame-
work for constructing more elaborate models which exhibit this behaviour. To understand this,
we make the following observations:

(i) In the absence of a magnetic field and potential, B j = ε j = 0, the Hubbard model has
a symmetry group G = SU(2) × SU(2)/Z2, coming from the independent spin and η
symmetries [210].

(ii) Further, the representation of these symmetries are permutation invariant, that is

[Sα, Pj,k] = [η
α, Pj,k] = 0, α= x , y, z .

(iii) Introduction of the magnetic field, BSz , which corresponds to the unique element of the
Cartan subalgebra of the spin-SU(2) symmetry, breaks the spin symmetry. Consequently,
the remaining elements, S+, S− of the spin-su(2) algebra become dynamical symmetries

(iv) Choosing a unital set of Lindblad operators, Lµ, from the complementary η symmetry
grantees that [Lµ, S±] = 0 so that the spin operators are strong dynamical symmetries
as required for Thm. 2. Also, since the choice of Lindblad operators do not all com-
mute with the ηα operators, there can be no further strong dynamical symmetries. Fi-
nally, since these strong dynamical symmetries have complete permutation invariance,
the synchronization is robust, as per Cor. 3.

These principles can be applied more widely to models with more elaborate symmetry struc-
tures in order to guarantee quantum synchronization, such as the generalized SU(N) models
in Sec 6.3
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[81] B. Buča, Local Hilbert Space Fragmentation and Out-of-Time-Ordered Crystals,
arXiv:2108.13411.

[82] S. Sarkar and Y. Dubi, Signatures of discrete time-crystallinity in transport through quan-
tum dot arrays, arXiv:2107.04214.

[83] P. Wang and R. Fazio, Dissipative phase transitions in the fully connected
ising model with p-spin interaction, Phys. Rev. A 103, 013306 (2021),
doi:10.1103/PhysRevA.103.013306.

[84] G. Piccitto, M. Wauters, F. Nori and N. Shammah, Symmetries and conserved quantities
of boundary time crystals in generalized spin models, Phys. Rev. B 104, 014307 (2021),
doi:10.1103/PhysRevB.104.014307.

[85] R. C. Verstraten, R. F. Ozela and C. M. Smith, Time glass: A fractional calculus approach,
Phys. Rev. B 103, L180301 (2021), doi:10.1103/PhysRevB.103.L180301.

[86] F. Carollo, K. Brandner and I. Lesanovsky, Nonequilibrium Many-Body Quantum Engine
Driven by Time-Translation Symmetry Breaking, Phys. Rev. Lett. 125, 240602 (2020),
doi:10.1103/PhysRevLett.125.240602.

[87] C. J. Turner, A. A. Michailidis, D. A. Abanin, M. Serbyn and Z. Papić, Weak
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