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Abstract

We uncover 2-group symmetries in 6d superconformal field theories. These symmetries
arise when the discrete 1-form symmetry and continuous flavor symmetry group of a
theory mix with each other. We classify all 6d superconformal field theories with such
2-group symmetries. The approach taken in 6d is applicable more generally, with mi-
nor modifications to include dimension specific operators (such as instantons in 5d and
monopoles in 3d), and we provide a discussion of the dimension-independent aspects
of the analysis. We include an ancillary mathematica code for computing 2-group sym-
metries, once the dimension specific input is provided. We also discuss a mixed ’t Hooft
anomaly between discrete 0-form and 1-form symmetries in 6d.
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1 Introduction

Global symmetries are an essential characteristic of quantum field theories (QFTs). They de-
termine the charges of operators – local or extended – and their ’t Hooft anomalies provide
an RG-flow invariant. Higher-form symmetries [1] and higher-group structures [2] are the
newest members of the family of global symmetries in QFTs1. In the past year it has become
clear that their role extends beyond low-dimensional theories, and provides a characterization
of higher-dimensional QFTs, in particular superconformal field theories (SCFTs). This is par-
ticularly important in the context of strongly coupled SCFTs in 5d and 6d, whose existence is
largely argued based on their string theoretic realizations. Global 0-form flavor symmetries
are e.g. an important datum to test our understanding of the UV fixed points in 5d – starting
with the work in [25–27] and more recently in [20,28–73].

There is a clear distinction between higher-form symmetries that are continuous and those
that are discrete. Continuous 1-form symmetries were shown to not exist in 5d SCFTs in [74],
because of the absence of a conserved 2-form current in the spectrum of short multiplets,
which are representations of the superconformal algebra. In contrast however, discrete 1-
form symmetries and their gauged versions, 2-form symmetries, are numerous in 5d SCFTs
[20,62,68,75]. Moreover, in [20] it was shown that there are also 2-group symmetries in 5d
SCFTs involving these discrete 1-form symmetries.

Likewise, based on the superconformal symmetry, it was shown in [15] that continuous
1-form symmetries, and 2-groups having continuous 1-form and 0-form components, cannot
exist in 6d SCFTs. The presence of discrete 1-form symmetries in 6d SCFTs was already pointed
out in [62, 68] 2. In the present paper we show that there are 2-group symmetries in 6d
SCFTs, based on discrete 1-form symmetries and continuous 0-form symmetries. With the full

1A wide array of recent work has been devoted to higher-group structures in QFTs. See [2–24].
2There is also a defect group associated to 2d charged objects in 6d [76].
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classification of 6d SCFTs in place we are able to give a complete list of 6d SCFTs exhibiting a
particular kind of 2-group symmetry: these are always a combination of the 1-form symmetry
that is a discrete group, and the flavor symmetry group, which is a non-simply-connected
continuous group. All models with 2-group symmetries in 6d are summarized in table 1,
modulo the information about the possible choices of gauge groups, which can be found in
section 3.3.2. In contrast, we find that this kind of discrete 2-group does not exist in little string
theories (LSTs). However there definitely are continuous ones, as was shown in [15,16].

A detailed derivation of 2-group structures will be provided in this paper. We should here
give some intuition,3 when a 2-group symmetry (of the kind studied in this paper) can be
expected in a given QFT. Necessary conditions are the existence of a discrete 1-form symmetry
Γ (1), but also a non-trivial 0-form flavor symmetry group, which is not simply-connected. We
can write the latter as F = F/Z, where F is a cover of the flavor symmetry group, and Z a
subgroup of the center ZF of F . Whenever there are local operators that are charged under
both flavor and gauge symmetry, these can lead to a non-trivial extension of Γ (1) by Z. This
maximal, trivially acting group will be denoted by E in the following. Whenever this forms a
non-trivial extension

1→ Γ (1)→ E → Z → 1 , (1.1)

with a non-trivial Bockstein map

Bock : H2(BF ,Z)→ H3(BF , Γ (1)) , (1.2)

where BF is the classifying space for the flavor symmetry F -bundles, then there is a 2-group
symmetry. The background B2 ∈ C2(BF , Γ (1)) is then related to the Stiefel-Whitney class
w2 ∈ H2(BF ,Z), that measures the obstruction of lifting F -bundles to F -bundles, by

δB2 = Bock(w2) . (1.3)

This relatively simple argument percolates throughout QFTs in all dimensions. The central
theory-dependent information is the sequence (1.1), i.e. the 1-form symmetry Γ (1), the sub-
group of the flavor center Z, which acts trivially, and perhaps most importantly, the extension
sequence they form. This sequence is encoded in the symmetries (gauge and flavor), matter
and – depending on dimension – non-perturbative states such as instantons, monopoles and
vortices etc.

In view of this general nature of the 2-group construction, we provide a computational tool
in the form of a mathematica notebook, TwoGroupCalculator.nb. It simply requires the
input of the symmetry groups, and charges of states (perturbative and non-perturbative alike),
and outputs the 1-form symmetry and E , as well as the embedding of the former into the latter.
This specifies whether there is a non-trivial extension. Subsequently of course one still needs
to determine whether Bock(w2) is a non-zero element or not. The code also specifies Z as a
subgroup of ZF , from which we then also can infer the global form F of the flavor symmetry
group.

The non-perturbative BPS strings play a crucial role for the 1-form symmetries, as well as
for the 2-groups. They give rise to massive states at low-energy but massless in the UV where
the SCFTs or LSTs live. These states can sometimes screen Wilson lines transforming in the
center of a gauge group, therefore breaking the 1-form symmetry. They can also mediate be-
tween gauge and flavor Wilson lines. We describe a method that, without knowing explicitly
the representation of the BPS string charges, provides a consistency condition for turning on

3Here we provide this intuition by staying within the context of gauge theories, though the formalism we
discuss can be applied even when no useful gauge theory description is available. For example, see [21], where
this formalism was used to deduce 2-group symmetries of 4d N = 2 theories of Class S, which generically do not
admit a gauge theory description.
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α ∈ Γ (1) o ·α ∈ Γ (1)

o ∈ Γ (0)

Figure 1: Action of a topological operator associated to 0-form symmetry on topo-
logical operators associated to 1-form symmetries.

the 1-form symmetry [77], 0-form flavor symmetry and/or 2-group backgrounds. This meth-
ods relies on studying the Dirac quantization of the BPS string charge lattice in the presence
of these backgrounds, via the Green-Schwarz-West-Sagnotti 6d topological couplings.

Finally, we discuss also the role of abelian flavor symmetries. In particular, the classi-
cal U(1) symmetries get broken by Adler–Bell–Jackiw (ABJ) anomalies at the quantum level.
These anomalies sometimes leave a remnant discrete 0-form symmetry. We show that for cer-
tain 6d theories on 6-manifold with non-vanishing first Pontryagin class there is a mixed ’t
Hooft anomaly between the discrete 0-form symmetry and the 1-form symmetry. The exis-
tence of the 2-group is consistent with this mixed anomaly as discussed at the end of section
4.2.

The plan of this paper is as follows: in section 2 we discuss the general framework for
2-groups. This section is to a large extent dimension independent. In section 3 we apply
this to the 6d SCFTs and LSTs and provide in section 5 the complete classification of theories
exhibiting 2-groups (of a particular type). In section 4 we discuss anomalies – in particular the
ABJ anomaly for theories with U(1) global symmetries and a new mixed anomaly in 6d. The
appendices supply the details of the mathematica code and a selection of detailed examples of
2-groups in 6d.

2 2-Group Symmetries

The construction of 2-groups has many facets. Here we describe a construction which applies
to theories in general dimension d. What remains dimension specific is the specific type of
gauge, flavor symmetry groups and charged matter states (including non-perturbative states
such as strings, instantons and monopoles).

2.1 The Types of 2-Group Symmetries

2-group symmetries describe mixings between 0-form and 1-form symmetries of a theory. The
most straightforward way this can happen is if elements of a 0-form symmetry group Γ (0) act
on elements of the 1-form symmetry group Γ (1) (see figure 1). An example of such a situation
arises in a pure SU(N) gauge theory, which has a Z(1)N 1-form symmetry group that is acted

upon by the Z(0)2 charge conjugation symmetry. The action sends an element in Z(1)N to its
inverse element.
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L1 L2
O21

=⇒ L1 ∼ L2

Figure 2: If there exists a non-genuine local operator O21 6= 0 that can be used to
transform a line defect L1 to line defect L2, then we regard L1 and L2 to be in the
same equivalence class. Such equivalence classes form a group under OPE of line
defects, which can be recognized as the Pontryagin dual group bΓ (1) of the 1-form
symmetry group Γ (1).

In this paper, we do not study 2-groups that involve action of 0-form symmetry on 1-form
symmetry. The 2-groups that we study can be described in terms of a non-closedness condition
on the 1-form symmetry background B2 of the form

δB2 = B∗1Θ , (2.1)

where Θ ∈ H3
�

BF , Γ (1)
�

is known as the Postnikov class of the 2-group symmetry, Γ (1) is the
1-form symmetry group, F is the 0-form flavor symmetry group, BF is its classifying space
and B∗1 is the pullback associated to the map B1 : M → BF from the spacetime manifold M to
BF associated to a background principal bundle for F .

Moreover, in this paper we only study the absence/presence of a particular term of the
form Bock(w2) in the Postnikov class

Θ = Bock(w2) + · · · , (2.2)

where w2 ∈ H2(BF ,Z) describes the obstruction class associated to lifting F bundles to F -
bundles, where F = F/Z and Z is a subgroup of the center ZF of F (which therefore is a cover
of F). Bock represents the Bockstein homomorphism (which is the connecting homomorphism
in the associated long exact sequence in cohomology)

Bock : H2(BF ,Z)→ H3(BF , Γ (1)) , (2.3)

associated to a short exact sequence

0→ Γ (1)→ E → Z → 0 , (2.4)

extending Z by Γ (1). Note that, if the short exact sequence splits, then the Bockstein homo-
morphism is trivial, we do not obtain a non-trivial contribution of the form Bock(w2) to the
Postnikov class, and thus there is no 2-group symmetry of this type.

To determine whether a theory has 2-groups of this type it is necessary to compute the
1-form symmetry group Γ (1), as well as the flavor symmetry group F , and thus the discrete
subgroup Z such that

F = F/Z , (2.5)

with F a cover of the flavor symmetry group. As we describe below, it is possible to do so from
the spectrum of the theory and determine these groups as well as the short exact sequence
(2.4). Necessary conditions for there to be a 2-group of this type are that the flavor symme-
try group F is not simply-connected, the non-triviality of the 1-form symmetry and that the
sequence (2.4) does not split. Another condition is also that the associated Postnikov class is
non-vanishing.

2.2 Computing 2-Groups From Properties of Line Defects

A more physically intuitive way to deduce the presence of this term in the Postnikov class is
by studying line defects and flavor Wilson lines modulo screening [21,23]:

5

https://scipost.org
https://scipost.org/SciPostPhys.12.3.098


SciPost Phys. 12, 098 (2022)

R1 R2
R2 ⊗ R∗1

=⇒ R1 ∼ R2

Figure 3: A genuine local operator transforming in representation R2 ⊗ R∗1 of the
flavor symmetry algebra f can be regarded as transforming a flavor Wilson line in
representation R1 to a flavor Wilson line in representation R2. The above configura-
tion of the local operator joined to flavor Wilson lines is consistent as it is invariant
under gauge transformations of a background flavor connection. If such a local op-
erator exists, then we regard the R1 and R2 flavor Wilson lines to be in the same
equivalence class. Such equivalence classes form a group ÒZ with product operation
being tensor product of representations.

(L1, R1) (L2, R2)
O21 ∈ R2 ⊗ R∗1

=⇒ (L1, R1)∼ (L2, R2)

Figure 4: Now, consider a non-genuine local operator O21 transitioning line defect
L1 to line defect L2. Say O21 transforms as R2 ⊗ R∗1 under the flavor algebra. Then
we regard elements (L1, R1) and (L2, R2) (in the product set of line defects and flavor
Wilson lines) to lie in the same equivalence class. Such equivalence classes form a
group bE with product operation being OPE and tensor product of representations.

• Γ (1) is computed as the Pontryagin dual of the group bΓ (1) = Hom(Γ (1), U(1)) formed by
equivalence classes of line defects modulo screenings due to non-genuine local opera-
tors4 (see figure 2), where one does not include flavor Wilson lines or any information
about flavor charges of the local operators.

• The flavor symmetry group F has the key property that the representations formed by
genuine local operators are allowed representations for F , but not allowed representa-
tions of any other group of the form F ′ = F/Z ′ with Z ′ being some non-trivial subgroup
of the center ZF of F .

• On the other hand, the group F can be taken to be any covering group of F such that
the representations formed by genuine and non-genuine local operators are allowed rep-
resentations for F .

• We can write F = F/Z, which provides the definition for Z. The group Z can also
be understood as the Pontryagin dual of the group ÒZ formed by equivalence classes of
flavor Wilson lines modulo screenings due to genuine local operators (see figure 3).

• E is computed as the Pontryagin dual of the group bE formed by equivalence classes of
line defects plus flavor Wilson lines modulo screenings due to genuine and non-genuine
local operators (see figure 4).

• ÒZ naturally forms a subgroup of bE , leading to the short exact sequence

0→ ÒZ → bE → bΓ (1)→ 0 , (2.6)

whose Pontryagin dual produces the key short exact sequence (2.4).
4We remind the reader that a non-genuine local operator is one that is constrained to live at a 0-dimensional

end or junction of higher-dimensional defects. On the other hand, a genuine local operator exists independently
of higher-dimensional defects.
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2.3 2-Groups for Gauge Theories in d Dimensions

Another alternate way of deducing such 2-groups opens up if the theory under study admits a
gauge theory description with a non-abelian gauge algebra g and gauge group G.

For d ≤ 3, the gauge theory is UV complete on its own, and we study this UV complete
theory. We do not add any Chern-Simons terms (or finite versions thereof) involving either
only dynamical fields or dynamical and background fields5.

For d = 4, we study gauge theories having the property that all the gauge couplings have
non-positive beta functions. Such a gauge theory is UV complete on its own and we study
this UV complete theory. We furthermore assume that the gauge group G = G, where G is the
simply-connected group associated to the gauge algebra g. This is to ensure that the 2-group
does not receive extra “magnetic or dyonic” contributions besides the “electric” contributions
coming from matter fields, which further complicate the analysis. See [23] for details on how
to handle these extra contributions to the 2-group.

For d = 5, we study gauge theories that describe low-energy physics of relevant deforma-
tions of 5d N = 1 SCFTs. For d = 6, we study gauge theories that describe low-energy physics
on the tensor branch of vacua of 6d N = (1,0) SCFTs and LSTs.

Under the assumptions discussed above, for d ≤ 4, we only need to include contributions
coming from the matter fields of the gauge theory. However, for d = 5, 6 we also need to
include further instantonic contributions. Such contributions for 6d theories were discussed
in [68] and the contributions relevant for our purposes are described later in this paper (see
section 3.2). For 5d theories, see [20,68] for a detailed description of such contributions.

Pick a d-dimensional gauge theory of one of the types discussed above. Let ψi be the
matter fields in the gauge theory. It transforms in an irrep R(i)G ⊗ R(i)F of G × F , where G is the
gauge group and F is the cover of the flavor group F . Each matter field carries a charge under
the center ZG of the gauge group G, and the center ZF of the cover F of the flavor group F .
This is provided by the charge of R(i)G under ZG and the charge of R(i)F under ZF . These charges
describe elements βi of bZG × bZF , where bZG , bZF are Pontryagin duals of ZG , ZF respectively.

For d = 5,6, the extra instantonic contributions a similarly provide elements βa of bZG× bZF .
Similarly, if we drop the restrictions on gauge theories in d ≤ 4 discussed above, then we obtain
extra contributions a which can be incorporated in the same fashion as done above for d = 5, 6
gauge theories.

Let M be the sub-lattice of bZG × bZF generated by βi and βa for all i, a. From this we can
extract the data relevant for 2-group symmetries as follows:

• E is the subgroup of ZG × ZF that pairs trivially with M. That is, an element α ∈ E iff it
acts trivially on all matter fields and extra contributions.

• Γ (1) is the subgroup of E such that α ∈ Γ (1) iff πF (α) = 0, where πF is the projection
map πF : ZG × ZF → ZF . In other words, Γ (1) = E ∩ ZG .

• Z is the subgroup of ZF defined as the image πF (E) of E under the projection map πF .
One can easily check that Z can be identified as E/Γ (1), leading to the key short exact
sequence (2.4).

2.3.1 Structure Group

The data of E can be used to assign a structure group S to the gauge theory via

S = G × F
E

. (2.7)

5If these assumptions are violated, then monopole operators produce extra contributions that need to be ac-
counted alongside the matter field contributions. A systematic analysis of these extra contributions in the context
of generalized global symmetries will appear elsewhere.
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The importance of the structure group is that it describes the full set of gauge and flavor
bundles that can be turned on in the gauge theory. A gauge bundle and a flavor bundle can be
turned on simultaneously only if they combine to form a bundle for the structure group S.

Let us begin by choosing a background B2 ∈ C2(M , Γ (1)) which is a 2-cochain valued in
Γ (1) on spacetime M . Also, choose a bundle for the flavor symmetry group F , which comes
equipped with a characteristic class [w2] ∈ H2(M ,Z) describing the obstruction of lifting the
F bundle to an F bundle. Combine the data of B2, w2 as follows

Bw = i(B2) + ew2 , (2.8)

where i : C2(M , Γ (1)) → C2(M ,E) induced by Γ (1) → E , and ew2 ∈ C2(M ,E) is a 2-cochain
lifting w2 from Z to E . Bw is closed and describes an element [Bw] ∈ H2(M ,E).

Let us define
Γ (1)

′
= πG(E) , (2.9)

where
πG : ZG × ZF → ZG , (2.10)

is the projection map onto ZG . This lets us construct

w′2 := πG[Bw] ∈ H2(M , Γ (1)
′
) , (2.11)

which describes the obstruction class of lifting G/Γ (1)
′
-gauge bundles to G-bundles.

Once a 1-form symmetry background B2 and a flavor background bundle are chosen (which
fixes w2), the gauge theory sums over all possible G/Γ (1)

′
bundles with a fixed value of w′2 that

is determined in terms of B2, w2 via (2.11) and (2.8).
One important point to note is that the 1-form symmetry background B2 cannot be chosen

independently from the flavor background bundle. This can be seen from the form of Bw
appearing in (2.8). Since Bw is closed, applying δ on both sides of (2.8) leads to the relation6

δB2 = Bock(w2) , (2.12)

which recovers the fact that 1-form symmetry and flavor symmetry combine to form a 2-group
symmetry.

2.3.2 Computation Using Charge Matrix

As we have discussed above, there are many key ingredients that go into the determination of
2-group symmetry:

• The (isomorphism classes of) groups Γ (1), E and Z.

• The embedding i : Γ (1)→ E , and the projection π : E → Z.

• The embedding iF : Z → ZF .

The first two ingredients listed above determine the short exact sequence (2.4), which is used
for the determination of the precise Bockstein homomorphism to be used in computing the
Postnikov class (2.2). On the other hand, the last ingredient listed above determines the flavor
symmetry group F and the obstruction class w2 used in the computation of Postnikov class
(2.2).

These ingredients can be computed algorithmically using a charge matrix M, as we discuss
in this subsubsection. We can build M iteratively as follows:

6See for example [21] for the details on intermediate steps in the calculation.
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• Decompose the gauge group center as ZG =
∏I

i=1Zni
, and the center of the cover of

flavor group as ZF =
∏A

a=1Zna
.

• Start with a diagonal square matrix MI of rank I . The i-th entry on the diagonal of MI
is ni .

• Take another diagonal matrix MA of rank A whose a-th diagonal entry is na
7

• Join MI and MA to make a diagonal matrix MI+A of rank I + A.

• Let φα be different matter fields (and extra non-perturbative contributions). Each φα
carries a charge nα,i (mod ni) under Zni

and a charge nα,a (mod na) under Zna
.

• For each α, append a column to MI+A whose i-th entry is nα,i and a-th entry is nα,a. Let
the total number of columns being added be N .

After appending all such columns, the resulting matrix of rank (I +A)× (I +A+N) is what we
call the charge matrix M:

M=















MI
n1,1 . . . nN ,1

...
...

n1,I . . . nN ,I

MA

...
...

n1,A . . . nN ,A















. (2.13)

We will also need a submatrix MG of M,

M=

�

MG

MF

�

, (2.14)

which is obtained by keeping only the top I rows of M and discarding the bottom A rows. The
rank of MG is I × (I + A+ N).

The 1-form symmetry Γ (1) is obtained by computing Smith Normal Form SNF(MG) of
MG . Each row i of SNF(MG) contains a single non-zero entry pi . Then, we can write

Γ (1) =
I
∏

i=1

Zpi
. (2.15)

Similarly, the group E is obtained by computing Smith Normal Form SNF(M) of M. Each
row i of SNF(M) contains a single non-zero entry qi . Then, we can write

E =
I+A
∏

i=1

Zqi
. (2.16)

Now we discuss the computation of the short exact sequence (2.4) from the charge matrix
M. Firstly, we want to understand the embedding of Γ (1) into E . Let us express SNF(MG) in
terms of MG via two integral square matrices AG and BG as follows

SNF(MG) = AG ·MG · BG . (2.17)

7Notice that a was used in a different context at the start of this subsection 2.3.
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The rank of AG is I and the rank of BG is I+A+N . AG encodes the map Γ (1)→ ZG , but this map
is not of particular relevance to us. We can also implement the transformations performed by
AG , BG on the full matrix M, which leads to a new matrix M′

M′ =

�

AG

IA×A

�

·M · BG . (2.18)

Additionally, define the integral square matrices AE , BE via

SNF(M′) = AE ·M′ · BE , (2.19)

with the additional constraint that AE is an upper diagonal matrix with all its diagonal entries
being 1. Note that

SNF(M′) = SNF(M) . (2.20)

The rank of AE is I+A and the rank of BE is I+A+N . The above process captures the embedding
i : Γ (1) → E . To see this embedding explicitly we define the matrix (A−1

E )G as the I × (I + A)
rank matrix obtained by deleting the bottom A rows of A−1

E :

A−1
E =

�

(A−1
E )G

(A−1
E )F

�

. (2.21)

Let us represent Zpi
as Z (mod piZ). Pick an element α of Γ (1). Its projection onto Zpi

subfactor
is described by an integer αi (mod pi). Let eα be a rank I row vector whose i-th entry is αi .
To describe the image i(α) ∈ E of α ∈ Γ (1) we compute

fα := eαRt , R :=
�

P−1(A−1
E )GQ

�t
, (2.22)

where P = diag(pi : i = 1, . . . , I) and Q = diag(qi : i = 1, . . . , I + A), and the superscript t
denotes transpose. The projection of i(α) on Zqi

subfactor of E is ( fα)i (mod qi) where ( fα)i
is the i-th entry of the rank I + A row vector fα.

We can also compute the subgroup Z of the flavor center in terms of these matrices,
using the fact that Z = E/Γ (1). Now, define a matrix MZ by appending the diagonal matrix
Q to R as shown below

MZ =
�

Q R
�

. (2.23)

This is analogous to the matrix M we used to compute E (more precisely its Pontryagin dual
bE) as a projection from bZG × bZF . Here we are computing Z as a projection from E: computing
the Smith Normal Form SNF(MZ) of MZ directly computes E/Γ (1). Each row i of SNF(MZ)
contains a single non-zero entry ri . Then, we can write

Z =
I+A
∏

i=1

Zri
. (2.24)

To describe the map π : E → Z, we define integral square matrices AZ , BZ via

SNF(MZ) = AZ ·MZ · BZ , (2.25)

with the additional constraint that AZ is a lower diagonal matrix with all its diagonal entries
being 1. The rank of AZ is I + A and the rank of BZ is 2I + A. The matrix AZ encodes the
projectionπ as follows. Pick an element β ∈ E whose projection ontoZqi

subfactor is described
by an integer βi (mod qi). Associate it to a column vector cβ whose i-th entry is βi . Compute

dβ := AZ cβ . (2.26)
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Let the i-th entry of dβ be (dβ)i . Then, the projection of π(β) ∈ Z onto its Zri
subfactor is

given by (dβ)i (mod ri). Thus, we have reconstructed the full short exact sequence (2.4) using
the data of charge matrix M.

Finally, in order to find the flavor symmetry group F and the obstruction class w2 ap-
pearing in (2.2), we need to understand the map iF : Z → ZF . Pick an element γ ∈ Z whose
projection onto the Zri

subfactor is γi (mod ri). Let vγ be a rank I + A column vector whose
i-th entry is γi . Then compute

uγ :=MA[(A
t
E)
−1Q−1A−1

Z ]F vγ , (2.27)

where [(At
E)
−1Q−1A−1

Z ]F is obtained from (At
E)
−1Q−1A−1

Z by deleting its top I rows and keeping
the bottom A rows. uγ is then a rank A column vector. The projection of iF (γ) onto its Zna

subfactor is given by uγ,a (mod na). This completely specifies the map iF : Z → ZF .

2.4 Example: Spin(4N + 2) with Vector Hypers in General Dimension d

Consider a d-dimensional supersymmetric (with 8 supercharges) Spin(4N + 2) gauge theory
with N f hypermultiplets transforming in vector representation of Spin(4N + 2). The hypers
form the fundamental representation of f = sp(N f ) flavor symmetry algebra, and so we can
choose F = Sp(N f ), which is the simply-connected group associated to f.

For d ≤ 3, we can allow arbitrary positive values of N f . For d = 4, the non-positivity of
the beta function implies that we must have N f ≤ 4N . For d = 5, we have N f ≤ 4N −1 for the
gauge theory to arise (at low energies) from a relevant deformation of a 5d SCFT. For d = 6,
such a gauge theory can arise (at low energies) on the tensor branch of 6d SCFTs, but not
on the tensor branch of 6d LSTs, and we must have N f = 4N − 6. This is necessary for the
cancellation of 1-loop irreducible quartic gauge anomalies.

Let us now discuss the extra instantonic contributions we need to take into account for
d = 5,6. For d = 5, it was shown in [20] that the instantonic contribution can be taken to
have charge (0 (mod 4), N f (mod 2)) under ZG × ZF = Z4 ×Z2. For d = 6, the instantons are
dynamical strings whose (particle-like) vibration modes give rise to the relevant instantonic
contributions we need to take into account. Such instantonic contributions can be taken to
have trivial charges under ZG × ZF .

Let us first consider that either of the two possibilities holds:

• d 6= 5

• Or d = 5 and N f is even.

Then we do not need to worry about any extra instantonic contributions. The matter content
transforms in representation F ⊗ F of G × F = Spin(4N + 2) × Sp(N f ). We have ZG = Z4
and ZF = Z2. The generator αG of ZG = Z4 acts as −1 ∈ U(1) on the matter field, and the
generator αF of ZF = Z2 also acts as −1 ∈ U(1) on the matter field. Thus, the diagonal
combination αGF = (αG ,αF ) ∈ ZG× ZF of the two generators leaves the matter field invariant.
This diagonal combination αGF generates the subgroup E = Z4 inside ZG × ZF . Moreover, we
have πF (2αGF ) = 0, and hence Γ (1) = Z2 is the Z2 subgroup of E generated by 2αGF . Thus,
Z = E/Γ (1) = Z2, which implies that the flavor symmetry group F of the theory is

F = F/Z = Sp(N f )/Z2 ≡ PSp(N f ) . (2.28)

The key short exact sequence (2.4) becomes

0→ Z2→ Z4→ Z2→ 0 , (2.29)
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which does not split. This leads to a non-trivial 2-group symmetry whose Postnikov class Θ is

Θ = Bock(w2) + · · · , (2.30)

where w2 ∈ H2(BF ,Z2) = H2(BPSp(N f ),Z2) is the obstruction class for lifting F = PSp(N f )
bundles to F = Sp(N f ) bundles, and Bock is the Bockstein homomorphism associated to
(2.29). We have H3(BPSp(N f ),Z2) = Z2 generated by an element w3, and we can identify
Bock(w2) = w3.

Now consider d = 5 and N f odd. In this case, αGF does not leave the instanton invariant.
We instead have E = Z2 generated by (2αG , 0) ∈ ZG × ZF , which can be identified with the
1-form symmetry Γ (1) = Z2. Thus we have Z = Z1, implying that the flavor symmetry group
is

F = Sp(N f ) , (2.31)

and there is no 2-group symmetry.
Now let us derive the above results for the first case using the charge matrix. In that case,

the charge matrix is

M=

�

4 0 2
0 2 1

�

. (2.32)

Following the algorithm presented above, we can compute

SNF(MG) =
�

0 0 2
�

, M′ =

�

0 0 2
−2 2 1

�

, SNF(M′) =

�

4 0 0
0 0 1

�

, (2.33)

from which we can read off Γ (1) = Z2 and E = Z4 × Z1 = Z4. Thus, we have p1 = 1, q1 = 4,
q2 = 1. To determine the embedding of the 1-form symmetry into E we compute8

AE =

�

1 −2
0 1

�

, (2.34)

using which we find
Rt =

�

2 1
�

, (2.35)

which implies that the image in E of the generator of Γ (1) = Z2 has a projection of 2 (mod 4)
onto the Z4 subfactor of E , and a projection of 1 (mod 1) = 0 (mod 1) onto the Z1 subfactor
of E . Thus Γ (1) = Z2 embeds as the Z2 subgroup of E = Z4.

To compute Z, we find that

SNF(MZ) =

�

0 0 2
0 1 0

�

, (2.36)

implying that Z = Z2 × Z1 = Z2. That is, r1 = 2, r2 = 1. To compute the projection E → Z,
we first compute

AZ =

�

1 0
0 1

�

, (2.37)

which means that the generator of Z4 subfactor of E is mapped to the generator of the Z2
subfactor of Z. Let us now compute the embedding of Z into ZF . For this we need the matrix

MA[(A
t
E)
−1Q−1A−1

Z ]F =
�

1 2
�

. (2.38)

8There are various possibilities for AE depending on the value of the matrix BE . Here, and in what follows, we
make one such choice. It should be noted that the mathematica code attached with this paper might produce a
different choice.
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This implies that the generator of Z = Z2 maps to the generator of ZF = Z2.
This confirms our results derived above without the use of charge matrix. The use of

charge matrix to compute (2.4) might seem a bit overkill in this simple example. However, if
one deals with a theory involving large number of gauge and flavor algebras, then the use of
charge matrix turns out to be very convenient, especially to perform these with a computer.
We have performed the calculation using charge matrix for this simple example to illustrate
the various objects involved in such a computation. The ancillary mathematica file provides
an implementation of this algorithm.

3 2-Group Symmetries in 6d SCFTs and LSTs

Although general arguments [15] show that there cannot be continuous 1-form symmetries
and 2-groups in 6d SCFTs, it has been shown in [62,68], that discrete 1-form symmetries can
exist in 6d N = (1, 0) SCFTs and LSTs.

A 6d N = (1, 0) SCFT or LST is described (at low energies) along its tensor branch by a
6d N = (1, 0) non-abelian gauge theory. The gauge theory is coupled to massive string-like
excitations. Some of these strings can be recognized as instanton strings of the gauge theory.
However, a general 6d SCFT or LST can have strings that are not instantons.

Thus, 2-group symmetries of 6d SCFTs and LSTs can be deduced by applying the gauge-
theory-based analysis of section 2.3. Along with matter fields, we have to incorporate contri-
butions from the massive strings discussed above. These are discussed in section 3.2.

3.1 Construction of 6d SCFTs and LSTs

A uniform construction of all known 6d SCFTs and LSTs is provided by compactifying F-theory
on elliptically fibered Calabi-Yau threefolds. Most of the theories can be constructed by using
the unfrozen phase of F-theory, while some outlying theories can only be constructed using
the frozen phase of F-theory [78–80]. The classification of the theories lying in the unfrozen
phase was performed in [81–83] while the frozen phase theories were classified in [84]9.

The theories resulting from both of these classifications can be described in the same graph-
ical language. The theory is described by a connected graph. A node in the graph takes the
following form

g

k , (3.1)

where g is a simple gauge algebra carried by the node and k ≥ 0 is known as the value of the
node. For 6d SCFTs, the set of allowed nodes can be found in Tables 1 and 2 of [53]. These
nodes are also allowed for 6d LSTs, but there are a few more allowed nodes for 6d LSTs that
are listed in Table 2 of [83]. The value of all of these nodes is k = 0.

The nodes can be joined by single or double edges. For 6d SCFTs, the set of allowed edges
can be found in Tables 3–5 of [53]. These edges are also allowed for 6d LSTs, but there are a
few more allowed edges for 6d LSTs that are listed in section 7.1.2 of [83].

There are two kinds of flavor symmetries: localized and delocalized. The localized flavor
symmetries are associated to a single node in the graph, while delocalized flavor symmetries
are associated to multiple nodes. We will see later in section 5.3 that only localized flavor
symmetries that are continuous and non-abelian can participate in 2-group symmetries of the
type studied in this paper (see section 2.1). A flavor symmetry of this type associated to a
node of the form (3.1) is depicted by attaching a flavor node encapsulated between two square

9See also [85] for a classification based on solving consistency conditions for 6d N = (1,0) gauge theories.
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brackets as shown below
g

k [f]
, (3.2)

where f is the non-abelian continuous localized flavor symmetry associated to the node (3.1).
For nodes allowed in both 6d SCFTs and LSTs, such flavor symmetries can be found in

Tables 1 and 2 of [69]. The nodes allowed only in 6d LSTs all have a Lagrangian description,
so such flavor symmetries are obtained simply by computing the flavor algebras rotating the
hypermultiplets.

3.2 Strings and Corresponding Charges

Each non-flavor node gives rise to a massive dynamical string on the tensor branch. The
various vibration modes of such a (closed) string give rise to massive particles. These particles
can provide extra charges under ZG × ZF that are not provided by matter hypermultiplets.

In our considerations regarding 2-group symmetries, such extra charges arise only from
strings associated to nodes of the form

sp(n)
1 , (3.3)

for n≥ 010.
Let us now describe the extra charges provided by such a string. Let i be the set of nodes

(flavor and non-flavor) neighboring such a node, and let gi be the (flavor or gauge) algebra
carried by the i-th node. For n> 0, we have

⊕

i

gi ⊆ so(4n+ 16) . (3.4)

Let R be the representation of
⊕

i gi obtained by reducing the spinor irrep S of so(4n+16), and
let R=

⊕

a Ra be the irrep decomposition of R. Then, the extra contributions are completely
captured by the representations Ra. For n= 0, we instead have

⊕

i

gi ⊆ e8 . (3.5)

and the extra contributions are captured by representations Ra that appear in irrep decompo-
sition of the representation R obtained by reducing the adjoint representation e8 under

⊕

i gi .

3.3 List of 6d SCFTs and LSTs with 2-Group Symmetries

The data discussed above is sufficient to completely classify the 6d SCFTs and LSTs that admit
2-group symmetries. The classification is carried out in detail in the next section. Here we
describe the final result of the classification.

We find that there are no LSTs that carry the type of 2-group symmetries being discussed in
this paper. On the other hand, we find seven classes of 6d SCFTs carrying 2-group symmetries,
which are displayed in table 1.

10For n= 0, the gauge algebra sp(0) is trivial and the associated string is not an instanton for any gauge group.
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Table 1: All types of 6d SCFTs consistent with 2-group symmetry. Out of these,
only type 1 arises in the unfrozen phase of F-theory, while the other types arise in
the frozen phase of F-theory. The frozen phase theories also admit a type IIA brane
construction [86,87].11

Label Quiver

Type 1 [sp(m1)]

so(4n1+2)
4

sp(n2)
1

[so(4m2)]

so(4n3+2)
4

[sp(m3)]

sp(n2R)
1

[so(4m2R)]

so(4n2R+1+2)
4

[sp(m2R+1)]

Type 2 [sp(m1)]

so(4n1+2)
4

sp(n2)
1

[so(4m2)]

so(4n3+2)
4

[sp(m3)]

sp(n2R)
1

[so(4m2R)]

so(4p)
4

so(4n2R+1+2)
4

[sp(q)]

[sp(m2R+1)]

Type 3 [sp(m1)]

so(4n1)
4

sp(n2)
1

[so(4m2)]

so(4n3)
4

[sp(m3)]

so(4n2R−1)
4

[sp(m2R−1)]

sp(n2R)
1

[so(4m2R)]

so(4p+2)
4

so(4n2R+1+2)
4

[sp(q)]

[sp(m2R+1)]

Type 3′

sp(n2)
1

[so(4m2)]

so(4n3)
4

[sp(m3)]

so(4n2R−1)
4

[sp(m2R−1)]

sp(n2R)
1

[so(4m2R)]

so(4p+2)
4

so(4n2R+1+2)
4

[sp(q)]

[sp(m2R+1)]

Type 4 [sp(m1)]

so(4n1+2)
4

sp(n2)
1

[so(4m2)]

so(4n3+2)
4

[sp(m3)]

sp(n4)
1

[so(4m4)]

so(4p1)
4

so(4n5+2)
4

sp(p2)
1[sp(q1)] [so(4q2)]

[sp(m5)]

Type 5 [su(2m1)]

su(2n1)
2

[su(2m2)]

su(2n2)
2

su(2nR)
2

[su(2mR)]

so(4n+2)
4

[sp(2m)]

Type 6

su(2p)
2

[su(2q)] [sp(m1)]

so(4n1+2)
4

sp(n2)
1

[so(4m2)]

sp(n2R)
1

[so(4m2R)]

so(4n2R+1+2)
4

[sp(m2R+1)]

11We do not believe that there is any particular physical significance to the fact that the majority of our ex-
amples arise in the frozen phase of F-theory, instead suggest this could be a geometric property of the F-theory
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3.3.1 Classification of Allowed Ranks

We now supply the information in table 1 with some more details on the allowed ranks of the
algebras involved. The allowed gauge groups will be discussed in the next subsection.

Type 1

[sp(m1)]

so(4n1+2)
4

sp(n2)
1

[so(4m2)]

so(4n3+2)
4

[sp(m3)]

sp(n2R)
1

[so(4m2R)]

so(4n2R+1+2)
4

[sp(m2R+1)] (3.6)

Fixing n1 and {mi , i 6= 2R+ 1} fixes all other nodes:

n2 = 4n1 − 6−m1 ,

4n2i+1 + 2= 4n2i + 16− 4m2i − (4n2i−1 + 2) , (i = 1, . . . , R) .

n2i = 4n2i−1 −m2i−1 − 6− n2i−2 , (i = 2, . . . , R) ,
(3.7)

and
m2R+1 = 4n2R+1 − 6− n2R . (3.8)

Type 2

[sp(m1)]

so(4n1+2)
4

sp(n2)
1

[so(4m2)]

so(4n3+2)
4

[sp(m3)]

sp(n2R)
1

[so(4m2R)]

so(4p)
4

so(4n2R+1+2)
4

[sp(q)]

[sp(m2R+1)] (3.9)

Fixing n1 and all mi fixes the quiver entirely:

n2 = 4n1 − 6−m1 ,

4n2i−1 + 2= 4n2i−2 + 16− 4m2i−2 − (4n2i−3 + 2) , i = 2, . . . , R

n2i = 4n2i−1 − 6−m2i−1 − n2i−2 , i = 2, . . . , R

4n2R+1 − 6= n2R +m2R+1 ,

4p = 4n2R + 16− 4m2R − (4n2R−1 + 2)− (4n2R+1 + 2) ,

q = 4p− 8− n2R .

(3.10)

Type 3

[sp(m1)]

so(4n1)
4

sp(n2)
1

[so(4m2)]

so(4n3)
4

[sp(m3)]

so(4n2R−1)
4

[sp(m2R−1)]

sp(n2R)
1

[so(4m2R)]

so(4p+2)
4

so(4n2R+1+2)
4

[sp(q)]

[sp(m2R+1)]

(3.11)

compactifications themselves.
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Fixing n1 and all mi fixes all nodes of these quivers:

n2 = 4n1 − 8−m1 ,

4n2i−1 = 4n2i−2 + 16− 4m2i−2 − 4n2i−3 , i = 2, . . . , R.

n2i = 4n2i−1 − 8−m2i−1 − n2i−2 , i = 2, . . . , R. ,

4n2R+1 − 6= n2R +m2R+1 ,

4p+ 2= 4n2R + 16− 4m2R − (4n2R−1 + 2)− (4n2R+1 + 2) ,

q = 4p− 6− n2R .

(3.12)

Type 3′ Note that the quivers of type 3′ can be formed from those of type 3 by deleting the
left-most so node and its associated flavor sp node. The ranks can be fixed exactly as above
for type 3, except now written in terms of n2 and all mi .

Type 4

[sp(m1)]

so(4n1+2)
4

sp(n2)
1

[so(4m2)]

so(4n3+2)
4

[sp(m3)]

sp(n4)
1

[so(4m4)]

so(4p1)
4

so(4n5+2)
4

sp(p2)
1[sp(q1)] [so(4q2)]

[sp(m5)]

(3.13)
By fixing n1, q1 and all mi , we fix all other ranks:

n2 = 4n1 − 6−m1 ,

4n3 + 2= 4n2 + 16− 4m2 − (4n1 + 2) ,

n4 = 4n3 − 6−m3 − n2 ,

4n5 − 6= n4 +m5 ,

4p1 = 4n4 + 16− (4n3 + 2)− (4n5 + 2)− 4m4 ,

p2 = 4p1 − 8− q1 − n4 ,

4q2 = 4p2 + 16− 4p1 .

(3.14)

Type 5

[su(2m1)]

su(2n1)
2

[su(2m2)]

su(2n2)
2

su(2nR)
2

[su(2mR)]

so(4n+2)
4

[sp(2m)] (3.15)

We can fix all ranks by fixing n1 and {mi}:

2n2 = 4n1 − 2m1 ,

2ni = 4ni−1 − 2mi−1 − 2ni−2 , i 6= 1 ,

4n+ 2= 4nR − 2nR−1 − 2mR ,

2m= 4n− 6− 2nR .

(3.16)
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Type 6

su(2p)
2

[su(2q)] [sp(m1)]

so(4n1+2)
4

sp(n2)
1

[so(4m2)]

sp(n2R)
1

[so(4m2R)]

so(4n2R+1+2)
4

[sp(m2R+1)] (3.17)

In this type, all ranks can be fixed by fixing p, q and {mi , i 6= 2R+ 1}:

4n1 + 2= 4p− 2q ,

n2 = 4n1 − 6−m1 − 2p ,

4n2i−1 + 2= 4n2i−2 + 16− 4m2i−2 − (4n2i−3 + 2) , i = 2, , . . . ,R+ 1.

n2i = 4n2i−1 − 6−m2i−1 − n2i−2 , i = 2, . . . , R.

m2R+1 = 4n2R+1 − 6− n2R .

(3.18)

3.3.2 Classification of Allowed Gauge Groups

In this subsection, we classify, for each of the above 7 types, the allowed choices of gauge
groups that are consistent with the existence of 2-group symmetry. As will be discussed in
section 5, there is always at least one choice of gauge group, which is

G =
∏

i

Gi , (3.19)

where i parametrizes various non-flavor nodes and Gi denotes the simply-connected group
associated to the gauge algebra gi of the node i.

To determine other allowed choices of gauge groups, we need to first determine the 1-form
symmetry Γ (1) for theories obtained by equipping all 7 types with the above choice (3.19) of
gauge group. We find that:

Γ (1) =

¨

Z2 , Types 1, 3′,4,5,6 ,

Z2 ×Z2 , Types 2,3 .
(3.20)

Other choices of gauge groups are obtained by gauging subgroups of Γ (1). For types 1, 3′, 4, 5
and 6, the 1-form symmetry is Z2, which participates in the 2-group symmetry. Gauging this
1-form symmetry removes the 2-group symmetry. Thus, for types 1, 3′, 4, 5 and 6, there are
no allowed choice of gauge groups other than (3.19) that gives rise to a theory with 2-group
symmetry.

For types 2 and 3, the 1-form symmetry is Z(2g)
2 × Z(n2g)

2 . The Z(2g)
2 factor participates in

2-group, while the Z(n2g)
2 does not. Thus, we can gauge Z(n2g)

2 subgroup of Γ (1) or the diagonal

Z2 inside Γ (1) = Z(2g)
2 × Z(n2g)

2 without destroying 2-group symmetry. Hence, there are two
more allowed choices of gauge groups other than the choice (3.19).

For type 2, the first additional choice of gauge group is

R
∏

i=1

Spin(4n2i−1 + 2)×
R
∏

i=1

Sp(n2i)×
Spin(4n2R+1 + 2)× Spin(4p)

Z2
, (3.21)

where the Z2 in the denominator can be described as follows: projecting the Z2 onto center
of Spin(4n2R+1 + 2) gives rise to the order 2 element inside its Z4 center, and projecting the
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Z2 onto center of Spin(4p) gives rise to the order 2 element inside its Z2
2 center that does not

act on the vector representation of Spin(4p). The second additional choice of gauge group is
∏R

i=1 Spin(4n2i−1 + 2)× Spin(4p)

Z2
×

R
∏

i=1

Sp(n2i)× Spin(4n2R+1 + 2) , (3.22)

where the Z2 in the denominator can be described as follows: projecting the Z2 onto center of
Spin(4n2i−1+2) for any i gives rise to the order 2 element inside its Z4 center, and projecting
the Z2 onto center of Spin(4p) gives rise to the order 2 element inside its Z2

2 center that does
not act on the vector representation of Spin(4p).

For type 3, the first additional choice of gauge group is
∏R

i=1 Spin(4n2i−1)× Spin(4p+ 2)

Z2
×

R
∏

i=1

Sp(n2i)× Spin(4n2R+1 + 2) , (3.23)

where the Z2 in the denominator can be described as follows: projecting the Z2 onto center of
Spin(4n2i−1) for any i gives rise to the order 2 element inside its Z2

2 center that does not act on
the vector representation of Spin(4n2i−1), and projecting the Z2 onto center of Spin(4p + 2)
gives rise to the order 2 element inside its Z4 center. The second additional choice of gauge
group is

∏R
i=1 Spin(4n2i−1)× Spin(4n2R+1 + 2)

Z2
×

R
∏

i=1

Sp(n2i)× Spin(4p+ 2) , (3.24)

where the Z2 in the denominator can be described as follows: projecting the Z2 onto center of
Spin(4n2i−1) for any i gives rise to the order 2 element inside its Z2

2 center that does not act on
the vector representation of Spin(4n2i−1), and projecting theZ2 onto center of Spin(4n2R+1+2)
gives rise to the order 2 element inside its Z4 center.

3.3.3 Flavor Symmetry Groups and Postnikov Classes

A crucial ingredient in the analysis of the 2-groups is the global form of the flavor symmetry
group12. We now determine the flavor groups for the above types. For types 1–4 (including
3′) and any choice of gauge groups, the flavor symmetry groups are respectively

FType 1 =

∏R
i=1 SO(4m2i)×

∏R+1
i=1 Sp(m2i−1)

Z2
,

FType 2 =

∏R
i=1 SO(4m2i)×

∏R+1
i=1 Sp(m2i−1)× Sp(q)

Z2
,

FType 3 =

∏R
i=1 SO(4m2i)×

∏R+1
i=1 Sp(m2i−1)× Sp(q)

Z2
,

FType 3′ =

∏R
i=1 SO(4m2i)×

∏R+1
i=1 Sp(m2i+1)× Sp(q)

Z2
,

FType 4 =

∏2
i=1 SO(4m2i)×

∏3
i=1 Sp(m2i−1)× Sp(q1)× SO(4q2)

Z2
,

(3.25)

where each subfactor in numerator has a Z2 center, and the Z2 appearing in the denominator
is the combined diagonal of all of these Z2s. Let us define the num(erator) part

FType i =
FType i

num

Z2
. (3.26)

12Some aspects of the global form of gauge and flavor have been discussed in F-theory in [88].
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The Postnikov class for the 2-group symmetry is then

Θ = Bock(w2) + · · · , (3.27)

where w2 is the obstruction class for lifting FType i bundles to FType i
num bundles, and Bock is the

Bockstein homomorphism associated to the short exact sequence

0→ Z2→ Z4→ Z2→ 0 . (3.28)

For types 5 and 6, we do not determine the full flavor symmetry group. However, we can still
describe the Postnikov class, which can be written again as in (3.27) with Bockstein homo-
morphism associated to (3.28). The obstruction class w2 can be identified for type 5 as the
obstruction for lifting

FType 5
relevant =

∏R
i=1 SU(2mi)× Sp(2m)

Z2
, (3.29)

bundles to

FType 5
relevant, num =

R
∏

i=1

SU(2mi)× Sp(2m) , (3.30)

bundles. For type 6, w2 can be identified as the obstruction for lifting

FType 6
relevant =

∏R
i=1 SO(4m2i)×

∏R+1
i=1 Sp(m2i−1)× SU(2q)

Z2
, (3.31)

bundles to

FType 6
relevant, num =

R
∏

i=1

SO(4m2i)×
R+1
∏

i=1

Sp(m2i−1)× SU(2q) , (3.32)

bundles. We can write the flavor symmetry group for types 5 and 6 as

FType i =
FType i

relevant × Γ
Z

, (3.33)

where Γ is an abelian group (involving both continuous and finite factors), and Z is a subgroup
of ZType i

relevant×Γ where ZType i
relevant is the center of FType i

relevant. The obstruction class w2 for types 5 and
6 can also be recognized as the obstruction for lifting FType i bundles to

FType i
num =

FType i
relevant, num × Γ

Z
, (3.34)

bundles.

3.4 Mixed 0-Form 3-Form Anomaly Dual to 2-Group Symmetry

In general d dimensions, gauging a 1-form symmetry participating in a 2-group symmetry,
leads to a dual (d − 3)-form symmetry which instead has a mixed ’t Hooft anomaly with the
0-form symmetry group [2].

For the above discussed theories in 6d, we have a Z2 1-form symmetry participating in
2-group symmetry. Gauging this Z2 1-form symmetry results in a mixed anomaly between
FType i 0-form flavor symmetry and the dual Z2 3-form symmetry. The associated anomaly
theory is

I7 =

∫

B4 ∪ Bock(w2) , (3.35)

where w2 is the obstruction class appearing in the Postnikov class (3.27), and B4 is the back-
ground field for the 3-form symmetry.

The 6d theories having such a mixed anomaly have the following gauge groups:

20

https://scipost.org
https://scipost.org/SciPostPhys.12.3.098


SciPost Phys. 12, 098 (2022)

• For type 1, we have the following gauge group:
∏R+1

i=1 Spin(4n2i−1 + 2)

Z2
×

R
∏

i=1

Sp(n2i) , (3.36)

where Z2 is the combined diagonal of the Z2 subgroups of the Z4 centers of
Spin(4n2i−1 + 2) groups.

• For type 2, we have two possibilities for gauge groups. The first possibility is
∏R+1

i=1 Spin(4n2i−1 + 2)

Z2
×

R
∏

i=1

Sp(n2i)× Spin(4p) , (3.37)

where Z2 is the combined diagonal of the Z2 subgroups of the Z4 centers of
Spin(4n2i−1 + 2) groups. The second possibility is

∏R+1
i=1 Spin(4n2i−1 + 2)× Spin(4p)

Z(1)2 ×Z
(2)
2

×
R
∏

i=1

Sp(n2i) , (3.38)

where Z(1)2 is the combined diagonal of the Z2 subgroups of the Z4 centers of

Spin(4n2i−1 + 2) groups. Z(2)2 projects to the Z2 inside Z2
2 center of Spin(4p) that does

not act on the vector rep, and the Z2 subgroup of the Z4 center of Spin(4n2R+1 + 2).

• For type 3, we have two possibilities for gauge groups. The first possibility is

R
∏

i=1

Spin(4n2i−1)×
R
∏

i=1

Sp(n2i)×
Spin(4p+ 2)× Spin(4n2R+1 + 2)

Z2
, (3.39)

where Z2 is the combined diagonal of the Z2 subgroups of the Z4 centers of
Spin(4n2R+1 + 2) and Spin(4p+ 2) groups. The second possibility is

∏R
i=1 Spin(4n2i−1)× Spin(4n2R+1 + 2)× Spin(4p+ 2)

Z(1)2 ×Z
(2)
2

×
R
∏

i=1

Sp(n2i) , (3.40)

where Z(1)2 is the combined diagonal of the Z2 subgroups of the Z4 centers of

Spin(4n2R+1 + 2) and Spin(4p + 2) groups. Z(2)2 projects to the Z2 inside Z2
2 center of

Spin(4n2i−1) that does not act on its vector rep, and the Z2 subgroup of the Z4 center of
Spin(4n2R+1 + 2).

• For type 3′, we have the following gauge group:

R
∏

i=1

Spin(4n2i+1)×
R
∏

i=1

Sp(n2i)×
Spin(4p+ 2)× Spin(4n2R+1 + 2)

Z2
, (3.41)

where Z2 in the denominator is the diagonal Z2 of the Z2 centers of Spin(4p + 2) and
Spin(4n2R+1 + 2)).

• For type 4, we have the following gauge group:
∏3

i=1 Spin(4n2i−1 + 2)

Z2
×

2
∏

i=1

Sp(n2i)× Spin(4p1)× Sp(p2) , (3.42)

where Z2 is the combined diagonal of the Z2 subgroups of the Z4 centers of
Spin(4n2i−1 + 2) groups.
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• For type 5, we have the following gauge group:

R
∏

i=1

SU(2n2i)× SO(4n+ 2) . (3.43)

• For type 6, we have the following gauge group:

∏R+1
i=1 Spin(4n2i−1 + 2)

Z2
×

R
∏

i=1

Sp(n2i)× SU(2p) , (3.44)

where Z2 is the combined diagonal of the Z2 subgroups of the Z4 centers of
Spin(4n2i−1 + 2) groups.

3.5 A Quiver Example

In this subsection, we discuss in some detail the calculation of 2-group symmetry in the simplest
quiver example among the seven types of theories appearing above. Consider the 6d theory:

[sp(m1)]

so(4n1+2)
4

sp(n2)
1

[so(4m2)]

so(4n3+2)
4

[sp(m3)] , (3.45)

with the gauge group chosen to be

G = Spin(4n1 + 2)× Sp(n2)× Spin(4n3 + 2) . (3.46)

Its center is
ZG = Z1 × Z2 × Z3 = Z4 ×Z2 ×Z4 . (3.47)

The subgroup of ZG that leaves the hypermultiplets invariant is

eΓ (1) = Z2 ×Z2 , (3.48)

where the first Z2 factor is the Z2 subgroup of Z1 = Z4, while the second Z2 factor is the Z2
subgroup of Z3 = Z4.

However the 1-form symmetry Γ (1) is not given by eΓ (1). Only the diagonal of the two
Z2 factors in eΓ (1) survives as 1-form symmetry of the full theory. This is because the in-
stanton string associated to the Sp(n2) provides excitations that are charged as bi-spinor of
Spin(4n1+2)×Spin(4n3+2). This is only left invariant by the diagonal Z2 inside eΓ (1). Thus,
the 1-form symmetry group for this 6d theory is

Γ (1) = Z2 . (3.49)

Now, let us compute the 0-form flavor symmetry group F of this 6d theory. We need to first
pick a global form F of the flavor algebra

f= sp(m1)⊕ so(4m2)⊕ sp(m3) , (3.50)

such that all the representations under f formed by hypermultiplets and string states are al-
lowed representations of F . Let us assume m1, m2 and m3 are all non-zero. Then, looking at
the matter content, we find that F must allow for fundamental representations of sp(m1) and
sp(m3), and vector representation of so(4m2). The string states are charged as spinor (S) and
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co-spinor (C) irreps of so(4m2), so these irreps should also be allowed by F . Thus, we must
pick

F = Sp(m1)× Spin(4m2)× Sp(m3) , (3.51)

whose center is
ZF = Z2 ×Z2

2 ×Z2 . (3.52)

In order to now compute E , we need all the charges contributed by the Sp(n2) instanton string.
This string provides extra states transforming in representation

SSS⊕ SCC ⊕CSC ⊕CCS , (3.53)

of Spin(4n1+2)×Spin(4n3+2)×Spin(4m2). These states and hypermultiplets are left invariant
by

E = Z4 ×Z2 , (3.54)

subgroup of ZG × ZF . The projection of the Z4 factor in E on the centers of Sp(m1), Sp(n2)
and Sp(m3) is Z2, on the centers of Spin(4n1 + 2) and Spin(4n3 + 2) is Z4, and the center of
Spin(4m2) is the Z2 that acts on spinor irrep but does not act on cospinor irrep. The projection
of the Z2 factor in E on the centers of Sp(m1), Spin(4n1+2), Sp(n2) and Sp(m3) is trivial Z1,
on the center of Spin(4n3 + 2) is Z2, and the center of Spin(4m2) is the Z2 that does not act
on the vector irrep. From this we compute

Z = πF (E) = Z2 ×Z2 , (3.55)

and the 0-form flavor symmetry group F is

F = F/Z =
Sp(m1)× SO(4m2)× Sp(m3)

Z2
, (3.56)

where the Z2 in the denominator is the diagonal Z2 of the Z2 centers of Sp(m1), SO(4m2) and
Sp(m3).

The groups Γ (1), E and Z sit in a short exact sequence (2.4) that becomes

0→ Z2→ Z4 ×Z2→ Z2 ×Z2→ 0 . (3.57)

This leads to a non-trivial 2-group symmetry with the Postnikov class

Θ = Bock(w2) , (3.58)

where w2 is the obstruction class for lifting F bundles to Sp(m1)×SO(4m2)×Sp(m3) bundles.
The Bockstein homomorphism appearing in (3.58) is associated to the short exact sequence

0→ Z2→ Z4→ Z2→ 0 , (3.59)

which is the non-split part of the short exact sequence (3.57). We can arrive at the same
conclusions as above by using the charge matrix. For this, we write

ZG = Z
Spin(4n1+2)
4 ×ZSp(n2)

2 ×ZSpin(4n3+2)
4 , (3.60)

and
ZF = Z

Sp(m1)
2 × (Z2 ×Z2)

Spin(4m2) ×ZSp(m3)
2 . (3.61)
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The charge matrix can then be written as

M=



















4 0 0 0 0 0 0 2 2 0 0 0 1 1
0 2 0 0 0 0 0 0 1 1 1 0 0 0
0 0 4 0 0 0 0 0 0 0 2 2 1 3
0 0 0 2 0 0 0 1 0 0 0 0 0 0
0 0 0 0 2 0 0 0 0 1 0 0 1 0
0 0 0 0 0 2 0 0 0 1 0 0 0 1
0 0 0 0 0 0 2 0 0 0 0 1 0 0



















. (3.62)

From this we compute

Γ (1) = Z2 ×Z1 ×Z1 ,

E = Z4 ×Z1 ×Z2 ×Z1 ×Z1 ×Z1 ×Z1 ,
(3.63)

with

A−1
E =



















1 −2 0 −2 −2 −4 −2
0 1 0 1 1 2 1
0 0 1 0 −1 −1 0
0 0 0 1 1 2 1
0 0 0 0 1 1 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1



















, (3.64)

and

Rt =





2 −1 0 −1 −1 −2 −1
0 1 0 1 1 2 1
0 0 2 0 −1 −1 0



 . (3.65)

Thus, the generator of Z2 subfactor of Γ (1) embeds as twice the generator of the Z4 subfactor of
E . One can easily check that the two Z1 subfactors of Γ (1) do not have a non-trivial embedding
into the Z4 or Z2 subfactor of E .

Continuing, we find that

Z = Z2 ×Z1 ×Z2 ×Z1 ×Z1 ×Z1 ×Z1 , (3.66)

with AZ being the identity matrix. Thus, the generator of the Z4 subfactor of E projects to the
generator of the first Z2 subfactor of Z, and the generator of the Z2 subfactor of E projects
to the generator of the second Z2 subfactor of Z. So far we have recovered the short exact
sequence (3.57).

Now, we want to find the embedding of Z into ZF which would allow us to read F and
the obstruction class w2 appearing in the Postnikov class. For this we compute

MA[(A
t
E)
−1Q−1A−1

Z ]F =







−1 2 0 2 0 0 0
−1 2 −1 2 2 0 0
−2 4 −1 4 2 2 0
−1 2 0 2 0 0 2






, (3.67)

to find that the first Z2 subfactor of Z embeds as the diagonal of the first, second and fourth
Z2 subfactors of ZF , while the second Z2 subfactor of Z embeds as the diagonal of the second
and third Z2 subfactors of ZF . This confirms the result for the flavor symmetry group F in
(3.56). The fact that the first Z2 subfactor of Z participates in the non-split part of (3.57)
which embeds into ZF as above recovers the class w2 appearing in (3.58).
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3.6 Strings, 1-form Symmetries and Structure Groups

There is an equivalent way to see how the states given by the strings are consistent or not
with the 1-form symmetry predicted by the low-energy gauge theory in 6d, which does not
require knowing the charges of the states under the centers of the gauge and flavor symme-
tries. This method was proposed in [77], and relies on analyzing the Green-Schwarz-West-
Sagnotti (GSWS) couplings present in the low-energy effective action in 6d, which are neces-
sary for the cancellation of reducible gauge anomalies. A generic 6d theory has tensor multi-
plets (φ i , t i

2,γi
I) and vector multiplets (Ai

µ,λi
I), where t i

2 are dynamical antisymmetric tensor
fields, I = 1,2 indicates an SU(2)R doublet, and i is the index labelling the dynamical tensor
multiplets.13 The GSWS coupling reads

SGSWS = 2πΩi j

∫

M6

t i
2 ∧

1
4

Tr(F j ∧ F j) , (3.68)

where we only need the part related to the instanton density I j
4 =

1
4Tr(F j ∧ F j), and Ωi j

is the Dirac pairing in the string charge lattice. Due to tadpole cancellation, a non-trivial
configuration

∫

M4⊂M6
I j
4 ∈ Z, where M4 is a general submanifold of M6, requires the presence

of BPS strings whose induced charges are Q j = −
∫

M4⊂M6
I j
4 ∈ Z. In addition Dirac quantisation

asserts that
〈Qi ,Q j〉 ≡QiΩi jQ

j ∈ Z, Ωi j ∈ Z , ∀i, j . (3.69)

We now ask what happens when the 1
4Tr(F j ∧ F j) fractionalizes (the

∫

M4⊂M6
I j
4 is a fractional

number) due to turning backgrounds that twist the gauge group by its center or subgroups
thereof, i.e. bundles in G/Γ (1)14, where Γ (1) ⊂ ZG (see table 2 for the list of centers ZG). This
means to activate a background field that is

B = w2(G/Γ
(1)) ∈ H2(BG/Γ (1), Γ (1)) , (3.70)

where characteristic class w2 is the obstruction of lifting a G/Γ (1) bundle to a G bundle. For
any G, which is not Spin(4N), the center is ZG = Zn and subgroups are given by Γ (1) = Zk.
Then we have that

eB =
n
k

B , (3.71)

where B is the background for G/Γ (1) and eB for G/ZG . The fractionalisation of I4 then reads

I4 =
n2αG

k2
P(B) mod Z , (3.72)

where P(B) is the pontryagin square characteristic class and αG encodes the fractionalisation
of the instanton density, see table 2. The case of G = Spin(4N) is slightly different, there are
three different subgroups, ZL

2 , ZR
2 and Z2 ,→ ZL

2 ×Z
R
2, which is the diagonal embedding. So in

general we have.

Γ (1) = ZL
2 : I4 =

N
4
P(BL) mod Z ,

Γ (1) = ZR
2 : I4 =

N
4
P(BR) mod Z ,

Γ (1) = Z2 : I4 =
1
2

B ∪ B =
1
2
P(B) mod Z ,

(3.73)

where BL = BR = B.

13Note that the gauge group associated to a particular tensor labelled by i can also be trivial.
14Where we suppressed the index j for a moment.
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Table 2: Center symmetries ZG and fractionalisation of the instanton density. For
Spin(4N) the two contributions consist of P(B(L)+B(R)) and B(L)∪B(R), respectively
[89].

G ZG αG

SU(N) ZN
N−1
2N

Sp(N) Z2
N
4

Spin(2N + 1) Z2
1
2

Spin(4N + 2) Z4
2N+1

8

Spin(4N) Z2 ×Z2

�N
4 , 1

2

�

E6 Z3
2
3

E7 Z2
3
4

We now have all the ingredients and the fractionalisation, due to G/Γ (1) backgrounds,
reads

SGSWS = 2πΩi j

∫

M6

t i
2 ∧

n2α
j
G

k2
P(B j) , (3.74)

and Dirac quantisation for the induced charges on BPS strings [77] demands the following
necessary condition,

Q i = Ωi j
n2α

j
G

k2

∫

M4⊂M6

P(B j) ∈ Z , ∀i . (3.75)

The first step of this procedure consist of turning on a background for the center symmetries
which are compatible with the massless spectrum of the low-energy gauge theory in the tensor
branch. Then with the above condition it is possible to understand whether the background
is also consistent with the non-perturbative massive string states, which become massless for
example in 6d SCFTs. This method was for example used in [77] to understand the fate of
various 1-form symmetry in 6d. We show here in some explicit examples how it is possible
to detect the quotient group E in the structure group and the consistency of the related back-
ground. This gives a hint towards the 2-group backgrounds. This is done by including the
backgrounds for the center of various flavor symmetries. Let us look at a simple example

so(4N+2)
4 [sp(4N − 6)]

. (3.76)

First of all we can see how the strings are consistent with the Γ (1) = Z2 ⊂ Z4 = ZSpin(4N+2)
1-form symmetry, such that we have

Ω11
n2α1

G

k2
= 16αSpin(4N+2) ∈ Z , (3.77)

where n = 4, k = 2, αSpin(4N+2) =
2N+1

8 and Ωi j = 4. We can now activate general twisted
backgrounds which fractionalise the instanton density including the flavor symmetries such
that we have

SGSWS = 2π

∫

t2 ∧
�

2N + 1
2

P[w2(Spin(4N + 2)/Z4)]−
2N − 3

2
P[w2(Sp(4N − 6)/Z2)]

�

.

(3.78)
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We see that the most general choice of background that is compatible with (3.75) is

w2(Spin(4N + 2)/Z4) = 2B −w2(Sp(4N − 6)/Z2) mod 4 , (3.79)

where we recall that B is the background field for the 1-form symmetry.15 From this we gain
several pieces of information. First, (3.79) is just the manifestation of E = Z4. Secondly,
w2(Sp(4N − 6)/Z2) is allowed and therefore the flavor symmetry is F = Sp(4N − 6)/Z2.
Finally, the form of the (3.79) hints also at the two group symmetry, where the Z2 1-form
symmetry and the Z2 quotient of the flavor symmetry mix to give a non-trivial element in Z4.

A second illustrative example is provided by just attaching an E-string to this theory, spe-
cializing to N = 2:

[su(4)] ;
1

so(10)
4 [sp(2)]

, (3.80)

and therefore the intersection pairing in the string lattice is

Ω=

�

1 −1
−1 4

�

. (3.81)

This case does not have a 1-form symmetry since the string states break the one predicted just
from the gauge theory massless spectrum as one can see from,

SGSWS = −2π

∫

t1
2 ∧

�

5
8
P[w2(Spin(10)/Z4)]

�

, (3.82)

where t1
2 is the tensor which charges the E-string. From this we can see that there is no

subgroup of the center Z4 satisfied integrality of the induced gauge charges. This is just the
low-energy manifestation that the E-strings states transforming under the spinor representa-
tions of Spin(10). For instance, the fractionalized GSWS coupling (3.82) can be thought as
generated by integrating out massive E-string states, when going from the SCFT in the UV to
the low-energy theory in the tensor branch. Having now 1-form symmetry implies that we
do not have a 2-group. On the other hand we can still activate twisted backgrounds for the
flavor symmetries compatible with the low-energy massless matter, and understand what are
the backgrounds allowed by the BPS strings. In this case we get two conditions,

SGSWS1
= −2π

∫

t1
2 ∧

�

5
8
P[w2(Spin(10)/Z4) +

3
8
P[w2(SU(4)/Z4)]

�

,

SGSWS2
= +2π

∫

t2
2 ∧

�

5
2
P[w2(Spin(10)/Z4)−

1
2
P[w2(Sp(2)/Z2)]

�

,

(3.83)

where t2
2 is the tensor with self-charge 4. The integrality for the second line is satisfied when

(3.79) holds, where B now is simply the background for a Z2 ⊂ Z4 = Z(Spin(10)), not related
to any 1-form symmetry. For the induced charges on the E-string to be integral we need the
integrality of quantity which multiplies the t1

2 in the first line of (3.83). The most general
choice which satisfies this is given by

w2(SU(4)/Z4) = w2(Spin(10)/Z4) = 2B −w2(Sp(4N − 6)/Z2) mod 4. (3.84)

This implies that E = Z4 in the structure group and the full flavor symmetry of the 6d theory
is

F =
SU(4)× Sp(2)
Z4

, (3.85)

where Z2 ⊂ Z4 does not act on Sp(2).
15One can check this by expanding the pontryagin square in cup products [13].
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4 Abelian and Discrete 0-Form Symmetries

Some of the theories we encountered in the discussion of 2-groups in 6d SCFTs have abelian
flavor symmetries. These can be broken by ABJ anomalies. In addition we discuss a mixed
anomaly between 0-form and 1-form symmetries that can exist in such theories.

4.1 ABJ Anomaly

In order to know the full flavor symmetry of 6d field theories we need to understand the abelian
components. In particular, not all the U(1) symmetries which can be seen from the lagrangian
will survive quantum mechanically. This is due to the presence of ABJ anomalies [90], and
holographically in [91]. Let us consider a 6d theory in the tensor branch with a certain number
of abelian flavor symmetries labelled by U(1)` and with gauge vector multiplets transforming
in the adjoint representation of gi . The matter is charged under U(1)` with charge q` and
transforms in a representation ρ(gi). By evaluating 1-loop diagrams there is an ABJ anomaly
in 6d, and its anomaly polynomial reads,16

IABJ =
∑

matter

q`FU(1)`
1
6

trρ(F
3
gi
) =

∑

matter

q`FU(1)`
A(ρi)

6
Trfund(F

3
gi
) , (4.1)

where A(ρ) is called the anomaly coefficient, which normalises the cubic trace of a represen-
tation in terms of the fundamental representation, which has A(fund) = 1. Notice also that
the cubic trace is non-vanishing only for g = su. Moreover, we have that 1

6Trfund(F3
su(N)) =

c3
2 ,

where c3
2 is the third Chern class. For an SU(N) bundle, c3

2 is always integer on a compact
6-manifold with an almost complex structure17, that is necessary to define Chern classes, see
appendix C.

A first consequence of the ABJ anomaly is that under a U(1)` rotation, one can always
choose the θ = 0 in a θ -angle term like L ⊃ θ

6 Trfund(F3
gi
) as long as we do not have SU(3)NHCs

participating in the 6d theory under consideration. Crucially there are U(1) combinations that
lead to a vanishing ABJ anomaly. These U(1) symmetries survive as quantum symmetries of
the theory, which in total are U(1)#(lagrangian U(1)s)−#(SU gauge nodes). In addition there can be
discrete unbroken transformations which form the discrete part 0-form symmetry group, that
is Γ (0)tor ⊂ Γ (0) ⊂

∏

` U(1)`. Both the continuous and torsion part of Γ (0) can be read off from a
basis change which preserves the lattice of U(1)` charges, eFU(1)` = Λ``′FU(1)`′ such that Λ``′ is
a matrix with unit determinant. Moreover, eFU(1)i are the combinations that appear in front of
the Trfund(F3

gi
) with coefficients,

∑

matter

q`FU(1)`A(ρi) = pi eFU(1)i . (4.2)

The torsional backgrounds such that pi eFU(1)i = 0 exactly define

Γ
(0)
tor =

∏

i

Zpi
. (4.3)

The full abelian symmetry reads,

Γ (0) = U(1)#(lagrangian U(1)s)−#(SU gauge nodes)
∏

i

Zpi
. (4.4)

16Alternatively to derive the ABJ anomaly one can take the
Trρ(h)F

4

24 hypermultiplet contribution, see appendix
A of [92], and decompose the h ⊂ g⊕ u(1), where g is non-abelian. We also recall that in 6d the hypermultiplet
contains a single Weyl fermion which transforms in a doublet of SU(2)R.

17A 6-dimensional manifold has a almost complex structure if and only if has a spinc structure. We restrict here
to M6 with a spinc structure.
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We now illustrate this in an explicit example. Let us take the following type 5 example,

[u(2)]

su(12)
2

so(22)
2

[sp(2)] . (4.5)

In this quiver there are two continuous abelian symmetries from the lagrangian. The first one
is u(1) f ⊂ u(2), the second is given by the baryonic symmetry rotating the hypers between
su(12) and so(22), which we denote by u(1)b. Their ABJ anomaly reads,

IABJ =
�

−2FU(1) f + 22FU(1)b

� 1
6

Trfund(F
3
su(12)) . (4.6)

We can see that there is a combination of the two U(1)s which is free from ABJ anomalies and
remains a symmetry of the quantum theory. Upon the following lattice of charge preserving
change of basis,

�

eFU(1)1
eFU(1)2

�

=

�

−1 11
0 1

�

=

�

FU(1) f
FU(1)b

�

, (4.7)

the ABJ anomaly now reads,

IABJ = 2eFU(1)1
1
6

Trfund(F
3
su(12)) . (4.8)

This means that the continuous anomaly free combination is given by
eFU(1)1 = −FU(1) f + 11FU(1)b = 0, and that torsional background configurations, such that

2eFU(1)1 = 0 , (4.9)

are not anomalous, leading to Γ (0)tor = Z2. The full abelian symmetry is

Γ (0) = U(1)×Z2 . (4.10)

Let us consider another illustrative example,

[Λ2] su(4)
0 [S2]

, (4.11)

where the flavor symmetry algebra rotating the two-index antisymmetric Λ2 is sp(1) and the
one associated to the two-index symmetric S2 is so(2)S2 = u(1)S2 . So we have an abelian flavor
symmetry and its ABJ anomaly is,

IABJ = 8FU(1)S2

1
6

Trfund(F
3
su(4)) , (4.12)

where A(S2(su(4))) = 8. In this case there is no continuous ABJ anomaly free combination,
but there is a discrete remnant given by 8FU(1)S2 = 0, that gives

Γ (0) = Z8 . (4.13)
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4.2 A New Mixed Anomaly Between Flavor and 1-Form Symmetries

We now consider the situation, when turning on the 1-form symmetry backgrounds, where
1
6Trfund(F3

gi
) fractionalizes. In particular the cases that appear in this paper are such that

g = su(2n) and the one-form symmetry, which is a subgroup of the center Z2n of SU(2n)
is Γ (0) = Z2. It is then possible to rewrite the cubic trace as follows

1
6

Trfund(F
3
su(2n)) =

1
2

c3(F
′
u(2n))−

�

(2n)
2
− 1

�

B2c2(F
′
u(2n)) +

(2n)((2n)− 1)((2n)− 2)
6

B3
2 ,

(4.14)
where B2 is the 1-form symmetry, Γ (1) = Z2, background with

∮

B2 ∈
Z
2 periods, and the u2n

bundle is related to the su2n by

A′u2n
= Asu2n

+
1

2n
2n
2

BI2n , (4.15)

where 2B2 = dB, and the U(1) field is reabsorbed by the 1-form symmetry transformation
A′
u(2n) → A′uN

+ I2nλ, B2 → B2 + dλ. The first two terms in (4.14) are integer valued and do

not lead to any anomaly. This is because
∫

c3 ∈ 2Z for a u(2n) vector bundle on a compact
6-manifold with an almost complex structure, see appendix C. The second term vanishes mod
Z. All in all, the result of performing a Γ (0) transformation leads to following mixed ’t Hooft
anomaly,

A= 2n(2n− 1)(2n− 2)
6

pi

∑

i

aiB
3
2 , (4.16)

where ai have discrete periods,
∮

ai ∈
Z
pi

, and
∮

B2 ∈
Z
2 periods. We can see that for (4.5), the

anomaly on a general 6-manifold18 reads,

A= 11× 5
2

ãB̃3
2 mod Z , (4.17)

where ã and B̃2 have integer periods mod 2. For (4.11) we also have that on a 6-general
manifold,

A= 1
2

ãB̃3
2 mod Z , (4.18)

where ã has integer periods mod 8 and B̃2 has integer periods mod 2.
There is a potential clash between the existence of the above anomaly A and the existence

of 2-group symmetry, if the same 1-form symmetry participates in both. The existence of 2-
group implies that δB 6= 0, which forces δA 6= 0 making the expression A for the anomaly
ill-defined. Merrily, such a clash does not occur for 6d SCFTs, at least for the type of 2-group
symmetry being discussed in this paper. The reason for this is that, from the analysis of section
5, we know that 1-form symmetry participating in 2-group symmetry does not have non-trivial
projection on the center of any SU gauge group appearing on the tensor branch of the theory.
On the other hand, the above anomaly arises only for 1-form symmetries that have a non-trivial
projection on some SU gauge group.

5 Proof of the Classification of 6d Theories With 2-Group Symme-
tries

In this section, we classify 6d SCFTs and LSTs with non-trivial 2-group symmetries. The out-
put of this section is a list of building blocks for theories that can have non-trivial 2-group
symmetries, which are listed in section 5.1.

18i.e. with no condition on the spin structure, or on its pontryagin classes.
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5.1 Building Blocks For 6d Theories with 2-Group Symmetries

From the analysis of the subsequent section, we find that the 6d theories admitting 2-group
symmetries (of the type being studied in this paper, see section 2.1) are obtained by composing
the following building blocks:

Block 1

so(4n1 + 2) sp(n2) so(4n3 + 2) . (5.1)

The dashed lines represent series of alternating so(4N + 2)− sp(M) gauge algebras.

Block 2

so(4n1 + 2) sp(n2) so(4n3 + 2)

so(4m1) . (5.2)

The dashed lines represent series of alternating so(4N+2)−sp(M) gauge algebras. The dotted
line represents a series of alternating so(4N)− sp(M) gauge algebras.

Block 3
so(4n1 + 2) su(n2) . (5.3)

The dashed line represents a series of alternating so(4N + 2) − sp(M) gauge algebras. The
dotted line represents a series of su(P) gauge algebras.

Combining these building blocks with the imposition of rank constraints, and ensuring that
an sp node always have at least two non-flavor neighboring nodes (which is required for the
existence of 1-form symmetry participating in 2-group), we are lead to a full list of 6d theories
admitting 2-group symmetries of the type studied in this paper. These theories are discussed
in detail in section 3.3.

5.2 Proof Strategy

Let us begin by setting up some notation first. Let i parametrize different non-flavor nodes
and let ki be the value of the node i. Let gi be the gauge algebra carried by the node i, and Gi
be the simply-connected associated to gi .

For the purposes of deduction of 2-group symmetries, we can choose the gauge group to
be G =

∏

i Gi . A different choice G′ of gauge group is obtained by gauging a subgroup Γ (1)
′
of

the 1-form symmetry group Γ (1). The theory with gauge group G′ carries an Γ (1)/Γ (1)
′

1-form
symmetry and a potential 2-group symmetry whose Postnikov class Θ′ is given by

Θ′ = π′(Θ) , (5.4)

where π′ is the natural map

π′ : H3(BF , Γ (1))→ H3(BF , Γ (1)/Γ (1)
′
) , (5.5)

induced by the map Γ (1)→ Γ (1)/Γ (1)
′
. We can also write

Θ′ = Bock′(w2) + · · · , (5.6)
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where w2 ∈ H2(BF ,Z) is again the obstruction class for lifting F bundles to F bundles, and
Bock′ is the Bockstein homomorphism induced by the short exact sequence

0→ Γ (1)/Γ (1)
′
→ E/Γ (1)

′
→ Z → 0 . (5.7)

In particular, we have
Bock′(w2) = π

′ (Bock(w2)) . (5.8)

Thus, if Bock′(w2) 6= 0, then we must have Bock(w2) 6= 0. This means that 2-group symmetry
(of the type studied in this paper) for theory with gauge group G′ can be completely under-
stood if one understands 2-group symmetry (of the type studied in this paper) for the theory
with gauge group G. Consequently, in the rest of the classification, we will assume that the
gauge group is G =

∏

i Gi . At the end of the classification, we will study all the possible 1-
form symmetry gaugings that lead to theories with other gauge groups that also carry 2-group
symmetries.

Let Zi be the center of the group Gi . Then ZG =
∏

i Zi . Let πi : ZG × ZF → Zi be the
projection map onto Zi . Let us also decompose the group F into its factors Fa. There are
various allowed possibilities for Fa:

• Continuous and non-abelian. In this case it is a localized flavor symmetry.

• Continuous and abelian. In this case it can be localized or delocalized.

• Finite and abelian. In this case it is delocalized, and arises from remnant of a continuous
abelian flavor symmetry afflicted by ABJ anomaly.

Let Za be the center of Fa and let πa : ZG × ZF → Za be the projection map onto Za. For the
rest of this section, we study the consequences of E containing an element α such that

• α 6= pα′ for p > 1 and α′ ∈ E .

• α generates a Zn subgroup of E .

• πF (α) generates a Zk subgroup of Z.

In such a situation α generates a piece of (2.4) of the form

0→ Zn/k→ Zn→ Zk→ 0 , (5.9)

and provides a contribution of the form

Θ = Bock(w2) + · · · , (5.10)

to the 2-group symmetry, where w2 ∈ H2
�

B F
Zk

,Zk

�

is the obstruction class for lifting F/Zk

bundles to F bundles. The non-triviality of Bock(w2) requires gcd(k, n/k)≥ 2, which implies
k ≥ 2 and n≥ 4.

Let us also define
β := kα , (5.11)

which has the property πF (β) = 0, and hence generates the Zn/k 1-form symmetry appearing
in (5.9).

The rest of this section is organized as follows. In section 5.3, we first argue that only
continuous non-abelian flavor symmetries participate in 2-groups of the type discussed in this
paper. From section 5.4 onward, we begin exploring the consequences of the existence of the
element α discussed above. We define the notion of a special node, which is a non-flavour
node where α is represented faithfully. A theory exhibiting 2-group symmetry must contain at

32

https://scipost.org
https://scipost.org/SciPostPhys.12.3.098


SciPost Phys. 12, 098 (2022)

least one special node. We find that the special node can either carry an SU(N) gauge group
or a Spin(4M +2) gauge group. In section 5.4, we study all theories containing a special node
of SU type, and find that no such theory can have 2-group symmetry. In section 5.5, we study
all theories containing a special node of Spin type. We find many building blocks consistent
with 2-group symmetry that can be composed to build theories having 2-group symmetries.
These building blocks are collected in section 5.1. The list of theories appearing in section 3.3
is obtained by composing these building blocks.

5.3 Removing Abelian Factors Inside F

Consider first a situation such that an Fa = U(1) participates in (5.9), i.e. we have
πa(α) 6= 1 ∈ Za = U(1). Furthermore, we can choose Fa = U(1) to be large enough that
πa(α) generates a Zk subgroup of Za = U(1). Then, we can express the contribution (5.10)
as

Θ = Bock(w2) + · · · , (5.12)

with w2 ∈ H2
�

B Fa
Zk

,Zk

�

being the obstruction class for lifting Fa/Zk = U(1)/Zk bundles to
Fa = U(1) bundles.

This description of w2 and Bock(w2) makes it manifest that Bock(w2) = 0. To see this,
notice that we can identify

w2 = c1 (mod k) , (5.13)

with c1 being the first Chern class of Fa/Zk = U(1)/Zk ' U(1) bundles. This makes it clear
that w2 is in the image of the map

H2
�

B
Fa

Zk
,Zn

�

→ H2
�

B
Fa

Zk
,Zk

�

, (5.14)

associated to the map Zn → Zk in (5.9), since it is the image of c1 (mod n) ∈ H2
�

B Fa
Zk

,Zn

�

.
By exactness of long exact sequence in cohomology, this implies that w2 is in the kernel of the
connecting Bockstein homomorphism

H2
�

B
Fa

Zk
,Zk

�

→ H3
�

B
Fa

Zk
,Zn/k

�

. (5.15)

Thus, we can discard continuous abelian Fa from F as far as deduction of non-trivial 2-group
symmetries is concerned.

Now, consider a situation such that an Fa = Zm participates in (5.9), i.e. we have
πa(α) 6= 1 ∈ Za = Zm. Furthermore, we can choose Fa = Zm to be large enough that πa(α)
generates a Zk subgroup of Za = Zm. Then, we can express the contribution (5.10) as

Θ = Bock(w2) + · · · , (5.16)

with w2 ∈ H2
�

B Fa
Zk

,Zk

�

being the obstruction class for lifting Fa/Zk = Zm/k bundles to Fa = Zm
bundles.

We can now show that Bock(w2) = 0. Consider w′2 ∈ H2
�

B Fa
Zk

,Zn

�

describing the obstruc-
tion of lifting Fa/Zk = Zm/k bundles to Zmn/k bundles. We can recognize w2 as the image of
w′2 under the map (5.14). By the same argument as above, this shows that Bock(w2) = 0.

Thus, we can discard both continuous and finite abelian Fa from F as far as deduction of
non-trivial 2-group symmetries is concerned.
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5.4 Rejecting The Possibility of Special Node of Type SU

We must have at least one non-flavor node i such that πi(α) generates a Zn subgroup of Zi .
This means that Zi must contain an element of order at least 4, since n ≥ 4. This restricts the
possible values of Gi to be either Spin(4M +2) or SU(N) with N ≥ 4. We will call such a node
i a special node. Note that there can be multiple special nodes in a 6d theory. If a special node
carries SU(N) gauge group for some N , we call it a special node of SU type. If a special node
carries Spin(4M + 2) gauge group for some M , we call it a special node of Spin type.

Let us begin by considering a theory that admits a special node i of SU type carrying
Gi = SU(N). If any other node j carrying G j = SU(M) is a neighbor of i, then we must have
a bifundamental in between them. For this bifundamental to be left invariant under α, π j(α)
must generate a Zn subgroup inside Z j . Thus, the node j is also a special node of type SU .

In general, let us define I to be the set of nodes carrying SU gauge groups that can be
connected to the special node i by a chain of SU gauge nodes. Any node j ∈ I is also a special
node of SU type.

Let us now assume that there is a node k carrying non-SU gauge group which is a neighbor
of a node j ∈ I:

Gi = SU(N) SU(M) I 3 G j = SU(P) Gk =?, Gk 6= SU
. (5.17)

We first consider gauge-theoretic options for the node k:

• Gk = Sp(Q). In this case there must be a bifundamental hyper between k and j. This
hyper cannot be invariant under α as Zk = Z2 can only act with order ≤ 2 on the
bifundamental, while π j(α) acts with order n≥ 4 on it.

• Gk = Spin(2Q). In this case there must be a bifundamental hyper between k and j. π j(α)
and π j(β) act non-trivially on the bifundamental, but it is not possible for both πk(α)
and πk(β) to act non-trivially on the bifundamental, since the subgroup of Zk acting
faithfully on the bifundamental is only Z2. This is in contradiction with the presence of
2-group symmetry.

• Gk = Spin(2Q + 1) or G2. In this case the hyper between k and j transforms as F ⊗ R
of G j × Gk where R is an irrep of Gk. Since Zk ≤ Z2, the same argument as for the
Gk = Sp(Q) case above removes these possibilities for Gk as well.

We therefore cannot have a non-SU gauge-theoretic neighbour of I. Let us now consider
non-gauge-theoretic neighbors k of a node j ∈ I:

• Gk = SU(1). In this case we must have G j = SU(2), but that is not possible since j is a
special node and hence P ≥ 4.

• Gk = Sp(0) is possible only if G j = SU(P ≤ 9). For G j = SU(9), there is no flavor
symmetry arising from the Sp(0) node, and the BPS string arising from the Sp(0) node
contributes a state charged as Λ3 of SU(9). This has no direct contradiction with 2-
group symmetry and therefore provides a consistent ingredient to build models of this
class that have 2-group symmetries.

• For G j = SU(8) and Gk = Sp(0)π, there is only a u(1) flavor symmetry arising from the
Sp(0) node, and the BPS string arising from the Sp(0) node contributes a state charged
as F of SU(8). This is not consistent with 2-group symmetry.
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• For G j = SU(8) and Gk = Sp(0)0, there is an su(2) flavor symmetry arising from the
Sp(0) node, and the BPS string arising from the Sp(0) node contributes two states: one
charged as Λ2 of SU(8), and the other charged as F of SU(2). Now, α must act non-
trivially on the Λ2 string state, but there is no flavor symmetry associated to it that can
compensate this action. This is in contradiction with 2-group symmetry.

• G j = SU(P ≤ 7) with P 6= 4. The center Z j is such that j cannot be chosen as the special
node i. So we need not consider these possibilities.

• G j = SU(4). There is an so(10) flavor symmetry arising from the Sp(0) node, and
the BPS string arising from the Sp(0) node contributes a state charged as F ⊗ S of
SU(4)×Spin(10). This has no direct contradiction with 2-group symmetry, and is there-
fore a consistent ingredient.

Combining the ingredients found above, there is only one configuration of nodes that can sit
inside a model with a special node i of SU type that is consistent with 2-group symmetry:

Λ2 SU SU SU S2
. (5.18)

This follows by analyzing the constraints on the ranks of the gauge groups, and requiring that
all fundamentals of SU gauge nodes are gauged by other gauge groups (for β to generate a
non-trivial 1-form symmetry). Notice that the above configuration is already an LST, so no
further nodes can be attached to it without ruining consistency.

Unfortunately, this model does not have 2-group symmetry as we must have
πa(α) 6= 1 ∈ Fa = U(1) flavor symmetry rotating S2. But, as we saw in the previous sub-
section, the associated Postnikov class must be trivial in such a situation.

5.5 Constraining The Possible Theories Carrying Special Nodes of Type Spin

Now consider theories which contain a special node i of Spin type. For such a theory, β must
be of order two, and α must be of order four. The value of the node must be ki = 4, otherwise
β is not a part of 1-form symmetry.

We start by understanding the possible gauge-theoretic blocks neighboring the node i.
Consider a node j which is a neighbor of i, carrying G j = Sp(n). It gives rise to a bifundamental
half-hyper of Gi × G j and, more importantly, the string associated to the node j gives rise to a
state charged as S of Gi . Thus, j must have another neighbor k under which the string state
is charged, leading to a sub-graph of the form:

Gi = Spin(4M + 2) G j = Sp(N) Gk =?
. (5.19)

There are various possibilities to consider for the node k:

• Gk = Spin(4P + 2). Now the string state associated to j is charged as S ⊗ S of Gi × Gk.
Invariance of this state under α leads us to the conclusion that k is a special node of Spin
type. Consequently, the value of the node k must be kk = 4.

• Gk = SU(2P + 1). In this case Zk does not have a Z2 element, but πk(α) must be a Z2
element in Zk. This contradicts the existence of 2-group symmetry.

• Gk = SU(2P). Assume that there is no other non-flavor node connected to j. Then there
is a flavor node a neighboring j which carries Fa = Spin(4Q+ 2). The string associated
to j provides states charged as S⊗1⊗S,1⊗Λ2⊗1,S⊗ F ⊗C of Gi ×Gk × Fa. From the
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first string state, we see that πa(β) is the Z2 element of Za, which is not allowed since
β is a part of 1-form symmetry, and hence cannot involve non-trivial elements of flavor
centers.
Now assume there is another non-flavor node l connected to j. The value of l must be
4, and hence l must carry Gl = Spin(q). The configuration formed by the four nodes
i, j, k, l is a LST, so no more non-flavor nodes can be added to it. Implementing the
constraints on the ranks, we find that such a model cannot have any flavor symmetry,
and hence cannot carry 2-group symmetry.

• Consider Gk = Spin(4P) with a bifundamental half-hyper between j and k. Suppose
first that there is no other non-flavor neighbor l of j. There is a string state charged as a
bi-spinor of Gi × Gk. For this state to be left invariant under β , πk(β) must be an order
two element in Zk = Z2

2. However, if this is true then πk(α)must be a Z4 element inside
Zk, which is a contradiction.
Now assume that there is a non-flavor neighbor l of j. If l is non-gauge-theoretic, it must
carry Gl = SU(1), constraining G j to be Sp(1). Moreover, it induces a trapped half-hyper
transforming as F of G j at the intersection of l and j, which does not transform under
any flavor symmetry. This 1

2 F transforms under α and destroys the 2-group symmetry.
Thus l must be gauge-theoretic. We must have Gl = Spin(4q + 2). There might be an
additional flavor node a attached to j carrying Fa = Spin(4r). Then, we have string
states transforming as S ⊗ S ⊗ S ⊗ S,S ⊗ S ⊗ C ⊗ C ,S ⊗ C ⊗ S ⊗ C ,S ⊗ C ⊗ C ⊗ S under
Gi×Gl×Gk×Fa. Along with hypers, one can see that this is consistent with the existence
of 2-group symmetry. l is a special node of Spin type, and hence its value must be kl = 4.
We can also consider adding spinor and cospinor matter for Gk. This is possible only for
Gk = Spin(8) or Spin(12). Implementing the rank constraints, we find only the follow-
ing possibility:

Spin(14) Sp(6) Spin(12)

Spin(14)

S , (5.20)

in which the U(1) symmetry rotating the spinor participates in α. This means that the
associated Postnikov class is trivial as we discussed earlier in this section.

• Consider Gk = Spin(2P + 1) with a bifundamental half-hyper between j and k. π j(α)
acts on this bifundamental, so has to compensated by an element from Zk. However, no
element of Zk acts non-trivially on the bifundamental. Thus, such a node is not allowed.

• For Gk = Spin(7), we can have a half-hyper in F ⊗ S of G j × Gk. Assume first that there
is no other non-flavor node l connected to j. In this case, we have a string state trans-
forming as S⊗ 1 of Gi × Gk which transforms under β , leading to a contradiction.
Now assume that there is a non-flavor node l. The value of l must be at least 3.
Thus, l must be gauge-theoretic. Gl cannot be SU(3) since n > 0, so we must have
Gl = Spin(2P) with a half-bifundamental between l and j. Assume P is even. Then we
must have a flavor node a neighboring j and carrying Fa = Spin(4Q+2). Moreover, we
have a string state transforming as S ⊗ 1 ⊗ S ⊗ S of Gi × Gk × Gl × Fa. For this string
state to be left invariant by α, we must have πa(α) as an order four element of Za. This
implies that πa(β) is an order two element of Za, which is in contradiction with the fact
that β is part of 1-form symmetry.
Now consider the case P odd. In this case, rank constraints imply that there is no possible
model.

36

https://scipost.org
https://scipost.org/SciPostPhys.12.3.098


SciPost Phys. 12, 098 (2022)

• Gk = G2 is not allowed since Zk must contain πk(α) as a Z2 element but Zk = Z1.

Another possibility for j is G j = SU(N). For this case, N must be even, since π j(α) has to be
the Z2 element of Z j . Let J be the set of nodes k such that Gk = SU(P) and k is connected to
j by a chain of SU nodes.

Gi = Spin(4M + 2) G j = SU(N) J 3 Gk = SU(P) Gl =?
. (5.21)

We now study gauge-theoretic neighbors l of J :

• We cannot have a Spin neighbor of J by the rank constraints.

• We cannot have a Gl = G2 neighbor since we would need πl(α) to be a Z2 element in
Zl = Z1, which is not possible.

• Consider Gl = Spin(7) and let it be a neighbor of k ∈ J with Gk = SU(2). In this case
there is a half-hyper in F ⊗S of Gk ×Gl . This is not allowed since all the matter content
associated to k is gauged by l, and it is therefore not possible to connect k to i.

• Consider Gl = Sp(Q). The rank constraints imply that the only possibility is

Spin(4M + 2) SU(4M − 6) SU(4M − 14) SU(2Q+ 8) Sp(Q) ,
(5.22)

which has no flavor symmetry and hence no 2-group symmetry.

To finish the analysis of possible gauge theory nodes surrounding i, we need to understand
possible neighbors l of k carrying Gk = Spin(4p)with value kk = 4, which arises in a sub-graph
of the form:

Gi = Spin(4M + 2) G j = Sp(N) Gk = Spin(4P)

Spin(4Q+ 2)

Gl =?

. (5.23)

First consider the case Gl = Sp(R). Suppose there are no other non-flavor neighbors of l. We
can have a flavor node a attached to l carrying Fa = Spin(4S). The string states arising from l
transform as S⊗ S,C ⊗ C of Gk × Fa. From this one can see that the existence of such a node
l is consistent with 2-group symmetry. Let us consider possible neighbors h of l:

• We can have Gh = Spin(4S) with kh = 4 consistently. For kh < 4, it is not possible to
satisfy rank constraints.

• We cannot have Gh = Spin(4S + 2) as then there must be a non-trivial flavor symmetry
node a attached to l carrying Fa = Spin(4T + 2) with the property that πa(β) is Z2
element of Fa, which is a contradiction with the fact that β is a part of 1-from symmetry.

• Gh = Spin(2S + 1) with bifundamental half-hyper between h and l is not allowed as
one needs πh(α) to act non-trivially on the vector rep of Gh, but no element of Zh acts
non-trivially on the vector rep.

• Gh = Spin(7) with half-hyper in F ⊗ S of Gl × Gh is not allowed by rank constraints.
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• Gh = G2 or SU(2S + 1) are not allowed since we would need πh(α) to be a Z2 element
in Zh, which does not exist.

• Choosing Gh = SU(2S) constrains the model fully via rank constraints to be

Spin(4M + 2) Sp(4M − 6) Spin(8M − 12)

Spin(4M + 2)

Spin(4S + 16)

Sp(2S)SU(2S) ,
(5.24)

which does not have any flavor symmetry, and hence no 2-group symmetry.

Another possibility is Gl = SU(R) which can be rejected because it does not satisfy the rank
constraints.

We now explore possible non-gauge-theoretic nodes l neighboring the above studied gauge-
theoretic block surrounding the special node i of Spin type:

• For Gl = SU(1), it traps a 1
2 F of the neighboring node k carrying SU(2) or Sp(1). πk(α)

acts on this 1
2 F and this action cannot be compensated by any flavor symmetry. So

Gl = SU(1) is not allowed.

• Consider Gl = Sp(0) and its neighbor Gk = SU(P ≤ 9). This is not consistent with the
rank constraints.

• Consider Gl = Sp(0) and its neighbor Gk = Spin(4P +2). We have two possibilities. For
Gk = Spin(14), the flavor symmetry attached to Gl is only u(1). So, no other node can be
attached to l. The node l contributes a string state transforming as S of Spin(14) which
breaks the 1-form symmetry. For Gk = Spin(10), we must have a node h neighboring l
and carrying Gh = SU(4). Moreover, πh(α) and πh(β) are Z4 and Z2 elements inside Zh
respectively. This implies that h is a special node of SU type, but we have already ruled
out the existence of such a special node in the previous subsection.

• Consider Gl = Sp(0) and its neighbor Gk = Spin(4P). This is only possible for P ≤ 4.
However, the rank constraints force P ≥ 5, leading to a contradiction.

Thus, no such non-gauge-theoretic nodes are allowed.
Implementing the above discussed constraints on the possible theories having special nodes

of Spin type, we are lead to the building blocks listed in section 5.1. Combining these building
blocks results in the classification presented in section 3.3.

6 Conclusions

This paper uncovers the existence of global 2-group symmetries in 6d SCFTs and provides
a complete classification of such theories carrying 2-group symmetries of the type discussed
here. These are 2-groups formed out of discrete 1-form symmetries and continuous 0-form
flavor symmetry groups. The result is perhaps surprising in view of the no-go theorems for 2-
groups having continuous 1-form symmetries and continuous 0-form symmetries from general
principles [15].
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Moreover the reasoning put forward to check for the existence of 2-groups is applicable
quite generally, in all dimensions (d = 3,4, 5,6 specifically), and the analysis in section 2 is
completely general. The only dimension-dependent features arise in the type of charged ob-
jects one needs to incorporate (of course matter multiplets, but also non-perturbative states
that can be dimension specific). The simplest avatar of this universally present 2-group sym-
metry can be seen in gauge theories Spin(4N +2) with NF vectors with 8 supercharges. These
theories have 2-groups in all dimensions; in N = 1 and N = 0 (non-supersymmetric) theories
in 4d this was observed in [14,23]. It is in view of this generality that we provide a mathemat-
ica code TwoGroupCalculator.nb, which can be used in this general setting to determine
the 2-group symmetries of a given quiver gauge theory in d dimensions.

Thanks to the classification of 6d SCFTs we are able to determine all possible theories with
2-groups of the type studied in this paper, which are summarized in table 1. Their tensor
branches are quivers built out of so − sp or so − su gauge algebras. We also show that LSTs
do not have these types of 2-groups (formed from discrete 1-form symmetries and continuous
flavor groups), though unlike 6d SCFTs they instead do have continuous 2-groups. In our
analysis it is crucial to determine the global form of the flavor symmetry group F of the 6d
theory. This is part of our analysis and can be extracted from the computation of E and its
projection Z onto the center of the flavor symmetry ZF . We also discussed that in the case of
abelian flavor symmetry factors there can be ABJ anomalies that break these symmetries to
discrete subgroups.

Global symmetries can have ’t Hooft anomalies and we identified two such anomalies in
6d: one is the standard “dual” mixed anomaly for a 2-group, in this case between the 0-form
and 3-form symmetry (which is the symmetry obtained after gauging the 1-form symmetry
that participates in the 2-group). The other ’t Hooft anomaly is a mixed anomaly between the
0-form and 1-form symmetry, which is similar to known anomalies in 4d and 5d.

Clearly, the study of generalized symmetries, and in particular higher-group and categori-
cal symmetries are at a starting point. It would be exciting to explore the physical implications
of higher-groups, similar to the relevance of higher-form symmetries (e.g. for confinement).
The higher-groups can have ’t Hooft anomalies, in addition to the anomalies we have discussed
here. It would be interesting to derive these from first principles from the F-theory geometric
realization, and to explore their potential implications for the UV fixed points.
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A Mathematica Code for 2-Groups: TwoGroupCalculator.nb

We also provide a supplementary notebook TwoGroupCalculator.nb. With this at hand the
reader can interrogate examples of their own. Specifically, given the gauge and flavour centers
and hyper/string charges, the notebook allows its user to calculate the 1-form symmetry Γ (1),
E , and Z. Furthermore it calculates the mappings that define the sequence

0→ Γ (1)→ E → Z → 0 . (A.1)
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Take, for example, a type 5 quiver:

[u(2)]

su(12)
2

so(22)
2

[sp(2)] . (A.2)

The required input for the code is a list of gauge centers (Z12 ×Z4)

{12, 4} , (A.3)

and flavour centers (Z2 ×Z2)
{2,2} , (A.4)

and matter charges as as list of associations

{< |1→ 1, 3→ 1|>,< |1→ 1,2→ 2|>,< |2→ 2,4→ 1|>} . (A.5)

with the notation < |nodei → charge j|> representing the charge of a given hyper under node
i, where i is a numerical label for each node. E.g. < |1 → 1,3 → 1| > means that the first
hyper has charge 1 under node 1 (su(12)) and charge 1 under node 3 (u(2)).

Included in the notebook is an explicit example for each type of 6d quiver, as well as
detailed worked examples to explain how to calculate desired attributes of any quiver.

B Detailed Quiver Example

In this appendix we will discuss in depth the 2-group for the 6d SCFT with tensor branch

[sp(N − 5)] so(4N)
4

sp(3N−3)
1

so(4N+2)
4 [sp(N − 3)]

so(4N+2)
4

[sp(N − 3)]

, (B.1)

with simply-connected gauge and flavour symmetry groups

G = Spin(4N)× Spin(4N + 2)2 × Sp(3N − 3) ,

F = Sp(N − 3)2 × Sp(N − 5) .
(B.2)

A local consistency condition is that the flavours attached to the sp(3N − 3) node are soaked
up by the surrounding nodes

2(3N − 3) + 8=
1
2
(4N + 2+ 4N + 2+ 4N) . (B.3)

We can write the matter content in terms of representations of
(so(4N), sp(3N − 3), so(4N + 2), so(4N + 2)) as

(N − 5)(F , 1, 1, 1)⊕
1
2
(F , F , 1, 1)⊕

1
2
(1, F , F , 1)⊕

1
2
(1, F , 1, F)

⊕ (N − 3)(1, 1,1, F)⊕ (N − 3)(1, 1, F , 1) ,
(B.4)
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The hypermultiplet content described above can also be written in terms of charges under the
center symmetries (table 3).

ZG = (Z2 ×Z2)×Z4 ×Z2 ×Z4 ,

ZF = Z2 ×Z2 ×Z2 .
(B.5)

Here we employ notation (a, b, c) to represent the charges under the flavour symmetries run-
ning anti-clockwise around the Sp flavour nodes starting from the bottom left. We must also be

Table 3: Matter content in terms of ZG × ZF charges.

Hypermultiplet ZG charge ZF charge

(F , 1, 1, 1) ((1 mod 2,1 mod 2),0,0,0) (1 mod 2,0,0)
1
2(F , F , 1, 1) ((1 mod 2,1 mod 2),1 mod 2,0,0) (0,0,0)
1
2(1, F , F , 1) ((0,0),1 mod 2,2 mod 4,0) (0,0,0)
1
2(1, F , 1, F) ((0,0),1 mod 2,0,2 mod 4) (0,0,0)
(1, 1,1, F) ((0,0),0,0,2 mod 4) (0,1 mod 2,0)
(1, 1, F , 1) ((0,0),0,2 mod 4,0) (0,0,1 mod 2)

careful about charged strings. In this case, the string charges under Spin(4N)×Spin(4N +2)2

gauge centers are given in table 4 .

Table 4: String content in terms of ZG × ZF charges.

Charged Strings ZG charge ZF charge

String 1 ((1 mod 2, 0 mod 2),0,1 mod 4, 1 mod 4) (0,0,0)

String 2 ((1 mod 2, 0 mod 2),0,3 mod 4, 3 mod 4) (0,0,0)

String 3 ((0 mod 2, 1 mod 2),0,1 mod 4, 3 mod 4) (0,0,0)

String 4 ((0 mod 2, 1 mod 2),0,3 mod 4, 1 mod 4) (0,0,0)

With this in place we can ask: what is the maximal subgroup of ZG × ZF that leaves these
charged states invariant? Neglecting the flavour charges, this calculation would give us the 1-
form symmetry of the theory (the subgroup of the gauge centers acting trivially on the matter
and strings). Including them, we obtain E required for the definition of the structure group.

Calculating the 1-form symmetry

The task is now, in principle, simple. Take, for example, the generator of one of the Z4 gauge
centers

〈(0, 0), 0,
1
4

,0〉 . (B.6)

We can see that this is immediately reduced to a Z2 subgroup by the matter (1,1, F , 1)

〈(0, 0), 0,
1
4

, 0〉 · ((0,0), 0, 2 mod 4, 0) 6= 0 mod Z . (B.7)

Notice that the matter can also reduce to a mixed subgroup of two gauge factors. For example,
the matter 1

2(1, F , F , 1) reduces a combined Z2 ×Z4 to a diagonal Z2 subgroup

〈(0, 0),
1
2

,
1
4

,0〉 · ((0,0), 1, 2 mod 4,0) 6= 0 mod Z .

→ 〈(0, 0),
1
2

,
2
4

,0〉 · ((0,0), 1, 2 mod 4,0) = 0 mod Z .
(B.8)
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Playing this game throughout, we obtain the 1-form symmetry group Γ (1) = Z2 × Z2 and its
generators

γ1 = 〈(
1
2

,
1
2
), 0,

2
4

,0〉 , γ2 = 〈(
1
2

,
1
2
), 0, 0,

2
4
〉 . (B.9)

Calculating E and the embedding of Γ (1)

In this example we can identify

Γ (1) = Z2 ×Z2 , E = Z2 ×Z4 . (B.10)

The non-trivial question is: how is Γ (1) embedded in E? We can use the explicit charge presen-
tation to determine that a diagonal Z2 combination of the Γ (1) generators is enhanced inside
the Z4. The generator of the Z4 ⊂ E is (under ZG × ZF )

α= 〈(
1
2

,0),
1
2

,
1
4

,
1
4
|
1
2

,
1
2

,
1
2
〉 . (B.11)

We notice that α2|G = γ1 · γ2: explicit confirmation that a diagonal (in our chosen basis of
generators) Z2 is enhanced.

C Chern Classes, Characters, and Integrality

Let us recall some basic identities about Chern classes. The Chern forms for a complex vector
bundle are defined by the following expansion,

∑

j

c j(V )t
j =Idρ t + itrρ(F)−

1
2

�

trρ(F
2)− trρ(F)

2
�

t2

+ i
1
6

�

−2trρ(F
2)3 + 3trρ(F

2)trρ(F)− trρ(F)
6
�

t3 + . . . ,

(C.1)

where dρ is the dimension of the representation. The Chern character for a vector bundle
given by a representation of a Lie algebra ρ(g) is instead defined as,

ch(V ) = trρ (exp(iF)) = 1+ itrρ(F)t −
trρ(F2)

2
+ i

trρ(F2)3

6
. . .

= dρ + c1(V ) +
1
2

�

c1(V )
2 − 2c2(V )

�

+
1
6

�

3c2(V )− 3c1(V )c2(V ) + c1(V )
3
�

+ . . . .
(C.2)

For the abelian vector bundle we have,

ch(U(1)q) = 1+ qc1(V ) +
q2c1(V )2

2
+

q3c1(V )3

6
+ . . . . (C.3)

If we have W = V ⊗ U where these are all vector bundles, we can decompose the curvatures
and Chern classes using the following formula,

ch(W ) = ch(V )ch(U) . (C.4)

In particular let us decompose the vector bundle where the fundamental representation of u(N)
acts, and with an abuse of notation like in (C.3), we will look at each term in the expansion
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of the following formula ch(u(N)) = ch(su(N))ch(u(1)). By using (C.2) and (C.3), with q = 1
and dρ = N we obtain

c1(u(N)) = Nc1(u(1)) ,

c2(u(N)) = c2(su(N)) +
N(N − 1)

2
c1(u(1))

2 ,

c3(u(N)) = c3(su(N)) + (N − 2)c2(su(N))c1(u(1)) +
N(N − 1)(N − 2)

6
c1(u(1))

3 .

(C.5)

We would like to discuss the integrality of the curvature and Chern classes when integrated
on a 6-manifold with an almost complex structure or submanifold thereof. In particular, a
very important formula which is a corollary of the Atiyah-Singer theorem is that the index of
a vector bundle reads

Ind(V ) =
∑

p

(−1)php(M6, V ) =

∫

M6

ch(V )td(M6)|6 ∈ Z , (C.6)

where hp indicates the dimension of various integral cohomologies, and the Todd class is de-
fined as follows

td(M6) = 1+
1
2

c1 +
1
12
(c2

1 + c2) +
c1c2

24
+ . . . , (C.7)

where when there is no argument for the Chern classes we mean the one of the manifold
under inspection. For the vector bundle where the fundamental representation of su(N) acts,
we have that

Ind(Vfund(su(N))) =
c3(su(N))

2
+

1
2

c1c2(su(N)) +
c1c2

24
. (C.8)

In addition on a manifold with an almost complex structure (or equivalently with a spinc

structure) we have that
∫

Σ
c1 = 2genus(Σ)− 2 ∈ 2Z and c1c2 ∈ 24Z, [93]. This together with

the integrality of the index implies that c3(su(N)) ∈ 2Z.
We can use this to prove also that c3(u(2n)) ∈ 2Z. Specializing the third equation of (C.5)

to N = 2n we get,

c3(u(2n)) = c3(su(2n)) + 2(n− 1)c2(su(2n))c1(u(1)) +
2n(2n− 1)(2n− 2)

6
c1(u(1))

3 , (C.9)

where all the terms on the right hand side are in 2Z.
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