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Abstract

We consider compactifications of massive IIA supergravity on a six-sphere. This setup
is known to give rise to non-supersymmetric AdS4 vacua preserving SO(7) as well as
G2 residual symmetry. Both solutions have a round S6 metric and are supported by
the Romans’ mass and internal F6 flux. While the SO(7) invariant vacuum is known to
be perturbatively unstable, the G2 invariant one has been found to have a fully stable
Kaluza-Klein spectrum. Moreover, it has been shown to be protected against brane-jet
instabilities. Motivated by these results, we study possible bubbling solutions connected
to the G2 vacuum, representing non-perturbative instabilities of the latter. We indeed
find an instability channel represented by the nucleation of a bubble of nothing dressed
up with a homogeneous D2 brane charge distribution in the internal space. Our solu-
tion generalizes to the case where S6 is replaced by any six-dimensional nearly-Kähler
manifold.
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1 Introduction

The microscopic interpretation in string theory of classical gravitational solutions without super-
symmetry is one of the main challenges in high-energy physics. From a top-down perspective,
the need for a thorough understanding of the possible supersymmetry breaking mechanisms
has been manifest since the very early days of superstring theory, motivated by the demand of
constructing phenomenologically realistic models. More recently, the Swampland program [1]
has emphasized the importance of taking a bottom-up approach and asking what subset of
all possible candidate low-energy effective theories of gravity admit an ultraviolet completion.
The vast research done within this program (see [2] for a review) has provided evidence that
effective theories of quantum gravity satisfy highly non-trivial constraints systematized into a
set of interconnected Swampland conjectures. This radically questioned the reliability of many
existing non-supersymmetric realizations as consistent solutions in quantum gravity.

While supersymmetric solutions are at least in part protected against quantum corrections
and enjoy positive-energy theorems as well as no-force conditions ensuring their stability, the
situation for non-supersymmetric solutions is much more delicate, as generically they are
subject to all possible sources of instabilities. For Anti de Sitter (AdS) solutions a sharp claim
has been made in [3, 4], where it has been conjectured that all such non-supersymmetric
solutions supported by flux should be unstable. This was motivated by the well-established
Weak Gravity Conjecture [5] and related results such as [6], leading to the expectation that
regardless of the perturbative stability of the solution, a non-perturbative decay channel should
always be provided by spontaneous nucleation of membranes discharging the flux that supports
the vacuum.

The study of quantum instabilities of metastable spacetimes has a rich history even before
and independently of string theory. We mention three among the most relevant examples: the
Coleman-de Luccia tunneling [7], the Brown-Teitelboim mechanism [8] and the nucleation
of bubbles of nothing [9]. Even though the aforementioned decays can be considered as
prototypical descriptions of instabilities of string vacua, their explicit construction in concrete
stringy setups represents an extremely complicated challenge, both for technical complications
in solving the field equations and for the lack of a solid interpretation of the instanton geome-
tries in terms of physical objects in the string spectrum. Recent studies of non-perturbative
instabilities of concrete AdS solutions to higher-dimensional supergravity can be found e.g.
in [10–13].

In this work, we take a step in this direction by studying the quantum decay of a non-
supersymmetric AdS4 vacuum in a concrete compactification of massive IIA string theory on a
six-sphere and other nearly-Kähler geometries, originally found in [14] and further studied
in [15–17]. The key feature of our analysis is the implementation of a vacuum decay, embedded
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in string theory, via expanding D-branes going through a bubble of nothing regime.
Apart from the seminal paper [9] where bubbles of nothing within the 5d Kaluza-Klein (KK)

vacuum were firstly introduced, there are only few examples in the string theory literature
regarding this particular decay process. A general obstruction for standard bubble of nothing
solutions exists for AdS vacua supported by a Freund-Rubin flux (i.e., a flux filling AdS, or
equivalently the full internal manifold) [18]. In [19] some solutions describing bubbles of
nothing in AdS5 were constructed from non-extremal black holes through double analytic
continuation and then studied using holography. A class of analytic bubble geometries within
AdS spacetimes was worked out in [20], but only in the context of gravity plus Λ. Two important
recent works are those of [21], where such an instanton geometry was constructed within
AdS5 vacua of M-theory (with no Freund-Rubin flux) and [22], where bubbles of nothing were
obtained in an Einstein dilaton Gauss-Bonnet model coming from heterotic compactifications.

A particularly interesting scenario is provided in [23], where the decay of AdS5 × S5/Zk
vacua of Type IIB is studied. The key idea of this work is to describe the decay process through
different classical phases properly linked by dynamical junction conditions. The bubble regime
turns out to be the (discharged) bounce geometry interpolating between the AdS vacuum and
a phase dominated by a stack of smeared spherical D3 branes that source the whole flux filling
the vacuum. It may be worth pointing out that this construction is deeply different from the
ones in [21] and [22]. Indeed, in [23], due to the presence of flux, there is no internal cycle in
the geometry shrinking all the way to zero size. As a consequence, the appropriate physical
interpretation of this decay process is in line with [3], in the sense that it involves the nucleation
of spherical D3 branes that start expanding and eventually devour the complete vacuum.

When it comes to investigating the aforementioned mechanism, a similarly challenging
setup turns out to be that of AdS4 × S6 vacua in massive IIA string theory. In the present
work, we adopt the philosophy of [23] to tackle the issue of their possible non-perturbative
instabilities. It is well-known that the compactification of massive IIA over a six-sphere yields
non-supersymmetric vacua preserving SO(7) [24] as well as G2 symmetry [14–17], in addition
to a G2 invariant supersymmetric vacuum [25]. While in [16] the perturbative instability of
the SO(7) invariant vacuum was proven, the G2 invariant one turned out to be tachyon free in
four-dimensional supergravity. Recently, the latter was also shown to possess a tachyon-free KK
spectrum [26] and to be protected [27] from the brane-jet decays that afflict other vacua with
stable KK spectrum [11]. These results motivated our interest in the study of non-perturbative
decay channels for this vacuum.

In analogy with the case in [23], the analyzed vacuum is supported by Freund-Rubin flux.
As a consequence, the type of bubbling geometry we look for needs to be dressed up by a
source and, therefore, will not involve any part of the internal geometry shrinking all the way to
zero size. Our main result consists of a fully back-reacted solution in massive IIA supergravity
describing the geometry of non-perturbative decay of the G2 invariant AdS4 vacuum. This
solution, worked out numerically, interpolates between the vacuum and a smeared D2 brane
singularity. The presence of a dS3 slicing turns out to play a crucial role throughout the whole
radial flow. In particular, in the source regime dS3 is filled by the D2 branes, in an intermediate
(approximately neutral) regime it represents the actual expanding bubble, and finally, in the
asymptotic region it determines a dS3 slicing of AdS4, which crucially dictates the relevant
boundary conditions to choose.

An interesting way to study this solution is by looking at the various energy contributions
along the spacetime flow. This study manifests the existence of the intermediate regime
interpolating between the AdS4 vacuum and the D2 sources, where the contributions of the
Romans’ mass, the fluxes, and the internal curvature are sub-dominant with respect to the one
coming from the curvature of the bubble. This bubble, though, will turn out to share some
properties with a traditional bubble of nothing but it also exhibits some crucial differences.
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In particular, seen from the viewpoint of a 4d observer living in the vacuum, the bubble is
spontaneously created at finite radius and expands, just as a KK bubble would do. Similarly,
at the would-be initial location of the bubble a 4d modulus shrinks to zero size. However, in
contrast with all existing cases in the literature of bubbles of nothing, such a modulus does not
correspond to the physical size of any cycle in the geometry, but rather to the string coupling.
Moreover, when at short distances the D2 brane regime kicks in, the profile taken by this
shrinking modulus is the one required by D2 branes extending along dS3 and smeared over the
six-dimensional internal manifold.

The non-supersymmetric G2 invariant AdS4 vacuum of massive IIA on S6, as well as the
bubbling solution constructed in this paper, admit a straightforward generalization to the case
where the six-sphere is replaced by any other six-dimensional nearly-Kähler manifold. Although
perturbative stability remains an open question for these other vacuum solutions as their full KK
spectrum has not been worked out so far, our analysis indicates that they are non-perturbatively
unstable.

Plan of the paper: In Section 2 we introduce the reader to a non-technical overview of our
results, by shedding light on the physical novelties introduced by the bubbles presented in
this paper. In Section 3 we enter the main body of the paper by introducing the relevant
ten-dimensional setup and show how all solutions of this type can be obtained from a lower-
dimensional supergravity point of view. After formulating the ansatz, we introduce and discuss
the relevant AdS4 solutions. Next, we start our quest for instabilities. In Section 4 we discuss
the choice of boundary conditions, present a numerical solution describing a bounce geometry,
and analyze its different regimes. In Section 5 we conclude by discussing some relevant
issues concerning our physical interpretation and possible generalizations of our work. In the
appendices we collect our conventions together with additional technical details.

2 Our results in a nutshell

Starting from the seminal work of [9], bubbles of nothing (BoN) arise in the context of KK
compactifications of (d+1)-dimensional gravitational theories as asymptotically flat and smooth
instantons, obtained as the Euclidean continuation of the Schwarzschild black hole. In these
solutions, a circle in the compact geometry collapses to zero size at the location of the bubble
wall, while a (d − 1)-dimensional sphere maintains a finite radius. One then turns back to
Lorentzian signature by Wick rotating the sphere to de Sitter (dS) space. From the perspective
of a lower-dimensional observer, this kind of geometry manifests itself as the nucleation of a
BoN with finite radius, which starts expanding and eventually consumes the vacuum. According
to such an observer the size of the aforementioned circle is nothing but a shrinking modulus.
In this context, it appears to be very natural to try and construct lower-dimensional bubbles
where the shrinking modulus is not per se associated with a circle in the geometry.

A special realization of this mechanism can be found within type IIA supergravity. For the
sake of our present purpose, we will restrict to effectively 4d bubbles obtained by reductions
on a suitable six-manifold M6. Let us start from the associated 11d picture. In this case, the
reduction over M6 yields an effective 5d gravity description. If M6 is Ricci-flat, a Schw5×M6
geometry is a valid solution. Its metric reads

ds2
11 = −H dτ2 +

dρ2

H
+ ρ2ds2

S3 + ds2
M6

, (2.1)

where

H ≡ 1−
�

R
ρ

�2

, (2.2)
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R being the Schwarzschild radius. To obtain the bubble solution of interest we can now perform
a double analytic continuation by simultaneously setting

τ → iψ , S3 → dS3 , (2.3)

where ψ is now a periodic coordinate. Reducing on S1
ψ

we end up in the following type IIA
background (in string frame)

ds2
10 = H−1/2dρ2 + ρ2H1/2ds2

dS3
+ H1/2ds2

M6
,

eΦ = H3/4 .
(2.4)

To ensure reality of the fields the range of the radial coordinate has to be restricted to
ρ ∈ [R,+∞). Seen from a ten-dimensional perspective, this looks like a BoN where in-
stead of a physical cycle within the geometry, it is the string coupling eΦ that shrinks. Since in
this paper we will focus on massive type IIA supergravity backgrounds, it is perhaps more ap-
propriate to abandon this eleven-dimensional description in favor of the purely ten-dimensional
one. Once in ten dimensions, we should however start by investigating the uniqueness of
backgrounds of the form (2.4). In fact, a whole one-parameter family of this sort turns out to
exist. Its explicit form reads

ds2
10 = Hγdρ2 + ρ2Hαds2

dS3
+ Hβds2

M6
,

eΦ = Hδ ,
(2.5)

where the equations of motion fix

β =

√

√1+ 2α− 2α2

6
, γ= α− 1 , δ =

2α− 1+
p

6(1+ 2α− 2α2)
4

. (2.6)

Within this family, the BoN geometry originating from the double analytic continuation and the
subsequent reduction of the Schwarzschild solution corresponds to α= 1

2 .
Taking a closer look at the physical properties of the solution, the case α = 1

2 is singled
out as the only choice such that α = β and the geometry admits a frame in which both dS3
and M6 have a finite size at ρ = R.1 This frame is obtained by multiplying the metric in (2.5)
by e−

2
3Φ and corresponds to both the eleven and four-dimensional Einstein frame. In other

words, an observer living in the 4d vacuum experiences a BoN with finite radius R which is
suddenly created at the center of space and immediately starts to expand, eventually consuming
the complete vacuum. A conceptual picture of this situation is depicted in Figure 1. On the
other hand, from the ten-dimensional perspective this bubble has a different origin than the
traditional BoN solutions, as in our case the string coupling rather than an internal cycle
shrinks to zero size. However, as far as the four-dimensional observer is concerned the resulting
effective description is identical, thus unifying KK and string coupling instabilities.

The scope of this paper is to investigate the non-perturbative (in)stability of certain AdS4
vacua obtained from compactifying massive IIA supergravity on a nearly-Kähler manifold M6.
The main result is the existence of a complete charged bubble membrane that expands and eats
up the analyzed vacuum. The above dilaton bubble solution will be a fundamental building
block in the whole construction. Nevertheless, in the situation at hand such a bubble will
only be a good approximate description in an intermediate regime. This will be due to the
fact that several extra ingredients necessary to construct the vacuum crucially imply some

1By “choice of frame” we mean here a Weyl transformation where the Weyl factor is given by a chosen power
of eΦ. The condition α= β is also achieved by taking α= −1/4, however in this case the dilaton is constant (as
δ = 0) and there is no frame such that dS3 and M6 have a finite size at ρ = R.
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Figure 1: An artistic impression of a "dilaton bubble". According to a 4d observer in
its Einstein frame, a BoN is created at finite radius R and starts expanding out towards
infinity. At the bubble wall the string coupling shrinks to zero, while the overall size
of the internal manifold stays stable.

Figure 2: A conceptual picture of the radial evolution of the bubble geometry. The
"dilaton bubble" is a good intermediate description. In the large distance limit it
connects to the vacuum phase. Moreover, the bubble regime cannot persist indefinitely
at small distances and it ultimately flows to a (smeared) D2 brane source.

new emergent features. In particular, the presence of AdS4 in the asymptotic region requires
a modified large distance behavior, while on the other hand, a non-zero Freund-Rubin flux
determines a modified short distance behavior induced by the presence of smeared D2 brane
sources. Finally, two extra complications are represented by a non-zero Romans’ mass as well
as by the departure of M6 from Ricci-flatness.2 However, although they are both crucial for the
very existence of the asymptotic vacuum, in the intermediate regime these ingredients will turn
out to only yield subleading modifications of the bubble geometry. An intuitive representation
of the different phases of the resulting geometry is given in Figure 2.

3 The supergravity setup

We are interested in solutions of massive type IIA supergravity representing bounce geometries
which asymptotically approach AdS4 ×M6, where M6 is S6, or more generally a compact

2Indeed, starting from the next section, M6 will be firstly taken to be a generic nearly-Kähler manifold, and
secondly further specified to a six-sphere.

6

https://scipost.org
https://scipost.org/SciPostPhys.12.3.099


SciPost Phys. 12, 099 (2022)

nearly-Kähler manifold. As in the original bubble of nothing introduced in [9], the four-
dimensional geometry should represent a domain wall solution with curved three-dimensional
de Sitter slices.

3.1 Ten-dimensional ansatz

Our aim thus consists in constructing curved domain wall geometries preserving the symmetry of
dS3 as well as the nearly-Kähler (NK) structure on M6. For the particular case where M6 = S6,
the latter statement is equivalent to declaring that we preserve the G2 symmetry acting on
S6 ' G2/SU(3). The most general ten-dimensional ansatz respecting these symmetries is given
by3

ds2
10 = e2V (r)

�

dr2 + L2e2A(r)ds2
dS3
+ g−2ds2

M6

�

,

eΦ = eφ(r) ,

B2 = g−2 b(r)J ,

F0 = m ,

F2 = F0B2 ,

F4 = f6(r) ? volM6
+ f41(r)J ∧ J + f42(r)dr ∧ ImΩ ,

(3.1)

where m , g and L are constant parameters and a prime denotes a derivative with respect to
the radial coordinate r. While m is simply the Romans mass, g provides an overall scale for
the internal manifold and will also control the internal F6 flux. The metric ds2

10 is taken in the
string frame, ds2

dS3
is the unit metric on dS3 and ds2

M6
is the NK metric on M6, normalized

such that the Ricci tensor equals 5 times the metric4. Note that the function multiplying dr2 is
a gauge choice: we have chosen to take it proportional to the conformal factor of the NK metric
on M6 as this will be the natural choice to describe the space transverse to D2 brane sources.
The forms J and Ω are respectively a real two-form and complex three-form defining the NK
structure on M6 (for more details see Appendix B). Denoting by voldS3

and volM6
= 1

6 J ∧ J ∧ J
the volume forms on dS3 and M6, respectively, our ten-dimensional volume form reads

vol10 = L3 g−6e3A+10V voldS3
∧ dr ∧ volM6

, (3.2)

which also fixes the orientation. The NS-NS field strength is given by

H3 = dB2 = g−2 b′ dr ∧ J + 3 g−2 b ReΩ . (3.3)

The dual R-R field strengths are given by

F6 = ?F4 = − f6 volM6
+ 2L3 g2 f41 e3A+2V voldS3

∧ dr ∧ J − L3 f42 e3A+2V voldS3
∧ReΩ ,

F8 = − ? F2 = −
mbL3

2g4
e3A+6V voldS3

∧ dr ∧ J ∧ J , (3.4)

F10 = ?F0 = m vol10 .

3In principle one could contemplate adding a term of the form 1
2g3 dξ(r)∧ReΩ to F4 and a corresponding term

to F6. Such a term is consistent with the Bianchi identity for F4, however the Bianchi identity for F6 forces dξ= 0.
Hence, this term is pure gauge and does not appear in the field strengths.

4When M6 = S6, ds2
M6

is the unit metric on the round sphere. A convenient way to parameterize the metric on
dS3 is

ds2
dS3
= −dt2 + cosh2 t (dθ 2 + sin2 θdφ2) .

This makes the Wick rotation to S3 straightforward, which will be useful for our purposes.
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In order to satisfy the Bianchi identity dF4 = H3 ∧ F2 we have to impose

f6 = −
1
g2

�

mb3 + 6g bζ+ 5g
�

,

f41 =
1

2g4

�

mb2 + 2gζ
�

, (3.5)

f42 =
1

2g3
ζ′ ,

while the Bianchi identity for F6 — that is, the F4 equation of motion — gives a second-order
equation for ζ,

ζ′′ +
�

3A′ + 2V ′
�

ζ′ − 6g
�

(mb2 + 2gζ) + e−4V b(5g +mb3 + 6g bζ)
�

= 0 . (3.6)

The equations for the other R-R fields are solved automatically by imposing this ansatz. Addi-
tionally, one can straightforwardly evaluate the equations of motion for the NS-NS fields on our
ansatz. However, in order to present our final system of equations in a compact elegant way, it
is more convenient to exploit a consistent truncation to four dimensions, as we describe next.

3.2 Effective action

The ansatz described above is contained in a consistent truncation of massive IIA supergravity
on any NK manifold M6 [15, 28].5 The result of this truncation yields a four-dimensional
N = 2 supergravity coupled to one vector multiplet and one hypermultiplet, with an Abelian,
dyonic gauging of certain hyperscalar isometries. The bosonic fields in the four-dimensional
theory are the metric ds2

4, five scalars (U , φ, b, ξ, ζ), two vectors a1, b1 and a two-form b2.
The gauging is controlled by the two parameters g and m. The symmetries of the solutions
we are interested in lead us to set a1 = b1 = b2 = 0 and ξ equal to an arbitrary constant,
consistently with their equations of motion.6 The action for this subtruncation is given by

S4 =
1

2κ2
4

∫

M4

vol4

�

R− 24(∂ U)2 −
1
2
(∂ φ)2 −

3
2

e−φ−4U(∂ b)2 −
1
2

e
φ
2 −6U(∂ ζ)2 −V

�

+
1

κ2
4

∫

∂M4

vol∂M4
K ,

(3.7)

where the scalar potential V is given by

V = 1
2

e−
φ
2 −18U(5g+mb3 + 6g bζ )2 +

3
2

e
φ
2 −14U(mb2 + 2gζ )2

− 30g2e−8U + 18g2e−φ−12U b2 +
3
2

m2e
3
2φ−10U b2 +

1
2

m2e
5
2φ−6U .

(3.8)

The boundary term is the Gibbons-Hawking-York term ensuring a good variational problem for
the four-dimensional metric in an asymptotically locally AdS spacetime. Here vol∂M4

and K
are the volume form and the trace of the extrinsic curvature on the conformal boundary ∂M4.

The variables appearing here match our ten-dimensional ansatz (3.1), (3.5) upon giving just
a radial dependence to all scalar fields, identifying the conformal factor V of the ten-dimensional
metric as

V = U +
φ

4
, (3.9)

5We will use the notation of [17, sec. 4.2], except for the scalar ξ̃, which we denote here by ζ.
6The value of the constant does not matter since ξ only enters the Lagrangian through its derivative.
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and choosing the four-dimensional metric as

ds2
4 = e8U(r)

�

dr2 + L2 e2A(r) ds2
dS3

�

, (3.10)

where again ds2
dS3

is the unit metric on dS3. The four-dimensional Ricci scalar then reads

R = 6 e−8U
�

1
L2

e−2A− 2 (A′ + 2U ′)(A′ + 4U ′)− A′′ − 4U ′′
�

, (3.11)

the trace of the extrinsic curvature is

K = 3 e−4U
�

A′ + 4U ′
�

, (3.12)

while the 4d volume form is given by

vol4 = L3 e3A+16U voldS3
∧ dr . (3.13)

Plugging this in (3.7), we arrive at the one-dimensional effective action

S1 =
L3V3

2κ2
4

∫

dr
�

e3A+8U
�

6(A′ + 4U ′)2 − 24(U ′)2 −
1
2
(φ′)2 −

3
2

e−φ−4U(b′)2 −
1
2

e
φ
2 −6U(ζ′)2

�

−e3A+16UV + 6
L2

eA+8U
�

, (3.14)

where V3 =
∫

vol3 is the volume of the three-dimensional geometry.7 As usual when considering
a domain-wall ansatz like (3.10), the second-order equations generated by varying the one-
dimensional action should be supplemented with a constraint, coming from the r r component
of the Einstein equation. This gives a first-integral of the second-order equations, that has
the physical meaning of setting to zero the radial Hamiltonian of the system. In our case this
Hamiltonian constraint reads

e3A+8U
�

6(A′ + 4U ′)2 − 24(U ′)2 −
1
2
(φ′)2 −

3
2

e−φ−4U(b′)2 −
1
2

e
φ
2 −6U(ζ′)2

�

+ e3A+16UV − 6
L2

eA+8U = 0 .
(3.15)

We have checked that the equations of motion generated by the action (3.14) together with
the first integral (3.15), are equivalent to the equations obtained by plugging (3.1), (3.5) into
the massive IIA supergravity equations.

In the following we will continue our analysis by choosing the values of the parameters as

m= 1 , g = 1/2 . (3.16)

With this choice we do not lose any generality since, as shown in Appendix C, any other choice
of the parameters can easily be related to the one above by suitable rescalings.

3.3 The set of AdS4 vacua

The model above contains AdS4 vacuum solutions, which uplift to AdS4 ×M6 solutions of
massive IIA supergravity. These are obtained by requiring that the scalar potential is extremized
and setting the dS3 warp factor to8

eA = e−4U0 sinh
� r

e−4U0 L

�

. (3.17)

7Of course V3 is divergent as de Sitter space is non-compact. In order to give it a finite value we can analytically
continue dS3 to S3 and use

∫

S3 volS3 = 2π2.
8We denote by a subscript “0” the scalar vev’s at the extrema.
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Table 1: The values of the scalars and AdS4 length at the critical points of the potential.
Gres denotes the residual symmetry of the ten-dimensional solution for the case where
M6 = S6.

SUSY Gres e2φ0 e8U0 ζ0 b0 L2

N = 0 SO(7) 55/6

25/3
21/3

51/6 0 0 210/3

57/6

N = 0 G2

p
3

2
3
p

3
8 −1 1

2
3
p

3
4

N = 1 G2

p
15
4

15
p

15
64

1
2 −1

4
25
p

15
64

In this way the 4d metric (3.10) describes an AdS4 space foliated by dS3 leaves, with character-
istic length L and cosmological constant Λ = 1

2V = −
3
L2 . One finds three such extrema [15]

for which the values of the scalars and the AdS length are reported in Table 1. One vacuum
preserves N = 1 supersymmetry while the remaining two are non-supersymmetric.9

For the sake of understanding the correct perturbative regime in which the supergravity
solution is reliable, it is convenient to reinstate for a moment the parameters m and g. By
doing so, we have that eφ ∼ ( g

m)
5/6 and eU/g ∼ m1/24

g25/24 for the string coupling constant and the
internal length scale (see Appendix C). We can trust the 10d supergravity regime when the
former is small and the latter is large. This is achieved by taking m � g and, for instance,
g =O(1). Although for the sake of a cleaner presentation we work with the O(1) choice (3.16),
the choice ensuring validity of the supergravity regime can be straightforwardly related to this
one via the rescalings discussed in Appendix C.

All three vacua presented above are perturbatively stable against fluctuations of the scalars
in the action (3.7) [15]. Of course, this represents a very limited sector of all KK modes of
massive IIA supergravity. Studying the full KK spectrum is in general extremely complicated,
however some interesting results have been obtained by focusing on the case where the
internal space is a sphere, M6 = S6. For the SO(7) vacuum one can quickly confirm the
expectation that a non-supersymmetric vacuum is unstable as this solution is already unstable
against perturbations within the consistent truncation leading to four-dimensional maximal
ISO(7) supergravity [17]. The non-supersymmetric G2 invariant vacuum on the other hand is
perturbatively stable against all 70 independent scalar fluctuations in the ISO(7) theory and
moreover it has recently been shown to remain perturbatively stable even when one considers
the full KK spectrum of massive type IIA supergravity [26]. In addition, this vacuum can be
shown [27] to be stable against possible brane-jet decays of the type discussed in [11]. This
therefore leaves us with the question whether this solution is ultimately stable and violates the
AdS Swampland conjecture or if there exists another non-perturbative decay channel. In the
remainder of this paper we will deal with this question and construct a solution that deforms
the G2 invariant AdS4 vacuum, as well as the similar vacua obtained by replacing S6 with a
nearly-Kähler M6, while obeying the same asymptotic boundary conditions.

4 The decay channel: explicit solutions

We start our search for a bounce geometry illustrating the non-perturbative decay of the
perturbatively stable AdS4 vacuum with residual G2 symmetry, which we introduced above.
Since the asymptotic AdS4 solution does not preserve supersymmetry, there is little hope to find

9From a 10d perspective, the first non-supersymmetric vacuum in Table 1 was constructed within massive type
IIA supergravity in [24], the second was first obtained in [14], while the supersymmetric one was first found in [25].
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an analytic expression for the bounce geometry. However, we can still solve the equations of
motion by resorting to numerical methods. It may be worth noticing that a successful numerical
integration necessarily goes through the problem of understanding how to assign suitable
boundary conditions. Once an explicit example of such a numerical flow is given, its physical
features turn out to crucially depend on its boundary behavior at the end of the radial flow.
Namely, if e.g. the 10d geometry is smoothly capped off, what we have is a standard BoN, while
the case of a singularity might signal the presence of a source.

When first considering the existence of a KK bubble where the internal space M6 shrinks
to zero size as a potential instability, a simple scaling argument analogous to [18] shows its
inconsistency. This is due to the presence of a Freund-Rubin type flux on S6, which induces
divergent terms in the field equations in the limit where internal space shrinks. Hence, we must
include a source at small distances in order to modify the inconsistency in the field equations.
We point out that this fact is compatible with a more general topological argument. In fact
smooth bubble geometries can be represented as the warped product of dS3 with a 7d manifold
M7 such that ∂M7 =M6. A combination of Stokes’ theorem and Bianchi identities would
then imply the vanishing of F6 through the 6-sphere, which is obviously inconsistent with our
setup. It is again the inclusion of a source carrying the same F6 flux as the vacuum that restores
charge conservation.

This indicates that any pure bubble geometry — both of the KK type as well as the dilaton
bubble geometries introduced in this work — can only be an approximate solution in some
intermediate regime, while a source regime is expected to take over at small distances, as
already shown in Figure 2. The source in our case has to be a (smeared) D2 brane, since the
relevant flux is given by F6. For this reason, our situation is very similar to that of [23], which
we will take as a guide reference for our analysis.

4.1 Linearized boundary analysis

Our numerical approach towards constructing the bubbling solution will consist of integrating
the equations of motion starting from the conformal boundary. The initial conditions are thus
defined by specifying how the different fields are deformed away from the AdS4 vacuum in
the asymptotic near-boundary region. We can discuss this by recalling some basic features of
asymptotically AdS solutions. By a suitable change of radial coordinate z = z(r), the metric
(3.10) can be cast in the Fefferman–Graham form

ds2
4 =

L2

z2

�

dz2 + γ(z)ds2
dS3

�

, (4.1)

where γ(z) has the expansion γ(z) = γ0 + z2γ2 + z3γ3 + . . . . Note that in the new radial
coordinate the conformal boundary is found at z = 0. A scalar field Φ of mass M has a non-
normalizable and a normalizable mode; the asymptotic behavior of these modes is determined
by a positive solution ∆ to the indicial equation10

∆(∆− 3) = M2 L2 . (4.2)

Since we are interested in solutions that match the AdS4 vacuum asymptotically, we demand
that only the normalizable modes are activated. Then the asymptotic expansion of the scalar
reads

Φ(z) = Φ0 + z∆Φ1 + . . . , (4.3)

where Φ0 is the constant AdS value and the dots denote subleading terms. The initial conditions
for our numerical analysis will be specified by choosing Φ1, the rest of the solution being then
entirely fixed in terms of this.

10In a holographic context, ∆ corresponds to the conformal dimension of the dual CFT operator.
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We can compute the scalar masses by diagonalizing the mass matrix obtained from the
action (3.7). For the second vacuum in Table 1, i.e. the non-supersymmetric G2 invariant
vacuum, the mass eigenvalues are

M2 L2 = 6 , 6 , 20 , 20 , (4.4)

corresponding to

∆ =
3+
p

33
2

,
3+
p

33
2

,
3+
p

89
2

,
3+
p

89
2

. (4.5)

Note that these are pairwise equal, namely the associated eigenspaces are two-dimensional;
this will play a role in our discussion later. Using the linear transformation relating the mass
eigenstates and the scalar fluctuations over the vacuum, we find that the asymptotic behavior
of our scalar fields as z→ 0 is given by

U = U0 +
4c1 − 3c2

28
z

3+
p

33
2 + c4 z

3+
p

89
2 + . . . ,

b = b0 +
3c2 − 4c1

7
z

3+
p

33
2 +

7c3 + 36c4

12
z

3+
p

89
2 + . . . ,

φ = φ0 + c2 z
3+
p

33
2 − c3 z

3+
p

89
2 + . . . ,

ζ = ζ0 + c1 z
3+
p

33
2 + c3 z

3+
p

89
2 + . . . ,

(4.6)

where c1, c2, c3, c4 are free coefficients which completely determine the subleading terms. There
is no additional free constant in the near-boundary expansion of the metric function A. The
expression (4.6) can be transformed back to the original radial variable r by using the asymptotic
form of the transformation defining the Fefferman–Graham radial coordinate,

z = e−r/` + . . . , with `≡ e−4U0 L =
p

2 . (4.7)

As a cross-check, we have directly verified that (4.6) solve the linearized equations of motion
near the conformal boundary. We will use the asymptotic solution (4.6) as initial conditions
for our numerical analysis, after choosing a value for the free coefficients. Such a choice of
boundary conditions as input for the numerical integration then guarantees the correct AdS
asymptotics of the flow.

4.2 Different regimes for the 10d geometry

Analogous to the situation in [23], our numerical solution will turn out to interpolate among
three regimes: the asymptotic AdS regime, the intermediate bubble regime and finally the
source regime, matching the picture anticipated in Figure 2.

AdS regime: As explained above, in the numerical analysis we carefully choose the bound-
ary data at large r to only perturb our AdS4 vacuum with normalizable modes. This choice
therefore guarantees that the asymptotic solution will not be affected by the perturbation.
This is indeed reflected in our numerical analysis by the fact that for large values of the radial
coordinate we always approach the correct vacuum.

Bubble regime: In analogy with [23], our solutions exhibit an intermediate regime corre-
sponding to a bubble geometry. Such a background consists of an asymptotically flat geometry
of the form (2.4). However, in contrast with this reference, in our case the bubble is described
by a 4d dilaton bubble where the string coupling shrinks to zero size at the location of the
bubble wall. As already discussed earlier, such a bubble will not be a solution to the full
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dynamical system we are studying, but rather an approximate solution valid in a regime where
the fluxes as well as the curvature of internal space can be neglected.

Source regime: As argued before, in the presence of a Romans’ mass and flux along M6,
the bubble geometry described above is in fact inconsistent as a solution to the full system of
equations. This implies that the bubble regime cannot persist indefinitely and must be modified
at small values of the radial coordinate r to include brane sources.

In our case the appropriate object to support the bubble is given by D2 brane sources
carrying the same flux as the AdS vacuum and smeared over the entire internal space. This
geometry is described by the following massive type IIA background,

ds2
10 = H−1/2

D2 ds2
dS3
+ H1/2

D2

�

dr2 + g−2ds2
M6

�

,

eΦ = H1/4
D2 ,

C3 =
�

H−1
D2 − 1

�

voldS3
,

(4.8)

where, due to the smearing of the D2’s over M6, the explicit form of the harmonic function is
linear in r,

HD2 =QD2(r − rD2) , (4.9)

where QD2 = 5g5 gives the flux
∫

F6 =

∫

?dC3 =
QD2

g6

∫

volM6
=

5
g

∫

volM6
(4.10)

that matches the Page charge
∫

FPage
6 of the AdS4 ×M6 vacuum, while rD2 is the position of

the source, which will be fixed by the dynamics. Just as for the BoN geometry, the curved,
smeared D2 brane described in equations (4.8) is only an approximate solution valid in a
regime where the curvatures of the dS3 and M6 can be neglected. However, similar as in [29]
this background can be made into a full curved brane solution by turning on additional axionic
scalars as can be seen in the numerical solution.

It may be worth stressing that when M6 = S6 such a smeared source, contrary to its
localized counterpart, cannot be interpreted as a consistent solution within the G2 invariant
sector of ISO(7) gauged supergravity. For this reason one has to consider the NK truncation,
which describes the full set of G2 invariant fields, in order to find the instability discussed here.
Consistently with this result, in [30] a positive energy theorem for this vacuum has been proven
within the G2 invariant sector of the ISO(7) theory.

Gluing the three regimes: Having introduced the three regimes, one can see that they
can be consistently glued together. To do so it is convenient to re-express the BoN metric (2.4)
in an appropriate gauge for the radial coordinate to be compatible with the D2 brane metric in
(4.8). Namely, we make a change of coordinate ρ = ρ(r) satisfying

H1/2 = H−1/2
�

dρ
dr

�2

, (4.11)

so that the radial and M6 components of the metric (2.4) carry the same radial dependence,
as in (4.8).11 This condition is solved by

ρ2 = R2 + (r − rB)
2 , (4.12)

where rB is an integration constant representing the radial position of the BoN wall in the
solution (2.4). Summarizing, for this choice of the radial coordinate, the metric functions as

11This is also the choice we made in the metric (3.1).
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well as the dilaton are given by the following expressions in the various regimes:

Source regime Bubble regime AdS regime

eU+A+φ4 = eUSH−1/4
D2 eU+A+φ4 = eUB (r−rB)1/2

L

�

R2 + (r − rB)2
�1/4

eU+A+φ4 = 2p
3

sinh rp
2

eU+φ4 = eVSH1/4
D2 eU+φ4 = eUB (r−rB)1/2

(R2+(r−rB)2)
1/4 eU+φ4 = (3

4)
1/4

eφ = e5VSH1/4
D2 eφ = eΦB (r−rB)3/2

(R2+(r−rB)2)
3/4 eφ = (3

4)
1/4

The AdS regime is the one discussed in Sec. 3.3; the constants UB, ΦB, US and VS are inserted
in order to be more general in the matching with the bubble and source regimes and still solve
the equations of motion at leading order. The proper gluing conditions will be satisfied for the
explicit solution by a suitable choice of these constants.

4.3 Explicit numerical solutions

We are now ready to use the expressions (4.6) as initial conditions for our numerical analysis,
after choosing values for the four free coefficients. Indeed, by construction any value of
(c1, c2, c3, c4) will only activate the normalizable modes and hence retain the correct asymptotic
form. Moreover, for any generic choice of ci ’s determining a decreasing 10d dilaton, we always
flow to a smeared D2 brane singularity. However though, some special constraints must be
imposed on these parameters in order to have a correct intermediate bubble regime, thus
realizing the aforementioned gluing conditions.

Indeed, by taking a look at the form of the intermediate bubble solution expressed in the
gauge (4.11) as it appears in the above table, it becomes clear that the field combination
�

3U − φ
4

�

is constant. Hence, if we want this to match the linearized expansion coming from
the near-boundary analysis at a somewhat larger r, the following linear constraints have to be
satisfied

3c1 − 4c2
!
= 0 , c3 + 12c4

!
= 0 . (4.13)

After imposing the above constraints, the left-over freedom amounts to two normalization
parameters that will eventually fix the position of the source rD2 and the effective radius of the
bubble R.12

0.5 1.0 1.5 2.0 2.5 3.0

-2.0

-1.5

-1.0

-0.5

0.5

1.0

1.0 1.2 1.4 1.6 1.8 2.0 2.2

1.0

1.5

2.0

2.5

Figure 3: The explicit radial flow describing the instability of the non-SUSY G2 vacuum.

The eA+U+φ4 and eU+φ4 warp factors respectively control the size of dS3 and S6 in the
string frame metric (cf. (3.1), recalling that V = U + φ

4 ). These ones, together with
the remaining 10d fields are plotted as functions of r.

12Given that the initial perturbation satisfies δφ > 0, the numerical integration for any value of these remaining
free parameters will result in a qualitatively identical result.
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The explicit choice made here is

c1 = −2(3+
p

33) , c2 = −
3
2
(3+

p
33) ,

c3 =
3
2
(3+

p

89) , c4 = −
1
8
(3+

p

89) .
(4.14)

The result of this integration is given in Figure 3.
Finally, Figures 4, 5 and 6 show in more detail how the various fields in our solution

interpolate among the three different regimes that we have described above.

0.5 1.0 1.5 2.0

0.5

1.0

1.5

2.0

2.5

3.0

Figure 4: The radial profile of the warp factor eA+U+φ4 in front of dS3 in the 10d
string frame metric (blue curve). The actual flow interpolates between a source
regime (yellow curve) and the asymptotic AdS regime (red curve), going through an
intermediate bubble regime (green curve). Similar plots are represented below for
the other functions controlling the solution.
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Figure 5: The radial profile of the warp factor eU+φ4 controlling the size of S6 in the
10d string frame metric.
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Figure 6: The radial profile of the 10d dilaton eφ .

5 Discussion

In this paper we constructed numerical bounce solutions in massive type IIA supergravity and
argued that they represent a non-perturbative decay channel for its non-supersymmetric G2
invariant AdS4 × S6 vacuum solution. These instabilities also apply to related AdS4 ×M6
solutions, where M6 has a nearly-Kähler structure. Analogous to [23], these bounce solutions
describe a type of bubble instability of the vacuum. These are however not the vanilla type
BoN’s as introduced by [9], as the presence of a Freund-Rubin type F6 flux on S6 prevents such
bubbles from persisting all the way through the flow. Instead they are BoN’s dressed up with
D2 branes extending along dS3 and homogeneously distributed over S6.

Instability of the non-supersymmetric vacuum: For the above reasons, the physical
interpretation of the actual decay channel for the non-supersymmetric G2 vacuum is rather
the mechanism of spontaneous nucleation of spherical D2 bubbles, in line with an Ooguri-Vafa
instability of the type discussed in [3]. It is worth mentioning that, since the supergravity
approximation is expected to be unreliable in the neighborhood of the source, one cannot
simply evaluate the on-shell Euclidean action in order to estimate the decay rate. This is very
different than the situation of a typical semiclassical instanton geometry.

Nevertheless, a possible way of estimating this is to follow [23] and combine the Euclidean
action of the pure bubble background introduced in Section 2 with the action of N probe D2
branes placed at the location of the bubble, i.e. at ρ = R, where N has to be chosen so that it
matches the Page F6 flux of the AdS4×M6 vacuum. Both these contributions scale like R3. The
value of this parameter will eventually be determined by the parameters of the full numerical
solution.

One can also check that the patch identified by the de Sitter slicing of AdS4, which contains
our bubble solution, reaches the boundary in finite global time.

Dynamical obstruction for the supersymmetric vacuum: Numerical flow solutions simi-
lar to the one presented above are quite generic. Indeed we find that within the truncation
studied above, qualitatively similar solutions can be constructed that asymptote either to the
non-supersymmetric, perturbatively unstable SO(7) invariant vacuum, or to the supersymmetric
vacuum of [25]. The existence of such a flow asymptotic to the supersymmetric AdS vacuum
is puzzling, as these vacua are expected to be stable by virtue of positive energy arguments
(see e.g. [31]). Although we do not have a definite answer to this puzzle, we notice that the
solution analog to the one above, but asymptotic to the supersymmetric vacuum, turns out not
to have the appropriate intermediate regime that makes it naturally interpreted as a bubble. In
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order to see this, one can start by looking at the asymptotic behavior of the solution, namely
at the linearized expansion around the supersymmetric vacuum. The mass eigenstates here
are not organized pairwise, and as a consequence, the eigenspaces of linearized normalizable
modes are all one-dimensional. Hence, trying to impose gluing conditions such that

�

3U − φ
4

�

is constant will completely fix the coefficients as c1 = c2 = c3 = c4 = 0 (instead of giving
(4.13)), which just corresponds to empty AdS4. On the other hand, without such constraints
one obtains solutions displaying an intermediate regime that is still well approximated by (2.5),
but with α 6= 1

2 , so it does not match the bubble geometry (2.4).
In fact we find that the solution asymptotic to the supersymmetric vacuum and the one

asymptotic to the non-supersymmetric vacuum discussed in Section 4 have different features
in the interior. This can be seen by considering a probe spherical D2 brane in a background of
the form (3.1), where dS3 is now Wick-rotated to S3. The D2 brane wraps S3 and is placed at
some radial distance r. The Euclidean DBI+WZ action is given by

SD2(r) = τD2

∫

S3

d3ξe−Φ̃
Æ

det g̃3 −τD2

∫

S3

C̃3 , (5.1)

where a tilde denotes the pull-back on the brane of the bulk fields (and we have reabsorbed a
factor of i in the three-form). The force acting on the D2 is then

F = − d
dr

SD2 . (5.2)

Plugging the ansatz (3.1) in, we obtain

F = −2π2τD2 L3
�

�

e3A+3V−φ�′ + g6e3A−2V f6
�

, (5.3)

where f6 was given in (3.5). We evaluated this force numerically for the flow asymptotic
to the supersymmetric vacuum as well as for the one asymptotic to the non-supersymmetric
vacuum discussed in Section 4. In both cases we find that when r is large the force is attractive
towards the interior, in agreement with the absence of brane-jet instabilities found in [27].
We also find that in both cases the force remains finite when approaching the location of the
stack of backreacting D2’s in the source regime. In particular, we do obtain the cancellation of
divergences between the DBI and WZ terms that is expected for mutually BPS objects. However,
for the solution connected to the supersymmetric vacuum the force is always attractive towards
the interior and non-vanishing, even when the probe brane gets close to the backreacting D2’s;
this may mean that we have to modify the IR picture of the solution. For the solution asymptotic
to the non-supersymmetric vacuum instead, the force is repulsive close to the backreacting
D2’s, so that the probe has an equilibrium point at finite distance.

Localized bounces: One can ask whether in addition to the smeared instantons constructed
here, there also exist localized instantons, that is instantons localized both in EAdS and in
S6. Certainly, given the lower amount of symmetry of the localized configurations, these
are expected to be hard to construct. In [23] a similar issue is discussed in the context of
IIB supergravity on AdS5 × S5/Zk and localized instantons are argued to exist, although no
complete construction is given. It is also argued there that such solutions should have a smaller
action than the smeared instantons. One might expect a similar argument to apply to our case.

Generalizations: In [26,32] six additional perturbatively and brane-jet stable AdS4 vacua
are described. These additional vacua fall outside the ansatz we describe in (3.1) or equivalently
outside of the four-dimensional NK truncation. For this reason our numerical analysis cannot
immediately be extended to these cases and we would need to introduce a more general ansatz
with additional scalar fields. However, it is likely that the instabilities described in this work are
very generic and will also show up in these cases. Indeed, for the (perturbatively unstable) non-
supersymmetric AdS4 solution (with SO(7) invariance) we found the same type of instability
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where we saw that the metric functions as well as the dilaton behave essentially identically to
the G2 invariant case. The only difference consists in the additional scalars that are present in
the latter case. It would be interesting to explicitly construct these in the adequate consistent
truncation and show that indeed all non-supersymmetric solutions described in [26] exhibit
the same non-perturbative instabilities.

To conclude, it may be worth stressing that the novel dilaton bubbles constructed in this
paper might play a much more general role in establishing the non-perturbative instability of
string theory AdS vacua. This is due to the fact that these objects evade universal obstructions
concerning the possibility of having a shrinking internal space in the presence of flux. In
particular, it would be extremely interesting to test the possible relevance of these bubbles in
various other stringy settings, including type IIB/F-theory setups like the ones underlying the
novel non-supersymmetric S-fold constructions of [33].
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A Supergravity conventions

The bosonic field content of massive type IIA supergravity consists of a metric GMN , a dilaton
Φ, the NS-NS three-form H3 and R-R n-form field strengths Fn, with n= 0,2,4. The Romans
mass, F0, does not have any propagating degrees of freedom. Since we are only interested in
bosonic solutions we will not need to discuss the fermionic sector.

We use the democratic formalism in which the number of R-R fields is doubled such that n
runs over 0, 2, 4, 6, 8, 10 [34].13 This redundancy is removed by introducing duality conditions
for all R-R fields

Fn = (−1)
(n−1)(n−2)

2 ?10 F10−n . (A.1)

These duality conditions should be imposed by hand after deriving the equations of motion
from the action. We define the NS-NS and R-R gauge potentials as follows

H3 = dB2 , (A.2)

Fn = dCn−1 −H3 ∧ Cn−3 + F0 eB2
�

�

n , (A.3)

where eB2
�

�

n denotes the degree n term in the expansion of the exponential.
The bosonic part of the action in string frame is

Sbos =
1

2κ2
10

∫

?10

�

e−2Φ
�

R+ 4|dΦ|2 −
1
2
|H3|2

�

−
1
4

∑

n

|Fn|2
�

, (A.4)

where the ten-dimensional Newton’s constant κ10 is related to the string length through
4πκ2

10 = (2πls)8 and the Hodge star is defined such that for any n-form A one has

?10|A|2 ≡ ?10
1
n!

AM1...Mn
AM1...Mn = ?10A∧ A . (A.5)

13We use the conventions of [35], albeit with Bthere
2 = −Bhere

2 .
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The Bianchi identities and equations of motion derived from the action (A.4) are

dH3 = 0 , and d(e−2Φ ?10 H3) +
1
2

∑

n

?10Fn ∧ Fn−2 = 0 , (A.6)

for the NS-NS field H3 and
dFn −H3 ∧ Fn−2 = 0 , (A.7)

for the R-R form fields. The dilaton and the Einstein equations of motion can be written as

0=∇2Φ− |dΦ|2 +
1
4

R−
1
8
|H3|2 ,

0= RMN + 2∇M∇NΦ−
1
2
|H3|2MN −

1
4

e2Φ
∑

n

|Fn|2MN ,
(A.8)

where we have defined

|An|2MN ≡
1

(n− 1)!
(An)M

M2···Mn(An)N M2···Mn
. (A.9)

B Nearly Kähler structure and the six-sphere

A six-dimensional nearly-Kähler manifold has SU(3) structure group and can thus be equipped
with a real two-form J and a complex decomposable three-form Ω. These forms are of type
(1,1) and (3,0) with respect to the natural almost complex structure defined by Ω. They are
subject to the defining conditions:

Ω∧Ω= −
4i
3

J ∧ J ∧ J , J ∧Ω= 0 (B.1)

d ImΩ= −2J ∧ J , dJ = 3 ReΩ . (B.2)

The volume form is ?61= vol6 =
1
6 J ∧ J ∧ J , hence ?6J = 1

2 J ∧ J and ?6Ω= iΩ.
The cone C[M6] = R+ ×M6 has G2 holonomy and thus it allows for the existence of an

associative three-form ψ and a co-associative four-form eψ= ?7ψ satisfying dψ= d eψ= 0 (the
Hodge star ?7 is understood to use the metric ds2

7 = dr2 + r2ds2
6 on the cone C[M6]). The 6d

SU(3) structure and the 7d G2 structure are related as

ψ= r2 dr ∧ J + r3 ReΩ , eψ=
1
2

r4J ∧ J − r3dr ∧ ImΩ , (B.3)

and the differential constraints (B.2) are equivalent to closure of the (co-)associative forms.
The complete list of homogeneous six-dimensional nearly-Kähler manifolds is given by S6,

CP3, S3 × S3, and the flag manifold F3 [36], while non-homogeneous examples have been
found in [37].

Finally we discuss how the nearly-Kähler structure is constructed on the six-sphere S6 with
G2 invariance. To make this explicit we define the embedding coordinates µI parameterizing
the unit radius six-sphere S6 as the locus

7
∑

I=1

�

µI
�2
= 1 (B.4)

in R7. When we take S6 = G2/SU(3), the SU(3) structure is invariant under the transitive
action of G2 and hence we can specify it in terms of the embedding of S6 in it’s cone. To this
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end let us introduce the unconstrained coordinates x I = rµI on the cone C[S6] = R7, with
the associated orthonormal siebenbein eA

I . We can then define the (co-)associative three- and
four-form as

ψ= e123 + e145 − e167 + e246 + e257 + e347 − e356 ,

ψ̃= e4567 + e2367 − e2345 + e1357 + e1346 + e1256 − e1247 ,
(B.5)

where eA = eA
I dx I and eABC = eA∧ eB ∧ eC . Comparing this with (B.3), we find an expression

of the nearly-Kähler forms on S6 in terms of the (co-)associative forms on R7 as

J = ι∂r
ψ
�

�

r=1 =
1
2
ψI JKµ

IdµJ ∧ dµK ,

Ω=ψ
�

�

r=1 − i ι∂r
ψ̃
�

�

r=1 =
1
6

�

ψJK L − iψ̃I JK L µ
I
�

dµJ ∧ dµK ∧ dµL .
(B.6)

One can check that these forms indeed satisfy the relations in (B.1) and (B.2). The metric
specified by this nearly-Kähler structure is exactly the round metric on S6.

C Rescaling the 4d fields

We now show that making suitable rescalings, all dependence on the parameters m and g in
the reduced action (3.14) is moved to just an overall prefactor. This allows us to easily relate
the choice m= 1, g = 1/2 made in the main text to any other choice.

We start by trading g for the dimensionless parameter

µ=
�

2g
m

�1/3

. (C.1)

Next we introduce a new (dimensionless) radial coordinate r̃ through

r = m−1µ−3 r̃ , (C.2)

we rescale the scalar fields as

b(r) = µ b̃(r̃) , ζ(r) = µ−1 ζ̃(r̃) , eφ(r) = µ5/2 eφ̃(r̃) , eU(r) = µ−1/8 eŨ(r̃) , (C.3)

and the 4d metric as

ds̃2
4 = m2µ7ds2

4 = e8Ũ(r)
�

dr̃2 + L̃2 e2Ã(r̃)ds2
3

�

, (C.4)

with
A(r) = Ã(r̃) , L = m−1µ−3 L̃ . (C.5)

Note that the new metric takes the same form as (3.10) in the rescaled variables.
In these variables, the reduced action (3.14) reads

S1 =
L̃3V3

2m2µ7κ2
4

∫

dr̃
�

e3Ã+8Ũ
�

6(Ã′ + 4Ũ ′)2 − 24(Ũ ′)2 −
1
2
(φ̃′)2 −

3
2

e−φ̃−4Ũ(b̃′)2

−
1
2

e
φ̃
2 −6Ũ(ζ̃′)2

�

− e3Ã+16Ũ Ṽ + 6

L̃2
eÃ+8Ũ

�

,

(C.6)

where now the prime denotes a derivative with respect to r̃, and the rescaled potential is

Ṽ = m−2µ−7V = 1
2

h

e−
φ̃
2 −18Ũ

� 5
2 + b̃3 + 3b̃ζ̃

�2
+ 3e

φ̃
2 −14Ũ(b̃2 + ζ̃)2

−15 e−8Ũ + 9b̃2 e−φ̃−12Ũ + 3b̃2 e
3
2 φ̃−10Ũ + e

5
2 φ̃−6Ũ

�

.
(C.7)

20

https://scipost.org
https://scipost.org/SciPostPhys.12.3.099


SciPost Phys. 12, 099 (2022)

Now the parameters of the theory appear in the action only through an overall prefactor.
These manipulations allow us to infer that the choice m = 1, g = 1/2 made in the main

text does not entail a loss of generality. Indeed, for m = 1, g = 1/2 (which implies µ = 1),
the original variables coincide with the tilded variables introduced here, and the same holds
for the respective equations of motion. This means that the analysis in the main text is the
same as an analysis done using the tilded variables. Hence the solution discussed there can
be straightforwardly converted into a solution for any other value of m, g by implementing
the rescalings (C.2)–(C.5). In particular, the numerical solutions we construct in the main text
using m= 1, g = 1/2 would look qualitatively the same (modulo the rescalings) for any other
choice of the parameters.
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