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Abstract

It has long been understood that non-trivial Conformal Field Theories (CFTs) with van-
ishing central charge (c = 0) are logarithmic. So far however, the structure of the identity
module – the (left and right) Virasoro descendants of the identity field – had not been
elucidated beyond the stress-energy tensor T and its logarithmic partner t (the solution
of the “c→ 0 catastrophe”). In this paper, we determine this structure together with the
associated OPE of primary fields up to level h = h̄ = 2 for polymers and percolation CFTs.
This is done by taking the c→ 0 limit of O(n) and Potts models and combining recent re-
sults from the bootstrap with arguments based on conformal invariance and self-duality.
We find that the structure contains a rank-3 Jordan cell involving the field T T̄ , and is
identical for polymers and percolation. It is characterized in part by the common value
of a non-chiral logarithmic coupling a0 = −

25
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1 Introduction

While conformal field theory (CFT) in 2 dimensions has garnered an enviable list of successes,
several of its most exciting potential applications are not yet under full control. This is the
case in particular of the description of critical points in disordered systems (both in 2 and 2+1
dimensions), and of geometrical critical problems such as polymers (self-avoiding walks) and
percolation. The difficulty in tackling these problems originates from the lack of unitarity, itself
inherited from disorder averaging or non-local constraints such as self-avoidance of random
walks. As it turns out, non-unitarity can have daunting consequences, the full extent of which
we are just starting to appreciate.

Geometrical critical problems encompass the large class of loop and cluster models, for
which quite a bit of progress has been obtained recently, in part due to systematic use of boot-
strap techniques. It is now clearly understood that the corresponding theories are generically
logarithmic [1–4], and exhibit some kind of “interchiral symmetry” [5], with some truly degen-
erate (in the Virasoro sense) fields, and spectra of critical exponents with Kac labels including
most rationals [6].

The specific cases of polymers and percolation are however more complicated than the
generic loop or cluster model because they occur right at central charge c = 0 (a feature
shared by most disorder related problems). There - like at any other “rational point” - the
logarithmic(L) CFTs [7] describing generically polymers or percolation develop a considerably
more intricate logarithmic structure, with Jordan blocks of arbitrary rank, and indecomposable
modules with highly complex Virasoro structures. The bootstrap approach to correlation func-
tions meanwhile encounters many divergences - a natural manifestation of the representation
theoretic “mixing” of Virasoro modules.

Nonetheless the case c = 0 is fascinating for physical reasons, and we know more about it
than for the other rational points. A very insightful first attempt to understand theories with
this value of the central charge dates back to [8,9]with the introduction of t – the “logarithmic
partner” of the stress energy-tensor, together with its “logarithmic coupling” b. It took another
decade for this coupling to be observed numerically in [10,11], hence providing some concrete
insight into what had been so far a very abstract notion. More in depth study of lattice models
showed that the predictions in [9] were slightly off, and that the b-numbers for percolation
and polymers were in fact bperco = −

5
8 and bpol y =

5
6 respectively. Further work also brought

to attention the profound difference between the structures proposed in [9] - which apply
really to the boundary case - and those for the bulk theories. For the latter, it was found that
b = −5 both for percolation and polymers [12].

While the full bulk theory for these problems has attracted special attention - and some
progress has definitely been made [13], [14], [15], even the simplest question of how to prop-
erly complete the ideas proposed in [9] in the full non-chiral case has remained open until now.
The corresponding structure of the “identity module” - that is how t, T, t̄, T̄ , T T̄ , t T̄ , T t̄, . . . are
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related with each other under the action of the left and right Virasoro algebras (we will in
general denote the enveloping algebra of the product Vir⊗ Vir by V), how they contribute to
a general OPE etc - is the subject of this paper.

We note that earlier attempts have been made to tackle this problem - see in particular
the conjecture in [15]. The novel ingredient that allows us to make further progress here is
the recent understanding of some four-point functions and OPEs for generic loop and cluster
models [1,5,16,17].

The paper is organized as follows. In section 2, we revisit a time honored strategy [11,
18–20] by considering the behavior as c → 0 of the generic OPE of two primary fields in the
loop or cluster model, using the information recently obtained both about the spectrum and
the existence of rank-two Jordan blocks for L0, L̄0 [1,3,4] at generic values of c. By requiring
the finiteness of two-point functions at c = 0, we obtain singularity cancellation conditions
(2.13), (2.28) and (2.30), which allow us to establish the existence of a rank-three Jordan
block of fields of weight h= h̄= 2 when c = 0 with the bottom field being T T̄ , and determine
the corresponding universal logarithmic coupling. Remarkably, this coupling turns out to be
the same both for the percolation and polymers. In section 3, we consider the structure of
the corresponding identity module under the action of the enveloping algebra of the left and
right Virasoro algebras V . This is done using general conformal invariance arguments and
arguments of self-duality, leading to our main result in figure 2. Intriguingly, the structure we
uncover is formally equivalent to the one proposed (for c generic) in [1]. Various remarks
are proposed in the conclusion while technical details (in particular the c → 0 limit for the
correlation functions of the order operator in the Potts model) are discussed in the appendix.

For the reader mostly interested in results, we give here the generic OPE of two diagonal
primary fields at c = 0

Φ∆(z, z̄)Φ∆(0, 0̄) =(zz̄)−2∆
§

1+ z2∆

b

�

t(0, 0̄) + T (0) ln(zz̄)
�

+ z̄2∆

b

�

t̄(0, 0̄) + T̄ (0̄) ln(zz̄)
�

+ zz̄2 ∆

2b
∂ t̄(0, 0̄) + z2z̄

∆

2b
∂̄ t(0, 0̄) + (zz̄)2

∆

4b

�

∂ 2 t̄(0, 0̄) + ∂̄ 2 t(0, 0̄)
�

+ (zz̄)2
∆2

a0

�

Ψ2(0, 0̄) + ln(zz̄)Ψ1(0, 0̄) +
1
2

ln2(zz̄)Ψ0(0, 0̄)
�

+ . . .
ª

,

where (t, T ) belong to a rank-two Jordan block:

〈t(z, z̄)t(0, 0̄)〉 =
−2b ln(zz̄) + θ

z4
,

〈t(z, z̄)T (0)〉 =
b
z4

,

〈T (z)T (0)〉 = 0 ,

and the fields Ψi , i = 0, 1,2 belong to a rank-three Jordan block for L0, L̄0:

〈Ψ2(z, z̄)Ψ2(0, 0̄)〉 =
a2 − 2a1 ln(zz̄) + 2a0 ln2(zz̄)

(zz̄)4
,

〈Ψ2(z, z̄)Ψ1(0, 0̄)〉 =
a1 − 2a0 ln(zz̄)

(zz̄)4
,

〈Ψ1(z, z̄)Ψ1(0, 0̄)〉 =
a0

(zz̄)4
,

〈Ψ2(z, z̄)Ψ0(0, 0̄)〉 =
a0

(zz̄)4
,

〈Ψ1(z, z̄)Ψ0(0, 0̄)〉 = 0 ,

〈Ψ0(z, z̄)Ψ0(0, 0̄)〉 = 0 ,
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with the “logarithmic couplings”

b = −5 , a0 = −
25
48

.

Finally, we note that we have tried to strike a compromise between indicating the c-
dependency of all the objects (like the stress-energy tensor T or the field X , see below) we
were considering, and keeping our equations somewhat readable. We believe the context
should remove all possible ambiguities.

2 OPE and two-point functions

2.1 c→ 0 limit of Potts and O(n) models

In contrast with what happens for rational minimal models (such as the Ising model), the
action of the left and right Virasoro algebras in non-trivial c = 0 theories leads to modules
which are indecomposable but not fully reducible - they do contain irreducible submodules,
but cannot be written as direct sums of such modules. We will focus in this paper on the identity
module - the module which contains the identity field I (with conformal weights h = h̄ = 0)
“at the top” (i.e., I is the field with lowest conformal weight in the module). We recall that,
both for the Potts and O(n) models, the identity field is in fact the field with lowest conformal
weight in the full theory. Moreover, it is the only field with h = h̄ = 0 - in contrast with, e.g.
the theory proposed in [13].

The technical origin of these complicated features at c = 0 is that a descendant of the
identity field – the stress-energy tensor T (z), T̄ (z̄) – becomes null as c → 0. More precisely,
its Virasoro invariant norm-square (defined by using the standard conjugacy rule L†

n = L−n)
vanishes as c → 0. It is however not possible to set T = T̄ = 0 in a physical theory (this
would lead to the minimal model at c = 0, a trivial theory with only the identity field), and
this implies, by a variety of arguments (see below), the appearance of a logarithmic partner of
the stress-energy tensor, the famous t field [9]. The Jordan blocks for L0, L̄0 involving t, t̄, T, T̄
are now well understood for percolation and polymers, i.e., Potts model at Q = 1 and O(n)
model at n = 0 – both theories with c = 0. In order to see what happens for fields whose
conformal weights h, h̄ are both non-zero, we start from the Potts and O(n) spectrum and
Virasoro structure at generic c.

We focus on the conformal fields which will appear in the logarithmic mixing up to dimen-
sion (h, h̄) = (2,2) in the limit c → 0. This involves the following fields in the Potts and O(n)
spectra at generic c (we also indicate their conformal dimensions at c = 0):

Potts c→ 0 O(n) c→ 0

I : (h1,1, h1,1)→ (0, 0) I : (h1,1, h1,1)→ (0, 0)
X̄ : (h1,2, h1,−2)→ (0, 2) X̄ : (h1,2, h1,−2)→ (0, 2)
X : (h1,−2, h1,2)→ (2, 0) X : (h1,−2, h1,2)→ (2, 0)
Φ31 : (h3,1, h3,1)→ (2, 2) Φ15 : (h1,5, h1,5)→ (2, 2)

(2.1)

Here and in what follows, we use the conventions

c = 1− 6
�

β −
1
β

�2
, β ≤ 1 , (2.2)

and

hrs =
� sβ

2
−

r
2β

�2
−
�β

2
−

1
2β

�2
. (2.3)
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Ψ

X̄ X

AX̄ = ĀX

Ā†

b12

A†

b12

ĀA

L0 − h1,−2

L̄0 − h1,−2

Figure 1: A diamond structure under V at generic c

The value c = 0 corresponds to β =
q

2
3 . All the derivative indicated by prime ′ are derivatives

with respect to c.
At generic c, the fields X , X̄ in (2.1) correspond to the spin-2 4-leg (“hulls”) operator in

Potts model and the spin-2 2-leg operator in O(n) loop model, respectively. It has been shown
recently in [1,3,4] that these fields are involved in a diamond structure under the action of V
at generic c. See fig. 1. 1

Here Ψ is a field of dimensions (h1,−2, h1,−2) with A†Ψ = L2Ψ. Note that the level-2 null
descendants of the primary fields X , X̄ coincide: AX̄ = ĀX , where

A= L−2 −
3

2+ 4h1,2(c)
L2
−1 , (2.4)

and (Ψ, AX̄ ) form a rank-2 Jordan block for L0, L̄0.
The two-point functions of the logarithmic pair (Ψ, AX̄ ) at generic c are given by 2

〈Ψ(z, z̄)Ψ(0, 0̄)〉 =
−2b12(c) ln(zz̄) +λ(c)

(zz̄)2h−1,2(c)
, (2.5a)

〈Ψ(z, z̄)AX̄ (0, 0̄)〉 =
b12(c)

(zz̄)2h−1,2(c)
, (2.5b)

〈AX̄ (z, z̄)AX̄ (0, 0̄)〉 = 0 , (2.5c)

where λ(c) is a unimportant constant (which can be modified, as usual with logarithmic pairs,
by a redefinition Ψ 7→ Ψ + const.ĀX ). Note that the above structure appear in both Potts and
O(n) models and the corresponding logarithmic couplings are given by3:

bPotts
12 (c) = 2−

2
β4
+

4
β2
− 4β2 , (2.6a)

bO(n)
12 (c) = 2+

1
β6
−

2
β4
−

1
β2

, (2.6b)

where β is given in (2.2), and the top field Ψ in fig. 1 should be labeled ΨPotts and ΨO(n)

respectively in the two cases. Below we will use b12 and Ψ as common notation for both cases
and make the distinction when necessary.

1we follow the notation in [4]
2The normalization of the Ψ is fixed by the relation A†Ψ = b12X̄ and that the constant in the two-point function

of X̄ is normalized to 1.
3See section 6 of [4] for the derivation of the logarithmic coupling for Potts (bPotts

12 is given in eq. (94) in that
reference). See also eqs. (2.34) and (2.36) of [1] for the logarithmic couplings for Potts and O(n). The definitions
of logarithmic couplings in [4] and [1] are different by an overall function of β . Here we follow the definition
of [4].
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We now consider the OPE at generic c of two primary fields which for simplicity are taken
to be diagonal with dimensions ∆ = ∆̄. At generic c, we assume this OPE is given by the
following generic form (factoring out (zz̄)−2∆)4:

Φ∆(z, z̄)×Φ∆(0, 0)∼ 1+
2∆(c)

c

�

z2T + z̄2 T̄
�

+
4∆(c)2

c2
(zz̄)2T T̄ + . . .

+
Æ

A(c)
§

(zz̄)h1,2(c)
�

z̄2X̄ + z2X +
zz̄2

2
∂ X̄ +

z2z̄
2
∂̄ X +α(c)(zz̄)2(∂ 2X̄ + ∂̄ 2X )

�

+ g(c)(zz̄)h−1,2(c)
�

Ψ + ln(zz̄)AX̄
�

+ . . .
ª

+
Æ

R(c)(zz̄)hΦ(c)Φ+ . . . .

(2.7)
Here we use Φ as a generic notation for Φ31 in Potts and Φ15 in O(n), and similarly with Ψ for
ΨPotts and ΨO(n) as mentioned above (their dependency upon c is thus not mentioned explic-
itly). The conformal weight∆(c) is a priori generic, although we will in practice restrict to the
spin (order operator) field

�

h 1
2 ,0, h 1

2 ,0

�

in the Potts model (see appendix B) [5], or the spin field

(one-leg operator)
�

h0, 1
2
, h0, 1

2

�

in the O(n)model, where results about four-point functions ob-
tained using the bootstrap method confirm the validity of this expansion. The coefficients A
and R and g are in principle determined by solving the bootstrap. In particular, A represents
the amplitude of X , X̄ appearing in the four-point function 〈Φ∆Φ∆Φ∆Φ∆〉 which can be deter-
mined from numerical bootstrap, and R indicate a recursion resulting from degeneracy in the
model. Finally, the value α(c) =

1+h1,2

4(1+2h1,2)
follows from conformal invariance [4].

Our strategy will be in particular to demand that the OPE (2.7) has a finite limit as c→ 0.
Although an old idea, this strategy has so far only been applied to the terms in z2, z̄2, leading
to the construction of t – the logarithmic partner of T . Our analysis will go much further,
thanks to the recently discovered existence of a rank-two Jordan block at generic c [1, 3, 4]
(leading to the last line in (2.7)), combined with the recently obtained results of the couplings
A,R for at least some fields Φ∆ using the bootstrap [5].

2.2 Rank-2 Jordan block of
�

t, T
�

We start by reviewing the construction of the logarithmic partner t of the stress-energy tensor
T at c = 0. This field appears as a combination of the field X and T as follows.

Consider in (2.7) the terms:

2∆(c)
c

z2T +
Æ

A(c)(zz̄)h1,2(c)z2X , (2.8)

and similarly for z̄. Clearly the coefficient 1
c for T is divergent as c → 0 which is usually

referred to as the “c → 0 catastrophe" [9]. The question is, how can one - formally at least -
make the OPE finite. The solution is to introduce the combination:5

t =
b
∆(c)

�Æ

A(c)X + 2∆(c)
c

T
�

, (2.9)

(here, t, X , T depend on c although we do not mention it explicitly) where b is given by

b = −
1

2h′1,2

= −5 , (2.10)

4Note that the dependence of ∆ = ∆(c) in this factor should also be taken into account when analyzing the
c→ 0 limit. However this only gives extra terms which vanish due to the singularity cancellation conditions below.
Therefore, for simplicity, we will ignore this dependence below.

5Note that this definition appears to be dimensionally problematic for generic c since X and T do not have the
same dimension at c 6= 0. Instead one should write t = b

∆(c)

�p

A(c)Xµ−2h1,2(c) + 2∆(c)
c T

�

with some scale µ which
we have suppressed throughout the paper. See [21] for more details. Similar remarks apply to the definition of Φ2

in (2.26) below.
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with h′1,2 =
dh1,2

dc |c=0, and to postulate that, as c→ 0, the combination (2.9) becomes a genuine
field in the c = 0 theory. If this is the case, we see indeed that, as c → 0, (2.8) is now finite
and reads:

∆

b
z2
�

t + T ln(zz̄)
�

, (2.11)

where ∆=∆(c = 0). With the definition (2.9), we can calculate the two-point function of t:

〈t(z, z̄)t(0, 0̄)〉=
b2

∆2

A(c)
�

1− 2h′1,2c ln(zz̄)
�

+ 2∆2

c + ...

z4
. (2.12)

In order for the two-point function (2.12) to be finite at c = 0, the amplitude A needs to have
the following behavior as c→ 0:

A(c) = −2∆2

c
+κ+O(c) . (2.13)

Were this not to hold, the construction of t - and in fact, the whole argument trying to salvage
finite OPEs at c = 0 - would fail. Luckily, this property is known to hold, at least in the case
of the Potts model - see appendix B for further detail. We then have the following two-point
functions at c = 0:

〈t(z, z̄)t(0, 0̄)〉 =
−2b ln(zz̄) + θ

z4
, (2.14a)

〈t(z, z̄)T (0)〉 =
b
z4

, (2.14b)

〈T (z)T (0)〉 = 0 , (2.14c)

where

θ =
b2

∆2
(κ+ 4∆∆′) . (2.15)

From (2.14) we see that the fields (t, T ) form a rank-2 Jordan block. Note that θ is not uniquely
defined, as the algebraic definition of t “on top of the Jordan block” allows a redefinition
t → t + const.T .

The remaining terms in the second line of the OPE (2.7) now become:

zz̄2 ∆

2b
∂ t̄ + z2z̄

∆

2b
∂̄ t + (zz̄)2

∆

4b

�

∂ 2 t̄ + ∂̄ 2 t
�

, (2.16)

where we have used that ∂ T̄ = ∂̄ T = 0 and α(c = 0) = 1
4 .

Using (2.9) and (2.13), we can write, to leading order as c→ 0

T
c→0
= −

s

−
c
2

X +
c

2b
t . (2.17)

Now, for t to be well-defined in the c = 0 CFT, it must have finite correlation functions, just
like we saw above in the case of the two-point functions. 6 Assuming this is true indeed, then
an insertion of T (z) in correlation functions at c = 0 can be replaced by (the limit of) −

Æ

− c
2 X

as long as it comes with a O(1) coefficient since 7

〈T (z) . . .〉 c→0
=

c
2b
〈t(z, z̄) . . .〉 − 〈

s

−
c
2

X (z, z̄) . . .〉 c→0
= −〈

s

−
c
2

X (z, z̄) . . .〉 . (2.18)

6The finiteness of three-point functions involving t was considered in [18].
7Here we have assumed that . . . involves only operators that have a well-defined c→ 0 limit, which means that

their correlation functions are finite at c = 0 and therefore 〈t(z, z̄) . . .〉 in eq. (2.18) is a finite quantity at c = 0.
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This allows us to make the following operator identification at c = 0:

T
c→0
= −

s

−
c
2

X , (2.19)

where by the right-hand side we of course mean the limit of this expression as c → 0. Note
that although X (z, z̄) is non-chiral at generic c, one has:

〈∂̄ X (z, z̄)∂̄ X (0, 0̄)〉=
−2h12(c)(2h12(c) + 1)

z2h1,−2(c)z̄2h1,2(c)+2
=O(c) , (2.20)

and therefore

−
s

−
c
2
∂̄ X

c→0
= 0 , (2.21)

so the identification (2.19) is consistent with that T is chiral at c = 0. However t is non-chiral,
namely ∂̄ t 6= 0 due to the 1/

p
c factor in front of X in in (2.9). For example, we have

〈∂̄ t(z, z̄)∂̄ t(0, 0)〉=
−2b
z4z̄2

. (2.22)

The physics of the identification in (2.19) would certainly deserve more discussion than
we can provide here. We note that it is quite natural from the lattice point of view. Indeed, it
is known that the states in the transfer matrix for the dense loop (Potts) model corresponding
to the left and right hand sides of (2.19) become identical [10,11]. This is because the rank-
two Jordan block appears as T and X (with weights (h1,−2, h1,2)) mix, and it is a standard
property of Jordan blocks that when the degeneracy point is approached by taking the limit
of a two by two matrix with slightly different eigenvalues, the two eigendirections coincide.
In turn, by state-operator correspondence, the two operators should coincide - note that the
numerical factors

Æ

− c
2 in (2.19) are there to ensure coincidence of normalizations, X being

by convention normalized as an ordinary CFT field.
The above computation is identical for Potts and O(n) at c = 0 since the field X appear in

both models and the leading behavior of the amplitude A at c = 0 is completely determined
by the condition (2.13) which leads to the common expression of the field t at c = 0:

t = b

√

√

−
2
c

X +
2b
c

T . (2.23)

A difference between the two models may arise in the O(1) term of the expansion (2.13) which
gives

t =b

√

√

−
2
c

X +
2b
c

T − const.
s

−
c
2

X

=t + const.T ,

(2.24)

where we have used the identification (2.19) for the second line. As already discussed, this
does not modify the rank-2 Jordan block structure.

2.3 Rank-3 Jordan block involving T T̄

Let us now proceed with trying to render finite the remaining terms in the OPE (2.7) as c→ 0.
We thus consider the combination (where again the fields also depend on c but we do not
indicate this explicitly)

(zz̄)2
4∆(c)2

c2
T T̄ + (zz̄)hΦ(c)

Æ

R(c)Φ+ (zz̄)h−1,2(c)g(c)
Æ

A(c)
�

Ψ + ln(zz̄)AX̄
�

. (2.25)
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The field T T̄ comes with a problematic divergent coefficient ∼ c−2. The resolution here is
similar to the previous subsection. We define a field

Φ2 = −
1

4h′Φ∆(c)2
�4∆(c)2

c2
T T̄ +

Æ

R(c)Φ+ g(c)
Æ

A(c)Ψ
�

, (2.26)

with h′Φ =
dhΦ
dc |c=0. Computing the two-point function of Φ2 we first find

〈Φ2(z, z̄)Φ2(0, 0̄)〉=
1

16h′2Φ∆
4

4∆4

c2 +R(c) + . . .

(zz̄)4
, (2.27)

where . . . is subleading. This forces R(c) to have the behavior

R(c) = −4∆4

c2
+

r1

c
+ r0 +O(c) , (2.28)

in order to cancel the divergence in the numerator at c = 0. Using (2.28), the two-point
function (2.27) further becomes

〈Φ2(z, z̄)Φ2(0, 0̄)〉=
1

4h′2Φ∆
2

b12 g2+2h′Φ∆
2

c ln(zz̄) + r1−2λg2∆2+16∆3∆′

4∆2c + . . .

(zz̄)4
, (2.29)

where g, b12,λ denote the values of g(c), b12(c),λ(c) at c = 0 (recall their definitions at generic
c in (2.7),(2.5a)), and . . . is of O(1). So one needs to further require

g2 = −
2h′Φ∆

2

b12
, r1 − 2λg2∆2 + 16∆3∆′ = 0 . (2.30)

The conditions (2.28) and (2.30) can in fact be checked to satisfy in special cases as we will
see in appendix B.

We now further define the fields:

Φ1 =
T T̄
c
+

1

2
Æ

−2b12h′Φ

√

√

−
2
c

AX̄ +
h′−1,2 − h′Φ
Æ

−2b12h′Φ

s

−
c
2
Ψ + f1T T̄ − f2

s

−
c
2

AX̄ , (2.31a)

Φ0 = h′ΦT T̄ +
2h′−1,2

Æ

−2b12h′Φ

s

−
c
2

AX̄ , (2.31b)

where the coefficients f1, f2 depend on the dimension ∆ and are not characteristic of the
logarithmic structure we are investigating, as will become more clear below. The specific
expressions will be given in appendix B. Using the definitions of Φ2,1,0 in (2.26), (2.31) and
the conditions (2.28) and (2.30), the OPE (2.25) then takes the following form in the limit
c→ 0:

−(zz̄)24h′Φ∆
2
�

Φ2 + ln(zz̄)Φ1 +
1
2

ln2(zz̄)Φ0

�

, (2.32)

where ∆ = ∆(c = 0). From the form of (2.32), we can already expect the fields (Φ2,Φ1,Φ0)
to form a rank-3 Jordan block, although we will check this in more detail later.

Notice that the OPE (2.25) describe both Potts and O(n) at generic c. As we have mentioned
above, in each case, the field Φ (and its dimension hΦ) should be taken as

Φ=

¨

Φ31 , Potts ,

Φ15 , O(n) ,
(2.33)

9

https://scipost.org
https://scipost.org/SciPostPhys.12.3.100


SciPost Phys. 12, 100 (2022)

and the field Ψ in the generic c rank-2 Jordan block is ΨPotts and ΨO(n) respectively. In the two
cases, we observe that the generic c “logarithmic couplings" (2.6) take the following values at
c = 0:

bPotts
12 = −

1
2h′3,1

=
5
6

, (2.34a)

bO(n)
12 = −

1
2h′1,5

= −
5
8

. (2.34b)

Therefore in (2.31) we have
Æ

−2b12h′Φ = 1 for both Potts and O(n). Note also

h′−1,2 = h′1,2 =
1
2
(h′3,1 + h′1,5) , (2.35)

which leads to:8
2
b
=

1

bPotts
12

+
1

bO(n)
12

. (2.36)

Recall now the identification (2.19). Since this is an operator equality, it means that we
can also identify their descendants. We therefore claim that , at c = 0 (as usual, we must think
of the right hand side in the limit c→ 0)

T T̄
c→0
= −

s

−
c
2

ĀX , (2.37)

and write (2.31) as

Φ1
c→0
=

T T̄
c
+

1
p
−2c

AX̄ +
� 1

2b12
−

1
2b

�

s

−
c
2
Ψ + ( f1 + f2)T T̄ , (2.38a)

Φ0
c→0
=

�1
b
−

1
2b12

�

T T̄ . (2.38b)

It is more natural to choose the normalization through a rescaling:

Φi → Ψi =
2bb12

2b12 − b
Φi , i = 0, 1,2 , (2.39)

such that the bottom field is
Ψ0 = T T̄ . (2.40)

It is then straightforward to compute the two-point functions of the fields (Ψ2,Ψ1,Ψ0) using
their definitions (eqs. (2.26), (2.38) and (2.39)), which take the standard form for rank-3
Jordan block:

〈Ψ2(z, z̄)Ψ2(0, 0̄)〉 =
a2 − 2a1 ln(zz̄) + 2a0 ln2(zz̄)

(zz̄)4
, (2.41a)

〈Ψ2(z, z̄)Ψ1(0, 0̄)〉 =
a1 − 2a0 ln(zz̄)

(zz̄)4
, (2.41b)

〈Ψ1(z, z̄)Ψ1(0, 0̄)〉 =
a0

(zz̄)4
, (2.41c)

〈Ψ2(z, z̄)Ψ0(0, 0̄)〉 =
a0

(zz̄)4
, (2.41d)

〈Ψ1(z, z̄)Ψ0(0, 0̄)〉 = 0 , (2.41e)

〈Ψ0(z, z̄)Ψ0(0, 0̄)〉 = 0 . (2.41f)

8At c = 0 notice that bPotts
12 = bpol y and bO(n)

12 = bperco as evident from (2.34). The bpol y and bperco are the
“b-numbers" in the boundary (chiral) cases [9]. The relation 2

b =
1

bpol y
+ 1

perco was first observed in [12].
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The parameters a1, a2 are not intrinsic and depends on the external field - that is, the field
Φ∆ in the OPE (2.7) . We discuss them further in appendix B. The parameter a0 on the other
hand fully characterizes the logarithmic structure (and is independent of the possible field
redefinitions within the block). It is given by:

a0 =
b2

12 b

2b12 − b
= −

25
48

. (2.42)

It is interesting to notice the parameter a0 is the same for Potts and O(n) at c = 0, i.e.,
percolation and polymers: Since the b12 in these two cases are related through eq. (2.36), it
is easy to verify that the expression (2.42) is invariant under

b12↔
�2

b
−

1
b12

�−1
, (2.43)

so interestingly we observe

a0 = bPotts
12 bO(n)

12 = −
25
48

. (2.44)

Combining (2.11), (2.16) and (2.32), we have the following logarithmic OPE at c = 0:

Φ∆(z, z̄)Φ∆(0, 0̄) =(zz̄)−2∆
§

1+ z2∆

b

�

t(0, 0̄) + T (0) ln(zz̄)
�

+ z̄2∆

b

�

t̄(0, 0̄) + T̄ (0̄) ln(zz̄)
�

+ zz̄2 ∆

2b
∂ t̄(0, 0̄) + z2z̄

∆

2b
∂̄ t(0, 0̄) + (zz̄)2

∆

4b

�

∂ 2 t̄(0, 0̄) + ∂̄ 2 t(0, 0̄)
�

+ (zz̄)2
∆2

a0

�

Ψ2(0, 0̄) + ln(zz̄)Ψ1(0, 0̄) +
1
2

ln2(zz̄)Ψ0(0, 0̄)
�

+ . . .
ª

.

(2.45)
The logarithmic fields t,Ψ2,Ψ1 arise from the mixing of the generic c fields and we have seen
above from their two-point functions that we have a rank-2 Jordan block at dimension (0,2) or
(2, 0) as well as a rank-3 Jordan block at dimension (2, 2). In the next section, we will analyze
the Virasoro structure of these fields in more detail based on conformal invariance and the
self-duality of the CFT state space.

3 Virasoro structure

While the general form of the OPE together the numerical value of the logarithmic couplings
at c = 0 are the most natural properties to consider, it is also interesting to study the structure
of the corresponding V modules. This, by itself, is a difficult and intricate question, and we
will restrict here to considering the “identity” module (i.e., the fields related with the identity
field via the action of V) and to conformal weights h, h̄ ≤ 2. We note that an attempt to
determine the structure of this module has already appeared in [15]: this is discussed briefly
in the conclusion.

3.1 Consequences of conformal invariance

Let us now take the OPE (2.45) and focus on the requirement of conformal invariance. To do
this, we act Ln≥0 on both side of the OPE. On the left hand side, using the conformal Ward
identities, we can obtain the differential operator acting on the OPE. We then apply it on the
right hand side and compare the expansion in z, z̄ order by order to derive the actions of Ln≥0
on the fields in the identity module.
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Let us now state the procedure in more detail. On the left hand side of the OPE (2.45), for
the primary field Φ∆, we have

[Ln,Φ∆(z, z̄)] =
�

zn+1 ∂

∂ z
+∆(n+ 1)zn

�

Φ∆(z, z̄) , (3.1)

and
[Ln,Φ∆(z, z̄)Φ∆(0, 0)] = [Ln,Φ∆(z, z̄)]Φ∆(0,0) +Φ∆(z, z̄) [Ln,Φ∆(0,0)] . (3.2)

We then find that the action of Ln are given by
¨

zn+1 ∂
∂ z +∆(n+ 1)zn , n> 0 ,

z ∂∂ z + 2∆ , n= 0 ,
(3.3)

where we have used that Ln>0Φ(0, 0) = 0 and L0Φ∆(0, 0) = ∆Φ∆(0,0). Now we can apply
these differential operators on the right-hand side of the OPE (2.45) and compare the coeffi-
cients of z, z̄ order by order to obtain the actions of Ln on these fields.

First look at L0 for each order. At z2 and z̄2 we find

L0 t = 2t + T , L0T = 2T ,

L0 t̄ = T̄ , L0 T̄ = 0 ,
(3.4)

so (t, T ) indeed form a rank-2 Jordan block.9 One can also check the terms of ∂̄ t,∂ t̄,∂ 2 t̄, ∂̄ 2 t
and their coefficients are simple consequences of the Virasoro algebra. At (zz̄)2 we find

L0Ψ2 =2Ψ2 +Ψ1 ,

L0Ψ1 =2Ψ1 +Ψ0 ,

L0Ψ0 =2Ψ0 ,

(3.5)

i.e., a rank-3 Jordan block of (Ψ2,Ψ1,Ψ0) as expected.
Examining L1, we get

L1 t = 0 , L1T = 0 , L1 t̄ = 0 , L1 T̄ = 0 ,

L1Ψ2 = 0 , L1Ψ1 = 0 , L1Ψ0 = 0 ,
(3.6)

and
L1∂ t̄ = 2T̄ , L1∂̄ t = 0 ,

L1∂
2 t̄ = 2∂ t̄, L1∂̄

2 t = 0 ,
(3.7)

where (3.7) can be directly calculated using Virasoro algebra.
Let us finally consider L2. First at z2 and z̄2, we get

L2 t = bI , L2T = 0 , L2 t̄ = 0 , L2 T̄ = 0 . (3.8)

Then at (zz̄)2. We find

L2Ψ2 =
a0

b
t̄ −

a0

2b∆
T̄ →

a0

b
t̄ , L2Ψ1 =

a0

b
T̄ , L2Ψ0 = 0 , (3.9)

where in the first equation we have performed a change of basis for the rank-2 Jordan block
of (t, T ).10 Note that the above actions can also be checked explicitly using the expressions
(2.26), (2.38) and (2.9) in terms of the fields at generic c.

9The actions on the barred fields ( t̄, T̄ ) are similar where L0 is replaced by L̄0.
10Note that this change of basis, namely t → t + const.T modifies the constant in the two-point function of t,

but does not modify the Virasoro structure we are investigating.
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Using state-operator correspondence, we can now write down Virasoro structure of the
CFT state space including the c = 0 fields in (2.45). For this purpose, instead of L2, it is better
to use the combination of Virasoro generators (2.4) which at c = 0 becomes:

A= L−2 −
3
2

L2
−1 , A† = L2 −

3
2

L2
1 , (3.10)

and we have: (we indicate the left and right conformal dimensions of the operator under the
corresponding states)

|t〉
(2,0)

| t̄〉
(0,2)

|T 〉
(2,0)

|T̄ 〉
(0,2)

|Ψ2〉
(2,2)

|Ψ1〉
(2,2)

|Ψ0〉
(2,2)

|0〉
(0,0)

|∂̄ t〉
(2,1)

|∂̄ 2 t〉
(2,2)

|∂ t̄〉
(1,2)

|∂ 2 t̄〉
(2,2)

A†

b Ā†

b

bĀ†

a0

bA†

a0

bĀ†

a0

bA†

a0

A

Ā

Ā A

L̄−1

L̄1
2

L−1

L1
2

L−1

L1
2

L̄−1

L̄1
2

(3.11)

It is worth stressing that the figure (3.11) results from considering simply the conformal in-
variance requirement on the logarithmic OPE (2.45) for all the fields up to h, h̄= 2. Below in
section 3.3, we will add additional arrows to the structure by considering the self-duality of
the CFT state space.

Recall that we have
AI= T , ĀI= T̄ , AT̄ = ĀT = T T̄ , (3.12)

where T T̄ is our choice of normalization for the bottom field Ψ0. This leads to

ĀAĀ†A†Ψ2 = a0Ψ0 . (3.13)

Here we see that the parameter a0 in (2.42) which characterizes the structure of the logarith-
mic module is clearly independent of the normalization.11

The structure (3.11) cannot be the end of the story because the representing the action of
V is not self-dual, i.e., it is not invariant under reversal of all the arrows. Self-duality of such
diagrams is a basic requirement for a physical theory (unitary or not) and guarantees that the
Virasoro bilinear form is non-degenerate (see e.g. [13], [15]), or, in physical terms, that there
is no field whose two-point function with all other fields in the theory vanishes (of course
some of these two-point functions may vanish, for instance 〈T T 〉). See appendix C for an
elementary discussion. Hence it is clear that some arrows are missing in (3.11). Meanwhile,
a slightly disturbing fact is that the OPE (2.7) for generic c involves six fields

�

T T̄ ,∂ 2X̄ , ∂̄ 2X ,Ψ, AX̄ = ĀX ,Φ
	

, (3.14)

whose dimensions coincide at c = 0 with (h, h̄) = (2, 2). However, in the log OPE (2.45) only
five fields with dimension (2,2) appear after mixing, as can also be seen on the diagram (3.11).

Next, we will study the action of V further and explore how to make the diagram (3.11)
self-dual, and in the meantime introduce a “sixth field" to complete the structure. To start, we
calculate the Gram matrix for the states of interest.

11By normalization, we mean choosing an overall factor λ for the fields λΦi , i = 0, 1,2. Eq. (3.13) is clearly
independent of such a factor.
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3.2 Gram matrix of (t, T ) and (Ψ2,Ψ1,Ψ0)

To proceed, we now calculate the Gram matrix involving the logarithmic fields in the rank-2
and rank-3 Jordan blocks of sections 2.2 and 2.3. To do this, one first need to define the bra
〈ψ| for a field ψ(z, z̄) :

〈ψ|= lim
w,w̄→0

〈0|ψ̃(w, w̄) . (3.15)

Here ψ̃(w, w̄) is the transformation of the field ψ(z, z̄) under inversion

w=
1
z

, w̄=
1
z̄

. (3.16)

Consider now a generic rank-2 Jordan block (ψ1,ψ0) with dimensions (h, h̄),
under z→ w(z), z̄→ w̄(z̄) they transform as

�

ψ̃1(w, w̄)
ψ̃2(w, w̄)

�

=
� dz

dw

�





h 1
0 h





� dz̄
dw̄

�





h̄ 1
0 h̄



 �

ψ1(z, z̄)
ψ2(z, z̄)

�

=
� dz

dw

�h� dz̄
dw̄

�h̄
�

1 ln
�

dz
dw

dz̄
dw̄

�

0 1

�

�

ψ1(z, z̄)
ψ2(z, z̄)

�

.

(3.17)

Applying to the (t, T ) pair with (h, h̄) = (2, 0) and take into account (3.16), we find

〈t| = lim
w,w̄→0

〈0| t̃(w, w̄) = lim
z,z̄→∞

z4〈0|
�

t(z, z̄) + 2 ln(zz̄)T (z)
�

, (3.18a)

〈T | = lim
w→0
〈0|T̃ (w) = lim

z→∞
z4〈0|T (z) . (3.18b)

Recall the kets | 〉 are defined in the usual way

|t〉 = t(0,0)|0〉 , (3.19a)

|T 〉 = T (0)|0〉 . (3.19b)

It is then straightforward to calculate the gram matrix in the basis
�

|t〉, |T 〉
�

using the two-point
functions (2.14) and find

�

〈t|t〉 〈t|T 〉
〈T |t〉 〈T |T 〉

�

=

�

θ b
b 0

�

. (3.20)

Note that the above is done exactly at c = 0 using the two-point functions we obtained in
section 2.2. One can also consider the state |tc〉 defined at generic c using the definition of
operator t in (2.9). Taking the limit c → 0 gives the same result as (3.20). This agrees with
our expectation that the CFT state space evolves smoothly as we tune the parameter (Q for
Potts and n for O(n)) to the c = 0 theory.

The case with the rank-3 Jordan block is a straightforward generalization which we do not
repeat. Using the two-point functions (2.41), we get the Gram matrix





〈Ψ2|Ψ2〉 〈Ψ2|Ψ1〉 〈Ψ2|Ψ0〉
〈Ψ1|Ψ2〉 〈Ψ1|Ψ1〉 〈Ψ1|Ψ0〉
〈Ψ0|Ψ2〉 〈Ψ0|Ψ1〉 〈Ψ0|Ψ0〉



=





a2 a1 a0
a1 a0 0
a0 0 0



 . (3.21)

3.2.1 Leading terms in the identity conformal block

With the logarithmic OPE in (2.45) and the Gram matrix in the previous section, we can now
construct the leading terms of the logarithmic conformal block of the identity module at c = 0.
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Take the four-point function of identical primary operators Φ∆ placed at (∞, 1, z, 0):

〈Φ∆(∞,∞)Φ∆(1,1)Φ∆(z, z̄)Φ∆(0, 0)〉= lim
z1,z̄1→∞

(z1z̄1)
2∆〈Φ∆(z1, z̄1)Φ∆(1,1)Φ∆(z, z̄)Φ∆(0,0)〉

=
∑

{ψ}

〈Φ∆|Φ∆(1,1)|ψ〉G−1〈ψ|Φ∆(z, z̄)|Φ∆〉 , (3.22)

where in the last line we have inserted a complete set of CFT states {ψ}. Take now the subset of
states belonging to the logarithmic identity module at c = 0. We have the logarithmic Virasoro
conformal block of the identity module

F log
I (z, z̄)≡

∑

{ψ}I

〈Φ∆|Φ∆(1,1)|ψ〉G−1〈ψ|Φ∆(z, z̄)|Φ∆〉 , (3.23)

where the sum now goes over states belong to the identity modules appearing in the logarith-
mic OPE (2.45):

{ψ}I : I , T , T̄ , t , t̄ , ∂ t̄ , ∂̄ t , ∂ 2 t̄ , ∂̄ 2 t , Ψ0 , Ψ1 , Ψ2 , . . . , (3.24)

and G−1 is the inverse Gram matrix which can be obtained using (3.20) and (3.21) and the
usual Virasoro algebra. The functions 〈Φ∆|Φ∆(1,1)|ψ〉 and 〈ψ|Φ∆(z, z̄)|Φ∆〉 are defined by

〈Φ∆|Φ∆(1,1)|ψ〉 = lim
z1,z̄1→∞

〈Φ∆(z1, z̄1)Φ∆(1, 1)ψ(0,0)〉 , (3.25)

〈ψ|Φ∆(z, z̄)|Φ∆〉 = lim
w,w̄→0

〈ψ̃(w, w̄)Φ∆(z, z̄)Φ∆(0, 0)〉 , (3.26)

where ψ̃ is the field transformed under inversion (3.16). The three-point functions 〈Φ∆Φ∆ψ〉
can be fixed by the Ward identities, the OPE (2.45) and the two-point functions (2.12), (2.41).
We give their explicit expressions in appendix A. Plugging the expressions into (3.22), we
obtain the leading terms of the logarithmic conformal block of identity module:

F log
I (z, z̄) = (zz̄)−2∆

¦

1+
∆2

b2
(z2 + z̄2)

�

θ + b ln(zz̄)
�

+
∆2

2b
(zz̄2 + z2z̄) +

∆2

2b
(zz̄)2

+
∆4

a2
0

(zz̄)2
h

a2 + a1 ln(zz̄) +
a0

2
ln2(zz̄)

i

+ . . .
©

.
(3.27)

Note that in the Potts model, the identity modules appears in the geometrical four-point
function Paabb in the Fortuin-Kasteleyn cluster formulation, as studied in [5, 16, 17]. In ap-
pendix B, we will check the expression (3.27) by taking directly the c→ 0 limit of the four-point
function Paabb.

3.3 A self-dual structure

Let us now go back to the structure (3.11) which we have deduced from the requirement of
conformal invariance.

It is clear that the structure is incomplete: Since we have

b
a0

Ā†|Ψ1〉= |T 〉 , (3.28)

and 〈t|T 〉= b from (3.20), this means

〈t|Ā†|Ψ1〉= 〈Āt|Ψ1〉= a0 . (3.29)
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Therefore, we should also have arrows “going out" from |t〉 towards states with dimensions
(2, 2), which are missing in the diagram (3.11). To clarify these actions, note that in (3.29),
there is an ambiguity: Due to the action L1Ψ1 = 0, the argument from (3.28) to (3.29) actually
works for arbitrary combination of Virasoro operators P(Ā, L̄2

−1) = Ā + α L̄2
−1 so instead of

(3.29), we write
〈P(Ā, L̄2

−1)t|Ψ1〉= a0 , (3.30)

and similarly
〈P(A, L2

−1) t̄|Ψ1〉= a0 . (3.31)

According to the Gram matrix (3.21), eqs. (3.30), (3.31) seems to suggest that

P(A, L2
−1)| t̄〉 , P(Ā, L̄2

−1)|t〉 ∼ |Ψ1〉, |Ψ2〉 . (3.32)

It is however immediate to see that the second option |Ψ2〉 violates self-duality requirement of
the structure, since

P(Ā, L̄2
−1)|t〉 ∼ |Ψ2〉⇔ 〈Ψ0|P(Ā, L̄2

−1)|t〉 6= 0⇔〈P(Ā†, L̄2
1)Ψ0|t〉 6= 0 , (3.33)

contradicting the actions of L2, L1 on Ψ0 from (3.6) and (3.9). Therefore it is tempting to claim

P(Ā, L̄2
−1)|t〉= P(A, L2

−1)| t̄〉= |Ψ1〉 . (3.34)

Now let us check if this is the |Ψ1〉 we want, using the conformal invariance requirement
from section 3.1:

L1|Ψ1〉= L̄1|Ψ1〉= 0 , L2|Ψ1〉=
a0

b
|T̄ 〉 , L̄2|Ψ1〉=

a0

b
|T 〉 , (3.35)

we first see that by requiring

L1(A+αL2
−1)| t̄〉=

�

[L1, A] +α
�

L1, L2
−1

� �

| t̄〉= 2αL−1| t̄〉= 0 , (3.36)

we fix the coefficient α= 0.

P(A, L2
−1) = A= L−2 −

3
2

L2
−1 . (3.37)

Note it is crucial in the last equality of (3.36) that we are studying a non-chiral case with
L−1| t̄〉 6= 0. The same action on Ā|t〉 is trivially satisfied since

L1Ā|t〉= ĀL1|t〉= 0 , (3.38)

where we have used L1 t = 0 (eq. (3.6)). The first equality in (3.34) now becomes

Ā|t〉= A| t̄〉 , (3.39)

and this condition fixes the value of the parameter b by acting with L2:

b|T̄ 〉= ĀL2|t〉= L2Ā|t〉= L2A| t̄〉= [L2, A] | t̄〉= −5L0| t̄〉= −5|T̄ 〉 , (3.40)

so b = −5. The fact that the equality (3.39) leads to the value of b = −5 was first pointed
out in [14] although there, the equality was proposed as an assumption to explain the value
of b measured on the lattice by [12]. Here, we see that starting from the generic form of
logarithmic OPE (2.45), the equality (3.39) and the value of b is uniquely fixed by requiring
conformal invariance and the self-duality of the structure.
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Now comparing (3.40) with the action L2, L̄2 in (3.35), we can define the state

|Ψ̂1〉=
a0

b2
|At̄〉=

a0

b2
|Āt〉 , (3.41)

and
|Ψ1〉= |Ψ̂1〉+ |Ψ̃1〉 , (3.42)

where we have included a term |Ψ̃1〉 since the above identification of |At̄〉 ∼ |Ψ1〉 is checked
through the actions of L1, L2 so they could be different by a state which is annihilated by L1, L2:

L1|Ψ̃1〉= L2|Ψ̃1〉= 0 . (3.43)

To finish the structure, let us compute the norm of |Ψ1〉 and compare with the Gram matrix
(3.21). We have

〈Ψ1|Ψ1〉=
a2

0

b4
〈t|
�

Ā†, Ā
�

|t〉+
a0

b2

�

〈Āt|Ψ̃1〉+ 〈Ψ̃1|Āt〉
�

+ 〈Ψ̃|Ψ̃〉=
a2

0

b2
+ 〈Ψ̃|Ψ̃〉= a0 , (3.44)

which gives

〈Ψ̃1|Ψ̃1〉= a0

�

1−
a0

b2

�

. (3.45)

In the second to last equality of (3.44), we have used that 〈Ψ̂1|Ψ̃1〉= 0 which is again justified
by self-duality:

〈Ψ̂1|Ψ̃1〉 ∼ 〈At̄|Ψ̃1〉= 〈 t̄|A†Ψ̃1〉= 0 , (3.46)

since |Ψ̃1〉 is annihilated by L1, L2.
Let us now draw the final structure:

|t〉
(2,0)

| t̄〉
(0,2)

|T 〉
(2,0)

|T̄ 〉
(0,2)

|Ψ2〉
(2,2)

|Ψ̂1〉
(2,2)

|Ψ̃1〉
(2,2)

|Ψ0〉
(2,2)

|0〉
(0,0)

|∂̄ t〉
(2,1)

|∂̄ 2 t〉
(2,2)

|∂ t̄〉
(1,2)

|∂ 2 t̄〉
(2,2)

A†

b

Ā†

b

bĀ†

a0

bA†

a0

bĀ†

a0

bA†

a0

A

Ā

Ā A

L̄−1

L̄1
2

L−1

L1
2

L−1

L1
2

L̄−1

L̄1
2

a0Ā
b2

a0A
b2

Figure 2: The identity module under V up to fields with weight (2, 2) at c = 0

Note that we have not drawn the action of L0, L̄0 in figure 2. The state |Ψ̃1〉 is connected
to the rest of the depicted states under the action of L0, L̄0, as will become more clear in the
next subsection.

3.3.1 The fields Ψ̂1 and Ψ̃1

We have seen above that to construct a self-dual structure fig. 2, the state |Ψ1〉 corresponding
to the middle field in the rank-3 Jordan block is necessarily split into two orthogonal parts
which we call |Ψ̂1〉, |Ψ̃1〉. In this subsection, we clarify their field content.
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First note that according to our definition of t in (2.9), the identity (3.39) is simply

At̄ = b

√

√

−
2
c

ĀX +
2b
c

T T̄ = Āt , (3.47)

due to AX̄ = ĀX from generic c (see fig. 1). Now, taking the definition of the field Ψ1 from
eqs. (2.38a) and (2.39), we can write

Ψ1 ∼
b12

2b12 − b
At̄ +

b− b12

2b12 − b

s

−
c
2
Ψ

=
b2

12

b(2b12 − b)
At̄ +

b− b12

2b12 − b

�

s

−
c
2
Ψ +

b12

b
At̄
�

,

(3.48)

(where recall Ψ is defined in fig. 1). In the first line of (3.48), we have neglected the terms
∼ T T̄ which amounts to a change of basis in the rank-3 Jordan block and is unimportant for
the logarithmic structure. Under the Virasoro action L2, we find

L2Ψ1 =
b2

12

2b12 − b
T̄ +

b− b12

2b12 − b
b12

�

s

−
c
2

X̄ + T̄
�

=
a0

b
T̄ , (3.49)

where we have used the identification (2.19). Note that due to this identification, the com-
bination in the parenthesis in the second line of (3.48) in fact decouples from the structure
under the actions of L1, L2. Similar computations can be done for Vir actions. For this reason,
it make sense to define two fields

Ψ̂1 =
b2

12

b(2b12 − b)
At̄ =

a0

b2
At̄ =

a0

b2
Āt , (3.50a)

Ψ̃1 =
b− b12

2b12 − b

�

s

−
c
2
Ψ +

b12

b
At̄
�

, (3.50b)

corresponding to the states |Ψ̂1〉 and |Ψ̃1〉 we have seen above, and

Ψ1 = Ψ̂1 + Ψ̃1 . (3.51)

Their two-point functions can be easily extracted from the definition (3.50) and in particular
we find

〈Ψ̂1(z, z̄)Ψ̃1(0,0)〉= 0 , (3.52)

agreeing with the expectation from (3.46).
Note however that the field Ψ̃1 does not decouple from the rank-3 Jordan block which can

be seen for example in the two-point function:

〈Ψ2(z, z̄)Ψ̃1(0, 0̄)〉=
2b2

12(b− b12)2

(2b12 − b)2
ln(zz̄)
(zz̄)2

. (3.53)

Essentially, Ψ̃1 couples to the structure through the action of L0, L̄0. It is easy to calculate that:

(L0 − 2)Ψ̂1 =
a0

b2
T T̄ = −

1
48

T T̄ , (3.54a)

(L0 − 2)Ψ̃1 =
�

1−
a0

b2

�

T T̄ =
49
48

T T̄ . (3.54b)

It is worth pointing out that the expression (3.53) and the actions (3.54) are also manifestly
invariant under (2.43), and this shows the splitting (3.51) is identical for percolation and
polymers.

As a final remark, note that definitions of Ψ̂1 and Ψ̃1 in (3.50) introduce a “sixth field" into
the structure fig. 2, thus resolving the “disturbing fact" we have mentioned around eq. (3.14).
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3.4 Comparison with [1]

Building Jordan blocks by introducing new fields obtained as formal derivatives of primary
fields with respect to conformal dimensions is an idea that has been around since the early
days of LCFTs. It was explored quite systematically in the recent paper [1], where the authors
constructed in particular a rank-3 Jordan block

�

fWκ
(r,s), Wκ

(r,s), V(r,s)
�

for generic values of c.
While it is believed [3, 4] that there is no rank-3 Jordan block in the Potts or O(n) CFTs at
generic c, we can nonetheless choose the particular value c = 0 in the structure obtained
in [1], and compare with fig. 2.

To properly make such comparison, note that the construction in [1] is done by focusing
on the null descendant of a primary field at a certain level. In our case, we chose the identity
field, which at c = 0 obeys:

(h1,1, h1,1) = (h1,2, h1,2) . (3.55)

As a result, its level-2 descendant given by (2.4) – the stress-energy tensor – becomes null. We
then use the construction in [1] by taking their (r, s) = (2,1). 12

The main characteristic of the structure fig. 2 is the parameter a0 which, as we have seen
from (3.13), does not depend on the normalization we choose for the fields Ψi , i = 0,1, 2. This
is equivalent to the normalization independent structural parameter κ0

(2,1) defined in [1] (eq.
(2.41) in that reference):

L(2,1)L̄(2,1)DD̄fW 0
(2,1) = κ

0
(2,1)(L0 −∆(2,−1))

2
fW 0
(2,1) , (3.56)

where D represents combinations of Virasoro generators Ln>0 at level 2 and
L(2,1) = L2

−1 − β
2 L−2. At c = 0, the parameter κ0

(2,1) takes the value

κ0
(2,1) = −

1
48

. (3.57)

Compare eq. (3.56) with (3.13), and take into consideration of the different normalization of
our Virasoro generators from theirs:

L(2,1)L̄(2,1)DD̄ =
� β4

4(1− β4)

�2
AĀA†Ā† = 25AĀA†Ā† . (3.58)

Eq. (3.57) agrees with our parameter a0 from (2.44).
Recall from section 3.3 that in drawing the self-dual structure fig. 2, we have split the

middle field Ψ1 from the rank-3 Jordan block into two parts: Ψ̂1 and Ψ̃1. The Ψ̃1 in the middle
of the diagram fig. 2 is disconnected from the rest, but is however coupled to the structure
through the action of L0. From (3.54) it is clear that the coefficient in the splitting, i.e.,
a0
b2 and 1 − a0

b2 , are also normalization independent and provide another comparison. The
corresponding expressions can be similarly written for the structure of [1]. Their middle field
is given by

W 0
(2,1) = (1− κ

0
(2,1))V

′
(2,−1) + κ

0
(2,1)LL̄V ′(2,1) , (3.59)

where V ′(2,−1) is annihilated by Virasoro generators Ln>0, L̄n>0 and the construction using the
derivative allows one to write:

(L0 − 2)V ′(2,−1) = ( L̄0 − 2)V ′(2,−1) = V(2,−1) , (3.60a)

(L0 − 2)LL̄V ′(2,1) = LL̄(L0 − 2)V ′(2,1) + [L0,L] L̄V ′(2,1) = LL̄V(2,1) = V(2,−1) . (3.60b)

12Note that our convention for (r, s) is switched from theirs. So our Kac indices (1, 2) as in e.g. (3.55) corresponds
to their Kac indices (2,1). For the rest of this subsection we will follow the convention in [1].
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Therefore we see that the field (3.59) indeed is split into two parts with the same coefficients
as (3.54) since

κ0
(2,1) =

a0

b2
. (3.61)

The Virasoro structure of [1] can be summarized as following:

V(2,1)

LV ′(2,1)L̄V ′(2,1)

LV(2,1)L̄V(2,1)

V(2,−1)

κ0LL̄V ′(2,1)

fW 0
(2,1)

(1−κ0)V ′(2,−1)

(3.62)

which takes the same form as the “centre" of our structure fig. 2 13 where the rank-3 Jordan
block (Ψ2,Ψ1,Ψ0) is involved.

We emphasize that the construction in [1] holds for the primary field (h12, h12) as a starting
point, and it is only the coincidence of conformal weights h12 = h11 = 0 at c = 0 that makes
it relevant to our problem. It is thus not clear to us why the formal structure proposed in [1]
should coincide with our (admittedly, obtained much more laboriously) results: the question
remains open as to whether this is more than an accident.

4 Conclusions

This paper uncovers the non-chiral structure associated with the existence of a logarithmic
partner of the stress-energy tensor in percolation and polymers CFTs with c = 0. While it
is certainly satisfactory to have this finally worked out, it would be very nice to have some
independent confirmation based on the analysis of lattice models in the spirit of [11,15]. We
note in this respect that our structure of the identity module (in particular, the existence of
a rank-three Jordan block) is compatible with what was proposed in [15]: a more detailed
comparison will appear elsewhere.

There are many other possible directions for future work on this difficult problem. One is to
compare the structure we have obtained with the replica approach pioneered in [22], [21]. Yet
another direction is to revisit the ideas in [9] and try to properly define the action of t modes
in the non-chiral case. It would also be interesting to find out how universal the diagram in
figure 2 might be, and what the situation is for other c = 0 theories. Finally, it is important to
emphasize that we have only uncovered the beginning of the identity module structure: what
happens for h, h̄> 2 remains to be explored. We hope to get back to (some of) these questions
in further work.
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A Three-point functions of 〈Φ∆Φ∆ψ〉

In section 3.2.1, we have constructed the leading terms in the logarithmic conformal block
of the identity module at c = 0. To do this, we used the three-point functions of the type
〈Φ∆Φ∆ψ〉 whereψ belongs to a logarithmic multiplet. We now give their explicit expressions.

The position dependence of the three-point functions involving logarithmic fields are fixed
by conformal Ward identities. For details see for example [23, 24]. In our case, we focus on
(t, T ) and (Ψ2,Ψ1,Ψ0). Denoting

zi j = zi − z j (A.1)

the three-point functions are given by

〈Φ∆(z1, z̄1)Φ∆(z2, z̄2)T (z3)〉 =
CΦΦT

z2∆−2
12 z2

13z2
23z̄2∆

12

, (A.2a)

〈Φ∆(z1, z̄1)Φ∆(z2, z̄2)t(z3, z̄3)〉 =
CΦΦt + CΦΦT ln z12z̄12

z13z̄13z23z̄23

z2∆−2
12 z2

13z2
23z̄2∆

12

, (A.2b)

and

〈Φ∆(z1, z̄1)Φ∆(z2, z̄2)Ψ0(z3, z̄3)〉=
CΦΦΨ0

z2∆−2
12 z2

13z2
23z̄2∆−2

12 z̄2
13z̄2

23

, (A.3a)

〈Φ∆(z1, z̄1)Φ∆(z2, z̄2)Ψ1(z3, z̄3)〉=
CΦΦΨ1

+ CΦΦΨ0
ln z12z̄12

z13z̄13z23z̄23

z2∆−2
12 z2

13z2
23z̄2∆−2

12 z̄2
13z̄2

23

, (A.3b)

〈Φ∆(z1, z̄1)Φ∆(z2, z̄2)Ψ2(z3, z̄3)〉=
CΦΦΨ2

+ CΦΦΨ1
ln z12z̄12

z13z̄13z23z̄23
+ 1

2 CΦΦΨ0
ln2 z12z̄12

z13z̄13z23z̄23

z2∆−2
12 z2

13z2
23z̄2∆−2

12 z̄2
13z̄2

23

. (A.3c)

Inserting the OPE (2.45) and using the two-point functions (2.14) and (2.41), one finds

CΦΦT =∆ , CΦΦt =∆
θ

b
,

CΦΦΨ0
=∆2, CΦΦΨ1

=∆2 a1

a0
, CΦΦΨ2

=∆2 a2

a0
.

(A.4)

B The c→ 0 limit of Potts Paabb

As studied in [5,16,17], the identity module appears in the Potts geometrical four-point func-
tion Paabb where the first two points belong to one Fortuin-Kasteleyn cluster and the last two
belong to a different one. At generic c, the following combination of conformal blocks enters
the four-point function:

〈Φ 1
2 ,0Φ 1

2 ,0Φ 1
2 ,0Φ 1

2 ,0〉= Fh1,1
(z)Fh1,1

(z̄)+R3,1Fh3,1
(z)Fh3,1

(z̄)+Aaabb(h1,2)F
log
h1,2
(z, z̄)+. . . , (B.1)

where the amplitude for identity (h1,1, h1,1) is normalized to 1. The coefficient R3,1 of the
field Φ31 appears in the interchiral block [5] of the affine Temperley-Lieb module W0,q2 and
is determined from the degeneracy of the field Φ21. (See eq. (4.26) in [5].) Aaabb(h1,2)
represents the amplitude of X , X̄ and F log

h1,2
(z, z̄) is the logarithmic block obtained in [4].
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In the main text, we have studied the logarithmic mixing of the Virasoro modules at c = 0
for a generic OPE (2.7) and obtained conditions (2.13), (2.28) and (2.30) which are necessary
for canceling the naive divergence at c = 0. One can think of this as the condition for the
operator Φ∆ in (2.45) to probe the logarithmic structure of the CFT. In the case Φ∆ = Φ 1

2 ,0 –
the spin operator in Potts model, we can check the logarithmic conformal block (3.27) thus
obtained with the direct c→ 0 limit of (B.1).

We start with Φ3,1. The recursion R3,1 at generic c for the four-point function (B.1) is given
by

R3,1(β) =
Γ
�

2− 4
β2

�

Γ
�

1− 3
β2

�

Γ
�

2− 3
β2

�

Γ
� 1
β2

�2
Γ
� 3

2β2

�4
Γ
� 2
β2

�

Γ
�

1− 2
β2

�

Γ
�

1− 3
2β2

�4
Γ
�

1− 1
β2

�2
Γ
� 3
β2 − 1

�

Γ
� 4
β2 − 1

�

Γ
� 3
β2

�

, (B.2)

and its behavior as c→ 0 is

R3,1 =
r2

c2
+

r1

c
+ r0 +O(c1) , (B.3)

where the coefficients r2, r1, r0 can be easily extracted. Expanding the s-channel conformal
block in c and keep up to c2, we have

Fh3,1
(z) = z2

�

1+ h′31c ln z +
c2

2

�

h′′31 ln z + h′231 ln2 z
�

+ . . .
�

, (B.4)

where h′31, h′′31 denote their values at c = 0. The second term in (B.1) is therefore given by

R3,1Fh3,1
(z)Fh3,1

(z̄) =(zz̄)2
�

r2

c2
+

r1 + r2h′3,1 ln(zz̄)

c
+ r0

+ h′3,1r1 ln(zz̄) +
r2h′′3,1

2
ln(zz̄) +

r2h′23,1

2
ln2(zz̄) + . . .

�

.

(B.5)

Now expanding the s-channel conformal block for identity in c, we have

Fh1,1
(z) = 1+ z2 2∆2

c
+ 4z2∆∆′ + 2z2(∆′2 +∆∆′′)c + . . . , (B.6)

so the first term of (B.1) becomes:

Fh1,1
(z)Fh1,1

(z̄) =(zz̄)2
4∆4

c2
+ (zz̄)2

16∆3∆′

c
+ (z2 + z̄2)

2∆2

c
+ 1+ 4(z2 + z̄2)∆∆′ + (zz̄)2

�

24∆2∆′2 + 8∆3∆′′
�

+ . . . .
(B.7)

Lastly we look at the third term in (B.1). The logarithmic block at generic c is given by

F log
h1,2
(z, z̄) =(zz̄)h1,2(c)

�

z2 + z̄2 + (zz̄2 + z2z̄)
h1,2(c)

2
+ 2(zz̄)2h12(c)(1+ h12(c))α(c)

+ (zz̄)2 g(c)2
�

λ(c) + b12(c) ln(zz̄)
�

+ . . .
�

,
(B.8)

where b12 = bPotts
12 in (2.6) and we have from [4]: 14

g2(c) =
β4

1024(1− 2β2)2
. (B.9)

14In terms of the parameters defined in [4], λ(c) = 2ν
κ2 r

�

s+ µ

2r

�

whose value at c = 0 is given by λ= 145
18 −10 ln2.
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As c→ 0 one has

F log
h1,2
(z, z̄) =

�

z2 + z̄2 + z2z̄2 g2
�

λ+ b12 ln(zz̄)
�

�

(1+ ch′1,2 ln(zz̄)) + (z2z̄ + zz̄2)
h′1,2c

2

+ (zz̄)2c
�h′12

2
+ (g2λ)′ + (g2 bPotts

12 )
′ log(zz̄)

�

. . . .

(B.10)

As argued in [5], the amplitude needs to have the behavior

Aaabb(h1,2) =
η

c
+ κ+O(c1) , (B.11)

which can also be seen from the necessity of canceling the simple pole 1/c at (z2+ z̄2) in (B.7).
The contribution in the four-point function (B.1) is therefore given by:

Aaabb(h1,2)F
log
h1,2
(z, z̄) =

η

c

�

z2 + z̄2 + z2z̄2 g2
�

λ+ b12 ln(zz̄)
�

�

+
�

κ+ηh′1,2 ln(zz̄)
�

�

z2 + z̄2 + z2z̄2 g2
�

λ+ b12 ln(zz̄)
�

�

(B.12)

+
η

2

�

(z2z̄ + zz̄2)h′1,2 + (zz̄)2
�

h′12 + (2g2λ)′ + ln(zz̄)(2g2 bPotts
12 )

′�
�

+ . . . .

Combining the expressions (B.5), (B.7) and (B.12), we see the following conditions have
to be satisfied in order for the double pole and simple pole at c = 0 to disappear:

O(c−2): (zz̄)2 : r2 + 4∆4 = 0 ,

O(c−1): z2, z̄2 : η+ 2∆2 = 0 ,

(zz̄)2 : 16∆3∆′ + r1 +ηλg2 = 0 ,

(zz̄)2 log(zz̄) : r2h′3,1 +ηg2 b12 = 0 .

(B.13)

These indeed agrees with the conditions (2.13), (2.28) and (2.30) we obtained in the main
text. It is easy to check (B.13) to be true using ∆ = h 1

2 ,0 and the values of g and λ at c = 0
(see eq. (B.9) and footnote 14).

The finite part of the c = 0 identity block in (B.1) is therefore given by:

〈Φ 1
2 ,0Φ 1

2 ,0Φ 1
2 ,0Φ 1

2 ,0〉=1+ (z2 + z̄2)
�

(4∆∆′ + κ) +ηh′12 ln(zz̄)
�

+
ηh′12

2
(z2z̄ + zz̄2)

+ (zz̄)2
�

r0 + 24∆2∆′2 + 8∆3∆′′ +λg2κ+η(λg2)′ +
ηh′12

2

+ ln(zz̄)
� r2h′′31

2
+ h′31r1 +ηλg2h′12 + g2κbPotts

12 +η(g2 bPotts
12 )

′
�

+ ln2(zz̄)
� r2h′231

2
+ηh′12 g2 b12

�

+ . . .
�

+ . . . ,

(B.14)

where ∆ = h 1
2 ,0 but the expression applies for generic four-point function of diagonal field

Φ∆. This of course has to agree with the expression (3.27) which was obtained by taking the
c → 0 limit of the s-channel OPE first and then substituting the finite two-point functions at
c = 0. To check the agreement, we now give the f1, f2 in (2.31a) whose explicit expressions
were neglected there. Note that these quantities, as well as the resulting parameters a1, a2 in
(2.41), are not important for the intrinsic logarithmic structure in the CFT. In particular, their
values depending on the dimension of the “probing operator" Φ∆ and their appearance in the
two-point functions (2.41) can be shifted away by a change of basis for the Jordan blocks.
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However for the purpose of comparing with the four-point function explicitly, we need the
following:

f1 =
4∆′h′Φ +∆h′′Φ

2∆h′Φ
, f2 =

4∆2 g ′ −κg
8∆3h′Φ

, (B.15)

and here we take hΦ = h31. The resulting parameters a1, a2 in (2.41) are given by

a1 =
4a2

0

b2
12

�

−
1
2
(b2

12h′′Φ + b′12) +
b12

∆2

�κ

4
+ b12 g ′∆+ 2∆∆′

�

−
λ

2

�

h′12 − h′31

�

�

, (B.16a)

a2 =
4a2

0

b2
12

� b2
12

4∆4

�

r0 + 24∆2∆′2 + 8∆3∆′′
�

+
λκ

4∆2
−
λg g ′b2

12

∆2
−
λ′

2

�

. (B.16b)

It is then easy to check that (B.14) indeed agrees with (3.27) by using eqs. (2.10), (2.34a)
and (B.13).

C About self-duality

While the literature abounds in formal arguments of why diagrams for V should be self-
dual [13, 15], it is instructive to discuss what it means in elementary terms. Restricting for
simplicity to boundary theories and the Virasoro algebra, a diagram is self-dual if it is in-
variant under reversal of all arrows. 15 A well known example of such a diagram occurs in
boundary percolation [25] with

R2R2

R3

R0 (C.1)

where R0, R2, R3 stand for Virasoro simple modules with highest weights h1,1 = 0, h1,5 = 2,
h1,7 = 5 in the c = 0 theory, and the arrows represent the action of the Virasoro algebra (so
for instance, having an oriented arrow from R2 to R3 means it is possible to go from (some)
states in R2 to (some) states in R3, but not the other way around). The diagram is obviously
invariant under reversal of the arrows and flipping around the vertical axis.

In contrast, a diagram such as
R2

R0 (C.2)

is not self-dual. To see what is wrong with it, let us take a state |v〉 in R0, and its image |w〉
in R2 under the action of some polynomial in the Virasoro generators P({Ln}). We have

|w〉= P({Ln})|v〉 . (C.3)

First, let us show that |w〉 has zero Virasoro-norm 16 square. This is because

〈w|w〉 6= 0 ⇐⇒ 〈P({Ln})v|w〉 6= 0 ⇐⇒ 〈v|P({L−n})w〉 6= 0 , (C.4)

15combined with horizontal or vertical flipping, depending on the convention of how one draws the diagrams
16This is the usual conformal norm for which L†

n = L−n. While it is not positive definite in non-unitary theories,
it is nevertheless the norm relevant to the calculation of correlation functions.
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in other words, if w does not have zero norm-square, it must be possible to “go back” from
w to v (and maybe something else) by conjugate action of the Virasoro generators. But by
assumption, (C.2) is all we have, therefore we reach a contradiction.

Now that we know that |w〉 has zero-norm square, we must appeal to the principle that
our theory should not have a state that is orthogonal to all other states: otherwise the associated
field would have vanishing two-point functions with all other fields in the theory, and therefore
be redundant and could be factored out. This means therefore that there must exist another
state |w′〉 such that 〈w|w′〉 6= 0. Note that, by general CFT principles, |w′〉 must have the same
conformal weight as |w〉. So now we have

〈w|w′〉 6= 0 ⇐⇒ 〈P({Ln})v|w′〉 6= 0 ⇐⇒ 〈v|P({L−n})w′〉 6= 0 , (C.5)

so there must be another arrow going from |w′〉 onto |v〉.

|w′〉 |w〉

|v〉 (C.6)

so once again we reach a contradiction if we suppose (C.2) is all we have.
Using this kind of argument, it is easy to see that, whenever we have a diagram and a pair

of modules R, R′ with an arrow going from R to R′, we must have another copy of R′ - denote
it by R′′ - with an arrow going from that copy to R. The subset R, R′, R′′ is then invariant by
duality. The argument generalizes to more complicated cases.
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