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Abstract

We consider one dimensional block cellular automata, where the local update rules are
given by Yang-Baxter maps, which are set theoretical solutions of the Yang-Baxter equa-
tions. We show that such systems are superintegrable: they possess an exponentially
large set of conserved local charges, such that the charge densities propagate ballisti-
cally on the chain. For these quantities we observe a complete absence of “operator
spreading”. In addition, the models can also have other local charges which are con-
served only additively. We discuss concrete models up to local dimensions N ≤ 4, and
show that they give rise to rich physical behaviour, including non-trivial scattering of
particles and the coexistence of ballistic and diffusive transport. We find that the local
update rules are classical versions of the “dual unitary gates” if the Yang-Baxter maps are
non-degenerate. We discuss consequences of dual unitarity, and we also discuss a family
of dual unitary gates obtained by a non-integrable quantum mechanical deformation of
the Yang-Baxter maps.
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1 Introduction

The dynamics of many body interacting models is generally intractable with analytic methods,
and this holds true for both classical and quantum models. It is only in specific circumstances
that exact solutions can be found, which makes such systems valuable from a theoretical point
of view. One dimensional integrable models form a well studied class of exactly solvable
models, having distinctive features such as the existence of a large set of conserved charges and
completely elastic and factorized scattering of quasi-particles [1–3]. However, exact solutions
can also be found in other circumstances, for example in quantum circuits with dual unitary
gates, as we discuss below.

In this paper we consider two special types of dynamical systems: block cellular automata
(BCA) and closely related brickwork quantum circuits (also called quantum cellular automata,
QCA) in one space dimension. Even though these are relatively simple systems, it is believed
that they display many of the important physical features of more generic systems. For recent
reviews of QCA see [4,5].

We focus on integrable cases in both the classical and quantum setting, and consider models
with a specific brickwork structure for the local update rules. Systems of this type have been
studied recently as simple models for non-equilibrium dynamics, both in the classical and
quantum settings (see for example [6, 7]; other relevant references will be given later in the
text). However, the understanding of integrable cellular automata with finite configuration
spaces is not yet satisfying.

Closely related systems, such as classical integrable equations on discrete space-time lat-
tices are well studied [8–11], and most of the research deals with models with continuous local
configuration spaces, such as the complex numbers or some group manifolds. These systems
display the hallmarks of integrability, such as the existence of a set of higher charges and com-
muting flows (the latter is also known as multi-dimensional consistency or the cube condition),
the appearance of Lax matrices and the Yang-Baxter equation in various forms [12–14], and
also a constrained algebraic growth of the iterated functions [15]. A new algebraic approach
to discrete time integrable models was formulated recently in [16].

In contrast, less is known in those cases when the configuration space is also finite; these
models are sometimes called “ultra-discrete” [17]. In specific cases they were well studied,
see for example the so-called box-ball systems [17], which can be understood as the ultra-
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discretization of integrable field equations. Cellular automata can be viewed as a classical
dynamical systems over finite fields, and algebraic and algebro-geometric aspects were studied
in [18–22].

BCA with Floquet type update rules attracted considerable attention in the last couple of
years, both with finite and continuous configuration spaces [23, 24]. In the finite case the
most studied system has been the so-called Rule54 model [7, 8, 25], where exact solutions
were found for the dynamics despite the model being interacting [26–29]. Quite surprisingly,
despite having perhaps the simplest dynamics among interacting models, the algebraic inte-
grability of the Rule54 model is still not clarified, see [30, 31]. A new algebraic framework
for spin chains and QCA with “medium range interaction” was developed in [31], where it
was shown that the closely related Rule150 model is Yang-Baxter integrable with three-site
interactions. This new approach led to other integrable block cellular automata, for example
the model of [32] which is the classical version of the folded XXZ model [33,34].

These recent developments motivate further research on BCA. There are two main ques-
tions. First of all, how can we find and classify all integrable models of this sort, and second,
which one of these models is interesting and useful from a physical point of view. In this
second respect we mention the paper [6] and subsequent works [35, 36] which showed that
even a relatively simple solvable system can serve as a useful toy model for generic physical
behaviour, such as diffusive transport.

In this paper we consider classical BCA where the update rule is given by a so-called Yang-
Baxter map: a set theoretical solution of the Yang-Baxter equation, without any spectral pa-
rameters. These maps were introduced by Drinfeld in [37] and studied afterwards in detail in
the seminal paper [38]. By now the study of Yang-Baxter maps on finite sets grew into a sepa-
rate topic in mathematics and mathematical physics. We do not attempt to give a review of this
field, instead we refer the reader to the recent work [39] which deals with the enumeration
of Yang-Baxter maps up to size N = 10.

The novelty of our work is that we build BCA from Yang-Baxter maps; apparently this
simple construction was not yet explored in the literature. Closely related constructions were
studied in [40,41], but these works treated translationally invariant quantum spin chains and
not the BCA. The model of [6] belongs to the class we are considering, and it is in fact the
simplest non-trivial model in this class, as we show in the main text.

Our aim is to explore the consequences of the Yang-Baxter equation on the dynamics of
these models, focusing first on the classical examples. These are treated in Sections 3-6 after
the general introduction of the setup in Section 2. We find that the models are super-integrable:
they possess an exponentially large set of local conservation laws, and this sets them apart from
a generic integrable model. Afterwards we also consider quantum mechanical deformations
(Section 7), and explain that the models lose their super-integrability, but remain integrable.
We should note that conservation laws in cellular automata were already studied some time
ago [42, 43] and also more recently [44], but these works treat the usual CA, and not the
integrable BCA. Conserved operators in Clifford quantum CA were investigated in [45].

Studying the classification of the Yang-Baxter maps we immediately encounter the property
of non-degeneracy [38]. This can be seen as the classical analog of the “dual unitary” property
of two-site quantum gates. Therefore we also explore the overlap between the dual unitary
and integrable quantum circuit models. The dual unitary circuits are quantum BCA, where
the two-site gate is a unitary operator when viewed as a generator of translations in both the
time and space directions [46–48]. They are solvable models of quantum computation, which
can display integrable and chaotic behaviour as well. A complete parameterization for dual
unitary gates is not known beyond local dimension N = 2, but quite general constructions
were published, see for example [49] or formula (51) of [50] (which was suggested by one of
the present authors). In this work we also contribute to the theory of dual unitary models, by
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establishing a connection with the Yang-Baxter maps in the integrable cases, and by presenting
a non-integrable deformation of such gates, thus obtaining a more general family of dual
unitary gates (see Section 8).

In Section 9 we present our conclusions and some open problems.

2 Models

In this work we consider classical and quantum cellular automata in one space dimension. In
the classical case we are dealing with block cellular automata, whereas in the quantum case
we switch to unitary quantum circuits of the brickwork type (quantum cellular automata). In
this Section we review the basic constructions.

First we discuss the classical case. Let X be a finite set with N elements. We interpret X as
a local configuration space. A cellular automaton consists of a collection of cells and an update
rule. We consider one dimensional systems, and we deal with classical “spin” variables s j with
j = 1, 2, . . . , L that take values from the set X . Here L is the length of the system, which is
assumed to be an even number, and we will always consider periodic boundary conditions. A
configuration s = {s1, s2, . . . , sL} is an element of X L ≡ X × X × · · · × X , and the update rule V
is a map X L → X L . This means that at each iteration we update the configuration as

s → Vs . (1)

For the identity map we will use the notation 1 throughout this work.
In this work we consider information preserving maps, which means that the update rule has

to be an invertible map. The property of invertibility is analogous to “phase space conservation”
in Hamiltonian mechanics, see the discussion in [51]. Furthermore we will also require time
reflection invariance, which is an additional requirement; details will be specified below.

We consider Floquet-type block cellular automata. Specifically we restrict ourselves to two
types of strictly local system, which we call 2→ 2 and 3→ 1 models. The Floquet rule consist
of two steps in both cases: V = V2V1, and the maps V1,2 are constructed from commuting local
maps. For convenience we choose the time coordinate t such that the action of V corresponds
to t → t + 2.

In the case of the 2→ 2 models we deal with a local two-site map U : X 2→ X 2 and build
the update rules as

V1 = UL−1,L . . . U3,4U1,2 ,

V2 = UL,1 . . . U4,5U2,3 .
(2)

We require time reflection invariance from our models in all cases. This means that the
local update moves should be involutive, i.e. U2

j, j+1 = 1. For the Floquet update rule this
implies

V−1 = (V2V1)
−1 = V1V2 . (3)

In contrast to the 2→ 2 models the 3→ 1 models describe time evolution on light cone
lattices, and each local update step uses the information from 3 sites to give a new value to a
variable on one site. In most of this work we will focus on the 2→ 2 models, and we treat the
3→ 1 models in Section 6.

We also consider quantum circuits (also called quantum cellular automata, QCA), whose
structure follows from an immediate generalization of what was discussed so far. In the quan-
tum case we are dealing with local Hilbert spaces CN whose basis is indexed by the elements
of the finite set X . The full Hilbert space of a quantum chain of length L is given by the L-fold
tensor product of local spaces, and the state of the system is a vector |Ψ〉 of this Hilbert space.
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(a) Permutation model with N = 2

1
2
3

(b) XXC model with N = 3

Figure 1: Examples for time evolution in the classical cellular automata. In the plots
the vertical direction corresponds to time, and the horizontal to space; the initial
condition is given by the uppermost row, and time flows downwards. We plotted
both half-steps of the Floquet cycle V = V2V1, and we use a convention such that
the addition of two rows corresponds to t → t + 2. This way the speed of propaga-
tion in the permutation model is v = ±1. In the space direction periodic boundary
conditions are applied.

In analogy with the classical case we are dealing with two-site maps Û j, j+1 which are now
quantum gates acting on a pair of local Hilbert spaces. Furthermore, we construct quantum
circuits of brickwork type by the immediate generalization of the Floquet rule (2), by replacing
classical maps with operators. Thus we obtain the quantum update rule V̂ , and at each step
the state of the system is changed as

|Ψ〉 → V̂ |Ψ〉 . (4)

Every classical update rule can be lifted immediately to a quantum gate, by defining Û such
that it permutes pairs of basis vectors according to the classical map U . To be precise:

Û (|a〉 ⊗ |b〉) = |c〉 ⊗ |d〉 , where (c, d) = U(a, b) . (5)

In such a case the resulting quantum circuit is deterministic in the given basis. On the other
hand, we will also consider cases where the two-site gate Û j, j+1 produces linear combinations
of the local product states, thus it becomes a true quantum gate.

2.1 Examples

Here we give two examples for the models that fit into our framework. Both models are
classical, and they appeared earlier in the literature.

In the case of the classical 2→ 2 models the simplest one is what we call the permutation
model. It is defined for every set X by the permutation map P:

U(a, b) = P(a, b)≡ (b, a) , a, b ∈ X . (6)

The application of the update rule leads to light cone propagation in the model, with the
odd/even sub-lattices performing a cyclic shift to the right/left, respectively. An example for
time evolution in this model is shown in Figure 1.

An other example is the XXC model with N = 3. Labelling the local configuration space as
X = {1, 2,3} the update rule is defined as

U(a, b) =

¨

(b, a) if a = 1 or b = 1 ,

(a, b) otherwise .
(7)
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This update rule is closely related to the XXC quantum spin chains studied in [52], hence
the name. The map U appears at the “rational point” of the R-matrices presented in [52].
The update rule was later independently proposed in [6] and the resulting model was further
analyzed in [35,36]. In these works it was observed that the map U satisfies the set theoretical
Yang-Baxter relation (see Section 3).

In the XXC model the state 1 can be interpreted as the “vacuum”, and the two remaining
states can be interpreted as particles with an inner degree of freedom, given by two colors.
An example for the time evolution in this model is shown in Fig. 1. If we focus only on the
dynamics of the “charge”, i.e. we forget about the colors, then the model is found to be equiv-
alent to the permutation model. The new features come when we add the non-trivial color
dynamics. It can be seen that the particle numbers for the two colors are separately conserved,
but the colors do not propagate ballistically, the colors get reflected during scattering. There-
fore, the spatial ordering of the colors is conserved during time evolution, while the particles
move along the light cones. This color dynamics is typical for the low energy scattering in
quantum models with two-color excitations. The model shows complex transport properties,
and a number of exact results for the real time evolution were computed in [6,35,36].

2.2 Local symmetries and local conservation laws

We are interested in models that have a large set of local conservation laws, and sometimes
also a finite set of local symmetries. Therefore we discuss these concepts briefly, and intro-
duce the necessary notations. In these discussions we consider only the 2→ 2 maps, but the
generalization to the 3→ 1 case is obvious.

First we discuss the symmetries and conservation laws in the classical language. The exten-
sion to the quantum case follows immediately, by lifting the classical maps to linear operators.

Let S : X → X be a bijection. We say that the model has global symmetry S, if

(S × S)U1,2 = U1,2(S × S) . (8)

This implies that the global extension of S defined as S×S×· · ·×S is a symmetry of the cellular
automaton, it commutes with the global update rule V .

It is also useful to discuss symmetries which can be applied locally. A special situation is if
the symmetry operation can be applied along a light cone. We say that the symmetry operation
S propagates ballistically if

(1× S)U1,2 = U1,2(S × 1), and (S × 1)U1,2 = U1,2(1× S) . (9)

This implies that
VS2k−1 = S2k+1V , VS2k = S2k−2V , (10)

for every integer k, and we used the notation that S j acts on site j. Consecutive application
of the relations above implies that the permutation symmetry “propagates along light cones”
and it connects different orbits by changing the local states only along a specific light cone.

Let us also discuss conserved charges. We consider functions q(α) : Xα → Z with
α = 1,2, . . . and interpret them as local charge densities with range α. We chose the image
space of the charges to be the integers, which is very natural in systems with finite configura-
tion spaces.

Correspondingly, we define translationally invariant extensive charges Q(α) : X L → Z as

Q(α) =
L
∑

j=1

q(α)( j) , (11)
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where it is understood that q(α)( j) is the function q(α) applied on the segment
[ j, j + 1, . . . , j + α− 1] of the automaton, and periodic boundary conditions are understood.
Our update rules V are invariant with respect to translation by two sites only, therefore it is
useful to study charges with the same invariance properties. This leads to the combinations

Q(α),+ =
L/2
∑

j=1

q(α)(2 j + 1) , Q(α),− =
L/2
∑

j=1

q(α)(2 j) . (12)

We say that a specific global charge Q(α) is conserved, if

Q(α) =Q(α) ◦V (13)

in every volume L ≥ α, such that the charge density q(α) is not changed as we increase L. The
same definition applies for charges of the form (12).

Formulas (8)-(9) are immediately generalized to the quantum case. Regarding the charges,
in the quantum case one deals with local operator densities q̂(α) and global charge operators
Q̂(α) and the value of a given charge on a state |Ψ〉 is given by the mean value 〈Ψ|Q̂(α)|Ψ〉. A
quantum charge is conserved if it commutes with the time evolution as an operator:

Q̂(α)V̂ = V̂Q̂(α) . (14)

If the quantum circuit is deterministic, and if we restrict ourselves to states |Ψ〉 which are
product states in our computational basis, then the statement (13) is equivalent to the conser-
vation of 〈Ψ|Q̂(α)|Ψ〉 which follows from (14). However, the commutativity (14) carries more
information than the classical conservation law, which is stored in the off-diagonal elements
of the relation.

In the quantum setting ballistically propagating one-site operators were studied in [53],
they were called “solitons”. In Clifford automata ballistically propagating multi-site charges
were studied in [45] and they were called “gliders”.

Let us now also define a concrete basis for the local charges in the classical setting. For
one-site charges X → Z let [a] denote the characteristic function of the local state a. To be
more precise the value of charge [a] on a local variable s ∈ X is

[a](s) =

¨

1 if s = a ,

0 otherwise .
(15)

This definition gives N −1 independent one-site charges, because
∑N

a=1[a] = 1, where now 1
stands for the constant map X → Z whose value is 1 ∈ Z.

Multi-site charges are then generated by products and sums of the one-site charges, and
we use the notation [a] j for the one-site charge acting on site j. In the quantum mechanical
setting the local operator corresponding to [a] j is the projector Pa

j onto the local state |a〉 of
site j. Combinations of such projectors span the vector space of the diagonal operators.

For a specific model let Nr denote the number of independent extensive conserved charges
with range α ≤ r. It is generally expected that an integrable cellular automaton should have
an extensive set of conserved quantities, which means that Nr should grow at least linearly
with r. There are models where Nr grows exponentially with r: we call these models super-
integrable.

In analogy with the quantum case let us also define the “time evolution” for maps
f : X L → X L in the classical case as

f → V−1 f V . (16)

This is a simple analog of the time evolution of quantum operators in the Heisenberg picture.
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3 Cellular automata from Yang-Baxter maps

We consider cellular automata, where the update rules are solutions to the set theoretical
Yang-Baxter equation. We will focus mainly on 2 → 2 models and we briefly discuss 3 → 1
models in Section 6. In the following Sections we focus mainly on the classical case, and we
discuss the quantum extensions in 7.

The set theoretical Yang-Baxter equation was introduced by Drinfeld in [37]. It is a relation
for maps U : X 2→ X 2, which takes the form

U12U23U12 = U23U12U23 . (17)

This is a relation for maps X 3 → X 3, and it is understood that U j, j+1 acts on the components
j, j+1 of the triple product. Structurally it is equivalent to the so-called braid relation, or the
“spectral parameter independent” quantum Yang-Baxter equation. Usually it is also required
that U2 = 1, although non-involutive solutions were also considered in the literature, see
for example [39]. In this work we say that U is a solution (or Yang-Baxter map) if it solves
the relation (17) and it is involutive. We always restrict ourselves to space-reflection invariant
cases, which is motivated by the physical applications. This requirement is usually not included
in the definition of the Yang-Baxter map, but we do include it, so that we have reflection
symmetry in both the space and time directions.

Every Yang-Baxter map U gives rise to a solution of the usual (quantum) Yang-Baxter
equation, this is treated later in 7. Yang-Baxter maps were studied in [38, 39] and in many
other research works; we do not attempt to review the literature here. Concrete examples will
be introduced later in Section 5.

Let us write the map U as

U(x , y) = (Fx(y), Gy(x)) , (18)

where Fx , Gx are maps X → X parameterized by an element x of X . We say that the solution U
is non-degenerate if every map Fx and Gx is a bijection of X . The simplest example for a non-
degenerate map is the permutation, when every Fx and Gx is the identity on X . In contrast,
the identity solution given by

U(x , y) = (x , y) (19)

is degenerate, because the functions Fx map every y to x .
Most of the literature focuses on non-degenerate maps due to their useful mathematical

properties. Furthermore, in many papers the word “solution” is reserved to non-degenerate
Yang-Baxter maps. However, for our purposes the degenerate maps are also important, so
we do not exclude them from our studies. Recent papers which studied degenerate solutions
include [54–57].

The non-degenerate property is a classical counterpart of the “dual unitarity” of the quan-
tum gates. This is discussed in more details in Section 3.3.

3.1 Yang-Baxter maps and the permutation group

Here we discuss the implications of the Yang-Baxter relation. The ideas presented here ap-
peared in many places in the literature, but the application to the block cellular automata
seems to be new. Indeed it seems that the physical consequences that we find have not yet
appeared in the literature.

The key idea is to relate the cellular automaton to the permutation group SL acting on
L elements. It is known that SL can be generated by the L − 1 elementary permutations σ j ,
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which exchange the sites j and j + 1. These generators are subject to relations

σ jσ j+1σ j = σ j+1σ jσ j+1 ,

σ jσk = σkσ j , if | j − k| ≥ 2 ,

σ2
j = 1 .

(20)

These relations uniquely determine the group SL . Furthermore, they are formally equivalent
to the relations satisfied by the local two-site maps U j, j+1. Therefore we can generate a ho-
momorphism Λ from SL to bijective maps X L → X L by the assignments for the generators

Λ(σ j) = U j, j+1 . (21)

In other words the correspondence σ j → U j, j+1 defines a group action of SL on X L . The image
of a generic element σ ∈ SL can be computed if we reconstruct it as a product of elementary
exchanges. For example, the exchange of sites 1 and 3 is written as σ1,3 = σ1,2σ2,3σ1,2 and
this yields

Λ(σ1,3) = U1,2U2,3U1,2 . (22)

It is important that the homomorphism is not compatible with periodic boundary condi-
tions, because we chose a specific set of elementary exchanges σ1,2,σ2,3, . . . ,σL−1,L and the
exchange of the first and last sites σ1,L is not a member of the generating set. In fact σ1,L can
be expressed using the elementary generators as

σ1,L = σ1σ2 . . .σL−2σL−1σL−2 . . .σ2σ1 . (23)

The corresponding map will be

Λ(σ1,L) = U12U23 . . . UL−2,L−1UL−1,LUL−2,L−1 . . . U23U12 , (24)

thus in the typical case
Λ(σ1,L) 6= U1,L . (25)

Let us now define a simplified dynamical system directly for SL; we call it the permutation
system. The dynamical variable is now ςt ∈ SL , where t is the discrete time index, and the
equation of motion is given by

ςt+2 = Vςt , (26)

where V ∈ SL is given explicitly by

V = σ1,LσL−2 . . .σ4σ2σL−1σL−3σ3σ1 . (27)

Note that here every element is an elementary generator of SL except for σ1,L .
This dynamical system is trivially solved: we find that after each iteration the elements on

the odd/even sub-lattices move to the right/left by two sites. This implies V L/2 = 1, which
means that the orbits close after L/2 iterations. Alternatively this can be seen if we write V
using permutation cycles as

V = (2,4, 6, . . . , L)(L − 1, L − 3, . . . , 3, 1) , (28)

from which it is clear that the order of V is L/2.
However, this does not imply the same behaviour for our permutation model. The update

rule V of our cellular automaton is generally not compatible with the homomorphism:

Λ(V ) 6= V , (29)

which follows simply from (25). Therefore the homomorphism can not be used to obtain global
information about the cellular automata. Instead, it can give local information as discussed
in the next Subsection. Essentially the same observations were already made in [12,38]. The
non-equality (29) allows for orbit lengths longer than L, except if the Yang-Baxter map is
non-degenerate, see Subsection 3.3.
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3.2 Conservation laws

Now we establish the existence of a large set of ballistically propagating maps (operators) and
local charges. First we construct ballistically propagating operators in the permutation system,
and then we project them down to the cellular automaton. As we described above, the time
evolution of the permutation system is such that the even and odd sub-lattices are moving
undisturbed to the left and to the right by two sites after each iteration. This means that every
local operation or local charge which deals with only one sub-lattice will propagate freely to
the left or to the right.

To be more precise let us choose a range α and let Σ( j) ∈ SL be a permutation which acts
non-trivially only on the segment [ j, j + 1, . . . , j + 2α] such that it only acts on the odd sites,
it leaves the elements on the even sub-lattice invariant, and j ≥ 1 and j + 2α ≤ L − 2. Time
evolution of the permutation system gives

VΣ( j)V−1 = Σ( j + 2) . (30)

We interpret this as follows: under the adjoint action of V the permutation is shifted to the
right “ballistically”, and there is no “operator spreading”.

Now we apply the group homomorphism Λ to the equation above. We assume that the
segment [ j, j + 1, . . . , j + 2α] is well separated from the boundary sites 1 and L, so that the
boundary linkσ1,L would not appear in the resulting computations. In this case we can use the
homomorphism Λ and we can actually make the substitution Λ(V )→ V for the time evolution
of the localized operator, so that we obtain

VΛ(Σ( j))V−1 = Λ(Σ( j + 2)) . (31)

This means that the operator Λ(Σ( j)) gets transformed ballistically on the cellular automaton,
and there is no “operator spreading”. Such operators were called gliders in [45].

Let us consider examples for this. The simplest permutation which acts only on odd sites
is

Σ(1) = σ1,3 = σ1,2σ2,3σ1,2 . (32)

Here we set j = 1 and α= 1. The image of this operator under the homomorphism is

Λ(Σ(1)) = U12U23U12 . (33)

Thus we obtain that the operator on the r.h.s. above propagates ballistically to the right.
Actually in this simple case the relation

VU12U23U12V−1 = U34U45U34 (34)

can be established directly using the exchange relations (17) and the involutive property of
the two site maps.

Ballistically propagating multi-site operators can be obtained in the same manner.
We can also construct ballistically propagating local charge densities. In this classical case

we mimic the computation of mean values quantum mechanics. To every map f : X L → X L

we associate a function q : X L → Z such that

q(s) =

¨

1 if f (s) = s ,

0 otherwise .
(35)

If the map f acts only locally on a few sites, then the function q will also depend only on the
variables on those sites.
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Let us now consider a local map Σ( j) with range 2α + 1 which acts on the segment
[ j, j + 1, . . . , j + 2α]. This leads to a function q( j) which depends only on the sites in
[ j, j + 1, . . . , j + 2α]. Then the equation of motion (31) implies that

q( j) ◦V = q( j − 2) . (36)

This means that we obtained ballistically propagating charge densities. The chiral sums de-
fined as

Q+ =
L/2
∑

j=1

q(2 j + 1) , Q− =
L/2
∑

j=1

q(2 j) , (37)

are separately conserved, and it is important that the charge densities do not suffer “spread-
ing”. The simplest example is the three site charge obtained from (33). The concrete repre-
sentation of these charges will depend on the model.

In the permutation system the number of such conserved operators grows as (α+1)! with
the range 2α+ 1 as defined above. This growth appears faster than exponential. However, in
a given cellular automaton with a finite N there is only an exponential number of independent
charges for a finite range 2α+ 1. This means that the different charges that the construction
gives will become linearly dependent as α is increased. The question of how many of them
remain linearly independent can not be answered by our computation, and this can be model
specific. Based on concrete examples it seems that there is always an exponential growth of the
set of the independent charges, unless the model is completely trivial with U = 1. However,
we can not prove this at the moment.

3.3 Dual unitary Yang-Baxter maps

An important implication of the non-degeneracy condition is, that in such cases there exists
a “crossing” transformation for the map [38]. Let us view sets of elements {x , y, u, v} as an
allowed configuration if

R(x , y) = (u, v) . (38)

The non-degeneracy condition implies that the variables x and v can be “crossed”, which
means that for every pair y and v there is precisely one pair x , u such that the relation (38)
holds. This means that the update step is deterministic also when viewed as a “map acting in
the space direction”. It follows that the unitary operator Û acting on CN×CN is a “dual unitary
gate” [46–48]. A special property of such quantum circuits is that the infinite temperature one-
point correlation functions are non-zero only along light cones, and within these rays one can
observe ergodic, mixing, or stable behaviour, see [48]. Dual unitarity is a concept which is
independent from integrability, although it was known that these properties can overlap. For
local dimension N = 2 the only integrable dual unitary gates are equivalent to the permutation
map multiplied by a diagonal unitary matrix [48]. Our contribution here is that the Yang-
Baxter maps are integrable dual unitary models with local dimensions N ≥ 3.

It was shown in [38] that a dual-unitary Yang-Baxter map induces a group action of SL
on X L which is conjugate to the standard permutation action. To be more precise, it was
explicitly shown that there exists a map JL : X L → X L such that for every elementary exchange
σ j, j+1 ∈ SL

U j, j+1 = J−1
L P j, j+1JL , (39)

where P j, j+1 is the operation in SL which exchanges the content of sites j and j + 1. This
homomorphism can be extended to the exchange of any two elements, for example

U1,L = J−1
L P1,LJL , (40)
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which follows from (24) after substituting (39) for the elementary exchanges and then using
the concrete algebra of the local permutation steps P j,k.

Combining these observations we get that in dual unitary models the homomorphism Λ
is actually compatible with the periodic boundary conditions, and the update rule of the au-
tomaton follows from

V = J−1
L VP JL , (41)

where VP is the update rule of the permutation model.
The similarity transformation given by JL is typically quite non-local, thus the dynamics re-

sulting from V can still be interesting from a physical point of view. Nevertheless an important
consequence is that in dual unitary models

V L/2 = 1 . (42)

Thus the maximal length of the orbits is L in these models.
We remark that the concept of “classical dual unitarity” is independent from integrability.

In this work we consider only the Yang-Baxter maps, but other classical dual unitary models
also deserve study, see also Section 8.

3.4 Commuting update rules

It is a central property of integrable models that there exist a large number of flows which
commute with each other. In classical mechanics these flows are generated by the conserved
functions and the Poisson bracket. In quantum mechanics the flows are generated by the Her-
mitian higher charges of the models. In contrast, such flows have not yet been discussed for
the block cellular automata that we investigate. In the case of integrable quad equations the
commuting flows are well understood, and postulating their existence can lead to a classifica-
tion of such equations [10,58]. However, it appears that for BCA such flows have not yet been
discussed.

Here we show how to compute different types of commuting update rules for our models,
just by using the properties of the Yang-Baxter maps and the spatial ordering of the update
steps. It would be desirable to obtain commuting update rules which are constructed in a
similar way as our map V through (2) with some other two-site map Vj, j+1. However, it is not
possible to find such maps without using concrete information about the model. Instead, we
present commuting update rules with modified periodicity in space and time, such that the
rules only use our basic map U j, j+1. It is possible that in specific models additional commuting
flows could be found on a case by case basis, but here we focus only on the generic structures.
We take inspiration once again from the permutation system, whose dynamics is defined by
(26). As explained above, the odd/even sites move to the right/left, in a uniform way. There-
fore, in this system we can easily find update rules which commute with the main equation of
motion: we can take any classical map which acts only on one of the sub-lattices. However,
this comes at a cost: generally we need to break the translation symmetry of the chain in both
the space and time directions. This is explained on the simplest example.

In SL with L = 4k let us define the following two elements:

Z1 = σL−3,L−1 . . .σ9,11σ5,7σ1,3 ,

Z2 = σL−1,1 . . .σ11,13σ7,9σ3,5 .
(43)

The combination
Z = Z2Z1 (44)

generates a simple dynamics, where only sites on the odd sub-lattice are moved, and one half
of them moves to the left, one half moves to the right. This update rule does not immediately
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commute with V defined in (27) above, instead we have

ZV 2 = V 2Z . (45)

The update rule Z is invariant with respect to translation with 4 sites, and (45) implies that
within time period 4 it commutes with the dynamics of the actual model.

Now we use once again the homomorphismΛ from SL to the maps X L → X L , and we obtain
a new update rule Z = Z2Z1 for our cellular automaton, where we replace the permutations
in (43) by their images under Λ. Earlier we computed (33), and now we use this to write

Z1 =
L/4
∏

j=1

U4 j+1,4 j+2U4 j+2,4 j+3U4 j+1,4 j+2 ,

Z2 =
L/4
∏

j=1

U4 j−1,4 jU4 j,4 j+1U4 j−1,4 j .

(46)

In these formulas we included products that reach over the end of the spin chain. This is
a consistent step, even though generally Λ(σ1,L) 6= U1,L . The reason why the manipulations
work is that the commutation relations hold locally, and if we have products of non-overlapping
operators, then the manipulations can be performed locally, without encountering problems
regarding the global definition of the homomorphism Λ.

Note that these maps are just products of the operators Σ defined in (33). We already
established that the operators propagate ballistically on the chain, and this also implies that a
non-overlapping product of them will be a “conserved map”, which is equivalent to a commut-
ing flow. The only complication is that commutation with a single instance of V would change
the orders of Z1 and Z2 and that is why we need the commutation relation (45), which implies

ZV2 = V2Z . (47)

The dynamics generated by Z is generally not trivial, this can be seen already in the permu-
tation model.

For the sake of completeness we also a different type of commuting flow, where the locality
of the new update rule is of different type as before. Let us construct the formal operator

Ṽ = . . . U3,4U2,3U1,2 . . . . (48)

We assume the product to be infinite in both directions. Such an operator is used in the
construction of the box-ball systems [17], and in such a case the new value given to a variable
depends on the equal-time values of the variables to the left of it. In this form the operator
is not well defined due to the two boundaries at infinities. The usual way to deal with the
problem is to assume that there is a vacuum configuration 0 such that it is an invariant global
state of the map: U(0,0) = (0,0), and we are dealing with configurations such that s j = 0
for all | j| > K with some large K . Then it is trivially shown that Ṽ commutes with our more
standard update rule V .

The problem with this definition is that in many models there can be different vacuum
configurations, and depending on the choice of the vacuum at the two infinities we can get
different action of Ṽ even in the bulk of the chain. In other words, this map is very sensitive
to the boundary conditions, which always effect the bulk as well.

3.5 Open boundary conditions

For the sake of completeness we also consider cellular automata with open boundary condi-
tions, and we focus specifically on free boundaries. In this case the Floquet update rule of the
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automaton is VB = VB
2 V1, where V1 is given by the same formula as in (2), but VB

2 is

VB
2 = UL−2,L−1 . . . U4,5U2,3 . (49)

The only difference as opposed to V2 is that the boundary link UL,1 is now missing.
This model has the same dynamics in the bulk as in the periodic, but the global dynamical

properties are different. In this case the homomorphism from SL to the maps X L → X L works
seamlessly, and we obtain

VB = Λ(V B) , (50)

where V B ∈ SL is given by the analogous formula

V B = σL−2 . . .σ4σ2σL−1σL−2σ3σ1 . (51)

It is easily seen that this element of SL has order L, and it follows that

(VB)L = 1 . (52)

Thus the cellular automaton with free boundaries has simpler global dynamics for all Yang-
Baxter maps, and its orbit lengths are divisors of L. Writing V B using cycles we obtain

V B = (2, 4,6, . . . , L − 2, L, L − 1, L − 3, . . . , 3, 1) , (53)

thus it is indeed an element of order L.

4 Conservation laws and ergodicity

In this Section we discuss the connection between the integrability and the ergodicity prop-
erties of the cellular automata. In a classical dynamical system ergodic behaviour means that
the orbits cover the sub-manifold of the phase space allowed by the maximal set of conserved
charges. Integrable systems have a lot of conservation laws, which implies that the orbits are
restricted to sub-manifolds with much lower dimension than that of the full phase space. It
is natural question to ask: How does this phenomenon manifest itself for classical cellular
automata?

The configuration space of the finite volume cellular automata is finite, and it is a natural
idea to study how this space splits into the orbits. In parallel we can ask: what is the max-
imal set of independent charges for a finite cellular automaton, and how does this relate to
integrability?

Let us consider the orbits of configurations under time evolution generated by V . The total
configuration space splits into the union of orbits as X L = O1 ∪O2 ∪ · · · ∪ONo

, where each Oj
is a closed orbit and No denotes the total number of orbits. For each orbit Oj we can define its
characteristic function Q( j) : X L → Z which takes the values

Q( j)(s) =

¨

1 if s ∈ Oj ,

0 if s /∈ Oj .
(54)

All of these functions are conserved by the time evolution, but they are not independent from
each other. For example if we know that one of the characteristic functions takes value 1
on a specific configuration, then all of the other functions take value 0. In fact, for a finite
automaton there is only one algebraically independent charge, which can be chosen as

Q =
No
∑

j=1

jQ( j) . (55)
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The value of this charge simply just tell us the index of the orbit to which the configuration
belongs.

However, the construction of these charges involves the full solution of the time evolution,
therefore they are not directly relevant for the discussions of integrability. The situation is
similar to quantum mechanics, where in a finite Hilbert space a full set of conserved charges
for a Hamiltonian Ĥ can be constructed using the projectors P̂j = | j〉〈 j|, where | j〉 are the
eigenvectors of Ĥ, but the existence of these operators involves the full solution of the model
and therefore they do not tell us anything about the integrability properties.

One way out of this problem is to consider local charge densities as we did above. This gen-
erates extensive charges, whose construction is “stable” as the volume L is increased. However,
the drawback is that for such charges it is not immediately clear to what extent they foliate
the finite configuration spaces. Generally we expect that if there are more and more func-
tionally independent charges, then the foliation of the configuration space becomes more and
more restrictive, leading to shorter and shorter orbit lengths. Let us now discuss three types
of behaviour for this phenomenon.

A generic non-integrable model has a finite number of conserved local charges. In such
models it is expected that the orbit lengths grow exponentially with the system size. In the
most general case when there are no symmetries present (thus the model is not invariant with
respect to space and time reflection, and there are no hidden symmetries either) we can expect
that the orbit length grows in the same way as the configuration space grows, i.e. typical orbit
lengths ` should scale as

log(`) = L log(N) + . . . , (56)

where the sub-leading corrections grow slower than linearly in L. It is known that discrete
symmetries can lead to less ergodic behaviour [59].

In a generic integrable model the number of local charges with range α grows linearly with
α. Therefore we expect that the total amount of information gathered from all the extensive
local charges grows exponentially with the volume. Therefore we expect typical orbit lengths
` to scale as

log(`) = Lc + . . . , where now 0< c < log(N) . (57)

In contrast, in superintegrable models we have an exponentially large set of local conser-
vation laws. It is natural to expect that this will lead to sub-exponential growth of the orbit
lengths. In particular, for the dual-unitary Yang-Baxter maps relation (42) states that the max-
imal orbit length is actually L, which is the same as for the permutation model. Then the
question arises: What to expect from degenerate Yang-Baxter maps or other superintegrable
cellular automata? For the superintegrable Rule54 model it was found in [25] that the orbit
lengths grow quadratically with the volume. The same behaviour can be seen in the example
of the XXC model with N = 3. Furthermore, for N = 4 we encountered models where the
maximal orbit length grows as L3, see below.

Motivated by the concrete examples (treated in the next Section) we propose to view the
orbit lengths as a measure of the complexity of the super-integrable cellular automaton. We
say that a specific model is of class O(Lm) if the maximal orbit length grows as Lm. Based
on our concrete examples we conjecture that for every m there is a super-integrable model
of class O(Lm), with large enough N . Looking at the concrete examples we found that up to
N = 4 all models in our class showed the expected polynomial growth.

At the same time we do not claim that every super-integrable model has polynomial growth.
In fact if we relax some of our restrictions for the models, it is possible to find models with
exponential growth as given by (57). For example for N = 4 we found a model which is not
space-reflection symmetric, and which has exponential growth. However, in the this paper we
constrain ourselves to models which are both space and time reflection invariant.
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5 Constructions and examples

In this Section we discuss examples of models obtained from Yang-Baxter maps for various
values of N . In all cases we consider only space reflection symmetric update rules. The identity
map and the permutation map are the trivial solutions for every N , therefore we do not mention
them separately.

For the small values N = 2,3, 4 we performed a complete classification of involutive
Yang-Baxter maps, considering both the degenerate and the non-degenerate cases. For non-
degenerate maps a complete enumeration is available up to N = 10 in the work [39] and the
associated github database. It is possible to extend the methods of [39] also to the degener-
ate cases, all solutions up to N = 5 were obtained this way, but this is unpublished [60]. For
our own purposes we just applied a brute force search for solutions up to N = 4.

Before turning to the examples we discuss simple ways of constructing new automata from
known ones.

Sometimes two different models can be connected by a site dependent twist transforma-
tion. Let S be a local bijection, and let us consider the twist operation

S = 1× S × S2 × · · · × SL−1 . (58)

Every S is of finite order, and we assume for the moment that L is a multiple of the order
of S, thus the above map is compatible with periodic boundary conditions. We say that two
different models defined by the maps U1,2 and Ũ1,2 are related by a twist S, if U and Ũ are
symmetric with respect to S in the sense of (8) and

U = (1× S)Ũ(1× S−1) . (59)

In such a case the global twist operator (58) connects the orbits of the two models with each
other. Simple examples for such twists can be found if S2 = 1, in which case

S = 1× S × 1× S × · · · × 1× S (60)

and thus we get a staggered similarity transformation between two models.
An other important construction is the “direct sum” of Yang-Baxter maps, with some al-

lowed extra freedom. We say a Yang-Baxter map is decomposable if the set X can be divided
into two disjoint and non-empty sets A and B such that U(A×A) = A×A and U(B×B) = B×B.
In such a case the restrictions of U to the subsets A×A and B×B have to be Yang-Baxter maps.
We say that U acting on X = A∪B is a simple union of two Yang-Baxter maps UA and UB if the
restrictions to A and B are given by UA and UB and

U(a, b) = (b, a), U(b, a) = (a, b) , for every a ∈ A, b ∈ B . (61)

Similar to the previous definition, we say that U is a twisted union, if

U(a, b) = ( fa(b), a), U(b, a) = (a, fa(b)) , for every a ∈ A, b ∈ B , (62)

where fa is a map B→ B parameterized by an element a ∈ A. The paper [38] also introduced
generalized twisted unions, but we will not encounter them in our examples.

The permutation map on X × X is trivially decomposable: let X = A∪ B such that A and B
are non-empty and disjunct, then P for X is a simple union of the permutation maps of A and
B. If A or B have more than one elements, they can be decomposed further. Eventually we see
that the permutation map for X is actually a simple union of single element sets.

The XXC models are examples for an other type of composition. Let us take two sets A and
B and consider the identity maps on A× A and B × B. Then the corresponding XXC model on
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X = A∪B is the simple union of these identity maps [52,61]. The generalization to unions with
more than two components appeared in [62]; the resulting systems were called “multiplicity
models”. For the sake of completeness we give the most general definition of the XXC or
multiplicity models. Let us take a partitioning of the integer N as N = m1+m2+ · · ·+mn such
that m j ≤ mk for j < k. Then we divide the set X into subsets A j with cardinality m j . The
Yang-Baxter map is then given by

U(a, b) =

¨

(b, a) if a ∈ A j , b ∈ Ak, and j 6= k ,

(a, b) if a, b ∈ A j .
(63)

For this map and the resulting model we will use the name XXC model of type
(m1+m2+ · · ·+mn). The update rule introduced in (7) is thus the XXC model of type (1+2).

5.1 N = 2

For N = 2 there is only one model different from the identity and the permutation models.
Using the finite group Z2 its update rule can be written as

U(a, b) = (b+ 1, a+ 1) . (64)

Using X = {0, 1} the only non-trivial moves are

(0, 0)↔ (1,1) . (65)

We can call it the spin-flip model. The map U is globally symmetric with respect to the spin-flip
S given by S(a) = a+1. The model is related to the permutation model by an S-twist according
to (60), which is essentially a spin flip performed on every second site. Alternatively, we can
also write U(a, b) = (S×S)(b, a), which together with the S-symmetry implies that the update
rule V of the model becomes identical to that of the permutation model. Therefore this is not
a truly independent model, and it is trivially solved.

5.2 N = 3

For N = 3 we found a total number of 4 non-isomorphic non-trivial solutions. Out of the four
there are only 2 models which can not be related to each other (or to the permutation model)
by a twist.

We list the models below. We use the notation X = {1,2, 3}. All non-trivial models are such
that there is a distinguished element of X , and we choose this element to be 1. We interpret
it as the “vacuum”. Then the local states 2 and 3 are interpreted as an excitation with two
colors. We will also use the color-flip transformation S : X → X , which preserves the vacuum
but flips the color of the excitation, thus it is now given by S(1) = 1, S(2) = 3, S(3) = 2.

• Twisted permutation. The model is given by

U(a, b) = (S(b), S(a)) . (66)

The model is globally symmetric with respect to S, and it is related to the permutation
model by the S-twist, which induces a color-flip on every second site. Alternatively, we
can also write U = (S × S)P , which implies that the update rules is identical to that of
the permutation model. Therefore the model is trivially solved.

17

https://scipost.org
https://scipost.org/SciPostPhys.12.3.102


SciPost Phys. 12, 102 (2022)

• Simple union of the vacuum state 1 and the spin-flip model acting on the states
{2,3}. The non-trivial moves are

(2, 1)↔ (1, 2) , (3,1)↔ (1, 3) , (2,2)↔ (3,3) . (67)

The map is globally symmetric with respect to the color-flip S, which is actually a ballis-
tically propagating symmetry. Two additive local charges are [1] and [2]+[3], and they
are also ballistically propagating. Direct computation shows that U is dual-unitary.

• Twisted union of the vacuum state 1 and the permutation model acting on the
states {2, 3}. The non-trivial moves are now

(2, 1)↔ (1, 3) , (3,1)↔ (1, 2) , (2,3)↔ (3,2) . (68)

This model can be related to the previous one, if we perform a color-flip at every second
site. It is also dual-unitary.

• The XXC model of type (1+2). The update rule of this model was given in eq. (7). This
is the only non-trivial model with N = 3 which is not dual unitary. Additively conserved
charges are [1], [2] and [3], thus all particle numbers are conserved separately.

The charges [1] and [2] + [3] are propagating ballistically. This means that every light
cone is such that either it is always empty or it always has a particle, but in this case
the color of the particle can change during time evolution. At the same time, the spa-
tial ordering of the colors [2] and [3] is not changed during time evolution. Therefore
we can trivially construct ballistically propagating multi-point charges: they are given
by arbitrary products of [1] and [2] + [3] localized at the odd/even sub-lattice1. Our
construction yields charges precisely of this type, for example the first ballistically prop-
agating charge gives

U12U23U12 → [1]1[1]3 + ([2]1 + [3]1)([2]3 + [3]3) . (69)

An example for time evolution for a random initial state (where the local states are
chosen with equal probability) is shown in Fig. 2

Regarding orbit lengths the XXC model of type (1+2) is in the class of O(L2) models. It
can be seen that after L steps the particle positions always return to their initial values,
but the color arrangements (spatial ordering of the colors 2 and 3) can be shifted in
either direction by some finite values. However, after L2 steps the color arrangements
also return to their initial configurations, thus the orbits close.

5.3 N = 4

We found a total number of 36 non-isomorphic non-trivial solutions. A number of them are
related to each other by twists, and if we regard such models as equivalent then there remain
14 independent solutions. Out of these solutions 5 are dual unitary, and the remaining ones
are non-trivial degenerate models.

We do not list here all the 14 independent models, we just discuss some examples for them,
focusing on models with special properties.

First of all we list all models which preserve all the particle numbers separately. There
are 3 non-trivial models, which are all of the XXC type, and they correspond to the different

1We acknowledge useful discussions with Tomaž Prosen about this question.
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1
2
3

Figure 2: Example for time evolution in the XXC model of type 1+2. The initial state
is a random configuration with equal weights for the 3 states.

partitionings of the integer 4. To be concrete, they are the XXC models of type (1+3), (1+1+2)
and (2+ 2). The (2+ 2) model will be discussed in more detail below.

Out of the 14 models there is just one linear map, which can be written using the finite
group Z4 as

U(a, b) = (2a+ b, 2b+ a) . (70)

This model does not have any conserved one-site charges, and for N = 4 this is the only such
model. It is dual unitary.

Regarding orbit lengths we observed that there are models of classes O(L), O(L2) and
O(L3):

1. The models of class O(L) are the dual-unitary models, an essentially trivial model where
the 4 states can be described by pairs of bits {a, b}, a, b ∈ Z2 and the update rule is

U({a, b}, {c, d}) = ({c + 1, b}, {a+ 1, d}) (71)

and two additional models that are related to this one by twist transformations. The
model given by (71) is trivially solved, because the dynamics of the first bits is given by
the spin flip model (64), whereas the second bits are completely frozen.

2. We found 6 independent models of class O(L2), among them are the XXC models of type
(1+ 3) and (1+ 1+ 2). We do not discuss the remaining 4 models separately.

3. We found two independent models of classO(L3). They are the XXC model of type (2+2)
and a similar model with a twisted union. These two models are discussed separately
below.

5.3.1 The XXC model of type (2+ 2)

We analyze this specific model with more details, because it can have applications for the study
of transport. For a concrete example of time evolution in this model see Fig. 3.
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There are multiple ways of formulating the update rule. We can for example choose a
decomposition X = A∪ B with A= {1, 2} and B = {3,4} and write

U(a, b) =

¨

(a, b) if a, b ∈ A or a, b ∈ B ,

(b, a) otherwise .
(72)

Alternatively, the model can be seen as a specific discrete time analog of the Hubbard model.
Let us consider particles with two possible spin orientations and the four local states |;〉, |↑〉,
|↓〉, |↑↓〉. If we identify them with the states 1, 2, 3 and 4, respectively, then we obtain a
model where particles can hop to neighbouring sites, but only the following hopping moves
are allowed:

|;,↑〉↔ |↑,;〉 , |;,↓〉↔ |↓,;〉 , |↑,↑↓〉↔ |↑↓,↑〉 , |↓,↑↓〉↔ |↑↓,↓〉. (73)

One more rewriting of the update rule is the following. Let us represent the local states with
a pair of bits {a, b}, such that the first bit encodes whether the local state is from the set A or
B, and the second bit tells us which state it is. The we can write

U({a, b}, {c, d}) =

¨

({c, b}, {a, d}) if a = c ,

({c, d}, {a, b}) if a 6= c .
(74)

Notice that in this representation the first bit decouples from the second one. Therefore the
update rule and the resulting dynamics can be seen as “nested”, in the sense that the trivially
computable orbits of the first bits control the information propagation on the second bit.

In the original formulation the additively conserved one-site charges of the model are [1],
[2], [3] and [4], and the combinations [1] + [2] and [3] + [4] propagate ballistically. This
corresponds to the decoupling of the first bits as explained above. The model is globally sym-
metric with respect to a finite permutation group generated by the exchanges 1↔ 2, 3↔ 4,
and the combined exchange 1↔ 3, 2↔ 4.

An example for time evolution from a random initial condition is shown in Fig. 3.
Regarding orbit lengths the model is found to be of class O(L3). A specific initial condition

which leads to cubically increasing orbit lengths is if we consider a sequence consisting of a
single 1, 2k+ 1 number of 2, a single 3, and 2k− 1 number of 4, in the given order, such that
L = 4k. It is easy to check that the corresponding orbit length becomes 2k(2k + 1)(2k − 1).
Numerical investigation showed that there are no orbits that grow faster than O(L3).

Finally we note that there is a different update rule of class O(L3) which has some simi-
larities with the XXC model of type 2+ 2. It is a twisted union, and its non-trivial moves are

(1, 4)↔ (4,1) , (1,3)↔ (3, 1) , (4,2)↔ (2, 3) , (3,2)↔ (2,4) . (75)

We can see that now the scattering of the states 3 and 4 on 2 causes a color flip between 3
and 4. In this model the local one-site charges are [1], [2], [3] + [4], and the combinations
[1] + [2] and [3] + [4] propagate ballistically.

6 Extension to 3→ 1 models

In this Section we apply the previous ideas to the 3→ 1 models, that describe time evolution
on light cone lattices. For a thorough introduction we recommend the papers [7,8,31].

We use the standard trick that we “double” the sites of the light cone lattice and then use
the standard rectangular lattice as before. We deal with functions u : X 3→ X and build local
update rules acting on three sites U : X 3→ X 3 such that

U(l, d, r) = (l, u(l, d, r), r) , (76)
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1
2
3
4

Figure 3: Example for time evolution in the XXC model of type 2+2. The initial state
is a random configuration with equal weights for the 4 states.

l
d

r
u

l
l

d
u

r
r

Figure 4: Update rule for 3→ 1 models. On the left the update is performed on the
light cone lattice, such that the variable u receives its value using the variables l, d, r.
On the right the same update step is formulated on a rectangular lattice, in these
case we deal with a 3-site rule, where the outer variables l and r act as control for
the action on the middle variable d.

where l, d, r are the input variables, from which l and r are control variables for the action on
d. For a graphical interpretation of this update move see Fig. 4. The Floquet update rule is
built essentially in the same way as in the case of the 2→ 2 models, now we have

V1 = UL−1,L,1 . . . U3,4,5U1,2,3 ,

V2 = UL,1,2 . . . U4,5,6U2,3,4 .
(77)

The local update maps within each half-step still commute with each other, because their
support overlaps only on control variables. In these models we also require time reversal
symmetry, which amounts to U2

j, j+1, j+2 = 1.
Each 3 → 1 model can be described by a 2 → 2 model, if we perform a bond-site trans-

formation. The idea is to put pairs of variables on the bonds (links) between sites, such that
these variables completely describe the original configuration. In the most general case the
bond variables can be chosen simply as a pair (s j , s j+1), where s j and s j+1 are the variables on
the two neighbouring sites which the bond connects. In this formulation the 3 → 1 map on
three sites can be understood as a 2→ 2 map on two bonds as ((l, d), (d, r))→ ((l, u), (u, r)).
Such a representation might not be economical, because the local dimension is increased to
N2. Nevertheless the bond-site transformation shows that there is no fundamental difference
between the two types of models, and each integrable 3 → 1 model would be included in
classifications of 2 → 2 models, if the local dimensions is chosen large enough. Sometimes
in concrete cases more economic connections can be found, for example if the original model
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has ZN symmetry, in which case the bond-site transformation can be performed as

(s j , s j+1) → s j − s j+1 . (78)

The simplest example for a 3 → 1 model with local dimension N is a linear update rule
using the additive group ZN . The update function is given by

u(l, r, d) = l + r − d . (79)

This model is related directly to the permutation system, which is seen by performing the
bond-site transformation mentioned above. Taking the three initial values l, d, r and the three
final values l, u, r, and computing the differences (l − d, d − r) and (l − u, u− r) we see that
(79) is equivalent to a simple permutation in the bond model. Therefore, the dynamics can
be understood using freely moving domain walls. In the specific case of N = 2 this model is
the so-called Rule150 model [8], which was studied recently in [31,63,64].

Let us now generalize the notion of the Yang-Baxter map to the 3→ 1 models. The most
natural generalization of the usual braid relation is the equation2

U123U234U123 = U234U123U234 , (80)

which is a relation for maps X 4→ X 4. The 3→ 1 maps automatically satisfy the condition

U j, j+1, j+2Uk,k+1,k+2 = Uk,k+1,k+2U j, j+1, j+2, if | j − k| ≥ 2 , (81)

thus we obtain the same algebraic relations as in the 2→ 2 models. Such equations already
appeared in [65], but it appears that for finite sets they have not yet been studied in detail.

It follows that all derivations presented in Section 3 follow through, with the obvious
replacement

U j, j+1 → U j, j+1, j+2 (82)

in the computations. Therefore, 3 → 1 maps satisfying (80) can also be called Yang-Baxter
maps, and they lead to superintegrable cellular automata.

We numerically investigated the solutions of (80) in the case of space reflection symmetric
maps, and up to N = 3 we found that all of them are bond-site transformations of 2 → 2
models. However, this situation likely changes for higher N , and we expect that there are
3→ 1 models which can not be related to a 2→ 2 model with the same N .

One can raise questions about the dual-unitarity of such maps, and for generic, non-
integrable 3→ 1 models this was investigated in [50]. A more detailed study of Yang-Baxter
maps of the 3→ 1 type is beyond the scope of this paper.

7 Quantum circuits and related quantum spin chain models

In this Section let us turn to the quantum circuits and the related quantum spin chains. Once
again we start with the 2→ 2 models.

Every Yang-Baxter map gives rise to a spectral parameter dependent solution of the quan-
tum Yang-Baxter equation. Let Ř(λ1,λ2) be the so-called R-matrix, which is an operator acting
on CN ⊗CN with two spectral parameters λ1,2 ∈ C. The quantum Yang-Baxter relation reads

Ř12(λ2,λ3)Ř23(λ1,λ3)Ř12(λ1,λ2) = Ř23(λ1,λ2)Ř12(λ1,λ3)Ř23(λ2,λ3) , (83)

which is a relation for operators acting on V ⊗ V ⊗ V .

2We acknowledge very useful discussions with Vincent Pasquier about this and related equations.
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The R-matrix corresponding to a Yang-Baxter map is simply

Ř j,k(λ j ,λk) =
1+ i(λ j −λk)Û j,k

1+ i(λ j −λk)
, (84)

where the linear operator Û j,k : V ⊗V → V ⊗V is such that it permutes pairs of basis elements
according to the action of the map U j,k. The conventions above are chosen such that

Ř j,k(λ)Ř j,k(−λ) = 1 . (85)

Furthermore, if λ ∈ R, then Ř j,k(λ) is unitary, which follows from the hermiticity of Û j,k. It is
easily verified that (84) solves (83) if the map U is a Yang-Baxter map.

These R-matrices satisfy the so-called regularity property Ř(0) = 1, therefore they lead to
integrable quantum spin chains with nearest neighbour Hamiltonians. Using the construction
of [66] they also lead to integrable quantum circuits of the brickwork type.

Let us start with the discussion of the spin chains, where we are dealing with Hamiltonians
that generate time evolution in continuous time. It can be shown using standard steps [67]
that the resulting spin chain Hamiltonian is

Ĥ =
L
∑

j=1

Û j, j+1 (86)

and it is integrable. Here periodic boundary conditions are understood. An extensive set of
conserved charges can be derived from the usual transfer matrix construction.

The solution of these models is generally not known, but specific cases have been consid-
ered in the literature. For example the XXC-type Yang-Baxter maps lead to the models solved
in [52,62].

In the case of the dual unitary models the classical relation (39) was proven in [38]. This
conjugation property carries over naturally to the quantum setting, and it implies that

Û j, j+1 = Ĵ−1
L P̂ j, j+1 ĴL , (87)

where now each linear operator acts on the Hilbert space. By the algebra of the permuta-
tion group we can extend this relation to any two-site exchange, and thus we obtain that the
Hamiltonian above is conjugate to the fundamental SU(N)-symmetric model:

Ĥ = Ĵ−1
L





L
∑

j=1

P̂ j, j+1



 ĴL . (88)

Periodic boundary conditions are understood also on the right. The operator ĴL can be very
non-local, but the connection says that the spectrum of the two Hamiltonians is the same. We
stress that this holds only for the dual unitary models, but there it is true in both the peri-
odic case and also for free boundary conditions. For the solution of the fundamental SU(N)-
symmetric spin chain see for example [68].

In the case of the 3→ 1 models we need to use the formalism of the recent work [31] to
generate quantum spin chains with medium range interactions.

If U j, j+1, j+2 is a Yang-Baxter map in the sense of Section 6, then the corresponding trans-
lation invariant quantum spin chain is

Ĥ =
L
∑

j=1

Û j, j+1, j+2 , (89)
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where the three site operator Û j, j+1, j+2 follows directly from the three-site map U j, j+1, j+2.
These Hamiltonians are integrable. For such three site interacting models we need to consider
a Lax operator that acts on the tensor product of three vector spaces. Using the formalism
of [31] we find that these Lax operators are again linear in the spectral parameter:

Ľa,b,c(λ) =
1+ iλÛa,b,c

1+ iλ
. (90)

The integrability of the model is shown using the so-called GLL relation of [31], where the
G-matrix is chosen to be identical to the Lax operator.

These constructions are naturally extended to the quantum circuit setting [66]. The result-
ing brickwork circuits can be seen as “integrable Trotterizations” of the spin chains. Specifically,
for 2→ 2 models the R-matrix (84) with some λ ∈ R can be used as a two-site quantum gate,
and the resulting unitary circuit remains integrable [66]. In the case of the 3→ 1 models we
can use the Lax operator (90) with some λ ∈ R as a three site quantum gate, and the resulting
circuit remains integrable [31]. The notion of “Trotterization” comes from the fact that for
small values of λ the quantum update step V̂ can be seen as a discretization of the time evo-
lution operator e−iĤ t with t = −λ. The classical limit of the cellular automata are reproduced
in the limit λ→∞ for both the 2→ 2 and 3→ 3 models, which is seen directly from (84)
and (90). Therefore, a large (but not infinite) λ corresponds to small quantum corrections on
top of a classical time evolution.

It is important that in these models the spectral parameter λ becomes a fixed parameter of
the circuit, such that there is a set of conserved charges for each λ, but these sets of charges are
not compatible with each other for different values λ 6= λ′. In accordance, the Hamiltonians
(86) and (89) do not commute with the update rules of the quantum circuits. The smallest
additively conserved charges of the quantum circuits (for generic values of λ) are three and
four site charges, for 2→ 2 and 3→ 1 models, respectively, and the charges are derived from
the transfer matrix constructions [31,66].

The dynamics of the quantum circuits arising from Yang-Baxter maps have not yet been
studied in the literature, except for the permutation map in the case N = 2, which leads
to the Trotterization of the XXX Heisenberg spin chain [66]. Generally we expect that the
phenomenology of the quantum circuits is much more rich than that of the classical cellular
automata. This is already seen in the simplest case of the permutation map [66]. The superin-
tegrability of the systems holds only in the classical limit: most of the charges of the classical
automata cease to be conserved in the quantum setting.

If the classical Yang-Baxter map was dual-unitary, then this property is lost in the integrable
quantum circuits. This is a simple consequence of the formulas (84) and (90): the identity op-
erator singles out the time direction, and this is not compatible with the idea of dual unitarity.
For dual unitary deformations of dual unitary maps see the next Section.

8 Non-integrable dual unitary gates

In those cases when the classical YB map is dual unitary, it is possible to continuously deform
the resulting quantum circuits by keeping the dual unitarity. In this process the integrability
is generally lost, which means that the resulting models will not have an infinite set of local
conserved charges.

The construction is very similar to what was proposed in [48] and more recently in [49];
for generic non-integrable dual unitary gates the same ideas appeared in [69]. We use the
classical Yang-Baxter map as the “core” of the dual unitary gate, which is then dressed with
phases and external single site unitaries. The formula for a dressed dual unitary gate V̂1,2
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acting on sites 1 and 2 reads

V̂1,2 = B−1 B+2 Ĵ1,2Û1,2A+1 A−2 , (91)

where Û1,2 is the deterministic linear operator obtained from the Yang-Baxter map,
A±, B± ∈ SU(N) are single site unitaries, and Ĵ1,2 is a diagonal matrix in the computational
basis whose matrix elements are pure phases. It follows from the deterministic nature of Û1,2
that the product Ĵ1,2Û1,2 is also dual-unitary. The physics of the quantum circuit is affected
only by the combinations A+B+ and A−B−, thus we are free to set for example A± = 1.

We can see these quantum gates as deformations of the super-integrable cellular automata.
However, the integrability of the classical update rule U1,2 is not used in the parameteriza-
tion (91), the only important piece of information is the non-degeneracy (or classical dual-
unitarity) of the map.

9 Discussion

Let us summarize here the main results of this work. Starting from Yang-Baxter maps we con-
structed super-integrable classical cellular automata, and showed the existence of an exponen-
tially large set of local conserved charges. These are such that the charge densities propagate
ballistically on the chain, without “operator spreading”. One could argue that the presence of
such charges makes the dynamics too trivial, but this is not the case. Many such models possess
additional conserved charges on top of the ballistically propagating ones, and the transport of
these quantities can show typical behaviour of more generic systems, for example co-existence
of ballistic and diffusive transport, as shown first in [6].

A central result of our work is that the so-called non-degenerate maps lead to a classical
version of the dual unitary quantum gates. These models are the most constrained ones:
using the results of [38] we showed that the dynamics is equivalent to that of the permutation
model, and the equivalence is given by a known similarity transformation. Thus these models
can be considered as “solved” from a mathematical point of view. However, there could be
still interesting dynamics from a physical point of view, because the similarity transformation
is highly non-local.

We characterized the dynamical complexity of the models by looking at the orbit lengths
in finite volume, and we observed that in most models the maximal orbit length grows polyno-
mially with the volume. This was found to hold for all space reflection symmetric models up to
N = 4, and counter-examples were found only if space-reflection invariance is broken. Once
again the dual unitary models were found to be the most constrained, where the maximal orbit
length is always L.

While we showed the superintegrability of the models, we did not provide exact solutions
for the time dependence of physical observables. We believe that these models are exactly
solvable, but whether there is a general strategy for the computation of observables of interest,
or whether it has to be done on a case by case basis, remains to be seen. The XXC model of
type 2+2 (discussed in Section 5.3.1) seems a good candidate for further studies, because it
can be seen as a Hubbard-like classical automaton, and also as a highly symmetric toy model
for diffusive transport.

As a by-product of our computations we encountered an interesting family of dual unitary
quantum gates, given in Section 8, studied earlier for generic non-integrable cases in [69]. It
would be interesting to extend these ideas to the hexagonal geometry discussed in [70].

In Appendix A below we show that not all integrable BCA originate from Yang-Baxter maps.
This demonstrates that the world of integrable BCA is quite rich and it deserves further study.
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A Integrable cellular automata that do not come from Yang-Baxter
maps

Here we give examples for models which appear to be integrable such that the update rule
does not satisfy the Yang-Baxter equation. We consider models that fit into the framework
used in this paper, and all our examples are 3→ 1 models.

First of all we mention the celebrated Rule54 model [7, 8]. Its update function can be
formulated using the finite field X = Z2 as

u(l, r, d) = d + l + r + l r . (92)

It is known that the model is super-integrable, however, the algebraic origins of its integrability
are still not clear [7]. Direct substitution into (80) shows that the map is not a Yang-Baxter
map. In [30] an attempt was made to capture the underlying integrability using the Yang-
Baxter equation in the interaction-round-a-face (IRF) form, but it was shown in [31] that this
approach does not give additional conserved charges for the model. There exists a quantum
deformation of the Rule54 model, which involves a dynamics generating six-site charge that
commutes with the original update rule [71]. However, the full Yang-Baxter integrability of
the model was not yet worked out. We should note that the equation (92) appeared in the clas-
sification [58] of classical integrable quad equations, however, that work concerns equations
over the complex numbers.

More recently an integrable 2-color extension of the Rule54 model was proposed in [72].
Let us choose now X = {0,1, 2}. The local state 0 is interpreted as the vacuum, and the states
1 and 2 describe excitations with two colors. The update rule can be written using the finite
field Z3 in the compact form

u= (l + r)(l2 + r2) + d(1+ (l2 + r2)2) . (93)

This form of the update function is the most compact representation, but its physical meaning
is not transparent. In [72] the same function was presented on a case by case basis, with more
physical insight.

In this model the particle numbers of the two species are not conserved separately, just
a specific combination is conserved [72]. It was found in [72] that the model is integrable:
it appears to have an infinite set of local charges such that the number of the charges grows
linearly with the range. However, the algebraic origin of its integrability is not clear at the
moment. Direct substitution into (80) shows that the map is not a Yang-Baxter map. This is
already clear from the fact that it is an extension of the Rule54 model, whose update rule is
not a Yang-Baxter map.
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