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Abstract

When a quantum system initialized in a product state is subjected to either coherent
or incoherent dynamics, the entropy of any of its connected partitions generically in-
creases as a function of time, signalling the inevitable spreading of (quantum) inform-
ation throughout the system. Here, we show that, in the presence of continuous sym-
metries and under ubiquitous experimental conditions, symmetry-resolved information
spreading is inhibited due to the competition of coherent and incoherent dynamics: in
given quantum number sectors, entropy decreases as a function of time, signalling dy-
namical purification. Such dynamical purification bridges between two distinct short
and intermediate time regimes, characterized by a log-volume and log-area entropy law,
respectively. It is generic to symmetric quantum evolution, and as such occurs for differ-
ent partition geometry and topology, and classes of (local) Liouville dynamics. We then
develop a protocol to measure symmetry-resolved entropies and negativities in synthetic
quantum systems based on the random unitary toolbox, and demonstrate the generality
of dynamical purification using experimental data from trapped ion experiments [Bry-
dges et al., Science 364, 260 (2019)]. Our work shows that symmetry plays a key role as
a magnifying glass to characterize many-body dynamics in open quantum systems, and,
in particular, in noisy-intermediate scale quantum devices.
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1 Introduction

Symmetry and entanglement represent two cornerstones of our present understanding of
many-body quantum systems. The former governs, e.g., the nature of phases of matter [1–3],
while the latter characterizes different classes of quantum dynamics in and out-of-equilibrium
[4–6]. Perhaps surprisingly, the intertwined role of these two pillars - falling under the um-
brella of symmetry-resolved quantum information - has been relatively unexplored until com-
paratively recently [7–12]. Such connections are of immediate experimental interest in the
context of quantum simulation and quantum computing. Aiming at the ultimate goal of
engineering perfectly isolated quantum systems, experiments in synthetic quantum matter
and quantum devices realize system dynamics where coupling to an external bath, whatever
weak, is ubiquitous - two paradigmatic examples being quantum simulators [13,14] and noisy
intermediate-scale quantum (NISQ) devices [15]. In these settings, the microscopic dynamics
is local, and is often captured by a master equation with global Abelian symmetries, related to
observables such as magnetization or particle number. Against this background, it is an open
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Figure 1: Evolution of symmetry-resolved entropies in NISQ devices. Panel a,b):
sketch of the models discussed in the main text. a): free fermions on a square lat-
tice, with tunneling matrix element J and one-body loss rate γ. b): spin-1/2 chains
with long-range XY exchange interactions, and single site spin relaxation rate γ. The
grey areas represent the geometries of the A bipartition of linear length ` considered
below. Panel c): time evolution of the symmetry-resolved purity in the sector q = ±1,
PA(±1) = Tr[ρ2

A,±1], in NISQ devices undergoing three distinct regimes (indicated by
different colors, see text for their relations to microscopic timescales). The purity ini-
tially increases as a function of time, signalling dynamical purification (gray dot).

question whether symmetry-resolved quantum information can reveal novel, generic classes
of quantum dynamics that emerge as a genuine effect of the competition between unitary
and incoherent dynamics that is epitomized by quantum simulators and NISQ devices. In
fact, symmetry-resolved quantum information has never been studied in the context of open
quantum systems.

In this work, we develop a theory and an experimental probe protocol for symmetry-
resolved quantum information dynamics in synthetic quantum matter and quantum devices.
We are interested in the prototypical scenario depicted in Fig. 1a-b): an initial product state
of a lattice model is subjected to the evolution of a U(1) invariant dynamics, where coherent
couplings (J) are stronger than incoherent ones (γ). Such scenarios are ubiquitous in cur-
rent experiment settings, and encompass both interacting and free theories. They are realized
in analogue quantum simulators as diverse as trapped ions [16], cold atoms in optical lat-
tices [17], arrays of Rydberg atoms [18], and circuit quantum-electrodynamics settings [19].
Similarly, the interplay between coherent U(1) dynamics and dissipation is of direct relevance
to certain nascent quantum computers – those that implement two-qubit SWAP or phase gates
with a conserved number of qubit excitations. Concrete examples include architectures based
on superconducting qubits [20] and trapped ions [21].

Under these rather ubiquitous conditions, we show that a specific set of symmetry-resolved
reduced density matrices undergo dynamical purification as a function of time. This phe-
nomenon is strikingly different from purification to an uncorrelated steady state, because it
does not come at the expense of quantum information. Using symmetry-resolved negativities,
it can be addressed that entanglement remains finite and sizeable over the entire purifica-
tion dynamics, both in its generic and symmetry-resolved formulation 1. Furthermore, the
scenario we are interested in is fundamentally different from (dissipative) state preparation
protocols [23–25] (see below).

The dynamical purification we discuss is at odds with conventional expectations based on
information dynamics in many-body systems: starting form low entropy states, Hamiltonian
evolution is largely believed to lead to entropy increase, and similar considerations often apply
to non-engineered dissipative evolution. What we show is that, for symmetric systems, there

1We note here that entanglement as witnessed by the negativity requires a different symmetry-resolution with
respect to the reduced density matrix [22]. This is due to the presence of partial transposition.
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Figure 2: Evolution of symmetry-resolved entropies in NISQ devices. Panel a,b):
time evolution of the symmetry-resolved purity normalized by the partition volume,
correspondent to a quantum quench from a charge-density-wave state, with the dy-
namics described in Fig.1a-b), respectively. At short times, decoherences induces a
universal scaling behavior, that corresponds to a log-volume entropy scaling, and a
purity scaling with inverse of the partition volume. Panel c): symmetry-resolved pur-
ity for a long-range XY spin chain of L = 10 sites, with ` = 4. The lines represent
theoretical simulations, with (solid) and without (dashed) decoherence. Dynamical
purification is only present in the first case. Circles represent experimentally recon-
structed data from for the symmetry-resolved purity in the trapped ion experiment of
Ref. [29]. Dynamical purification is experimentally observed for q = −1, and evident
for q = 1 (albeit with larger error bars) in agreement with both theory and numerics.
We refer to Ref. [30] for a thorough statistical analysis.

exist symmetry sectors 2 that evade this scenario. The reason behind this generic - and, we
believe, surprising - exception is rooted into the so-far-unexplored combination of the com-
petition between coherent and incoherent dynamics, and the presence of a global conserved
charge in a many-body system.

In the exemplifying scenario we anticipated above, we let an initial product state evolve
and observe that no purification takes place in the presence of only one of the two contributions
(i.e. J = 0 or γ = 0). We note that symmetry plays a crucial role for the effect of such
competition to arise, as the latter occurs in reduced density matrices restricted to specific
symmetry sectors and is inaccessible in the absence of symmetry resolution. The fact that we
need a global charge to be conserved and, most emphatically, that we predict unusual scaling
laws for entanglement propagation (see below) allow us to designate dynamical purification
as a genuine many-body effect. Thus, dynamical purification is fundamentally distinct from
single-body phenomena known in the realm of quantum optics [26–28], such as collapses
and revivals, where still purity can increase as a function of time for several reasons. From
a more practical viewpoint, dynamical purification can be seen as a direct – and universal –
signature of a dominant coherent dynamics in both quantum simulators and NISQ devices,
thus providing a simple proxy to evaluate their functioning. Importantly, such phenomenon
appears for a broad class of interacting theories, including Hubbard-like, long-range and even
confining interactions.

The competition between coherent and incoherent processes reflects into the existence of
two distinct dynamical regimes in terms of symmetry-resolved entropy scaling. At short times
dissipation is the dominant effect and the symmetry-resolved entropy displays a log-volume
behavior as function of the volume of the partition where it is computed. At intermediate
time, it exhibits a log-area one, since coherent dynamics partly overcomes dissipation and
enhances purity in given quantum number sectors. The corresponding change of dynamical
behavior has dramatic consequences on the experimentally relevant symmetry-resolved purity:

2In fact, for continuous symmetries, a large majority of the symmetry sectors will display dynamical purification,
albeit at different timescales.
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the latter quantity scales with inverse volume and inverse area (Fig. 2a-b), respectively. Hence
it provides an ideal proxy to diagnose scaling regimes during dynamical purification. For longer
time scales, thermodynamics comes back into the game and all symmetry-resolved entropies
show the standard extensive behavior in subsystem size [12].

The interplay between the two regimes can be be illustrated in context of a simplified
Markovian master equation for the symmetry-resolved reduced density matrix: within that
framework, the presence of the coherent dynamics interferes with the action of dissipation and
thus leads to a transient regime where entropy is soaked out of the symmetry-resolved reduced
density matrix itself. We corroborate our theoretical framework with numerical simulations
on a variety of experimentally relevant scenarios. In particular, we showcase the generality
of dynamical purification by studying both one- and two-dimensional systems (some of them
depicted in Fig. 1a-b) with partitions of different topologies, including both fermionic and
bosonic degrees of freedom, and using different types of (weakly-entangled) initial states.

In order to connect our results to experiments, we develop a protocol to access symmetry
resolved reduced density matrices building on the random measurement toolbox [31–37].
We show how experimentally demonstrated tools allow for accessing symmetry-resolved mo-
ments of symmetry-resolved reduced density matrices and symmetry-resolved Rényi entropies
by means of post-selecting data. This procedure is very efficient and allows to reach system
sizes that are considerably beyond what can be achieved via full-state tomography, when ap-
plicable (See Ref. [38] for a recent demonstration). We apply our protocol to the trapped
ion experiment reported in Ref. [29], reconstructing both symmetry-resolved entropies and
momenta of the symmetry-resolved reduced density matrix. The experiment reveals a sharp
dynamical purification (Fig. 2c) which confirms our theoretical findings. This observation
demonstrates the general applicability of our theoretical framework, and concretely illustrates
the potential of utilizing symmetry as an enhanced probing tool in state-of-the-art settings.

The paper is organized as follows. In Sec. 2, we set notations and review symmetry-
resolved entropies and negativities. In Sec. 3, we specify the time evolution we are interested
in, and develop a theory for the time evolution of both entropies and negativities in NISQ
devices. We illustrate how entropies show distinct scaling behavior at short (log-volume) and
intermediate (log-area) times, so that symmetry-resolved purities actually increase as a func-
tion of time (dynamical purification). We then argue that, along this purification, entangle-
ment is typically preserved, so that purification does not take place at the expenses of quantum
correlations. In Sec. 4, we present numerical results for both spin chains and fermionic systems
supporting our theoretical findings. In Sec. 5, we discuss the protocol for the experimental
measurement of symmetry-resolved entropies, and present a first application in the context of
the trapped ion experiment, that supports the observation of dynamical purification. Finally,
we draw our conclusions.

2 Symmetry-resolved quantum information

In this section, we review definitions and properties of symmetry-resolved density matrices
and partial transposes. Following those, we introduce symmetry-resolved entropies and neg-
ativities, in order to set notation, and briefly discuss applications of such concepts in closed
quantum systems.

2.1 Symmetry-resolved Renyi entropies

We are interested in bipartite systems, with a partition A∪ B. In the case of a many-body pure
state, the bipartite entanglement between A and B is fully encoded in the reduced density
matrix ρA(ρB) of the given subsystem A(B), and is characterized via n-order Rényi entropies,
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defined as

S(n)A =
1

1− n
log tr

�

ρn
A

	

. (1)

For n→ 1, these reduce to the renowned von Neumann entanglement entropy

S(ρA)≡ lim
n→1

S(n)A = − trA (ρA logρA) . (2)

The von Neumann entropy of the reduced density operator is a rigorous entanglement measure
for pure states, and the corresponding Rényi entropies with n > 1 provide rigorous lower
bounds. Both Rényi and von Neumann entropies have found widespread applications in the
realm of many-body physics, from the characterization of topological matter, to dynamics out
of equilibrium, to the understanding of tensor network methods - see, e.g., Ref. [6] for a review.

For a quantum system whose Hamiltonian dynamics preserves an additive conserved
charge, it is possible to identify and compute the contributions to the entanglement related to
each symmetry sector [7,8,10,11]. Here, we focus on global symmetries.

Let Q denote such a conserved charge (Q =QA⊗1B+1A⊗QB). Then, the reduced density
matrix ρA is necessarily block diagonal and each block corresponds to an eigenvalue q of QA.
One can thus introduce Πq, the projector into the eigenspace related to eigenvalue q, and the
associated density matrix ρA(q)

ρA(q)≡
ΠqρAΠq

tr
�

ρAΠq

	 , tr{ρA(q)}= 1 , (3)

so that
ρA = ⊕q p(q)ρA(q) , (4)

with p(q) = tr
�

ρAΠq

	

the probability of being in charge sector q. We introduce the symmetry-
resolved purity

PA(q)≡ tr
�

ρA(q)
2
	

. (5)

It quantifies how mixed the state appears in a given symmetry sector. PA(q) ranges in
[2−dim(HA(q)), 1] where dim(HA(q)) is the dimension of the Hilbert space associated to the
symmetry sector q of subsystem A.

The symmetry-resolved Rényi entropies are a straightforward extension of this concept:

S(n)A (q)≡
1

1− n
log tr{ρA(q)

n} . (6)

Computing tr{ρA(q)n} (in cases when a direct application of projectors in not feasible)
requires the knowledge of the spectral resolution in QA of ρA. As pointed out in Refs. [10,11],
for some of the computations below, it will be more convenient to study the charged moments
Zn(α),

Zn(α)≡ tr
�

ρn
AeiαQA

	

, (7)

since those do not directly require spectral resolution to start with. The charged moments have
been calculated in several cases [10–12,39–52]. Starting from the computation of Zn(α), it is
possible to obtain tr

�

ρn
AΠq

	

by means of a Fourier transform:

tr
�

ρn
AΠq

	

=

∫ π

−π

dα
2π

Zn(α)e
−iαq . (8)

We will exploit this last route in the fermionic simulations in Sec. 4.
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Recent studies have discussed the basic properties of these symmetry-resolved contribu-
tions both in- [10,11,39–50,53] and out-of-equilibrium [12,51], and in presence of disorder
[52]. In basically all considered cases, it has been shown that symmetry-resolved Rényi en-
tropies of large subsystems exhibits entanglement equipartition (namely all symmetry-resolved
Rényi entropies are equal) for the most relevant and populated symmetry sectors. The non
equilibrium dynamics of symmetry-resolved Rényi entropies has been considered only for isol-
ated systems, both after a local [51] and a global [12] quantum quench, and has revealed
the presence of a universal time delay for the activation of a given sector [12]. The investiga-
tion of symmetry-resolved Rényi entropies is far from complete and the characterization of its
behavior in the presence of dissipation still remains an open question.

2.2 Symmetry-resolved entanglement negativity

In the case the system S is in a mixed state, the entropies of the reduced density matrix are
no longer proper measures of bipartite entanglement, as they are also sensitive to classical
correlations, although they still provide useful information. A more appropriate and commonly
used quantity to witness entanglement in these cases is the negativity [54].

Considering S = A∪B, according to Peres’ criterion [55], also called positive partial trans-
pose (PPT) criterion, a necessary condition for separablity is that the eigenvalues λi of its
partial transpose ρTA (with respect to subsystem A) are exclusively nonnegative (λi ≥ 0). To
define ρTA we first write ρ as

ρ =
∑

i, j,k,l

¬

eA
i , eB

j

�

�

�ρ
�

�eA
k , eB

l

�

�

�

�eA
i , eB

j

¶




eA
k , eB

l

�

� , (9)

where
�

�eA
i

�

,
�

�

�eB
j

¶

denote orthonormal bases in the Hilbert spaces HA and HB corresponding

to subsystems A and B. Thus one defines the partial transpose ρTA performing a standard
transposition in HA, i.e. exchanging the matrix elements in A,

ρTA = (TA⊗1B)ρ

=
∑

i, j,k,l

¬

eA
k , eB

j

�

�

�ρ
�

�eA
i , eB

l

�

�

�

�eA
i , eB

j

¶




eA
k , eB

l

�

� . (10)

Note that this is equivalent to the basis transformation

(
�

�

�eA
i , eB

j

¶




eA
k , eB

l

�

�)TA =
�

�

�eA
k , eB

j

¶




eA
i , eB

l

�

� . (11)

The entanglement negativity

N ≡
∑

i

max{0,−λi}=
1
2

�

tr
�

|ρTA|
	

− 1
�

, (12)

quantifies the degree to which ρTA fails to be positive semidefinite. So, a non-zero negativity
implies the presence of entanglement between A and B. In recent years, the negativity has
been extensively studied in a large variety of physical situation, including critical [56–60]
and disordered systems [61,62], topological phases [63–67], and out of equilibrium [68–74].
It has been argued that for fermionic systems the partial time-reversal transpose is a more
appropriate object to characterise the entanglement in mixed states [75–82], although we will
not employ such a concept here.

In analogy to entanglement entropy, one can consider the negativity for a system possessing
some additive conserved charge Q = QA ⊗ 1B + 1A ⊗ QB. Interestingly, ρTA admits a block
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diagonal form in the quantum numbers of the charge imbalance, that is, the difference of
charge between A and B, Q̃ =QA−QTA

B [22]. Let Πq̃ denote the projector onto the eigenspace
of Q̃ associated with eigenvalue q̃. We define the normalized symmetry-resolved partially
transposed density matrix [22,83]

ρTA(q̃)≡
Πq̃ρ

TAΠq̃

tr
�

ρTAΠq̃

	 , tr
�

ρTA(q̃)
	

= 1 , (13)

such that
ρTA = ⊕q̃ p̃(q̃)ρTA(q̃) , (14)

with p̃(q̃) = tr
�

ρTAΠq̃

	

≥ 0 the probability of being in charge imbalance sector q̃. We can thus
define the symmetry-resolved negativity as

N (q̃)≡
tr
�

|ρTA(q̃)|
	

− 1

2
, (15)

with N =
∑

q̃ p̃(q̃)N (q̃). To compute the symmetry-resolved negativity, one needs the spectral
resolution of ρTA as in the previous case. Beyond the case of exact simulations, this challenging
calculation is performed in two steps. We first focus on the moments tr

�

(ρTA(q̃))n
	

, from
which the negativity is obtained from a replica trick [57]. Then we consider the charged
moments [22,78]

Rn(α)≡ tr
¦

�

ρTA
�n

eiαQ̃A
©

, (16)

and performing a Fourier transform we get the desired tr
�

(ρTA(q̃))n
	

. This way of performing
the calculation is very powerful when combined with 1+1D CFTs [22,57], which also provided
exact results for the time evolution of the symmetry-resolved negativity after a local quantum
quench [51]. As in the case of symmetry-resolved Rényi entropies the study of symmetry-
resolved negativities in open systems has never been addressed.

3 Time-evolution of symmetry-resolved entropies and negativities

In this section, we present a theoretical description of symmetry-resolved quantum information
in NISQ devices. We are specifically interested in the short- to intermediate timescales, that
is, before dissipation takes over the system dynamics overwhelming coherent effects.

We shall first discuss the generic setting and subsequently focus on a specific example that
presents the generic features we are interested in: the existence of distinct regimes of entropy
scaling, dynamical purification, and its interplay with entanglement. While, for the sake of
clarity, most of the technical discussion will be based on illustrative examples, we point out
that our conclusions are only relying on very generic conditions, that we now specify in the
next subsection, 3.1. In the following, we will consider, for the sake of simplicity, ħh = 1 and
lattice constant a = 1.

3.1 Short-time dynamics: emergent purification

The system dynamics we are interested in features the following characteristics:

• a D-dimensional system, and a ’convex’ partition A herein with smooth boundaries3,
volume VA and area ∂ VA;

3This assumption is only needed to a have simple count of the coherent processes. Essentially, we do not want
to have sites of the complement that are accessible from two sites of the partition within first order perturbation
theory.
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• an initial state |ψ0〉 which is a product state in real space;

• the full system dynamics shall be described by a Gorini-Kossakowski-Sudarshan-Lindblad
(GKSL) master equation. In particular, we will be interested in Markovian time-evolution;

• the system Hamiltonian shall have a global symmetry G. For the sake of simplicity,
we will consider U(1) below 4; most results are immediately extended to ZN symmet-
ries, and might also be applicable to the symmetry resolution of continuous non-Abelian
groups when sectors are labelled by Abelian subgroups. We assume local (i.e., nearest-
neighbor, one- and two-body) couplings, that are homogeneous in space. We define as
J the energy scale associated to these terms. Below, we will discuss how sufficiently
long-range interactions can also be included;

• dissipation shall instead be described by local (single-site) jump operators. For the sake
of simplicity, it is assumed that all sites are affected by the same dissipative processes.
Dissipation shall violate the symmetry G. We define as γ the energy scale associated
to these terms, that is, the bare inverse decay rate. One important aspect (that, as we
discuss below, is experimentally motivated) is the fact that the jump operators shall still
preserve the block structure of the density matrix - a scenario that is typically referred to
as weak symmetry [84,85]. Other sources of dissipation can in principle be introduced:
as it will be clear below, we expect that their effects are not particularly interesting for
the sake of our treatment.

Such assumptions are ubiquitous in the context of synthetic quantum systems, such as cold
atoms in optical lattices or tweezers, trapped ions, and arrays of superconducting qubits. En-
gineering initial states in product state form (up to initialization errors) is of widespread prac-
tice, as this can be typically carried out by manipulating quantum states locally. The system
dynamics is often local and associated to continuous symmetries, such as particle number or
magnetization conservation. Dissipation is generically violating conservation laws associated
to the latter quantities: examples include particle loss in cold atom Hubbard models, and fully
depolarizing noise and spin relaxation in trapped ions and superconducting circuit architec-
tures.

Most of the present experimental settings are able to access parameter regimes where
dissipation is weaker than the coherent dynamics, with the ratio γ/J ranging from 10−3 to
10−1 [14,17,17]. We will focus explicitly on this parameter regime, and consider dissipation
as a perturbation on the top of the coherent dynamics.

Under these assumptions, one can identify three timescales: two intrinsic, and one typical
of the subsystem one is interested in. The first one tJ = 1/J is associated to coherent local
dynamics. The second one t2 = 1/γ is instead related to a timescale after which (on average)
all sites within the partition have undergone a quantum jump. The last one, typical of the
subsystem A, t1 = 1/(VAγ) is related to the timescale required to observe a single quantum
jump within A.

Let us mention here, that in contrast to the notion of dissipative state preparation [23–25],
we study here a given evolution of a physical system. That is, we are not engineering the
coupling to the bath to drive the system into a desired state, but rather, discuss the dynam-
ics corresponding to naturally present quantum noise. In addition, whereas dissipative state
preparation can be utilized to obtain as a unique stationary state a highly entangled many-
body state, or states whose subsystems can be very pure, the situation we consider here is

4The treatment can be extended to local symmetries, and thus gauge theories. The latter case is more complic-
ated due to the definition of reduced density matrices in Hilbert spaces without tensor-product structure. We leave
this to future work, and consider a 1D case in the Sec. 4, that is closer in spirit to the case of global symmetries
since Gauss law can be integrated exactly in that case.

9

https://scipost.org
https://scipost.org/SciPostPhys.12.3.106


SciPost Phys. 12, 106 (2022)

not related to long-time dynamics. We will indeed show that dynamical purification occurs at
intermediate times.

For times t � t2, ρA will be completely mixed, also in its symmetry-resolved sectors be-
cause the dissipative contribution is overwhelming. Similarly, for regimes where γ � J , the
system dynamics is dominated by incoherent processes. A promising regime to observe com-
petition between coherent and incoherent dynamics is thus VAγ, J > γ, and is the one we
will consider below. We remark that this is a rather generic situation for quantum simulat-
ors of many-body systems, where one tries to realize dynamics that are as coherent as possible
(J > γ) for large number of degrees of freedom (VA� 1). This second condition is not needed
in general: however, it considerably simplifies the theoretical treatment, as it allows to treat
timescales in a way that is easier to interpret. We will thus assume that below, and comment on
that at the end of the section. In Sec. 4, we will discuss in more details in which experimental
platforms such conditions are met.

We emphasize there that the presence of three dynamical regimes (that, as we will show
below, are captured by different entropy scaling) stems from purely geometrical considera-
tions: while Hamiltonian dynamics is acting solely at the boundary between the partitions5,
incoherent processes are instead present over the entire volume of the partition one is in-
terested in. As such, the short-time evolution of symmetry-resolved density matrices will be
dictated by this competition, and is expected to be largely insensitive to other characteristics,
including the partition geometry and topology, and (to a weaker extent) the initial state. The
theoretical apparatus discussed in the next section can be adapted to incorporate such generic
features. We nevertheless opted to focus on a simple, yet paradigmatic example, and defer
the demonstration of generality of symmetry-resolved dynamical purification to the numerical
experiments discussed in Sec. 4.

3.1.1 Explicit example: hard-core Bose-Hubbard model in 2D

For the sake of clarity and to make the connections with the numerical experiments below
more evident, we start by focusing on a specific instance, and return to the general case at the
end of the subsection. We consider a model of hard-core bosons hopping on an infinite 2D
square lattice, described by the Hamiltonian

H =
J
2

∑

<i, j>

(b†
i b j + h.c.) . (17)

Here, b j (b†
j ) is the bosonic annihilation (creation) operator at site j such that n j = b†

j b j gives

the number operator for that site 6. The Hamiltonian dynamics conserves the total number
of bosons, and is thus U(1) invariant. The system time-evolution is described by a master
equation:

∂tρ = −i[H,ρ] +
∑

j

γ

�

b jρb†
j + b†

jρb j −
1
2
{b j b

†
j + n j ,ρ}

�

, (18)

where the second term describes single particle loss and gain processes with decay rate γ. The
full dynamics is schematically depicted in Fig. 3a. While we will keep generality in the theory
part with respect to the possible dissipation mechanisms, in the numerical examples below,
we will only consider loss terms, as those are more readily accessible experimentally.

5In the case of sufficiently short ranged power-law interactions, such actions is extended to the few sites close
to the boundary.

6This choice of jump operators naturally falls within the realm of weak symmetry. In order to break it, one
would have to consider jump operators as linear combinations of creation and annihiliation operator, a scenario
we do not consider here.
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Figure 3: Schematics of the short-time dynamics in lattice models considered here;
we show here the sector with q = −1. Panel a: the system is defined on a square
lattice. The initial state is a charge-density wave |Ψ〉: grey and blue circles represent
empty and full sites, respectively. At short time, the evolution involves states belong-
ing to the E0 and E1 subspaces only (see examples, where sites circled in red are the
ones changed with respect to |Ψ〉). The influence of the rest of the Hilbert space E2
on the system dynamics is neglected, as accessing these states will require at least 3
proceeses starting from |Ψ〉. Panel b): same as in panel a, but for the 1D case. Note
that, in the following sections, several partition topologies will be discussed. Panel
c): structure of the time evolved reduced-density matrix. At short times, it is further
block-diagonal in both E0 and E1, where the E2 sector is traced away.

We investigate the dynamics starting from a charge-density wave (CDW), with altern-
ating empty (grey) and filled (blue) sites (see Fig.3b). Within this state, we consider the
reduced density matrix ρA corresponding to a rectangular partition A of size Lx × L y . Let
Q =

∑

j∈A n j −
1
2 Lx L y the number of bosons in the partition A above half-filling. Note that,

while the full time evolution breaks U(1) invariance, the reduced density matrix ρA preserves
its block-diagonal form: this is more conveniently seen when interpreting Eq. (18) as a collec-
tion of quantum trajectories, each corresponding to the solution of a stochastic Schrödinger
equation. Within each trajectory, the total number of particles at each time t is well defined:
a single quantum jump only changes that value by an integer value. Following the previous
subsection, we denote such symmetry-resolved reduced density matrices as ρA(q).

We are interested in short time evolution, where dissipation and coherent dynamics
strongly compete. Specifically, we focus on timescales accessible within perturbation theory,
that is, J2 t2, tγ � 1. Therefore, we can solve Eq. (18) in second order in t to obtain the
time-evolved density matrix ρ(t) as a function of the initial state ρ(0) [86]. We focus on the
q = −1 sector of the reduced density matrix, that is, the one where the number of bosons
in the partition is decreased by 1 with respect to half-filling. At short times, this is the most
populated sector that does contribute to the initial state. We will comment on the other sec-
tors below. Within this framework, we assume that only the diagonal elements of the reduced
density matrix are affected by the time evolution. This assumption can be proven for initial
states that are product states in real space.

We now divide ρA(−1) into three blocks, schematically depicted in Fig. 3:

1. E0(−1): states that are connected to the CDW by a single hopping process: these states
differ from the CDW by a single occupied site at the boundary. We denote the (Lx + L y)
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diagonal eigenvalues of these states as λE0
k ;

2. E1(−1): states that are connected to the CDW by a single pump process in the bulk;
these states differ from the CDW by a single empty site in the bulk. We denote the
(Lx − 2)(L y − 2)/2 diagonal eigenvalues of these states as λE1

k ;

3. E2(−1): states that are not connected to the CDW by a single tunneling or pump process.
We denote the diagonal eigenvalues of these states as λE2

k . For two-body interacting
Hamiltonians, these states will be accessed only in third order perturbation theory.

At second order in perturbation theory (the lowest order relevant to the present case), one has
the following scaling of the eigenvalues of ρA(−1):

λ
E0
k = (J

2 t2 + γt)/A(t), λE1
k = γt/A(t) , (19)

with λE2
k = 0, and

A(t) = γt(Lx L y − 4)/2+ J2 t2(Lx + L y) . (20)

We can now compute the time-evolution of the symmetry-resolved entanglement entropies. At
short times t < t1, only dissipation is relevant. In particular, the rank of the reduced density
matrix will be (Lx L y), and the corresponding Renyi-2 entropy results:

S(2)A (q = −1)∝ log[Lx L y] for t � t1, Lx , L y � 1 , (21)

and is time-independent. The corresponding purity is:

PA(−1)∝ 1/[Lx L y] . (22)

It is worth noting that such ’log-volume’ regime is valid at arbitrarily small times, the simple
reason being that the initial state has no component in the q = −1 subspace.

At intermediate times t1 < t < tJ , tunneling affects the system dynamics. While unitary
time evolution generically leads to further information propagation and, correspondingly, en-
tropy production, here, the opposite takes place: the symmetry-resolved density matrix purifies
as a function of time, i.e., the purity increases and the entropy decreases. The reason for this
phenomenon stems from the natural competition between volumetric and perimetral contri-
butions to the system dynamics: while dissipation has an effect that scales with the volume of
the partition, and thus populates a number of eigenvalues that are proportional to the volume
itself, short-time coherent dynamics is related to boundary effects, and thus favors a much
smaller number of states within the Hilbert space of the partition.

In order to elucidate this effect, we observe that our reduced density matrix is already
normalized, and compute

PA(−1) =
t2

A(t)2
[(Lx + L y)(J

2 t + γ)2 + (Lx − 2)(L y − 2)γ2] ,

that, in the large volume limit becomes

PA(−1) ' 1/(Lx + L y) for tJ > t > t1 .

The corresponding Renyi-2 entropy follows a ‘log-area’ scaling:

S(2)A (q = −1)∝ log[Lx + L y] for tJ > t > t1 .

This implies that the transition between the two regimes is characterized by an emergent
purification, that transits the system from a purity that is inversely proportional to the volume

12

https://scipost.org
https://scipost.org/SciPostPhys.12.3.106


SciPost Phys. 12, 106 (2022)

of the partition, to one that is inversely proportional to its surface. Note that the explicit time
evolution can be computed from the previous equation, and in principle, the position of the
’maximum’ of the purification can be extracted. While the corresponding formulas reveal no
more physical insight, they signal the fact that the purification time decreases as the partition
size increases. Due to the condition tJ < t2, it is not possible to analytically compute the
VA→∞ limit; we nevertheless expect dynamical purification to systematically decrease with
the partition size, as a consequence of the area versus volume competition.

The calculation above can be straightforwardly generalized to any dimension, modulo the
conditions mentioned at the beginning of the section, under the assumption that dynamics is
acting non-trivially at the boundary (e.g., a state with a layer of empty sites at the boundary
will not experience any meaningful coherent evolution at short times in the q = −1 sector).
The corresponding scaling behavior decomposes into three regimes:

PA(−1)∝











1/VA t1� t ≥ 0 (short time),

1/(∂ VA) tJ > t > t1 (int. time),

1/2VA t � tJ (long time).

(23)

This equation succinctly describes the dynamical scaling regimes depicted in Fig. 1. Starting
from an unsurprising short time behavior (top case), the system purifies at intermediate time
scales (center case) before eventually getting fully mixed (bottom case) due to both coherent
and incoherent system dynamics.

3.1.2 General remarks: nature of interactions, initial state, and dissipation

In the explicit example before, we have focused on the most populated sector of the reduced
density matrix not present in the initial state, we expect dynamical purification to occur also in
other sectors - with, however, a weaker effect due to higher order perturbative processes. The
presence of long-range interactions that decay fast enough (at most as power law) shall not
change this picture at the qualitative level: however, it will lead to a renormalization of the
timescale tJ . Importantly, long-range interactions will not modify the structure of the Hilbert
subspaces discussed above.

While we have focused on purities, additional information can in principle be obtained
from the population of the different sectors (denoted with A(t) above) as well. One example
is equilibration at long-times: this is beyond the perturbative treatment we have developed,
and will be discussed in the next sections in both simulations and experiments.

The treatment above is specific to an initial state: however, the competition between volu-
metric and perimetral contributions is in fact generic to a much broader set of experiment-
ally relevant configurations. For the case of pure states, dynamical purification shall occur as
long as the initial state is separable or weakly entangled, as we show in one of the fermionic
examples below. For highly entangled initial states, the theory above is not immediately ap-
plicable. Below, we will discuss a 1D numerical example, where the initial state has log(`)
entanglement: in that case, we observe no purification. It is also important to stress that,
while we have assumed γVA > J , this is technically not needed at all: indeed, since dissipation
acts already at first order in perturbation theory, there exists always a time scale for which
γVA > J2 t. In fact, the size of the partition is irrelevant, as long as it can host significant
dynamics within a given symmetry sector.

Most importantly, dynamical purification is present also for initial states that are globally
mixed. In those cases, this is simply due to the fact that the coherent dynamics selects a subset
of states in ρA(−1) that are populated due to coupling to Ā. The extent of the dynamical
purification depends on the details of the action of the Hamiltonian on the initial state: we
will investigate a specific scenario below while discussing trapped ion experiments.
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Another aspect that is worth discussing is, which type of noise leads to dynamical puri-
fication. The noise we have considered here has two characteristics: (i) it is described by
a Markovian master equation, and (2) it is quantum noise, as testified by the fact that it is
described by non-hermitian jump operators. While these conditions are typically very well
satisfied when describing the dynamics of cold atoms in optical lattices using a master equa-
tion, we find useful to provide a short discussion of these two elements in view of possible
applications to other settings.

The first assumption above is delicate. Since we are interested in intermediate time dy-
namics, ht is reasonable to expect that our findings will not be affected by a bath featuring
short-lived memory effects, as long as the weak system-bath approximation (that we neverthe-
less consider, since γ� J) holds. However, more complicated bath structures including strong
memory effects - such as a low-temperature Ohmic bath - cannot be immediately connected to
the physical picture we present here. We leave this interesting question - that does not pertain
the experimental systems we are interested in - to future work.

The second assumption above is crucial: Hermitian jump operators (such as those, for
instance, describing classical noise) would not lead to any dynamical purification. This can
be easily seen by considering the action of dephasing on the various sectors of the symmetry-
resolved reduced density matrix: for the type of initial states we consider, the latter will not
affect populations. This implies that entropy will be dominated by coherent dynamics, thus
increasing with time. The relevance of the first assumption can potentially be exploited as a
diagnostic in the context of quantum noise tomography; interestingly enough, such a probe
would be very sensitive, as the effects we describe can be present for very small values of γ,
and can be tuned by changing the volume of the partition in numerical simulations as well as
in experiments.

Finally we find it useful to add two comments framing the physics we observe in the context
of open quantum systems (especially since the primary physical platform we are interested
in are nothing but many-body quantum optical systems, as exemplified by the experimental
results below). First, we observe that the effective dynamics describing the evolution of ρA
can be interpreted as the time evolution of a density matrix of a system coupled to a bath. This
provides an additional viewpoint on the phenomenon we are interested in, that could be of
help to translate it to other contexts (for instance, in case the two partitions are made of two
different types of degrees of freedom, e.g., describing light-matter interactions). A detailed
discussion of this fact is provided in the appendix, together with a proof of the fact that such
effective dynamics is Markovian. Second, we point out that the phenomenology we describe
here is fundamentally distinct from other instances of open system dynamics that may feature a
decrease in entropy. One example here are revivals in the Jaynes-Cummings model [27] (and
similar effects in the context of non-Markovian dynamics of single spins coupled to cavity
modes): there, the phenomenon one observes is intrinsically few body, and has no relation
whatsoever with (continuous) symmetries. This fundamental difference is clearly apparent
into the fact that the universal regimes we have proposed have not been reported so far in
those contexts.

3.2 Negativity over dynamical purification

While the system purifies at short time, due to its coupling to the environment, it cannot be
established a priori whether this is associated to a loss of shared entanglement between the
partition and its complement. For instance, dynamical purification (with or without symmetry
resolution) can also occur at long times in systems under the presence of dissipation only: a
typical example is relaxation to a vacuum state, that is driven by a single jump operator, and
leads to a trivial state, with no left-over correlations between A and B, and within A. Below, we
show explicitly how symmetry-resolved dynamical purification is drastically distinct from this
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mechanism: In particular we show how not only entanglement between A and B is generated
as a function of time, but also that, in any given symmetry sectors (now labeled by quantum
number differences), entanglement remains finite and sizeable (negativity of order 1) over the
entire purification process. This is a key element that characterizes this symmetry-resolved
phenomena, and we will show below how this is also captured within perturbation theory.

We study the entanglement dynamics for two connected partitions A and B of a spin (or
hard-core boson) system, as governed by Eq. (18), in a regime where the partition A undergoes
dynamical purification. For the sake of simplicity, we will deal explicitly with the 1D case
analog to the setup described above (see Fig. 3b), and restrict the decoherence channels to
particle loss, as this will allow us to keep our notations compact. Our findings are however
general, as illustrated in the next section for various geometries and partition configurations.

In contrast to the situation of dynamical purification, the key features of short-time entan-
glement dynamics of the partial transpose reduced density matrix can already be captured by
solving Eq. (18) in first-order perturbation theory, i.e. by studying the dynamics of ρ(t) in first
order in t � 1/(γN), 1/J (� 1/γ). We rewrite this as

ρ(t) = ρ(0)− i[H,ρ(0)]t + γt
∑

j

�

b jρ(0)b
†
j −

1
2 b†

j b jρ0 −
1
2ρ0 b†

j b j

�

. (24)

Consider for concreteness that the even sites 2m, m = 1, . . . , N/2 are occupied and, NA = NB
is even, the density matrix in first-order perturbation theory can be re-expressed as 7

ρ(t) =
�

1−
Nγt

2

�

ρ(0) + J t(−i b†
NA+1 bNA

ρ(0) + h.c) + γt
N/2
∑

m=1

b2mρ(0)b
†
2m + ... , (25)

which corresponds to a diagonal part parametrized by the decoherence rate γ, and a pair of off-
diagonal elements associated with the hopping J . Note that there is no diagonal contribution
due to the hopping, as this only appears in next-to-leading order as discussed above. Taking
the partial transpose of Eq.(25) leads to

ρTA(t) =
�

1−
Nγt

2

�

ρ(0) + J t(−i b†
NA+1ρ(0)b

†
NA
+ h.c) + γt

N/2
∑

m=1

b2mρ(0)b
†
2m , (26)

which has a 3-block structure associated with the quantum number q̃ = qA− qB

ρTA(q̃ = 0, t) =
�

1−
Nγt

2

�

ρ(0) ,

ρTA(q̃ = −1, t) = γt
NA/2
∑

m=1

b2mρ(0)b
†
2m + J t(−i b†

NA+1ρ(0)b
†
NA
+ h.c) , (27)

ρTA(q̃ = 1, t) = γt
N
∑

m=NA/2+1

b2mρ(0)b
†
2m .

The sector q̃ = 0 corresponds to the initial state component, has a weight tr(ρTA
q̃=0(t)) of order 1,

and features no entanglement. The sector q̃ = −1, corresponding to the situation where the A
partition loses one excitation with respect to partition B, has the richest structure, representing
the interplay between particle loss from A and coherence dynamics (hopping from A to B).

7For the sake of clarity, we do not include intra-partition hopping terms: at lowest order, their only effect is to
renormalize the dynamics in the q̃ = 0, that we are not immediately interested here
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Finally, the last sector q̃ = 1 represent decoherence events occurring in the B partition. In
each sector, we can calculate the spectrum

λ̃(q̃ = 0, t) =
�

1−
Nγt

2

�

, (28)

λ̃(m=1,..., NA
2 −1)(q̃ = −1, t) = γt , (29)

λ̃(m=
NA
2 , NA

2 +1)(q̃ = −1, t) = (γ±
Æ

γ2 + 4J2)
t
2
≈ (
γ

2
± J)t , (30)

λ̃(m=1,..., NB
2 )(q̃ = 1, t) = γt , (31)

where, in the last part of the third line, we have neglected the term γ2� J2.
The existence of a negative eigenvalue λ̃(m=NA/2)(q̃ = −1) = −J t + γt/2 ≈ −J t < 0

demonstrates that the state is entangled, and remains so over dynamical purification. After
normalization, we obtain the symmetry-resolved negativity

N (q̃ = −1)≈
2J t
NAγt

=
2J
NAγ

, (32)

that features a characteristic 1/γ scaling (that is reminiscent of the fact that this is a per-
turbative effect). Interestingly, the short-time behavior of the negativity is constant: this is
consistent with the fact that only one, large negative eigenvalue dominates its behavior. The
inverse scaling with the partition size is due to the fact that we are normalizing symmetry-
resolved density matrices, so boundary contributions to the entanglement generated by the
mechanism described above are expected to be of order 1/NA.

4 Numerical results

4.1 Spin chains

In this section, we provide numerical evidence for symmetry-resolved purification in one-
dimensional spin chains. Specifically, we consider quench dynamics in the XY-model with
Hamiltonian

HXY =
∑

i> j

Ji j(σ
+
i σ
−
j +σ

−
i σ
+
j ) +

∑

i

δiσ
z
i , (33)

where σ±j = (σ
x
j ± iσ y

j )/2, subject to spin excitation loss with rate γ, modeled via the jump
operators

p
γσ−i for i = 1, . . . , N . The coherent hopping is here determined by the interaction

matrix Ji j . We consider next-neighbour interactions, Ji, j = Jδi+1, j , and long-range interac-
tions with power law coefficient α, Ji, j = J/|i − j|α, respectively. A disordered longitudinal
field δi can be added which we sample independently for each lattice site from the uniform
distribution on [−δ,δ]. We initialize the system with N = 8 sites, divided into subsystems
A= [1,2, 3,4] and B = [5,6, 7,8], in the Néel state |Ψ0〉 = |↓↑〉

⊗N/2 with total magnetization
Sz =

∑N
i=1σ

z
i = 0. While the total magnetization is conserved by the Hamiltonian part of the

dynamics HX Y , the incoherent spin excitation loss leads to a population of various sectors.
In Fig. 4 (a,d), we display the symmetry-resolved purity of the subsystem A with NA = 4

sites for various sectors q in a system with short-range interactions Ji j = Jδi−1, j and vanishing
disorder δ/J = 0. Clearly, the sector q = −1 exhibits dynamical purification at times J t ≈ 1
which is absent in the sector q = 0 and also for the purity tr

�

ρ2
A

�

of the total density matrix
ρA. Note that the second peak in panel (a) (at around J t = 4) is a boundary effect due to
the partition size. As predicted by perturbation theory [Eq. (23)], purification is pronounced
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Figure 4: Dynamical purification and symmetry-resolved entanglement for one-
dimensional XY spin models. We choose a system with N = 8, initialized in a Néel
state |↓↑〉⊗N/2 and evolved with HXY subject to particle loss with rate γ (see main
text). We take A = [1,2, 3,4] and B = [5,6, 7,8]. In panels (a,b,d,e), we consider
short-range interactions Ji j = Jδi−1, j and vanishing disorder δ/J = 0. We present
the symmetry-resolved purity PA(q) [panels (a,d)] and the normalized symmetry-
resolved negativity N (q̃) [panels (b,e)] for various imbalance sectors q̃ (a,b) and
decoherence rates γ (d,e). The inset in (e) shows the early time value N (−1)|t=0+ as
function of γ/J . In panels (c,f), we present the symmetry-resolved purity for various
imbalance sectors (c) and decoherence rates (f) in a system with long-range interac-
tions Ji j ∼ J/|i − j|1.2 and a fixed disordered longitudinal field, sampled uniformly
from [−δ,δ] with δ/J = 0.86. Gray lines in (d,e) are results from perturbation
theory, Eqs. (46) and (32), respectively.

most strongly for weak decoherence [see Fig. 4d)]. While the initial values PA(1)|t=0+ = 2/NA
is independent of γ, the peak of the purity is approaching the value of the purity for unit-
ary dynamics. On the contrary, for γ ¦ J , the dynamics is dominated by decoherence, and
purification is absent.

In Fig. 4 (b,e), we show the symmetry-resolved negativity N (q̃). We observe that
symmetry-resolved entanglement between A and B is dominated by the magnetization im-
balance sector q̃ = −1 sector. The magnitude of the negativity of sector q̃ is much larger than
the total system negativity. In addition, as shown in the inset, the early time value at J t = 0+

is decreasing as∼ 1/γwith increasing decoherence rate γ, as predicted by perturbation theory
[Eq.(32)].

Long-range, disordered spin chains. - To illustrate the phenomenon of dynamical purific-
ation in more generic interacting spin chains, we display in panels (c,f) the symmetry-resolved
purity in a system with long-range hopping with powerlaw coefficient α= 1.2 and in the pres-
ence of a fixed disordered longitudinal field with δ = 0.86J . Our findings are qualitatively
very similar to the case of the (non-interacting) model with short-range interaction: dynam-
ical purification is clearly observed in the symmetry sector q = −1 with increasing magnitude
for weaker decoherence.

Experimental setups. - The dynamics discussed in this subsection is relevant for a variety
of setups. In the next section, we will discuss and demonstrate implementation with trapped
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Figure 5: Symmetry-resolved purity for the Bose-Hubbard model in one dimension.
We consider a system with L = 8 and we take A= [1,2, 3,4] and B = [5,6, 7,8]. In
panel a) and b) we start from the state |ψ0〉 = |1, 2〉⊗L/2 and consider: a) U = 0.5J ,
γ = 0.1J ; b) and q = 5, γ = 0.1J . In panel c) and d) we start from the state
|ψ0〉= |0,1〉⊗L/2 and consider: a) U = 0.5J , γ= 0.1J ; b) and q = 1, γ= 0.1J .

ions in Paul traps. Another natural setting is Rydberg atoms in optical tweezers or optical
lattices. Within those, the dipolar version of the XY Hamiltonian in Eq. (33) is naturally real-
ized when considering direct dipole-dipole interactions within the Rydberg manifold (for a
many-body demonstration, see Ref. [87]). Spin excitation losses occur naturally, and can be
further enhanced via incoherently coupling the two Rydberg states. A very similar scenario
(dipolar couplings) is also realized with superconducting qubits in 3D cavities, and with polar
molecules or magnetic atoms in optical lattices.

4.2 Bose Hubbard model

In this section we discuss numerical simulations of the Bose-Hubbard model. This allows us to
provide explicit evidence of dynamical purification in a full parameter regime connecting the
strongly interacting case discussed above for the XY model, and Gaussian theories described
later in the section.

The model Hamiltonian reads:

HBH = J
∑

i

�

b†
i bi+1 + b†

i+1 bi

�

+ U
∑

i

ni (ni − 1) . (34)

Here b, b† are bosonic operators, ni = b†
i bi is the number operator on site i. For computational

convenience, we truncate the number of bosons at a maximum of two per site (this also emu-
lates well experiments in the presence of strong three-body losses [88,89]). The Hamiltonian
preserves the total number of particles N =

∑

i ni . The system dynamics is also subjected to
particle loss modeled by γbi , i = 1, . . . , L. The loss parameter γ is fixed to γ= 0.1J for all the
simulations.

We consider a bipartite system of L = 8, where A= [1,2, 3,4] and B = [5,6, 7,8]. Accord-
ing to the criteria discussed above, dynamical purification will take place for several choices
of the initial state: we focus here on two cases: the state |ψ0〉 = |1, 2〉⊗L/2, where 2 means
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that the site is doubly occupied while 1 means that there is a single boson; and the state
|ψ0〉 = |0,1〉⊗L/2 where 0 denotes an empty site. We calculate, during the evolution of the
system, the symmetry-resolved purity PA(q), where q denotes the number of particles in sub-
system A.

In Fig. 5 we plot the symmetry-resolved purity as a function of time, starting from the
state (1,2, 1,2..): in panel a) we consider sectors q = 4, 5,6 with U = 0.5J , in panel b) we
fix q = 5 and take into account different values of U . In agreement with our theory, we
observe no purification in the sector q = 6 in panel a) since it is the only one occupied in the
initial state. Sectors q = 4, 5 instead purify at intermediate times with a more pronounced
purification visible in the nearest sector q = 5. Afterwards the curves approach the same value
of purity as information equipartition shall occur at long times. In panel b) we observe the
same phenomenology for several values of the interaction strength. Here the sector q = 5
experience purification but the value and the position of the peak changes as function of U .

In panels c) and d) of Fig. 5, we investigate the same scenario but starting from the state
(0, 1,0, 1..), and consider in panel c) the symmetry-resolved purity for sectors q = 1,2 with
U = 0.5J , and in panel d) the same quantity for q = 1 and several values of U . We observe the
same phenomenology of panel c) and d). Dynamical purification is, in fact, present for any
initial state which is a product state. Here we observe that the sector q = 1 purifies and the
effect is present also when the strength of the interaction increases, as witnessed in panel d).

The results of the Bose-Hubbard and XY models indicate, as predicted by our theory, that
dynamical purification occurs over the entire interaction regime - from weak to infinite coup-
ling. It is worth noticing that the maximum purity is weakly affected, while the time to reach
the maximum itself is sensitive to both initial filling fraction, and interactions. The first effect
can be traced back to bosonic enhancement. The second is instead likely due to the effect of
a more constrained dynamics for strong interactions (many states becoming non-resonant),
that is likely affecting terms beyond second order in perturbation theory.

Experimental setups. - Bose-Hubbard models with single particle losses describe well the
dynamics of cold atoms in optical lattices, where some of the probing techniques introduced
here can be implemented [31,33].

4.3 U(1) lattice gauge theory

An even stronger form of interacting system in 1D is provided by gauge theories with U(1)
center. For those models, Coulomb interactions follow a genuine linear increase as a function
of distance due to confinement. However, since charge creation is still a local process, one
expects dynamical purification to still occur, albeit at a possibly slower rate when compare to
models with local interactions. In order to illustrate this, we have investigated the short time
dynamics of the lattice Schwinger model, a U(1) lattice gauge theory describing the coupling
between fermions and U(1) gauge fields. The model Hamiltonian reads:

H = w
∑

i

(ψ†
i Ui,i+1ψi+1 + h.c.) + J

∑

i

E2
i +m

∑

i

(−1)iψ†
iψi , (35)

where ψ are fermionic annihilation operators, U are U(1) parallel transporters, and E is cor-
responding electric field terms. The first term describes minimal coupling, the second the field
interaction strength, and the third represents a mass term, that features a staggering typical
of Kogut-Sussking (also known as staggered) fermions. For our simulations, we find it con-
venient to recast the Schwinger model as a spin Hamiltonian with long range interaction in
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the following way [90]:

HS = H± +HZ +HE ,

H± = w
∑

i

�

σ+i σ
−
i+1 +σ

−
i σ
+
i+1

�

,

HZ =
m
2

∑

i

(−1)iσz
i −

J
2

N−1
∑

n=1

(nmod2)
N
∑

l=1

σz
l ,

HE = J
N−1
∑

n=1

E2
n .

(36)

Here σ±j = (σ
x
j ± iσ y

j )/2. It can be shown that

HE = J
N−1
∑

n=1

�

ε0 +
1
2

n
∑

l=1

�

σz
l + (−1)l

�

�2

. (37)

It gives rise to a long range spin-spin interaction and local energy offsets, that represent Cou-
lomb law between staggered fermions.

In Fig. 6 we plot the symmetry-resolved purity during the dynamics of spin system evolving
under the Hamiltonian in Eq. 36, starting from the state |Ψ0〉 = |↓↑〉

⊗N/2 with total magnetiz-
ation Sz =

∑N
i=1σ

z
i = 0. We observe that the coherent dynamics preserves the magnetization

while the dissipation, modeled by
p
γσ−i (∀i = 1, . . . , L), does not.

In panel a) the symmetry resolved purity is plotted for w = 1,ε0 = 0, m = 0, J = 0.1,
γ = 0.05. In panel b) we fix w = 1, m = 0, γ = 0.05 and let J and ε0 to vary. We see
that even a long-range, strongly interacting system experience dynamical purification in both
sectors q = −2,−1. Changing the values of the long range coupling J and of the background
field ε0 does not change qualitatively the picture. A richer structure seems to emerge in the
q = −2 sector at long times, suggesting that, while dynamical purification occurs smoothly,
entanglement equipartition does not.

Experimental setups. - The dynamics of the Schwinger model in the Wilson formulation has
been realized in 4-site trapped ion experiments [91]. However, one would need larger system
sizes to observe dynamical purification. Several proposals, based on a variety of platform,
exist [92], either in the formulation including gauge fields, or on the integrated theory. Specific
dissipation sources have not been discussed in detail so far: however, in most platforms, they
are likely to be similar to the Bose-Hubbard case discussed above [92,93].

4.4 Fermionic systems in 1D and 2D

While all models discussed so far are intrinsically interacting, we now provide numerical evid-
ences of the physics described in the previous sections in free fermionic systems [94,95]. The
latter allow us to consider larger system sizes and two-dimensional geometries. Most im-
portantly, it allows us to check systematically specific features of our predictions, such as the
dependence on the partition size, dimensionality, and topology of the partition (e.g.: in 1D,
we will consider explicitly disconnected partitions).

We start from a charge-density-wave (half-filling), and let it evolve according to a GKSL
master equation master with jump operator l j = γc j and Hamiltonian:

H = −J
∑

〈i, j〉

c†
i c j − 2µ

∑

j

�

c†
j c j −

1
2

�

. (38)
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Figure 6: Symmetry-resolved purity for the Schwinger model in one dimen-
sion. We consider a system with L = 12 and we take A = [1, 2,3, 4,5, 6] and
B = [7,8, 9,10, 11,12]. Panel a): w = 1, ε0 = 0, m = 0, J = 0.1, γ = 0.05. Panel b)
w= 1, m= 0, γ= 0.05. The dynamics starts from state |↓↑〉⊗N/2.

The first sum runs over nearest neighbours, c†
i , ci denote fermionic creation/annihilation op-

erators, J is the hopping constant (that we set to unity below, J = 1) and µ is the chemical
potential (µ = 0 unless stated otherwise). In free fermionic theories, at each time t one can
compute the charged-moments Zn(α) (Eq. (7)) via the two-point fermionic correlation matrix
Ci j = 〈c

†
i c j〉 and its evolution according to Ref. [96]. We consider both 1D chains and 2D

square lattices and check numerically the analytical predictions in the previous sections. In
1D, the tight-binding model is mapped to the XY Hamiltonian (33) by a Jordan-Wigner trans-
formation (but the jump operators are different): the GKSL master equation we will consider
are similar to one of the examples discussed in Ref. [97].

In Fig. 7, we show some representative numerical results. In panels a)-b) we consider
PA(q), cf. Eq. (5), in 1D. The system is divided into three parts as S = A∪B∪A with |A|= `/2
and ` = L/2, a representation of the system is in Fig 7a). The choice of the topology of
the partition allows us to illustrate the generality of dynamical purification, that is indeed
topology independent as long as `� tJ . In panel c) we compute the same quantity for a two-
dimensional square lattice to highlight that the features of the dynamics are not dependent on
the dimensionality or connectivity of the partition. Here we consider S = A∪ B where A is a
square of linear dimension `= L/4 at the center of the system. In panels d)-e)-f) we focus on
the behavior of the symmetry-resolved purity in the absence of dissipation, to emphasize that
the bath plays a decisive role in the dynamical purification, and on quenches starting from
different states, since we expect our results to hold when the initial state is separable (cf. 3.1).
The initial state being at half-filling, q = `/2 is the only populated sector at t = 0. We will
consider the quantity PA(q) where, for instance, q = 1 refers to the sector `/2+1 (one particle
more than half-filling). We omit `/2 to be concise. Let us now discuss the plots in details. In
all the following simulations we always consider open boundary conditions (OBC).

In Fig. 7a), we show PA(q) for q = 0, 1,2,3, L = 128. The sector q = 0 is the only
one occupied at t = 0. It is pure at the start of the evolution and does not experience any
purification. Oppositely, as soon as dynamics kicks in, the sector q = 1 becomes mixed. Its
purity increases at intermediate times (dynamical purification) and approaches equipartition
for longer times. This is highlighted in the inset showing the behavior of PA(q) for J t ∈ [1,5]
in logarithmic scale. The purification for the other sectors is present, but less evident as it is
connected to higher-order perturbative processes.

In Fig. 7b) we fix q = 1 and consider PA(q) for different values of ` with L = 2`. In
agreement with theory, the peak of the curves decreases, approaching zero. The point at
t = 0+ should approach zero as ∼ 1/`, as well, like it has been anticipated in the previous
sections. The inset shows a fit of PA(q = 1, t = 0+) as a function of `, which demonstrates the
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Figure 7: Results of the simulation of PA(`/2 + q) for a quadratic open fermionic
system. We omit `/2 and use q = q− `/2 to label the symmetry sectors. Parameters:
J = 1, µ = 0. First line: symmetry-resolved Rényi entropy for a) 1D system with
L = 64, l = 32, γ = 0.05; b) 1D system for L = 2`, q = 1, γ = 0.05; c) 2D system
with L = 4`, N = L2, q = 1, γ= 0.2. Second line: symmetry-resolved Rényi entropy
for d) 1D system with L = 64, l = 16, γ= 0, purely coherent dynamics; e) 1D system
for L = 2`, q = 1, γ = 0.05, starting from the Majumdar-Ghosh dimer state; f)1D
system for L = 2`, q = 1, γ = 0.05, starting from the ground state of a nearest-
neighbours tight binding model with J = 1.

log-volume regime already discussed.
The behavior of the symmetry-resolved purity for a two-dimensional systems is analogous.

In Fig. 7c) we plot the purity, at fixed q = 1, for different values of L. The total number of sites
of the lattice is N = L2 and the subsystem A consists of l2 = N/16 sites picked at the center of
the square. Studying the position of the point at t = 0+ one observes that it scales as ∼ 1/`2

as calculated in Eq. (22) and shown in Fig. 2a): this confirms a 2D log-volume scaling at short
times, with the corresponding symmetry-resolved Rényi entropy displayed in the inset for the
sake of completeness.

In Fig. 7d), we take into account the symmetry-resolved purity in the case of a purely
coherent dynamics. This show remarkably how the purification process is strictly related to
the presence of a bath for this class of models. We consider L = 64 and ` = 32. While
q 6= 0 sectors are mixed at time t = 0+ in presence of bath, this is not the case for γ = 0.
In the inset one can see the population of each given sector as a function of time. As the
coherent dynamics starts playing its role, the population increases and the purity decreases
correspondingly. The q 6= 0 sectors are involved in the evolution but they do not experience
any purification, instead their purity decreases monotonously to a unique value independent
of q, witnessing information equipartition. All these results are compatible with the exact ones
reported in Ref. [12].

Finally, in Fig. 7e-f), we depict the symmetry-resolved purity in the sector q = 1, in the case
of a global quench starting from two different states. Firstly, in e), we consider a global quench
from the Majumdar-Ghosh dimer product state and an evolution under the Hamiltonian in Eq.
(38); secondly, in f), we take as starting point the ground state of Eq. (38) and evolve the
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system according to a long range hopping Hamiltonian in the form:

H = −
∑

i j

J
|i − j|α

c†
i c j , (39)

where α= 2.
The purpose of panels e) and f) is to show that the dynamical purification is present only in

the case the initial state is separable, as it happens for Fig. 7b)-e). In the inset of Fig. 7e) we
show a fit of PA(q = 1, t = 0+) as a function of `, which exhibits a 1/` behavior, as predicted by
perturbation theory. Oppositely, if the initial state is entangled, one cannot see any emergent
purification during the dynamics (Fig. 7f)). This is due to the fact that the symmetry-resolved
reduced density matrix is already mixed in all Ek sectors, and thus, local coherent dynamics
is insufficient to purify the state, as the number of non-zero eigenvalues in each sector is
exponentially large in the partition size. In the inset of the figure the populations of sectors
q = 0, 1,2 for L = 256 are shown. Evidently, all the sectors are occupied already at t = 0.

Experimental setups. - The U(1) dynamics discussed in this section is of direct relevance
for various experimental settings. The first ones are fermionic or (hard-core) bosonic atoms
trapped into optical lattices. There, one of the main sources of dissipation (in addition to
spontaneous emission, that can be made small with the use of blue detuned lattices) is single
particle loss. While in principle loss rates due to inelastic background scattering are small
when compared to the typical lattice dynamics, localized losses can be engineered in a variety
of ways, including weak-laser coupling to untrapped levels or via electron beams.

The second setting that is relevant to this subsection are arrays of superconducting qubits.
In the strong coupling limit, the dynamics of such systems can be well approximated by an XY
model. Qubit relaxation will then play the same role as single particle loss.

5 Experimental protocol for measuring symmetry-resolved purit-
ies

Our protocol to extract symmetry-resolved purities is based on randomized measurements.
These methods have been introduced and experimentally demonstrated to measure entan-
glement entropies [29, 32, 33, 35], and other nonlinear functions of the density matrix, such
as state fidelities [98], out-of-time ordered correlators [99, 100], topological invariants [101,
102], and entanglement negativity [37, 103]. In the quantum information context, the mo-
ments of statistical correlations between randomized measurements can also be used to define
powerful entanglement witnesses without reference frames [37,104–108].

While standard projective measurements performed in a fixed basis can only give access
to expectation values of a particular observable, randomized measurements consist instead in
measuring our quantum state in different random bases, giving access to complicated non-
linear functionals of the density matrix, here symmetry-resolved purities.

As in Refs. [35,37], our approach is based on the idea of combining two results: random-
ized measurement tomography [31,109], and ‘shadow’ tomography [35,110]. Let us consider
here a spin system and show how to measure the symmetry-resolved purity of a reduced state
ρA made of NA spins.

Randomized measurements are realized by applying random local unitaries ρA→ uρAu†,
u= u1⊗· · ·⊗uNA

, where each ui is a spin rotation that is taken, independently, from a unitary
3-design [111, 112]. After the application of random unitary, a projective measurement is
realized in a fixed basis. This procedure is repeated with M different random unitaries, in
order to obtain a list of M measured bitstrings k(r), r = 1, . . . , M .
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Randomized measurementsare tomographically complete in expectation and can be used
to provide an estimator of the density matrix [31,35,36,109,113], a classical shadow [35],

ρ̂
(r)
A =

⊗

i∈A

h

3(u(r)i )
†
�

�

�k(r)i

¶¬

k(r)i

�

�

�u(r)i − I2
i

, (40)

with the expectation value over randomized measurements E[ρ̂(r)A ] = ρA. It is not our aim
to reconstruct the density matrix based on Eq. (40) i.e., to perform tomography, as it will be
too costly in terms of measurements (and classical post-processing). However, we can make
use of this expression Eq. (40), in order to relate directly polynomial functionals of ρ to the
measured data k(r) [35]. For the symmetry-resolved purity, simply consider two independent
randomized measurements r 6= r ′, and define the symmetrized estimator

PA(q)
(r,r ′) = 1

2 tr[(ρ̂(r)A Πq)(ρ̂
(r ′)
A Πq)] +

1
2 tr[(ρ̂(r

′)
A Πq)(ρ̂

(r)
A Πq)] . (41)

Using Eq. (40), this can be seen as a simple bi-linear function of the measurement data. Aver-
aging over many pairs (r, r ′), boosts convergence to the estimator’s expectation value

E[PA(q)
(r,r ′)] = 1

2 tr[(E[ρ̂(r)A ]Πq)(E[ρ̂
(r ′)
A ]Πq)] +

1
2 tr[(E[ρ̂(r

′)
A ]Πq)(E[ρ̂

(r)
A ]Πq)] = PA(q) .

Here, we have used that ρ̂(r)A and ρ̂(r
′)

A are independent realizations of Eq. (40). This means
that PA(q)(r,r

′) is an unbiased estimator of the symmetry-resolved purity. This procedure can
be straightforwardly extended to higher moments with triplets of randomized measurements
r 6= r ′ 6= r ′′, etc. Appropriate implementation of partial transposes moreover allows for ex-
tracting symmetry-resolved Rényi entropies (6). This is the content of Ref. [30], where we also
provide a thorough statistical analysis for estimating symmetry-resolved quantities based on
randomized measurements. The upshot is that estimator (41) can be equipped with rigorous
confidence bounds. Already 2NAPA(q)/ε2 measurement repetitions suffice to estimate a given
symmetry-resolved purity PA(q) up to accuracy ε. This favorable scaling is a key advantage
over full quantum state tomography In particular, the scaling depends only on the symmetry
resolved purity PA(q) and not on (the inverse) of the population tr

�

ρAΠq

	

. This can make a
large difference, especially when the population is tiny. Our analysis of experimental data, c.f.
next section, support this favorable picture.

Therefore, we believe that symmetry-resolved purities can be measured in various NISQ
platforms up to moderate partition sizes NA = 10 ∼ 20, which are sufficient large to ob-
serve many-body effects, such as dynamical purification. The second advantage of random-
ized measurements with respect to tomographic-type estimations is the post-processing step.
Here, the estimation of PA(q)(r,r

′) from the data simply consists in multiplying estimators ρ̂(r)A
with an efficient tensor-product representation (Eq. (40)) with a projection operator with
sparse-matrix structure (which can be for instance efficiently written as a Matrix-Product-
Operator [114]).

Note finally that here randomized unitaries do not have a symmetric structure, and there-
fore each estimation of the density matrix does not have a block-diagonal structure. Altern-
atively, one can envision to perform symmetry-resolved random unitaries incorporating sym-
metries [31, 33, 34]. While these random unitaries appear as more challenging to realize
experimentally compared to local spin rotations, one should expect a reduction of statistical
errors in this situation [109].
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Figure 8: Experimental demonstration of symmetry-resolved purification in a trapped
ion quantum simulator, using data obtained in the context of Ref. [29]. We consider
a system of N = 10 spins, with subsystems A= [4,5, 6,7] and B = [1,2, 3,8, 9,10].
In panels a) and b), the symmetry-resolved populations and Rényi entropies of vari-
ous magnetization sectors q = 0,±1 of the reduced density matrix ρA are shown as
function of time (see Fig. 2 for symmetry-resolved purities). Error bars have been
calculated with Jackknife resampling. In panel b), data for the magnetization sector
q = 1 at J t = 0 has been omitted due to large errorbars, resulting from small popu-
lations. Lines are numerical simulations of unitary dynamics (dashed) and including
decoherence (solid) as decribed in the text.

6 Experimental observation of dynamical purification in trapped
ion chains

In this section, we demonstrate symmetry-resolved purification experimentally in a trapped ion
quantum simulator, using data taken in the context of Ref. [29]. Here, quench dynamics with a
long-range XY-model introduced in Eq. (33), with δi = B, Ji j ≈ J/|i − j|α the coupling matrix
with an approximate power-law decay α≈ 1.24, and J = 420s−1. The effective magnetic field
is taken to be large B ≈ 2π · 1.5kHz ≈ 22J : this way, that the unitary dynamics conserve the
total magnetization Sz =

∑

i σ
z
i , since terms that would break it (such as σ+i σ

+
j + h.c.) are

energetically suppressed [29].
In addition, decoherence is present in the experiment, during initial state preparation,

time evolution and the randomized measurement. As detailed in Ref. [29], we can model
these decoherence effects as follows.

The time evolution is subject to local spin-flips, and spin excitation loss (spontaneous de-
cay). We describe the corresponding dynamics with a master equation with jump operators
Ci =

p
γFσ

x
i for i = 1, . . . , N and Ci+N =

p
γDσ

−
i for i = 1, . . . , N , capturing the spin flip and

excitation loss, respectively. Here, the rates are γF ≈ γD ≈ 0.7/s.
In the experiments, the initial state is not pure, but rather it is a mixed product state

ρ0 =
⊗

i (pi |↑〉 〈↑|+ (1− pi) |↓〉 〈↓|) with pi ≈ 0.004 for i even and pi ≈ 0.995 for i odd.
Finally, during the application of the local random unitary, local depolarizing noise is acting
which is modeled as

ρ(tfinal)→ (1− pDP N)ρ(tfinal) + pDP

∑

i

Tri[ρ(tfinal)]⊗
1i

2
, (42)

with pDP ≈ 0.02.
In Fig. 8, we present experimental results, obtained with the estimators defined in Eq. (41),

and numerical simulations, for unitary dynamics and including the decoherence model de-
scribed above. In panel a), the populations tr

�

ΠqρA

	

of the magnetization sectors q of the
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reduced density matrix ρA are shown, with A consisting of spins A = [4, 5,6, 7], and VA = 4.
Initially, the (q = 0)-sector is predominantly populated, with small fractions in other sectors,
due to the finite initial state preparation fidelity. With time, the population in other sectors, in
particular q = ±1, increases.

The symmetry-resolved second Rényi entropy S(2)A (q) is shown in panel b) for various
magnetization sectors (see Fig. 2 for the corresponding symmetry-resolved purity). The ex-
perimental data clearly shows dynamical purification (decrease of the Rényi entropy) in the
q = −1 sector. Data in the q = +1 sector are also suggestive of dynamical purification, even
if a strong statement cannot me made here do to comparatively larger error bars. In particu-
lar, this demonstrates that dynamical purification can be observed in one-dimensional systems
with algebraically decaying long-range interactions (see also Sec. 3.1). At long times, the
symmetry-resolved Rényi entropies approach similar values for all displayed sectors, consist-
ent with expected equipartition of the symmetry sectors [10]. Finally, we note that, in the
experiment, there is clear separation of scales tJ � t2, while t1 and tJ are not separated.
As discussed in the theory section, this shows compellingly how the second condition is not
required to observe dynamical purification, since at short times, decoherence dominates re-
gardless of the volume of the partition considered.

7 Conclusions

Symmetry is an ubiquitous element characterising synthetic quantum matter - from quantum
simulators, to noisy-intermediate scale quantum devices. In this work, we have developed a
theoretical framework for the description of symmetry-resolved information spreading in such
open quantum systems, focusing on the epitome case of U(1) symmetries common to several
experimental platforms - from cold gases in optical lattices, to trapped ions and supercon-
ducting circuits. We have shown how, for various settings encompassing a wide spectrum of
interacting and non-interacting theories, specific quantum number sectors undergo dynamical
purification under ubiquitous conditions of weak noise and separable initial states, without
experiencing quantum information loss. Such phenomenology is general, occurs in any di-
mension, is not sensitive to the partition topology, and features specific scaling scenarios for
the entropy as a function of partition size. Most importantly, the dynamical purification con-
sidered here occurs in symmetric systems and stems from the competition between coherent
and incoherent dynamics that is a leitmotif of current NISQ devices.

We have introduced and experimentally demonstrated a protocol to measure symmetry-
resolved quantum information quantities based on a combination of randomized measure-
ment probing and shadow tomography. Our approach is scalable to partition sizes that are
well beyond what is accessible to full state tomography, and is applicable to a broad spectrum
of experimental settings with single site control and high repetition rate. Both scalability and
applicability are of key importance in order to probe genuinely many-body features of entan-
glement dynamics in state-of-the-art experiments. Two key features of our protocol are the
fact that symmetry can be enforced a posteriori on a given data set, without necessarily relying
on the implementation of symmetry-preserving random unitaries, and that errors are provably
under control even in cases where populations in given subsectors are small (that is a chal-
lenge specific to symmetry-resolved density matrices). Based on our protocol, we have shown
how the experiments performed in Ref. [29] have already realized dynamical purification in
a trapped ion chain described by a long-range XY model. This observation, in full agreement
with our theory predictions, testifies for the generality of symmetry-resolved dynamical puri-
fication under experimentally realistic conditions. While our protocol is generically applicable
to lattice models, it would be interesting to extend it to continuous systems, where the role
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of symmetry-resolved information is relatively unexplored outside of conformal field theor-
ies [83,115].

The capability of addressing the combined role of symmetry and quantum correlations
in NISQ devices opens a novel interface between theory and experiments, where many-body
effects intertwine with information theoretic applications. The first instance of that is what
role symmetry plays in quantum information protocols, in particular, error correction. Our
tools may be of particular importance here, as several error correcting codes can be cast as
gauge theories, one example being the toric code [116]. In this context, the role of specific
symmetry sectors is associated to the presence of excitations. It may thus be useful to employ
the experimental tools we have used here to access how specific perturbations compromise
the reliability of a quantum memory. Going beyond that, understanding whether dynamical
purification occurs in the presence of local symmetries is an open question, that could be in
principle addressed within the same methods presented here.

The second possible applications of our methods concerns the capability of utilizing dy-
namical purification as a proxy of the system dynamics, in particular, to determine its dissip-
ative dynamics. One first element is that dynamical purification is expected for a quantum
noise, that is local: it is thus informative about the nature of the dissipation. The fact that
the dissipation rates intertwines with the partition size could also help to quantify the relative
strength of incoherent versus coherent processes, at least in cases where specific initial states
could be realized with high fidelity. Remarkably, despite being a short-to-intermediate time
phenomenon, thanks to the area-to-volume ratio being tunable, dynamical purification is also
informative about very weak dissipation: this is particularly important for diagnostics, as one
would expect that the latter requires long-time evolution to be characterized.

On more general grounds, symmetry-resolved dynamical purification reveals how certain
many-body phenomena can only be properly characterized utilizing symmetry to emphasize
or even magnify relevant information. In particular, symmetry-resolution allows to prop-
erly diagnose physical phenomena that would not be accessible otherwise, by amplifying the
role of sectors in the reduced density matrix whose information content could be otherwise
overwhelmed by other less informative - but highly-weighted - sectors. In this context, the
many-body theory we develop seems to suggest that symmetry can be used to develop im-
proved entanglement detection that could outperform their respective ’symmetry-blind’ coun-
terparts [30].
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A Effective Markovian dynamics for the symmetry-resolved
reduced density matrix

We now provide a simple interpretation of the effective description derived in Sec 3. Our main
interest here is to determine whether dynamical purification is an effect that relies on a specific
correlation present in an effective bath (derived by applying the symmetry-resolved projectors
to the density matrix), or whether it is unrelated to that, and thus captured entirely by an
emergent Markovian dynamics describing ρA,q.

Indeed, even though the evolution of the global density matrix ρ is governed by the
Markovian master equation of Eq. (18), the symmetry-resolved reduced density matrix ρA,q
could have a non-Markovian time evolution. The dissipation rates derived in Eq. (19) can
be interpreted as an effective master equation acting directly on the symmetry-resolved re-
duced density matrix, with time dependent rates. We consider two arbitrary density-matrices
product states, whose symmetry-resolved reduced density matrix can be written in diagonal
form ρI ,ρI I , with matrix elements a j j;I and a j j;I I , respectively. What we are interested in is
whether the two states can become dynamically more distinguishable as a function of time: if
this is possible even for a finite time window, the time evolution is non-Markovian [117]. In
order to address this point, we define the distance between these states as:

DI ,I I = Tr
p
ρIρI I . (43)

After a few lines of algebra, and defining as N , M the total rank of the density matrix and the
number of the states belonging to E0, respectively, one obtains:

∂ D
∂ t

= −
1

2(1+ Nγt +MJ2 t2)2

×





∑

j∈E0

γ(a j j;I + a j j;I I + 2γt)
Æ

(a j j;I + γt)(a j j;I I + γt)
+
∑

j∈E1

(γ+ 2J2 t)(a j j;I + a j j;I I + 2γt + 2J2 t2)
Æ

(a j j;I + γt + J2 t2)(a j j;I I + γt + J2 t2)





−
2(Nγ+ 2MJ2 t)

(1+ Nγt +MJ2 t2)3

×





∑

j∈E0

q

(a j j;I + γt)(a j j;I I + γt) +
∑

j∈E1

q

(a j j;I + γt + J2 t2)(a j j;I I + γt + J2 t2)



 ,

so that, under the condition above, one has ∂ D/∂ t < 0, as this is just the sum of two negative
terms. This implies that arbitrary states of the type discussed above become less distinguish-
able as a function of time, a signature of effective Markovian dynamics.

The very same conclusion can be obtained on more general grounds by noticing that the
rate equations above all have positive rates, thus satisfying P-divisibility criteria. At the phys-
ical level, this is a consequence of the fact that the relaxation time of the environment (in
this case, the part of the system we are tracing upon in a symmetry-resolved fashion 8) is
much longer than the timescales we are interested in. For longer times (not accessible to the

8We emphasize that we are dealing with a specific symmetry-resolved sector, as other sectors may feature
information backflow - a proxy of non-Markovianity - at earlier times.
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regime we can tackle with our theory, but definitely numerically accessible), we expect that
such effective Markovian description would ultimately break down due to the bath dynamics
timescales being comparable to the one characterizing the partition.

B Symmetry-resolved purification in one-dimensional systems

The system we consider here is a one-dimensional version of the system considered in Sec. 3.1,
that we divide into two connected partitions A∪B with NA and NB sites, respectively. We assume
that the system is initialized in a charge-density wave |ψ0〉= |↓,↑, . . . ,↑〉 (a Néel state), and for
simplicity, take NA and NB to be even. We consider dynamics governed by Eq. (24) and focus
on timescales accessible within perturbation theory, that is, J2 t2, tγ � 1. We are interested
in the sector q = −1. Adapting the 2D calculations presented in the main text, we find that
ρA(q = −1) is divided into two blocks (in perturbation theory):

1. E0(−1): the state that is connected to the CDW by a single hopping process, or a loss
event, at the boundary with rate λE0

0

2. E1(−1): the (NA/2− 1) states that are connected to the CDW by a single loss in the rest
of the system with eigenvalue λE1

k ;

At the lowest order in perturbation theory, one has the following scaling of the eigenvalues of
ρA(−1):

λ
E0
0 = (J

2 t2 + γt)/A(t), λE1
k = γt/A(t) , (44)

with normalization
A(t) = γt(NA/2) + J2 t2 . (45)

This gives

PA(−1) =
(NA/2− 1)γ2 t2 + (J2 t2 + γt)2

[(NA/2)γt + J2 t2]2
. (46)

C Sectors populations

In the quench dynamics we investigate, the population in each different subsector plays an
important, practical role: it quantifies how relevant is the sector where dynamical purification
occurs. Within the Bose-Hubbard model example, considering the approximation that the (−1)
and (0) sectors are the only ones populated at short times, one expects that the population of
the latter increases as a function of time in a manner that is linear at very short times, and
quadratic in the regime of purification (a scaling similar to the prefactor A(t)).

In Fig. 9, 10, 11, we show some sample results that illustrate this fact (that is also found in
the experimental data). It is interesting to note that, for most cases, the population in the (−1)
sectors is comparable to the one in the (0) around the purification timescale, irrespectively of
system size and interaction regime. This feature signals that observing such effect beyond the
spin models discussed in the text should involve only very modest post-selection.
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Figure 9: Population of the symmetry sectors during the evolution of the systems
described in Fig.s5. We consider a system with L = 8 and we take A= [1, 2,3, 4] and
B = [5, 6,7, 8] Here we fix U = 0.5J , γ= 0.1J and start from a) |ψ0〉= |0, 1〉⊗L/2, b)
|ψ0〉= |1,2〉⊗L/2.
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Figure 10: Population of the symmetry sectors during the evolution of the system
described in Fig.6, starting from state |↓↑〉⊗N/2. We consider a system with L = 12
and we take A= [1, 2,3, 4,5, 6] and B = [7, 8,9, 10,11, 12]. Panel a) w = 1, m = 0,
J = 1, ε0 = 0; b) w= 1, m= 0, J = 0.1, ε0 = 0; c)w= 1 m= 0, J = 1, ε0 = 0.5.

Figure 11: Population of the symmetry sectors during the evolution of the systems
described in Fig.s 7a)-c). We use ∆q = q − `/2 to label the symmetry sectors. We
fix J = 1, µ = 0. In panel a) 1D chain with L = 64, ` = 32, γ = 0.05; b) 2D square
lattice, L = 16, `= 4, γ= 0.2.
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