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Abstract

We comprehensively investigate two distinct mechanisms leading to memory loss of
non-Gaussian correlations after switching off the interactions in an isolated quantum
system undergoing out-of-equilibrium dynamics. The first mechanism is based on spatial
scrambling and results in the emergence of locally Gaussian steady states in large
systems evolving over long times. The second mechanism, characterized as ‘canonical
transmutation’, is based on the mixing of a pair of canonically conjugate fields, one
of which initially exhibits non-Gaussian fluctuations while the other is Gaussian and
dominates the dynamics, resulting in the emergence of relative Gaussianity even at finite
system sizes and times. We evaluate signatures of the occurrence of the two candidate
mechanisms in a recent experiment that has observed Gaussification in an atom-chip
controlled ultracold gas and elucidate evidence that it is canonical transmutation rather
than spatial scrambling that is responsible for Gaussification in the experiment. Both
mechanisms are shown to share the common feature that the Gaussian correlations
revealed dynamically by the quench are already present though practically inaccessible
at the initial time. On the way, we present novel observations based on the experimental
data, demonstrating clustering of equilibrium correlations, analyzing the dynamics of
full counting statistics, and utilizing tomographic reconstructions of quantum field
states. Our work aims at providing an accessible presentation of the potential of atom-
chip experiments to explore fundamental aspects of quantum field theories in quantum
simulations.
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1 Introduction

By appropriately choosing the effective degrees of freedom, it is frequently possible to capture
complex collective behavior of an interacting quantum many-body system using a simple
Gaussian model. There is an abundance of exact analytical tools for computing physical
properties using such Gaussian effective descriptions. Most crucially, due to Wick’s theorem
the second moments are decisive for higher order correlation functions which do not yield
further information. Thanks to such concise features in sync with a high predictive power, it
is fair to say that Gaussian models are the bread and butter of many physicists, independent
of their focus, be it experimental or theoretical.

The study of far from equilibrium quantum dynamics, however, hints at a fundamental
question concerning the applicability of such Gaussian models. Whenever many-body inter-
actions are sufficiently strong so that they can no longer be meaningfully neglected, their
properties become imprinted onto the correlations in the system. But what will happen if
these interactions are suddenly removed? After such a quench protocol – a ubiquitous one
actually considered in a quite large body of literature [1–4] – the ensuing time evolution will
be Gaussian and governed by a non-interacting quadratic Hamiltonian. Will the state over
time lose memory of those initial interactions? And if so, in what precise way?

This is quite a complex physics question in that immediately after the interaction quench,
there is an apparent discrepancy between the state (which is non-Gaussian) and the (Gaussian)
Hamiltonian closed system dynamics. For quantum states with Gaussian correlations, all
correlations can be determined from first and second moments of canonical coordinates using
Wick’s theorem. A natural expectation may be that for long times, the discrepancy will become
less stark, eventually the state becoming approximately Gaussian, in accordance with the
Hamiltonian governing the dynamics. A complication arises, however, because quadratic
Hamiltonians which give rise to Gaussian dynamics feature a large number of conserved
charges, which may be relevant in a given quench scenario leading to intricate memory effects
and hence complicating the task of understanding the dynamics following an interaction
quench.

More specifically, conserved charges may enable a physical realization of the persistence of
the discrepancy between the initial non-Gaussian state and the quadratic Hamiltonian. More-
over, even independently of the presence of conserved charges, the nature of the dynamics
may influence the timescale for the decay of the discrepancy between the non-Gaussian initial
state and the Gaussian quench dynamics. Thanks to the Gaussian character of the quench
dynamics, such memory loss of the signatures of interactions present prior to the quench can
be characterized theoretically for certain scenarios [5–7]. Thus, it is natural to ask whether
the existing theoretical results can be used to explain the decay of non-Gaussianity of a state
whenever it appears experimentally. As a wider perspective, the question that is on the desk is
a particular reading of the question of the emergence of a generalized Gibbs ensemble [5,8–12].
Understanding the mechanism and conditions for the emergence of Gaussian correlations is a
good opportunity to understand more generally the nature of equilibration in isolated quan-
tum systems, since Gaussian dynamics is an exceptionally convenient case for an in-depth
theory-experiment comparison. This is due to two main reasons. On the theoretical side, ex-
act analytical methods are available for the study of not only the final steady state, but also
for the full dynamics of correlations of any order and for arbitrary initial states [5–7,13–21].
From an experimental perspective, the possibility to measure and characterize the factoriza-
tion properties of higher-order correlations first achieved in Refs. [22, 23] offers a practically
complete description of quantum states and their dynamics.

The main aim of this work is to elaborate on both theoretical and experimental viewpoints
on the question how quantum states become Gaussian over time in the context of the exper-
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imental findings recently presented in Ref. [24]. In that experimental work, non-Gaussian
initial states have been prepared through the coupling between two adjacent one-dimensional
ultra-cold gases, and after a fast decoupling that corresponds effectively to an interaction
switch-off quench, a decay and subsequently a revival of non-Gaussianity has been observed.
In the remainder of this introductory section, we will present the essential ideas behind two
distinct theoretical mechanisms which yield memory loss of non-Gaussianity in the system.
The first of the two mechanisms is an instance of those studied in earlier theoretical works,
while the second one has been introduced in Ref. [24]. We will then lay out in more detail the
precise experimental observations presented in Ref. [24]. In Section 2 the two mechanisms,
which can be considered as candidates to explain the experimental observations, will be pre-
sented in detail. Each of the two mechanisms relies on the presence of different properties of
the initial states and of the dynamics. The characteristics of the initial states in the experiment
relevant to corroborate the two candidate mechanisms will be presented in Section 3 and
those related to dynamical aspects of the experimental system will be presented in Section 4.
Further observations based on the experimental data are discussed in Section 5. By combin-
ing the conclusions of all previous sections we finally evaluate the role of each of the two
mechanisms in Subsection 5.3 and conclude that the one that is mainly responsible for the
emergence of Gaussianity in the experiment is the second. At the end of the manuscript we
provide conclusions and outlook in Section 6.

Our results are to a large extent based on the use of a specific reading of quantum field
tomography. In the present context, this term refers to an indirect recovery of all second
moments of quadratures [25] from an ensemble of identically prepared quantum states,
exploiting suitable time evolution under non-interacting Hamiltonians. It is a recovery method
reminiscent of full quantum state recovery based on data [26]. After all, a quantum state
of a quantum many-body system can be characterized by the collection of all moments of
observables [22]. It is important to stress that the experimental prescription allows for
the reconstruction of higher moments of quadratures as well [22], an insight that allows
us to monitor the process of Gaussification in time. The tomographic method allows us to
verify that the conditions of the second Gaussification mechanism are satisfied to a sufficient
degree in the experiment by direct analysis of the experimental data (Subsection 3.3.2).
Preliminary evidence for the validity of these requirements has been presented in Ref. [24]
using simulations based on the classical fields approximation [27].

In the course of our analysis, we derive further results of independent interest, including
an analysis of the scaling of correlations in the initial equilibrium states (Subsection 3.1), a
demonstration of light-cone propagation of correlations (Subsection 4.1) and a study of the
dynamics of full counting statistics (Subsection 5.1). Lastly, we summarize the theoretical de-
scription of the experimental system by means of TLL theory in the Appendix, justifying why
deviations from this theoretical model are negligible based directly on experimental observa-
tions. Overall, our work provides a detailed comparison between theory and experiment that
aims to contribute to our understanding of the physics of one-dimensional coupled atomic
condensates and their dynamics.

1.1 Two mechanisms for the emergence of Gaussian correlations

We aim to precisely understand what happens when a system lies initially in a non-Gaussian
state and subsequently evolves under Gaussian dynamics. Any process wherein non-Gaussian
correlations in an isolated quantum system decay over time rendering the resulting state
effectively Gaussian will be called in this work ‘Gaussification’.

In nature, we often find that a description of the system by means of statistical mechanics
is instructive and accurate. For this to be true when starting out of equilibrium, some sort of
scrambling of information encoded in the initial state must occur during the dynamics in one
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Figure 1: After an interaction quench in an isolated system, the memory of interac-
tions as encoded in the initial state through non-Gaussian correlations can gradually
decay by means of two distinct mechanisms (broadly introduced in Subsection 1.1
and discussed in detail in Section 2): a) Gaussification by spatial scrambling (Sub-
section 2.1) rests on two pillars. The first is a property of the initial state to yield
independent results in measurements between distant points, which is briefly called
clustering correlations. Its validity in the experiment is discussed in Subsection 3.1.
The second pillar is a property of the dynamics to make initially local fluctuations
spread over large portions of the system during the time evolution, and its validity
is tested in Subsections 4.1 and 4.2. b) Gaussification by canonical transmutation is
the second mechanism discussed in this work (Subsection 2.2). It relies on the initial
state having at least one Gaussian canonical sector (Subsection 3.2) that dominates
the other sector which is non-Gaussian (Subsection 3.3). In this mechanism, quadra-
ture rotation during the dynamics results in the initially non-Gaussian quadrature
turning into Gaussian. In coordinate space, this gives rise to dephasing and rephas-
ing dynamics which we will broadly refer to as canonical transmutation dynamics.

way or the other. We expect this to occur generically, under interacting or weakly interacting
dynamics, in accordance with classical intuition built around Boltzmann’s H-theorem and
phenomenology surrounding kinetic equations. Such scrambling of information and memory
loss effects in isolated quantum systems can be induced by simple Gaussian dynamics. The
induced memory loss can be sufficient to give rise to an agreement between local reductions
of the unitarily evolved density matrix and the respective marginals of a Gaussian steady
state [5–7,14,16–19].

One such process of Gaussification – as we will argue – occurs in conjunction with a notion
of what we call spatial scrambling. Intuitively, in a large system as the elapsed time becomes
long, local observables depend on larger and larger amounts of incoherent initial information
originating from distant points. If distant points have initially been only weakly correlated then
this results in an elimination of non-Gaussian features in correlation functions. The unitary
Gaussian dynamics implements it in a way that is arguably in reminiscence of classical central
limit theorems [7, 14]. In fact, a precise connection to mathematical proofs of Lindeberg
central limit theorems on the level of characteristic functions can be established [14].

The mechanism of Gaussification by spatial scrambling rests on two essential physical
ingredients. Firstly, the initial correlations of the effective fields in terms of which the
dynamics is Gaussian must satisfy the condition of clustering, i.e., their correlations between
distant points must factorize as for independent variables, or, equivalently, their connected
correlations must decay with distance. The real-space distance scale for this is commonly set
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by the correlation length. Weaker conditions (like algebraic instead of exponential clustering
or sub-extensivity of the initial fluctuations of macroscopic conserved quantities [21]) can
also play the same role, with the main physical condition on the initial state being that
it has local characteristics like the equilibrium states of systems with local interactions.
Such conditions are quite ubiquitously valid in nature. This is important because statistical
mechanics has wide applicability so the prerequisites for its emergence in isolated systems
should be broadly fulfilled. Secondly, the dynamics must induce delocalization, i.e., an initially
localized fluctuation of the effective field must spread with time, not remain close to its original
position or just rigidly move through the system during the evolution. In Gaussian dynamics
such a behavior is quite typical and can be linked to properties of the energy dispersion
relation, specifically its non-linearity. These two broadly valid conditions in essence imply
a Gaussification process [5, 7, 16–20]. Fig. 1 provides an illustration of these ‘pillars’ and
summary for reference during the reading of this work, including information on which section
discusses each of the ‘pillars’.

While the pillars on which Gaussification by spatial scrambling rests are quite general,
their applicability cannot be taken for granted. A particularly interesting case where this is not
given a priori occurs when the collective fields providing the Gaussian effective description of
the system’s dynamics are non-locally related to the physical local degrees of freedom (e.g.
particles), or if the spectrum of the effective fields is to a good approximation linear. A non-
local relation between local physical fields and the collective fields of the effective description
might mean that the initial clustering condition is not guaranteed for the latter, even if valid
for the former: indeed, while clustering is a typical physical requirement for local fields and
observables, it does not have to be satisfied by non-local collective fields. Moreover, when
the dispersion relation of the collective field excitations is linear, then, even if these fields are
genuinely local, the dynamical delocalization condition is broken because the time evolution
does not induce spreading of initially localized wave-packets which travel instead pinned at
two moving points. Both these aspects in question are directly motivated by the experimental
study of a quench of the effective interaction between phononic excitations in coupled one-
dimensional ultra-cold gases.

Specifically, in Ref. [24], a decay of non-Gaussian correlations in time has been observed
and a novel mechanism for its explanation has been proposed, a mechanism which we will
call in this work Gaussification by canonical transmutation. This mechanism is at play when
the initial state capturing the correlations of two canonically conjugate fields yields Gaussian
correlations for one canonical variable and non-Gaussian for the other. A simple harmonic
phase-space rotation of the system’s eigen-modes after switching off the interaction may then
lead to the decay of non-Gaussianity due to dilution of the non-Gaussian into the Gaussian
component if the latter dominates in the mixing process. Such a change in the internal make-
up of an object changing drastically its overall properties seems to agree with the general
meaning of the word ‘transmutation’, so for lack of a better term we will consistently employ
it in this work to make clear which of the two mechanisms we are referring to. As we will
discuss in detail later, this mechanism rests on three ‘pillars’ as summarized and illustrated in
Fig. 1, and the individual ingredients will be discussed one-by-one in the following. Again,
we speak of pillars in the sense that they seem to be necessary for the effect as the absence
of each one of them breaks down the mechanism and leads to preservation of the memory of
non-Gaussian correlations.

1.2 Experimental observation of the decay and recurrence of non-Gaussian
correlations

Having introduced the two theoretical mechanisms of Gaussification, our goal is to investigate
whether they can explain the observed decay of non-Gaussian correlations in the experiment
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of Ref. [24]. Let us look into the context and findings of this experiment in more detail. We
will give a description of the experiment and of the analysis of measured data and summarize
the main results.

In principle, an overall intuition regarding the main experimental observation can be
obtained based on a purely statistical consideration: The experiment yields outcomes which
differ from one experimental realization to another. The outcomes of measurements are
treated as instances of random variables so that from this sample estimates of statistical
moments of these variables can be extracted. If the fourth and higher order cumulants are
negligible then we speak of a Gaussian state; in the opposite case we have a non-Gaussian
state.

The experimentally measured variables (phase and density of the atomic gas) constitute
collective degrees of freedom in an effective description of the actual many-body system.
By varying a parameter of the system and measuring the statistical moments when the
system is at equilibrium, we can study how the parameter controls the non-Gaussianity of
equilibrium states in the effective description. From the observation that the size of non-
Gaussianity depends on the parameter under consideration, just from statistical considerations
we conclude that a non-linear effective interaction must be present and can be controlled by
the above parameter.

In addition, by rapidly changing the parameter and measuring the non-Gaussianity at
various subsequent times, we can study how this changes over time. The experiment has
displayed a decay of non-Gaussianity as a function of the time elapsed after switching the
parameter from the non-Gaussian to the Gaussian regime. This may sound quite reasonable
intuitively: the system dynamically adapts to the change in the external parameter relaxing
to the corresponding equilibrium state. However, one aspect of the dynamics studied in
Ref. [24] evades a simple intuitive interpretation. How should one interpret the fact that after
a monotonous decay of non-Gaussianity the experiment shows a revival of the non-Gaussian
correlations at a later time? To answer this question we first need to know a crucial piece
of information about the dynamics. To a very good approximation the system evolves as a
closed one: interaction with the environment is strongly suppressed over the time scale of the
experiment, so that the system is practically isolated. Under such settings the information
about the system being initially non-Gaussian is never lost but gets first hidden from view,
resulting in a Gaussian state at intermediate times, and is subsequently retrieved again at the
time of the revival of non-Gaussianity. Hence, given that the dynamics is essentially unitary,
the information about the initial state has never left the system and has not been irreversibly
scrambled. The emergence of a Gaussian equilibrium-like state is now somewhat less obvious
and the mechanism leading to it deserves investigation.

We will now proceed to explaining how this physical picture has been realized in the
experiment. A description of the experiment and data analysis is illustrated in Fig. 2. The
system considered consists of two parallel and adjacent one-dimensional quasi-condensates of
a few thousand rubidium atoms trapped, cooled and controlled by means of an atom-chip setup
(see Fig. 2.a). The experimental measurements are interference pictures generated when the
two-component gas is released from the trap and let to expand freely. From the interferometric
measurements we extract phase profiles φ(z, t) corresponding to the relative phase between
the two components of the gas as a function of the longitudinal dimension z at the time of
the release t. By repeating the experiment many (several hundreds of) times we obtain an
ensemble of phase profiles from which we can derive statistical measures of the phase field
distribution: correlation functions between different points, moments, cumulants, or the full
distribution function of the phase.

The relative phase profiles play the role of the fundamental random variables in our
statistical consideration. In practice, a phase profile is a vector whose entries correspond to the
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Figure 2: a) Illustration of the experimental setup: A gas of ultra-cold atoms confined
into a one-dimensional trap can be split in two adjacent parallel traps controlled
by an atom chip. By controlling the barrier height of the transverse double well
potential which plays the role of a Josephson junction, one can engineer a many-body
interaction of the cosine type. Ramping up the barrier height amounts to switching
the interaction off. b) Preparing the gas at an equilibrium state and releasing it
from the trap, the interference between the two atomic clouds reveals information
about the spatial profile φ(z, t) of their relative phase at the time of the release.
Repeating the experiment many times results in an ensemble of phase profiles from
which one can extract the probability distribution of various physical observables
derivable from the phase field. In the presence of interaction and at sufficiently high
temperature, the distribution of the relative phase is highly non-Gaussian, exhibiting
a central peak at φ = 0 and accompanied by side peaks at φ = ±2π with a lower
height. This pattern clearly indicates the presence of solitons in the phase profiles
and the concentration of the phase at the minima of the cosine potential. If the
coupling J is very large, the interaction potential is approximately a steep parabola
and phase fluctuations are Gaussian. Changing the interaction strength J from a
nonzero value to zero and monitoring the subsequent time evolution of the phase
profiles, we observe the transition from an initial non-Gaussian to an emergent
Gaussian distribution. The plots show typical examples of equal-time ensembles
of phase profiles and the corresponding histograms of phase values in all points z,
as measured in the experiment. The three cases correspond to two different types
of initial states (at intermediate or large J) and a typical state that emerges after
quenching to J = 0. (c) Illustration of the time evolution of the phase distribution.
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estimate of the relative phase between the two quasi-condensates at the position corresponding
to a given pixel of the read-out camera [22, 28–33]. The phase observable is modelled by a
bosonic field ϕ̂(.) ranging over the extension of the one-dimensional quasi-condensate, whose
excitations have the physical interpretation of phonons.

The two quasi-condensates are trapped in a transversal double well as illustrated in Fig. 2.a
with a barrier that controls the tunneling strength J between the two wells. This tunnel
coupling is quite well characterized: For intermediate values of J (relative to the temperature)
it leads to an effective many-body interaction of the phonons and hence the state of the system
that is prepared at equilibrium at such couplings is non-Gaussian. This interaction term is
known to agree well with a sine-Gordon potential, as predicted in Refs. [34, 35] and verified
experimentally in Ref. [22]. The latter work has also shown that in the limit cases of small or
large J a Gaussian distribution is obtained. One simple way to assess the non-Gaussianity of
the system’s state is to disregard the spatial variation of the phase profiles in the z-direction
and consider a cumulative histogram. The question is then how far the obtained distribution is
from a Gaussian. Fig. 2.b illustrates two typical cases. In the case of intermediate J discussed
above the histogram exhibits long tails or even shoulder peaks that signify deviations from a
regular Gaussian distribution. In the case of small or large J on the contrary the distribution
is plain Gaussian.

Ramping up the barrier height of the double-well between the two adjacent quasi-
condensates, as illustrated in Fig. 2.a, reduces the tunneling of atoms between the two wells,
hence reducing the J parameter to zero. Doing this from the intermediate regime where
interactions play initially a substantial role corresponds to switching off the effective inter-
action, which is the quench situation that we want to consider. The resulting dynamics of
the histograms is illustrated in Fig. 2.c: An initial distribution with shoulders that constitute
deviations from a Gaussian evolves so that the deviations decay over time.

Fig. 2 is at this stage an illustration of a subset of questions one can study experimentally
using the atom-chip platform. We will next discuss a more space-resolved way of assessing the
non-Gaussianity of the system using correlation functions that has been presented in Ref. [24].
Nonetheless, the dynamical behavior illustrated in Fig. 2.c will make an appearance towards
the end of the manuscript in Subsection 5.1 where we will present how histograms of the type
illustrated in Fig. 2.b vary in time.

The measurement outcomes of the phononic phase field ϕ̂(.) can be viewed as spatially
resolved values of the relative phase between the two quasi-condensates. At this point, it
should be noted that given that the relative phase is an angular variable its value at any point
can only be measured with an ambiguity of a 2πn shift where n is an integer. The measured
phase profiles are derived by imposing the condition that the phase at some reference point
is within the interval [−π,+π) and then ‘unwrapping’ the phase profile so that values at any
two neighboring points differ no more than π. The ensembles of phase profiles shown in
Fig. 2.b are extracted in precisely this way, where the reference point is fixed to the middle.
This procedure still involves however an arbitrary choice of an overall 2πn phase shift. To
completely remove this ambiguity we can restrict our analysis to observables calculated strictly
on phase differences between any point and some (arbitrarily chosen) reference point. For this
reason, we define the observable phase difference with respect to the reference point z0 as

∆ϕ̂(z) := ϕ̂(z)− ϕ̂(z0) . (1)

By repetition of the experiment and interferometric measurement under identical conditions,
the full correlation function can be estimated as

Φ(z1, . . . zn) =

® n
∏

i=1

∆ϕ̂(zi)

¸

. (2)
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This is the statistical moment that we have defined above. Taking n = 1 gives just the
average phase that typically vanishes due to effective symmetries of the physical processes
involved in the state preparations. For n = 2, we obtain the second moments which allow
us to parametrize a Gaussian distribution and to build higher-order correlations using Wick’s
theorem.

Noticing that correlation functions of odd order are negligible, we find that for n = 4, the
connected correlation functions take the form

Φcon(z1, . . . z4) = Φ(z1, . . . z4)−ΦWick(z1, . . . z4) , (3)

where we just subtract the standard Wick decomposition

ΦWick(z1, z2, z3, z4) = Φ(z1, z2)Φ(z3, z4) +Φ(z1, z3)Φ(z2, z4) +Φ(z1, z4)Φ(z2, z3) , (4)

an expression in which the sum ranges over all possible pairings of indices. We see that
such a 4-point connected function vanishes for all Gaussian distributions because then
Φ(z1, . . . z4) = ΦWick(z1, . . . z4) essentially by definition.

Such an analysis, i.e., extraction of various moments and evaluation of connected func-
tions, depends only on the measured phase profiles and hence until now we did not indicate
any time dependence. The time dependence is encoded in the quantum state at the time of
the measurement from which the phase profiles are being sampled. That is, each time t we
measure, after quenching the tunneling parameter J , the system is described by some density
matrix %̂(t) and the expectation values 〈·〉 in Eqs. (2-4) refer to this density matrix. When the
system involves many degrees of freedom that interact with each other, then its state is quite
complex and it is not practical to inquire about its entire quantum state %̂(t). Instead, one
should consider correlation functions and indeed these can be obtained experimentally and
be used to characterize the system at different times t [22, 23]. Accordingly, we will indicate
correlation functions obtained at different times by writing explicitly their dependence on first
the spatial variables and then the time variable, as Φ(z1, . . . , zn, t).

We are now in a position to discuss the measure for the non-Gaussianity of the phase
fluctuations based on correlation functions that has been presented in Refs. [22, 24]. It is
given by

M (4)(t) =
S(4)con(t)

S(4)full(t)
=

∑

z1,...,z4
|Φcon(z1, . . . z4, t)|

∑

z1,...,z4
|Φ(z1, . . . z4, t)|

. (5)

This quantity vanishes for a Gaussian state and meaningfully quantifies its non-Gaussian
character. Note that given that M (4) as defined above is a non-negative quantity, in an actual
experiment it can only go as low as a small non-vanishing value, reflecting the experimental
statistical fluctuations (finite size of the statistical sample). The summation window is typically
taken over a region around the middle of the system where the atomic gas is to a good
approximation homogeneous and the data is more reliable than closer to the edges. In all
scans of the present study the trap used to confine the atoms is box-like, more specifically, a
superposition of a harmonic trap with a box trap of much smaller extent so that the density is
approximately homogeneous over the entire system. Therefore, unlike for the more commonly
used harmonic traps, there is no significant inhomogeneity in our experimental system, except
for boundary effects that are still present in the close vicinity of the edges of the box. As a
technical remark, in Fig. 3 for scans 1-4 the box-like trap is 75 µm long and we analyze using
Eq. (5) the central region of length 50 µm and for scans 5-7 we analyze the central 38 µm
region of a 50 µm long trap.

The experiment has observed the decay of this measure for all initial conditions (and
trap geometry), as shown in Fig. 3 presenting the dynamics of M (4) for various initial states.
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Figure 3: Observation of Gaussification (left) and the recurrence of non-Gaussianity
(right) in the experiment. Plots of the non-Gaussianity measure M (4) as a function
of time in various experimental scans corresponding to different initial states, as
presented in Ref. [24] (the plots are based on the data published in Ref. [36]).
The time window ranges from the initial time until 16 ms (left) or 32.5 ms (right).
Notice that the decay of non-Gaussianity follows a relatively sharp decrease to a small
saturation value. At the recurrence time [30] the non-Gaussianity returns to quite a
high value relative to the initial one. The green shaded area indicates the bias values
of M (4) corresponding to Gaussian states with finite statistics.

The quantity M (4) decreases rapidly to a small value that is indistinguishable from that of a
Gaussian state. Note that, because M (4) is by definition a non-negative quantity and because
of the statistical fluctuations in a finite sample of measurements, the mean value of M (4)

corresponding to measurements on a Gaussian state is not zero but positive: this is called
‘finite statistics bias’. Interestingly, for a box-like trapping geometry, at a particular later time,
M (4) becomes large again. This revival of non-Gaussianity has been discussed above and can
be fully accounted for by the mechanism of Gaussification by canonical transmutation which
will be introduced in more detail in the following section.

A characterization of the initial states based on the strength of the interactions is presented
in Fig. 4 where the observed value of M (4) in the initial equilibrium state is plotted against
the observed coherence factor 〈cosφ〉. The latter is controlled by the interaction coupling J
and unlike that it is directly measurable in the experiment, so that it can play the role of the
control parameter for the strength of interactions. For J increasing from zero to a relatively
large value the equilibrium coherence factor changes from zero to one. It should be mentioned
that in the experiment J cannot be chosen to be larger than ħhωtr where ωtr is the transverse
trap frequency, otherwise transverse mode excitations are present. In this case the system can
no longer be considered as effectively one-dimensional. The initial state of scan 1 corresponds
to the heavy mass regime of the sine-Gordon model (KG regime) where 〈cosφ〉 ≈ 1 and is
therefore Gaussian. Quenching to the TLL regime results in a highly squeezed initial state
due to the fast change of the effective mass parameter from a large value to zero. Scans 2,
3 and 4, on the other hand, correspond to non-Gaussian states at decreasing values of the
interaction strength J . The initial non-Gaussianity reaches its highest observed value in scan
2 and progressively decreases in scans 3 and 4. A theoretical explanation of the observed M (4)

versus 〈cosφ〉 curve is given by the classical field approximation of the sine-Gordon model [22]
using a stochastic method developed in Ref. [27] whose results are consistent with numerical
simulations of the actual quantum model [37].
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Figure 4: Characterization of the initial states of the experimental scans of Ref. [24].
Plot of the observed value of M (4) in the initial equilibrium state as a function of
the observed coherence factor 〈cosφ〉 as first explored in Ref. [22]. The initial state
of scan 1 and 7 corresponds to large J , i.e., the Klein-Gordon (KG) regime and is
Gaussian, while those of scans 2 to 6 are non-Gaussian, with the highest value of non-
Gaussianity reached for scan 2. For small J the system is in the Tomonaga-Luttinger
liquid regime (TLL). The green curves correspond to theoretical simulations of the
sine-Gordon model at thermal equilibrium (λT represents the thermal coherence
length) based on the classical field approximation [27].

2 Theoretical discussion of two readings of Gaussification

In what follows, we will consistently refer to Gaussification when we speak about the memory
loss effect wherein non-Gaussianity decays in an isolated system following an interaction
quench in time. It is a main theoretical insight of this work that there are basically two readings
of this effect, which we will study and complement with each other in detail in this section.
The actual experimental findings from cold atomic quantum field systems will later be put into
the context of these Gaussification mechanisms, and we will develop and elaborate on what
the actually dominant effect in the experiment is. In what follows, we do not aim at providing
a mathematically rigorous framework of Gaussification as presented in Refs. [5,7,14,19], but
instead keep the discussion on an intuitive, physically minded level.

2.1 Gaussification by spatial scrambling

The first mechanism, and this is what this section will focus on, can be seen as being
Gaussification by spatial scrambling. The basic idea to understand is that: Correlation
functions of fields delocalized over regions much larger than the correlation length are
effectively Gaussian. Expanding on this statement is the goal of this subsection. We keep
the discussion close to the experimental setting at hand. In this context, let us consider the
field in the above statement to be the particle velocity field, defined as (see Appendix A)

û(z) = ∂zϕ̂(z) . (6)

This is a local field, hence one would expect that its correlations cluster in typical initial
conditions. This is the first requirement of Gaussification by spatial scrambling constituting
one of the pillars in Fig. 1.
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Condition 1 (Clustering of correlations). We assume the initial correlation functions to be
exponentially decaying in the distance as

�

�

�

�

�

® n
∏

i=1

û(zi)

¸

con

�

�

�

�

�

≤ const× e−
1
2
∑n

i, j=1 |zi−z j |/ξ (for zi 6= z j) . (7)

States that satisfy this bound will be referred to as exhibiting exponentially clustering correlations.

This nomenclature is motivated by the fact that connected correlation functions are
substantial only for zi ’s that cluster together within a range of the order of the correlation
length ξ > 0. This property is ubiquitously valid in many systems, specifically in ones prepared
in ground states of gapped quantum systems and for those close to thermal equilibrium at
sufficiently high temperatures. Whenever all the positions zi are sufficiently far from each
other

® n
∏

i=1

û(zi)

¸

≈

® n
∏

i=1

û(zi)

¸

Wick

. (8)

For general lattice models with finite-dimensional constituents, it has indeed been proven that
not only ground states [38], but also high temperature states exhibit a clustering of correlations
[39, 40]. Thus, initial states exhibiting exponentially clustering correlations can be strongly
correlated states within the range of the correlation length, while exhibiting approximately
Gaussian correlations at long distances. The correlations for points separated beyond the
correlation length may intuitively be thought of as playing the role of a Gaussian ‘bath’ in
the sense that Gaussification occurs as the result of the dynamical mixing of the initially non-
Gaussian component of correlations into the much larger Gaussian component.

The delocalization of the field can result in Gaussianity both at long and short distances as
compared to the correlation length. Let us see how this works by means of a simple example.
Consider the field integrated over a region of the system R

∆ϕ̂ =
1

p

|R|

∫

R
dz û(z) . (9)

Here we weigh this expression by the size |R| of the region. This is similar to consider-
ing independent identically distributed variables X i and forming the central limit variable
X = n−1/2

∑n
i=1 X i . Classically, the inverse-square-root normalization of X is crucial and then

the distribution becomes Gaussian in the limit n→∞. We can estimate the connected part
of this observable as

D

∆ϕ̂
4
E

con
≈

1
|R|2

∫

R4

d4z

® 4
∏

i=1

û(zi)

¸

con

≈ const×
ξ3

|R|
, (10)

where the constant is bounded by the maximum of the correlations at short distances deter-
mined by the UV cut-off. We hence see that if we take a field whose correlations exponentially
cluster, then the average over a large region results in connected functions scaling inversely
proportional to the size of that region. Thus in the limit of |R| → ∞ the connected part
vanishes.

A type of such delocalization can be implemented by unitary Gaussian dynamics of an
isolated quantum system [5,7,16–20]. This is the second pillar of spatial scrambling in Fig. 1.

Condition 2 (Delocalizing dynamics). The dynamics generated by the non-interacting Hamil-
tonian is expected to be delocalizing. Said in different words, the propagator of an initially local
field decays with time in the entire space.
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Let us expand on this condition in more detail. For a Hamiltonian that is non-interacting,
i.e., quadratic in terms of a set of fields, the Heisenberg equations of motion that determine the
unitary time evolution of these fields are linear differential equations with respect to time. As
such they can be solved for general initial conditions and the time evolved fields are expressed
as linear combinations of the initial fields. Conversely, if the unitary time evolution is of this
linear form then the governing Hamiltonian must be non-interacting. In the present context,
for example, the Heisenberg equation of motion satisfied by ϕ̂(x , t) = Û†(t)ϕ̂(x , 0)Û(t) with
Û(t) = e−iHt is a linear partial differential equation of second order with respect to time, or
equivalently a linear system of two first order equations for the relative phase field ϕ̂(x , t) and
its canonically conjugate field δ%̂(x , t) which expresses the relative density fluctuations of the
two-component atomic gas (see Appendix B for details). The solution to the associated initial
value problem can be expressed in terms of ϕ̂(y, 0) and ∂tϕ̂(y, 0)∝ δ%̂(y, 0) by means of the
Green’s function method, which finally gives the field û(x , t) expressed as

û(x , t) =

∫

dy Gu(x , y, t)û(y, 0) +

∫

dy Gρ(x , y, t)δ%̂(y, 0) . (11)

Here Gu(x , y, t) and Gρ(x , y, t) are the retarded Green’s functions, commonly called prop-
agators, corresponding to the equations of motion for û(x , t) under the initial conditions
û(y, 0) = δ(x − y),δ%̂(y, 0) = 0 and û(y, 0) = 0,δ%̂(y, 0) = δ(x − y), respectively. They
encode the dynamics triggered by the initial conditions and express the impulse response of
the field û(x , t) coming from a localized disturbance of û(y, 0) or δ%̂(y, 0), respectively. In
practice, they can be calculated by expanding in the eigen-modes of the Hamiltonian (Fourier
modes in the translationally invariant case).

If the dynamics admits a bound of the form

|Gu/ρ(x , y, t)| ≤ const× t−α , (12)

for some α > 0, then we say that it features delocalization, as summarized in Fig. 1. For
example, in a typical lattice system with local dynamics the propagators are upper bounded
as above with an exponent α = 1/2. The causality of the time evolution (Lieb-Robinson
bound) is implemented in G as exponential decay with the distance outside the light-cone
region |x − y| < c t, where c is the speed of sound. The light-cone propagation bound is also
a characteristic of the low-energy effective theory describing the present continuous system.
These properties imply then that û(x , t) equals to an effective average (with an oscillatory
weight function) of û(y, 0) within the light-cone. This is similar to the above discussed case
with |R|= c t and so we expect a similar bound on the connected part of the correlations

|〈û(x , t)4〉con| ≈ const×
1
c t

. (13)

We hence encounter the following scenario: If a system exhibits dispersive dynamics, then
an initially local field spreads in space under the time evolution and its connected correlation
functions should then decay at least as a power-law in time. If instead the dispersion relation
is linear, then information about initial correlations travels coherently and non-Gaussianity
may be preserved.

It should be remarked that the dynamics of lattice models does not implement precisely
a square-root decay of the Green’s function in the entire space [5, 7, 19, 20]. Rather, as can
be seen, e.g., by the stationary phase approximation, there is a wave-front at the edge of
the effective causal cone which decays more slowly than is true for the interior of the cone.
This complication is one of the reasons why a complete derivation of Gaussification by spatial
scrambling goes beyond the intuitive picture sketched here.
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More specifically, in the above we have considered for illustration purposes a typical case
of dynamics characterized by an effective light-cone spreading. In non-relativistic continuous
systems, however, correlations can in principle spread quite fast with no effective maximum
velocity bound. Even in this case where field spreading is not constrained the Gaussification
by spatial scrambling arguments may still be applicable [17]. In the illustrative discussion
of the mechanism we assumed the scaling exponent to be everywhere in space equal to
1/2 which implies uniform decrease of the Green’s function inside the light-cone. This is
instructive for a general discussion but again, the delocalization mechanism is valid more
generally. In particular, it holds for dynamics generated by local Hamiltonians where the
Green’s function scales according to the 1/2 exponent in the bulk of the effective light-cone but
at the wave-fronts at its edge the asymptotic scaling in time is 1/3 [17,19,20]. In any case the
essential arguments available in the literature in all cases can be argued to rely closely on the
delocalization of the fields as explained here (see Ref. [20] for an accessible discussion of these
complications along the lines that we presented here and Ref. [19] for a general derivation of
such types of scaling for local lattice models).

2.2 Gaussification by canonical transmutation

Gaussian correlations can also emerge based on a mechanism which does not involve spatial
scrambling. Instead of that, we want to consider the possibility of the decay of non-Gaussian
correlations that results from the internal dynamics in each of the independent harmonic
modes.

To be specific, let us consider the dynamics generated by a general non-interacting Hamil-
tonian

Ĥ = 1
2

∞
∑

k=1

ħh(δρ̂2
k +ω

2
kφ̂

2
k) , (14)

with canonical commutation relations [δρ̂k, φ̂k′] = iδk,k′ for k, k′ = 1,2, . . . and δk,k′ is the
Kronecker symbol. The time evolution of each harmonic mode under this non-interacting
Hamiltonian is

φ̂k(t) = cos(ωk t)φ̂k(0)−
sin(ωk t)
ωk

δρ̂k(0) . (15)

Here, we find that the density sector is being rotated into the phase sector and vice versa,
which is what we mean by canonical transmutation: In particular, for t = π/2ωk we have
that φ̂k(t) ∝ δρ̂k(0) with a complete transmutation of the role of the operators in the
canonically conjugate pair. This is the crucial qualitative insight and captures the essential
physical process occurring after the quench, which allows us to account qualitatively for the
resulting Gaussification dynamics and at the same time is largely independent of the model as
even perturbed Hamiltonians would feature similar rotation dynamics. The discussion of this
quadrature rotation makes specific the general idea of the necessary dynamical pillar as listed
in Fig. 1.

Condition 1 (Quadrature rotation). The dynamics generated by the non-interacting Hamilto-
nian is expected to be implemented by a quadrature rotation to generate transmutation.

This relation is enough to argue that marginals of non-Gaussian states with a certain
structure of correlations are going to become Gaussian over time. To give the basic idea,
consider the case that initially only the phase sector is non-Gaussian, e.g.,

〈φ̂k(0)
4〉con > 0 . (16)
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At time t = π/2ωk we have

〈φ̂k(t)
4〉con = 〈δρ̂k(0)

4〉con = 0 . (17)

We hence see that the connected correlation function of the phase mode k will become fully
Gaussian under this transmutation. Here, we see that if there is such a structure of Gaussian
correlations being contained in one sector of the canonically conjugate pairs, then we can
identify them again as constituting a Gaussian bath. As suggested by this illustrative case,
we wish to promote this property (one canonical sector being Gaussian and the other non-
Gaussian) to a feature that can also be present in other systems with possibly different degrees
of freedom. For this reason we single out this characteristic of the initial state as a distinct
pillar of the mechanism of Gaussification by canonical transmutation as listed in Fig. 1.

Condition 2 (Existence of a Gaussian canonical sector). The initial state should have a
canonical sector that is Gaussian and decoupled from the non-Gaussian sector.

This basic observation so far phrased for essentially the non-local eigen-modes of the
system is at play in more complicated situations. First, what happens at intermediate times?
Assuming the Gaussianity of one canonical sector, we see that the non-Gaussianity of the other
sector of each eigen-mode will oscillate between the initial value and zero. Secondly, such
transmutation dynamics within the eigen-modes will lead to more complicated dynamics in
real-space. For this let us take the instructive example of the mode decomposition of the fields
in a homogeneous system of length L

ϕ̂(z)∼
∑

k

cos(πzk/L)φ̂k . (18)

Using Eq. (15), we see that the dynamics of the real-space field ϕ̂(z, t) will lead to a
transmutation into the density sector in each mode at its own frequency. For this reason the
transmutation dynamics will turn out to be a mixture of some eigen-modes which happened
to have rotated significantly and some which did not, resulting overall in a reduced value of
non-Gaussianity for almost all times. The analysis of mode mixing is more generally relevant
in the study of signatures of space-time propagation of phase correlations and has been studied
in Ref. [41].

Condition 3 (Dominance of the Gaussian canonical sector). The initially Gaussian canonical
sector should be much larger than the non-Gaussian one.

As we will discuss later, the decay of Gaussianity can be substantial if the Gaussian bath
is at high temperature and there is an imbalanced energetic penalty which leads to strong
squeezing, i.e., 〈δρ̂2

k〉 � 〈φ̂
2
k〉. In this case even if the dynamics is weighting both eigen-

mode operators similarly, the Gaussian correlations will dominate, because there will be more
contribution from fluctuations of the Gaussian type at any moment. When this condition holds,
after the quench one would see that fluctuations overall increase with an increasing portion
of these correlations being Gaussian. This feature is an important aspect of the effect in the
experiment in Ref. [24] and will be dissected in a number of sections below. However, the
discussion geared towards the experiment can be viewed as being a feature that should be
recognized in its own right as potentially playing a role also in other systems. For this reason,
we include this feature as one of the pillars of Gaussification by canonical transformation and
refer to it as ‘dominance of the Gaussian canonical sector’ (Fig. 1.b). Let us also remark that,
even though the dominance requirement means that the ratio of initial fluctuations of the
Gaussian over the non-Gaussian sector should be much larger than unit, as we will see below,
we actually obtain a large decrease of non-Gaussianity even for relatively moderate ratios.
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2.3 Similarities and differences of the two mechanisms

The two mechanisms discussed in this work have in common the setting in which they can
come into play and the type of effect they cause. In both cases, we are interested in a non-
Gaussian state influenced by some interactions in the initial Hamiltonian. After interactions
have been quenched, the connected correlations become less prominent over time. So both
mechanisms can lead to the emergence of Gaussian correlations. One of the most intriguing
similarities is that effectively in both cases ‘Gaussianity’ is not being dynamically produced,
but rather dynamically ‘uncovered’.

In the case motivated by the experiment, the sector of phase observables has been non-
Gaussian while the canonically conjugate operators have been Gaussian. Then, any Hamil-
tonian that mixes the two sectors sufficiently strongly (quadrature rotation pillar) can lead
to Gaussification. Here, however, the extent of Gaussification is given by the extent in which
the density correlations dominate over time the phase sector. If this is very substantial then
connected correlations will become less important and yield a negligible relative contribution
to the full correlation function. From Eq. (15) it seems that the ultimate extent of Gaussifica-
tion is given by the average between the two sectors which is the result one obtains by a time
average over a period T ∼ω−1

1 .
One can think of an analogy with two water tanks, one with a high and the other with a

low level of water so that after connecting them the levels oscillate and even out. Here, the
phase sector has a large degree of non-Gaussianity while the density sector has a low level and
both start mixing after the quench such that the full correlation functions of phases become
mostly Gaussian due to the Gaussian density fluctuations that are dynamically rotated in after
the interaction quench. So here the density correlations play the role of a Gaussian ‘reservoir’.

One can identify a type of such reservoir that is dynamically mixed in also in the Gaus-
sification by spatial scrambling. In this case, however, a field becomes spread over a large
portion of the system and as we saw earlier higher order correlation functions become largely
made of initial correlation functions from positions separated by large distances. These are
initially Gaussian as the correlation function factorizes due to the assumption of clustering
of correlations. So far away correlation functions can be identified to play the role of the
Gaussian ‘reservoir’ and the spreading of correlations in form of homogeneous spreading of
wave-packets ‘couples’ the local correlations to that reservoir such that local expectation values
are described by a Gaussian state to an increasingly better approximation.

Having said that, there are also crucial differences. In Gaussification by canonical trans-
mutation, the non-Gaussianity need not necessarily disappear fully, but rather become only
overwhelmed by rotating in other Gaussian correlations. Here, the degree of Gaussification by
canonical transmutation is limited by how much densities dominate typically over time, and
how Gaussian they are in the first place. Via wave-packet spreading, if the system is asymp-
totically large, the local observables can be captured arbitrarily well by a Gaussian state, so in
contrast to Gaussification by canonical transmutation there is no limit to the convergence to
Gaussianity.

Gaussification by canonical transmutation can occur when spatial scrambling will fail to
be present, as exemplified by the experiment in Ref. [24]. The most important example
where this happens is in systems characterized by a linear dispersion relation, which will not
exhibit spreading of wave-packets, so the only possible type of Gaussification is the relative
one. As described below (Subsec. 3.2), the required condition that an entire sector of initial
correlations is decoupled and Gaussian is possible to hold in a broad class of systems prepared
in a high temperature state which is described by the classical field approximation. Therefore,
the effect is not limited to the sine-Gordon model as e.g. the φ4 theory should also exhibit
similar equilibrium correlations. In the case of linear dispersion systems discussed here, the
different nature of the canonical transmutation compared to the spatial scrambling mechanism
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translates into a different scaling of the approach to equilibrium in a large system, as explained
in Subsec. 5.2. Another feature of the Gaussification by canonical transmutation as opposed
to spatial scrambling is that the overall amount of non-Gaussianity of connected correlations
should be preserved. Lastly, Gaussification by canonical transmutation can occur without the
condition of initial clustering which is necessary for the Gaussification by spatial scrambling –
as long as there is a Gaussian ‘reservoir’ sector that is rotated in.

3 Characteristics of the initial correlations in the experiment

One overarching observation concerning the two Gaussification mechanisms discussed in this
work is the presence of Gaussian correlations in the initial state in some form such that
they have initially been inaccessible (since we can only measure directly phase and not
density correlations) but then come to view via the dynamics. We will now focus on the
different possibilities for some type of correlations to be initially Gaussian. We will begin
by analyzing one of the two pillars (as summarized in Fig. 1.a) of Gaussification by spatial
scrambling, namely the question of clustering of correlations. The next subsection will discuss
a microscopic argument that pertains to the experiment.

3.1 Clustering and scaling in initial states

In this section, we will be discussing various characteristics that pertain to the scaling of
correlations in the experimental system at thermal equilibrium. The relative phase defined
in Eq. (1), whose statistics is the direct experimental observable, is not a local field in a strict
sense. This is because it is only differences between the phases at two different points (one
of which is the reference point) that have a direct physical interpretation. As a result, the
correlations of the field that corresponds to the phase difference between two points do not
decrease with the distance but instead increase or saturate, due to the cumulative effect of
fluctuations in the intermediate spatial interval. This is in contrast to the typical behavior of
the correlations of local fields which decrease with the distance when we consider equilibrium
states of local systems. The long-range character of phase correlations has been discussed
already in earlier works, see, e.g., Refs. [22, 41–44]. Here we explain this behavior in an
alternative way (by deriving the scaling of correlations of the phase field from that of its
spatial derivative) and argue that in the non-Gaussian states considered here the growth of
phase correlations with the distance is related to the presence of topological excitations in the
system.

The space and time derivatives û= ∂zϕ̂ and ∂tϕ̂∝ δ%̂ of the quantum phase are expected
to be local fields. Connected correlations of such local fields in local quantum states are
expected to decay with the distance: In ground states of gapped Hamiltonians the decay of
local field correlations is exponential with a correlation length that is controlled by the mass
of the lightest quasi-particle excitation [45,46]. In particular, this behavior holds for the sine-
Gordon ground and thermal states in the gapped phase [47].

Let us begin the discussion by noting that the phase is related to fluctuations of the atomic
gas. In its microscopic description, the atoms are described by quantum fields with creation
and annihilation operators denoted as Ψ†(z),Ψ(z), and the correlations of such atomic fields
should decay in space reflecting the locality of the interactions between the atoms and the fact
that finite temperature prevents long-range correlations that would signify order in the system.
The fluctuations of the phase field are related to the correlations between the atoms such that
the former increase when the latter decrease. For example, in the quadratic harmonic fluid
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Figure 5: Scaling of phase auto-correlations Cφφ(r) as a function of the distance
r from the reference point (middle) in the initial state. Scan 1 corresponds to
a massive Gaussian state, scans 2, 3 and 4 correspond to non-Gaussian states at
different interaction strength. The bands indicate the size of the estimated errors .

approximation

g1(z, z′) = 〈Ψ†(z)Ψ(z′)〉 ∝ e−
1
2 〈(ϕ̂(z)−ϕ̂(z

′))2〉 , (19)

i.e., the phase difference field is related to the logarithm of the one-particle density matrix of
the atoms in the gas [47,48]. The decay of off-diagonal fluctuations of the atoms for increasing
distance corresponds to increasing correlations of the phase difference. In the gapless phase
of the gas, at finite temperature the relation of fluctuations to correlations is implemented by
exponential decrease of g1, i.e., linear increase of phase correlations, while in the ground state
the scaling would be inverse algebraic for g1, i.e., logarithmic for phase correlations [48].

In the gapped phase corresponding to the initial states of the experiment, even though the
quadratic approximation is not always valid, the relation between the two correlation functions
is qualitatively similar. Fig. 5 presents the auto-correlations

Cφφ(r) = 〈(ϕ̂(z0 + r)− ϕ̂(z0))
2〉 (20)

measured in the experiment for initial state preparations with differing barrier heights and
hence different strength of the tunnel coupling J . We find that over short distances the fluc-
tuations increase seemingly quadratically, eventually switching to a slower increase, corre-
sponding to linear growth or saturation. The rate of the increase depends on the strength of
the tunnel coupling.

The cross-over from quadratic to approximately linear scaling can be interpreted by relating
to atom fields as alluded to above. On this level we find that the short-range correlation
decay of g1 is rapid and governed by a Gaussian function while at large separations we find
exponential decay of correlations. The former may be non-universal, affected by the effective
cut-off of the field theory implemented by finite measurement resolution. Additionally the
short-range correlations may depend on renormalization group (RG) irrelevant terms in the
Hamiltonian. On the other hand the long-range scaling are expected to be robust and depend
primarily on RG relevant terms. This is what we find as the tunnel coupling is effectively
described by the sine-Gordon interaction (discussed in detail below) which is RG relevant.
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In order to further interpret the scaling of the initial correlations, we can think of the Cφφ

function based on the local velocity field correlations

Cφφ(r) =

∫ z0+r

z0

dx1

∫ z0+r

z0

dx2〈û(x1)û(x2)〉 . (21)

This integral representation can be further simplified by the following physical considerations.
Given that the state is characterized by the presence of massive excitations of the sine-Gordon
model in combination with the fact that the velocity field is local, its correlations are expected
to decay exponentially with some correlation length ξ > 0. Under this assumption, as r
becomes larger than ξ we reach a linear scaling of Cφφ(r). To see this, it is instructive to
switch to the coordinates x± = x1 ± x2. The integral of the off-diagonal direction x− should
give a constant roughly proportional to the correlation length. The remaining integral over the
diagonal direction along x+ should yield a scaling proportional to r because we are integrating
a constant function. Together, this results in a linear scaling

Cφφ(r)≈ const.× r , (22)

for r � ξ. Inspecting Fig. 5 we indeed find that for r > 10µm a linear behavior is valid,
namely for all prepared initial conditions we see either a non-trivial linear increase (scans
3 and 4 corresponding to relatively small J) or a leveling-off (scan 1 corresponding to the
largest J and to a lesser extent scan 2 at an intermediate value of J) compatible with a small
or essentially negligible slope constant. In the next paragraph, we will further elaborate on
this argument and explain how one can understand the saturation of the correlations Cφφ(.)
for large coupling using the phenomenology derived from the Gaussian KG field theory.

3.1.1 Quantum field simulation of the relativistic field theory models

The state preparation in the experiment involves open system dynamics due to cooling by
evaporation or atom losses [49] which yields initial conditions closely matching thermal
theory [25, 44], consistent with predictions that can be derived within Tomonaga-Luttinger
liquid (TLL) and Klein-Gordon (KG) model as special limits of the sine-Gordon (SG) model. We
will now give more details about this description which allows us to capture the system for the
limits of a strong and weak coupling of the adjacent one-dimensional gases as depicted. For a
high double well barrier, the coupling between the two wells vanishes and the effective sine-
Gordon description reduces to the Gaussian TLL model. For a low double well barrier, on the
other hand, we are in the limit of large coupling and the description becomes again effectively
Gaussian. This can be seen in terms of a semi-classical description: the system lies at the
bottom of a very steep cosine potential which can therefore be approximated by a parabola. In
this case the effective description is given by the KG theory (see the experimental study [22]
and the numerical theoretical analysis [37] for detailed discussions on the crossover from the
TLL to the KG regime of the SG model).

Following Refs. [12,22,33], we consider the effective field theory model describing the fast
decoupling of two adjacent one-dimensional gases of neutral atoms at ultra-cold temperatures
(see Fig. 2 for a schematic of the experimental setup). At strong tunnel coupling between the
two wells, the effective model is given by the Hamiltonian

ĤKG(J) =

∫

dz
�ħh2nGP(z)

4m
(∂zϕ̂(z))

2 + g(z)δ%̂(z)2 + JnGP(z)ϕ̂(z)
2
�

, (23)

involving relative fluctuations in phase ϕ̂(.) and density δ%̂(.) [30, 50]. These low-energy
degrees of freedom represent the phononic excitations of a one-dimensional Bose gas and
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satisfy bosonic commutation relations [δ%̂(z), ϕ̂(z′)] = iδ(z − z′). Here m is the atomic mass
and nGP(.) ≈ const is the mean density profile. The phononic operators are defined within
the atomic cloud whose spatial extension is given by the support of nGP. Lastly, g(.) is the
density-broadened interaction strength [30, 51] and the parameter J is the tunnel coupling
which is tuned by the double-well barrier height.

The last term of the Hamiltonian that involves J can be viewed as a mass term. Ramping
up the barrier height in the experiment, effectively quenches the mass term from a nonzero
value of J to zero, so that only the first two terms that make up the TLL Hamiltonian remain,
i.e.,

ĤKG(J = 0) =

∫

dz
�ħh2nGP(z)

4m
(∂zϕ̂(z))

2 + g(z)δ%̂(z)2
�

= ĤTLL. (24)

Note that the above effective description in terms of a quantum quench from the massive KG
to the massless TLL model is valid only under the condition that the density nGP is constant
in both space and time. This holds to a very good approximation in the experimental system
when a box-shaped external trap is used, and it is also a sufficiently good approximation in
the middle region of the system when a parabolic trap is used instead.

Such a KG to TLL quench is performed in experimental scan 1 and the corresponding
measurements of the dynamics will be shown below. Here we will focus on the properties
of the initial state preparation. The experiment tends towards the KG regime for very strong
tunnel couplings as evidenced here as well. In the KG limit there is strong pinning of the
compactified phase field to the minimum of the cosine potential which results in the absence
of phase winding, that is, absence of soliton excitations. This means that the phase difference
between the edges of the system is very small

∫

dz ∂zϕ̂(z, t = 0) = 0 . (25)

Accordingly, in scan 1 for which the initial state is in the KG regime we observe that the slope
in (22) is close to zero and the large distance asymptotics is saturated to a constant (Fig. 5),
in contrast to other scans, especially 3 and 4 corresponding to relatively small J , which are
consistent with an approximately linear increase with the distance.

Summarizing, the correlations of the phase should be thought of as fluctuations as they
govern the melting of the ordering of the atomic system and tend to increase with the distance.
On the other hand, the correlations of the derivative field û in equilibrium states corresponding
to the KG limit should be decaying with the distance as a result of pinning of the phase due
to heavy phononic excitations. The scaling observed in the experiment indeed reproduces the
phenomenology that correlations of the derivative field û decay with the distance.

3.1.2 Velocity field correlations in the initial state

In this subsection, we are interested in the scaling, in particular, the range of correlations of
the local velocity field in the initial equilibrium states, in order to assess the presence of one
of the ‘pillars’ of the spatial scrambling mechanism. Extracting the velocity field two point
correlations

Cuu(z1, z2) = 〈∂ ϕ̂(z1)∂ ϕ̂(z2)〉 (26)

directly is impossible in the experiment. Instead we look at the approximation obtained by
looking at the correlations of phase differences between adjacent pixels

Cuu(z1, z2)≈ δz(−2)〈(ϕ̂(z1)− ϕ̂(z1 +δz))(ϕ̂(z2)− ϕ̂(z2 +δz))〉. (27)
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Figure 6: Top: Longitudinally averaged velocity field correlations Cuu(r) for state
preparations used in Ref. [24]. From left to right the tunneling strength is reduced.
For all scans we see an auto-correlation peak for r ≈ 0. We see that in the KG regime
(scan 1) there is a rapid decay of the auto-correlation switching over to negative
values, i.e., an anti-correlation of the velocity field at a distance of about 10µm which
is about 20% of the system length. As J decreases the anti-correlation dip becomes
more shallow, eventually vanishing almost entirely. For all scans the velocity field
2-point functions are consistent with exponential fall-off envelopes with a length-
scale which is a small portion of the system size. Bottom: Theoretical plots of the
correlation function of the velocity field Cuu(r) as a function of the distance r in the
Tomonaga-Luttinger liquid and Klein-Gordon model (large coupling limit), at one
choice of parameter values c = 1, M = 1, T = 0 and various values of the high-
momentum cutoff Λ. We observe the characteristic negative correlation dips on the
two sides of the central peak.

In practice, we have δz ≈ 2µm which in typical configurations amounts to 2 to 4% of the
system length.

Fig. 6 shows the extracted profiles where we average over all pairs of positions z1 and
z2 with a fixed distance r = z1 − z2. For large J , i.e., in the KG regime (scan 1), we find
once again a profile consistent with a vanishing integral in the distance r, as discussed above,
implemented by a strong anti-correlation on the two sides of the central peak that cancels the
auto-correlation at zero distance r ≈ 0. The profile matches qualitatively with the theoretical
prediction for equilibrium correlations in the KG model, also plotted in Fig. 6 for comparison
with the experimental plot for scan 1. The theoretical formula for the distance dependence of
the correlations in the KG model in a large homogeneous system is (see for example [52])

Cuu
KG(r) = −∂

2
r CφφKG (r), CφφKG (r)∝

∫ +∞

−∞
dk

eikr−1
2 (k/Λ)

2

E(k)

�

1
2
+ nBE(E(k), T )

�

, (28)

where E(k) =
p

c2k2 +M2c4 and nBE(E, T ) is the Bose-Einstein distribution at temperature
T . The parameter M is the KG particle mass, which is M ∼

p
J here, and Λ is a high-

momentum cutoff. At large distances the above correlation function decays exponentially with
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a correlation length determined by the mass M and temperature T , while at short distances
the theoretical scaling is the same as in the TLL ground state, M = 0, T = 0, which is∼ −1/r2.
However, the contribution of high momentum modes is suppressed by the cutoff Λ, which in
the experiment is dominated by the finite imaging resolution which has the form of a Gaussian
weight function [33]. As a result the profile of the correlation function switches from a singular
function to the shape shown in Fig. 6. The precise height and width of this profile is controlled
by all parameters M , T and Λ. For this reason and given that a precise estimate of M and
T is not available, a quantitative comparison of the experimental and theoretical plots is not
possible, however, the qualitative behavior is similar.

Decreasing J to intermediate values in the sine-Gordon regime, the anti-correlation dips
are weakened and the integral over r becomes nonzero in agreement with the linear increase
of Cφφ(r) at large distances observed in the previous section. In the context of the sine-
Gordon model the physical meaning of the velocity field, i.e., the phase derivative, is the
density of solitons in the system. A non-vanishing value for the correlations of the velocity
field integrated over a spatial region signifies fluctuations of the number of solitons in that
region. This is precisely what one would expect for equilibrium states of the sine-Gordon
model in the strongly correlated regime. Therefore the above scaling analysis provides an
indirect signature of the presence of solitons and of their thermodynamics in the experiment,
already observed in the full counting statistics of the phase field in Ref. [22].

3.2 Canonical decoupling into Gaussian and non-Gaussian sectors

It is often the case that the internal dynamics of a physical system can be very well described by
a Hamiltonian consisting of two parts where individually each part involves only a commuting
set of operators and the non-commutative, i.e., quantum, character of the model comes from
the fact that the two parts are non-commuting. This is very well illustrated by the phononic
degrees of freedom that we have in mind where typically, e.g., for equilibrium conditions at
low temperatures we have the generic form

Ĥ = Ĥφ + Ĥρ . (29)

Individually, the thermal state of only one part of the canonical pairs, so Ĥφ or Ĥρ would agree
with a classical probability distribution, but in general for Ĥ this need not be true. Interestingly,
at sufficiently large temperatures the bosonic statistics of the degrees of freedom is expected
to become less prominent. Whenever this is true, such an effect makes sure that the thermal
state of the entire Hamiltonian

σβ = e−β Ĥ/Zβ , Zβ := tr[e−β Ĥ] (30)

agrees closely with a classical probability distribution. To illustrate this point, in the most
extreme case of very high temperatures, we have

σβ ≈ (1− β Ĥ)/Zβ . (31)

Here, we see that the correlation function of either the phase or density operator depends on
its respective part of the Hamiltonian and so the non-commuting aspect of the fields does not
even have a chance to play a role.

This observation coming from the simple high-temperature expansion may be valid only
at temperatures much higher than in the experiment. However, to make the extrapolation to
lower temperatures plausible, one should notice that as the temperature increases, the energy
of the system must also increase, so we must have that 〈φ̂2

k〉 and 〈δρ̂2
k〉 must also grow with

temperature. This means that the occupation numbers of the modes involved will become
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increasingly larger than the vacuum level. However, only for states close to the ground state the
canonical commutation relations play a prominent role because the expectation value of the
commutator operator, which is independent of the state and proportional to ħh, is comparable
to the mode occupation numbers.

This leads to the classical field approximation (CFA) being a good approximation, where
we assume that the phase and density operators are effectively commuting with each other.
This suggests that we can effectively ‘trace-out’ one of the sectors of the operators without
quantum corrections, so by treating the phononic fields as independent classical fields not
coupled with each other. For the lack of a better term, we will refer to such an independence
of the correlation functions of fields in each canonical sector from the canonically conjugate
sector as canonical decoupling. Whenever such a feature is at play we can still make use of
further observations to plausibly infer characteristics of the correlations of the quantum many-
body system considered.

Specifically, let us assume that one of the canonical parts of the Hamiltonian is a quadratic
form of the degrees of freedom. Anticipating the relation to the experiment, let us take the
density part to be quadratic while the phase part can include a many-body potential going
beyond the quadratic term, as in the sine-Gordon model. Under the assumption that the
two canonically conjugate fields are effectively decoupled for the temperature in question,
we obtain a very crucial prediction, namely that the density-density fluctuations can be
approximated as

〈δ%̂(z1) . . .δ%̂(zn)〉 ≈ tr
�

δ%̂(z1) . . .δ%̂(zn)e
−β Ĥρ

�

/Z (ρ)
β

, (32)

where again Z (ρ)
β
= tr[e−β Ĥρ] for β > 0. This correlation can then be obtained using Wick

expansion of the only non-trivial correlation function, i.e., the second moments

Q(z, z) = 〈δ%̂(z)δ%̂(z′)〉 . (33)

This expression makes specific what we mean by tracing out: The correlations in the density
sector are taken to be described by the thermal state of the density Hamiltonian Ĥρ. We take
the same temperature as we would take for the full thermal state of the full Hamiltonian. The
former observation should be stressed as the independence of tunnel coupling means that at all
its values Ĥρ is Gaussian so actually the correlations in the density sectors should be Gaussian
too. This means that the density fluctuations should be independent of the tunnel coupling
and approximately thermal. In summary, the argument suggests that, crucially, CFA implies
that at sufficiently high temperatures all higher-order moments in the density sector should
be Gaussian. Thus the Gaussian bath in the canonical transmutation mechanism is a result of
canonical decoupling and at least one of the canonical sectors being Gaussian.

By allowing for tunneling of atoms between the adjacent gases an effective interaction
between the phonons becomes relevant which can give rise to kink excitations according to
the sine-Gordon (SG) model whose Hamiltonian is given by

ĤsG = Ĥ + J

∫ L/2

−L/2
dz nGP(z) cos(ϕ̂(z)) . (34)

Here J/(2πħh) is the single particle tunneling rate, which can be tuned by the barrier height.
Having this specific model in mind, lets us state what the implications of canonical

decoupling would be in our system. First, the factorization of the thermal state density matrix
at high temperature means that the density correlations would be given by expectation values
computed in a state ∼ e−β Ĥρ which is a diagonal quadratic form of the density field. This
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means that all higher-order functions of the density would be Wick contractions based on the
two-point function which at high-temperatures reads

Q(z, z′)≈ (β g)−1δ(z − z′) . (35)

The value of phase correlation functions can in turn be computed as explained in Ref. [27]
by replacing the quantum phase operators by classical phase variables since the canonically
conjugate operators should not play a role at high temperatures, so only commuting operators
would be involved. Put differently, we would take the phase correlation functions to be the
correlation functions in the classical sine-Gordon model.

In the large temperature limit the correlation length of the density fluctuations is very
small. This in particular should imply that to a good approximation we can write for eigen-
mode operators

〈δ%̂2
k〉= Const. (36)

We can recover this qualitative feature by starting from the formula for thermal correlations
of a set of eigen-modes

〈δρ(x1)δρ(x2)〉0∝
∞
∑

n=1

[1+ 2nBE(E;β)] E(kn)e
ikn(x1−x2) , (37)

where nBE(E;β) = (eβE − 1)−1 is the Bose-Einstein distribution at inverse temperature β > 0.
In the above the eigen-mode energy is denoted by E(kn), while c and K are the sound velocity
and Luttinger parameter, respectively (see Appendix A for details). We now see that for
β−1→∞ we have nBE(E;β)≈ 1/(βE) from which we find

〈δρ(x1)δρ(x2)〉 ≈ Const.×δ(x1 − x2) . (38)

By inspecting formula (37), we see that in the Gaussian case we will see quantum corrections,
related to vacuum fluctuations, only once the first order expansion of the exponential in the
Bose-Einstein distribution becomes an inadequate approximation. This sets a scale for the
temperature for Gaussian CFA to be closely linked to the eigen-mode frequency of the low-
lying modes observable in the experiment. To account for such short-range correlations we
would indeed see that

〈δ%̂2
k〉 ≈ Const. . (39)

Let us remark that in the case of an interacting system, an approximate Gaussian description at
large temperature would include effects of the interaction through the self-energy corrections
[52]. This asymptotic behavior is generally valid independently of the precise form of E(k)
and therefore independent from the interaction which enters only through the self-energy
insertions in E(k). In the present case, the above result justifies (36) and explains why that
constant is independent of the sine-Gordon tunnelling J .

Summarizing the entire section, here we have argued that phase and density decouple at
high temperatures if there are no terms in the Hamiltonian directly involving both types of
operators. In particular, this would imply that density fluctuations should be Gaussian in the
SG model which seems to be the case for temperatures relevant in the experiment. This is
the canonical decoupling pillar summarized in Fig. 1. Of course, this property alone does not
imply that the Gaussian density sector dominates the phase sector during the dynamics. The
next section explains that this is actually expected to be the case for the experimental system.
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Figure 7: Semi-classical explanation of the dominance of density over phase fluc-
tuations in the sine-Gordon model. Ignoring the spatial variation of the phase, the
sine-Gordon model can be approximated as the quantum analogue of the classical
pendulum [53]. Top: At a fixed temperature (corresponding to mean total energy
denoted by the dashed black line), increasing J results in a steeper and narrower po-
tential well that can be approximated by a parabola (dashed colored lines). Bottom:
Seeing from a phase-space point of view, increasing J results in stronger ‘squeezing’
of the wave-function, illustrated through the elongation of the dashed line contours
that represent the energy levels (or the shape of a phase space distribution of a clas-
sical thermal ensemble). The values of J from purple to red are 0.01, 0.025, 0.05,
0.1, 0.25, 0.5, 1., 2.5 and the mean total energy level is E = 0.1.

3.3 Dominance of density over phase initial correlations in the experimental
states

3.3.1 Intuitive understanding of the experimental findings

We are now turning to discussing the third ‘pillar’ of Gaussification by canonical transmutation,
which is the condition where the initial correlations of one of the two canonical sectors
dominate over those of the other. The correlations of each sector at intermediate times t > 0
that are not integer multiples of a half recurrence period will be a mixture of the initial
correlations of both sectors. Therefore, if one of the sectors has larger correlations than the
other initially, it will dominate in the time evolved correlations of both sectors.

Let us now explain why this can well be the case in the experiment. As already mentioned,
the initial states are effectively equilibrium states of the SG model or, in case of large coupling,
of the KG model. For clarity, consider the phase and density fluctuations in thermal states of
the two limiting cases of the SG model, i.e., the KG and TLL models, (23) and (24) respectively,
which are quadratic. In the TLL model expressed as a sum of decoupled modes (14), we know
from the equipartition theorem that the energy contributions of each of the two quadratures
to the total energy are equal

〈δ%̂2
k〉=ω

2
k〈φ̂

2
k〉 (TLL equilibrium states) . (40)
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Similarly, in the KG model equipartition means that

〈δ%̂2
k〉=ω

2
0k〈φ̂

2
k〉 (KG equilibrium states) , (41)

where ωk = ck,ω0k =
p

c2k2 +M2c4 are the mode frequencies of the TLL and KG model
respectively with M the effective mass of the KG excitations, which increases with the coupling
as
p

J . From this relation, we find that because the coupling J is large, the density fluctuations
〈δ%̂2

k〉 are much larger than the phase fluctuations 〈φ̂2
k〉. In physical terms, this is due to

the energetic penalty imposed by the steep parabolic KG potential on the phase fluctuations.
The same argument applies on equilibrium states of the SG model for any nonzero value of
the coupling J since the energy is related to the correlations of the density and phase field
and there is an energetic penalty on phase fluctuations only. The underlying semi-classical
argument is illustrated in Fig. 7. More generally, for any model in which there is an energetic
penalty, induced by a potential, which applies on only one of the two canonically conjugate
fields (here, the phase), the corresponding fluctuations will be suppressed compared to those
of the other.

In the experiment, there is an initial penalty on phase fluctuations due to the tunnel-
coupling J , while the density fluctuations are free to fluctuate according to the given temper-
ature. Hence, their amount will be larger than the fluctuations in the phase sector. By this
argument, we find that the phase correlation function (initially non-Gaussian) should increase
in magnitude after the quench in the form of an increase of the Gaussian component.

3.3.2 Estimation of density fluctuations via phonon tomography

In the experimental setting considered, only one quantum field quadrature is directly exper-
imentally accessible (phase), but not the canonically conjugate quadrature (density). Using
the quantum read-out method of Ref. [25], however, we can estimate the content of density
fluctuations as suggested above. In this procedure, we reconstruct the full covariance matrix
of the initial unknown state by relating the non-equilibrium second moments of the phase
Φ(z, z′, t) at points z, z′ and for the time t ≥ 0 through the known TLL evolution equations,
collecting all suitable second moments. The results of this most simple theoretical model agree
very well with the experimental observations.

In our case, the phase correlations Φ(z, z′, t) defined in Eq. (2) can be measured at a
discrete set of points z, z′ (with a spacing given by the pixel size of the camera δz ≈ 2µm
[33]) at time various t ≥ 0. Apart from the pixel size, other effects, including diffraction,
limit the spatial resolution. The measured values can be related to theoretical continuum
predictions by implementing a real-space cut-off via a Gaussian convolution with standard-
deviation σ ≈ 3.5µm. From Eq. (15), we see that for a sufficiently large number of pixels
and time snapshots, the eigen-mode correlations of the phase can be extracted first and from
them the corresponding eigen-mode correlations of the density through fitting the dynamics
to those predicted by phase space rotation, making a quantitative reconstruction feasible. The
implementation of the tomographic reconstruction [25] extends and optimizes this intuitive
idea using convex optimization techniques to find the full covariance matrix (including density
correlations) Γ at the initial time t = 0 such that the corresponding forwards propagation Γ (t)
exhibits phase correlations matching the observed data, under the constraints arising from the
Heisenberg uncertainty principle. This approach makes a lot of sense in the light of the fact that
the Heisenberg uncertainty principle for covariance matrices sets a lower bound on quadrature
fluctuations, giving rise to a semi-definite and hence convex constraint. In Ref. [25], the
functioning of this method has been laid out in detail and convincingly demonstrated in a
study of effectively Gaussian state dynamics with large initial tunneling and quenching to
zero tunneling [30]. Here, we apply it to derive the second moments of the (generally, non-
Gaussian) quantum initial states corresponding to the present quench parameters.
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Figure 8: Top: Reconstructed initial state correlations in the eigen-mode basis.
Bottom: The tomographic recovery is performed by matching the measured phase
second moments at times t = 0, 1, . . . ,12 ms. Here, we show the comparison for the
initial time. The cost function∆Φ is the relative deviation of the reconstructed second
moments ΦRec from the data ΦData, weighted by the estimate of the root-variance at
the given point.

Fig. 8 shows the application of the tomographic recovery of second moments. We find that
the eigen-mode quadratures, defined through the rescaled phase and density mode variables

˜̂
φk = φ̂k

p
ωk , δ̃ρ̂k = δρ̂k/

p
ωk , (42)

are squeezed in the sense that the diagonal correlations in the density sector Vρρk,k are larger

than those in the phase sector Vφφk,k . This statement pertains directly only to second moments.
The above is further verified at quantitative level in Fig. 9 where the diagonals of the eigen-
mode quadrature correlations are plotted for each of the four main scans of the experiment.
In all scans, Vρρk,k is larger than Vφφk,k for almost all modes, at least by a factor of 2 in the
lowest modes which are the ones that weigh in most in the calculation of spatial averages
of correlations. Also note that Vφρk,k is smaller than Vρρk,k and Vφφk,k for almost all modes, as
expected for a rapid quench. This is because

Vφρk,k ∝−
d
dt
〈φ̂kφ̂k〉|t=0 , (43)

which vanishes for instantaneous quenches since there is no dynamics prior to t = 0. For
quenches of a nonzero ramp duration ∆t that is short compared to the characteristic time
scale of the dynamics, i.e., ∆t � 1/ωk, the corresponding Vφρk,k is nonzero, given that the
time evolution starts already before t = 0 at the beginning of the quench ramp, but still small
compared to Vφφk,k , Vρρk,k . The negative sign of Vφρk,k in most of the scans is due to the fact that
the phase correlations increase as a result of the mixing with the density correlations.
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Figure 9: The tomographically reconstructed diagonal quadrature moments con-
firm the dominance of density over phase initial correlations in the experiment:
The plots show the correlations Vφφk,k = ωk〈φ̂kφ̂k〉, Vρρk,k = ω−1

k 〈δρ̂kδρ̂k〉 and

Vφρk,k =
1
2〈φ̂kδρ̂k〉 as functions of the mode number k in the initial state of each

of the four scans, as reconstructed by means of the tomographic recovery of second
moments of quadratures. We observe that in all scans, Vρρk,k > Vφφk,k at least by a factor

of 2 in the lowest modes, and also Vφρk,k < Vφφk,k , Vρρk,k by even an order of magnitude
in most cases.

These observations verify quantitatively the accuracy of the fitted model for the dynamics.
Moreover, they partially verify the validity of the condition of dominance of density over phase
fluctuations in the initial state, as required for the canonical transmutation mechanism. We
find that the former are indeed larger than the latter, even though not sufficiently larger to
claim that they are dominant. We rather find that their ratio is of order ∼ 2. Nevertheless,
as we will later see in Fig. 15, this magnitude is in agreement with estimates based on the
classical field approximation and even though only moderately large it is sufficient to explain
the observed decay in the experiment. Importantly, the tomographic reconstruction provides
an independent verification that the canonical sectors are sufficiently squeezed as required for
the canonical transmutation mechanism, based on directly the experimental data rather than
on the classical field approximation.

Let us remark that in principle the tomographic recovery method employed here can be
generalized to higher order correlations, but there are two obstructions that make this step
largely impractical. Firstly, if the reconstructed correlations are corrupted by noise, they
would not necessarily precisely reflect those of a physical quantum state, as is well-known.
The constraints that stem from quantum uncertainty bounds on the correlations can only be
easily implemented on the level of second moments as a semi-definite, that is to say a convex,
constraint. This alone does not ensure, however, that the full quantum state is a positive semi-
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definite operator. To ask whether such a consistent quantum state can be found is related to
the quantum marginal problem, a computational problem that has no efficient solution. This
is an obstruction commonly faced when generalizing Gaussian tomography to full quantum
state tomography [54]. The second issue is that the available number of experimental runs
is limited, in other words, there is a limitation on the maximum size of the statistical sample.
As discussed and exemplified in the supplementary material of Ref. [25], even just the second
moment reconstruction would profit from larger sample sizes as this reduces the statistical
errors on the input second moments and hence improves the precision of the reconstruction.
Increasing the number of experimental runs is challenging, however, as it is hard to ensure the
stability of the calibration of the experimental setup over extended periods of time. This leads
to a significant obstruction for reconstructing higher-order correlation functions: The amount
of data to be reconstructed grows exponentially with the order but the sample size and hence
precision of the input is constant in practice. This is the reason why we have not attempted
the reconstruction of, e.g., the 4-point correlation tensors to assess the question whether the
density sector has negligible cumulants.

Fig. 10 displays the reconstructed full covariance matrix to show the second moments
of density fluctuations in real space. As shown in Fig. 10, we find that the reconstructed
density correlations match closely the density fluctuations obtained from a Gaussian thermal
state in the KG model. The thermal theory deviates from the exact computation in continuum
(35) due to the application of an appropriate smearing to account for the finite measurement
resolution which affects the input to the tomography. More specifically, the tomography is
performed over a constant number of the lowest-lying modes, which effectively implements a
hard cut-off on the higher energy modes. The eigen-mode wave functions are oscillatory, even
when computing them numerically in the presence of inhomogeneities. As is known from
quantum field theory – and more generally from harmonic analysis – a Fourier transform of a
discontinuous signal has a long-range support. We see this effect also in our case: If we set the
occupation of the KG thermal modes to zero above the chosen cut-off, we obtain long-range
off-diagonal artifacts. This would not be the case for a smooth cut-off, say an exponential
or a Gaussian decay. Nonetheless, we see that the local information, centered around the
diagonal, is already converged in shape and magnitude signifying the matching in real space.
In the appendix, we present the results for a reconstruction over a doubled-up number of
available eigen-modes and we find that the cut-off effect is reduced, with the concentration
around the diagonal being increased.

Through this, we have verified the presence of the density fluctuations in the initial state of
the system as suggested above. The most significant finding is the verification based on quench
data of the presence of a large amount of density fluctuations in the system. This is depicted in
Fig. 8 and 9, where we encounter the situation that the values of Vρρ are significantly larger
than Vφφ , similar to the results obtained earlier in Ref. [25]. We then go beyond previous
works and show that the off-diagonal correlations in the reconstructed eigen-mode covariance
matrix do not lead to significant deviations from a diagonal real-space covariance matrix of
the diagonal correlations expected from thermal theory. This is shown in Fig. 10, where by
comparison to a theoretical computation with a hard cut-off we see a very close matching.

Additional plots on tomographic reconstructions are presented in Appendix D.

4 Characteristics of the dynamics in the experiment

While we have so far focused on discussing properties of the initial quantum states, we
now turn to elaborating on the actual dynamics in the experiment. The ultra-cold gas in
the experiment can be thought of as a fluid which responds to local external disturbances
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Figure 10: Comparison of the reconstructed initial second moments of the density
with the theoretical predictions for a thermal state (at estimated parameter values
J = 0.5Hz and T = 60nK). The density plots show the correlations in coordinate
space in the entire system (length L = 60µm). The reconstructed correlations agree
quite well with the theoretical ones. The first two plots show an approximation
of the continuum limit correlations corresponding to a very fine discretization and
computing the respective eigen-modes of the TLL model, while the second two show
a discrete grid of points corresponding to the experimentally measured data, i.e., a
coarse-grained representation of the correlations with pixel size∼ 2µm. We find that
the transformation of the reconstructed eigen-mode correlations to real space yields
a reliable comparison around the diagonal. The off-diagonal features can be directly
linked to the presence of a maximum mode cut-off and hence do not represent true
correlations in the system.

forming waves. These wave-packets are phonons and their effective models, TLL and SG,
have been discussed above. The experiment reproduces the phenomenology of the equilibrium
conditions captured by these models making it an excellent candidate for a quantum simulation
platform of continuous quantum fields. Out of equilibrium the situation can be markedly
different, however, because the universality of thermal equilibrium properties rooted in the
renormalization group theory can be distorted by previously irrelevant terms that may affect
significantly the dynamics. This section will discuss various qualitative aspects that are
important features for developing a complete phenomenological understanding of the non-
equilibrium dynamics in the system.

4.1 Signatures of light-cone dynamics

Light-cone dynamics constitutes a crucial feature of the phenomenology of phononic dynamics.
The effective Hamiltonians often possess a relativistic form giving rise to an effective Lorentz
symmetry parametrized by the speed of sound. Whenever the dynamics is governed by a
gapless Hamiltonian which is to a good approximation translation invariant and quadratic,
then the low energy spectrum is linear, i.e., wave-packets propagate practically without
dispersion. This is the characteristic property of TLLs and it is responsible for the coherent
propagation of particle and hole excitations at low energies in the interacting one-dimensional
Bose gas. This dispersion-less propagation of wave-packets is generally sensitive to deviations
from homogeneity, phononic interactions and other perturbations. Nevertheless, the effects of
such perturbations in the experiment do not become important before a relatively long time
passes, which means that the dynamics is practically dispersion-less for the entire duration
of the experiment. This is what allows us to observe a clear light-cone wave-front in the
propagation of phase correlations.

Light-cone dynamics have been first studied experimentally on the atom chip in Ref. [41]
on the level of the phase field. The propagation velocity (speed of sound) can also be
extracted by studying the appearance of recurrences for different system sizes [30], the very
appearance of which has been enabled by making the trap homogeneous [55]. This can be even
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Figure 11: Phase difference correlations C∆φ∆φ(z1, z2, t) averaged over the mean
position z = (z1 + z2)/2 and plotted as a function of the distance r = |z1 − z2| and
time t. The presence of a light-cone shape which separates the outside region where
correlations are largely flat as initially from the inside region where they almost
instantly switch to their equilibrium values is clearly visible (see also Ref. [41] for
a detailed discussion). The dashed green lines correspond to the theoretical estimate
for the sound velocity as captured by Eq. (58). The averaging, which is done over all
pairs of points at the same distance r in the middle region of the system, i.e., along
lines parallel to the diagonal of the phase covariance matrix, serves to reduce the
statistical fluctuations. At a given time, the middle region agrees with the dynamics
in a thermodynamically large system. After time t ∼ 15 ms, phase correlations in the
middle region of the system start being causally connected to the edges of the system
and the dynamics is affected by finite size and boundary effects.

further improved by making use of the innovation in the atom control brought about by the
implementation of the digital-mirror device [56, 57] that allows for programmable potentials
in space and time.

A density plot demonstrating the light-cone propagation of phase correlations in the
experimental system is shown in Fig. 11, which presents the dynamics that ensues following
an interaction quench from a very strongly tunnel-coupled state of two adjacent gases to an
effectively decoupled system of two independently evolving systems. As discussed above,
the initial Hamiltonian and the one after the quench involve two extreme regimes of tunnel-
coupling values and for this reason both systems are effectively Gaussian [22]. The parameters
of this experimental scan are similar to those of scan 1, with the difference that the box trap size
is larger (100µm) and the time snapshots are equally spaced at steps of 2 ms. The observation
of the shape of the correlations wave-fronts and estimation of their width as a function of
time is rather challenging due to the non-trivial profile of the initial correlations of both the
phase and density fluctuations, which are mixed together and parallelly transported through
the system. Here, the fact that the initial correlations of the local derivative fields are of
short range especially in the limit of large initial coupling J allows us to observe the shape of
the light-cone edges which follow quite straight lines as expected for a homogeneous system.
Even though it is hard to tell if the wave-fronts spread with time or not, which is what is crucial
for the spatial mixing mechanism, we can verify that their spreading is negligible at least for
times up to half a recurrence period. This is exactly the time window that is relevant for the
equilibration stage of the dynamics.

The data presented in the plots carry two principal sources of distortion. The first is due
to statistical uncertainties arising from finite sample statistics. Secondly, the measured phase
profiles are affected by limitations in the spatial resolution of the experimental read-out [33].
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The comparison to a theoretical thermal state becomes possible after applying a Gaussian
convolution with variance σ = 3.5µm (this should be compared with the system size which
is L ≈ 70µm). The observation of light-cone propagation is an indication that the linear
phonon dispersion, an otherwise idealized property, is actually an accurate approximation of
the dynamics of the experimental system.

4.2 Recurrences of the initial state

Another characteristic of the dispersion-less nature of the TLL dynamics is the emergence
of recurrences. This is because recurrences fade easily when energy levels deviate from
being commensurate. Recurrences in an isolated quantum many-body system have first been
observed in Ref. [30] on the level of the coherence phase correlations. Moreover, in Ref. [24]
(and as shown in Fig. 3 based on the results of that experiment) it has been demonstrated that
the same recurrences can be observed even on the level of higher order correlations, as a more
stringent test of returning back to the initial state.

Let us try to better understand why recurrences are linked to the linear dispersion of the
dynamical model. First, recall that the energy levels of a TLL confined in a box trap with hard
wall boundary conditions (of either Neumann or Dirichlet type) are integer multiplies of a
fundamental frequency ħhω0 = ħhcπ/L (see Appendix A), therefore the initial state is expected
to be fully recovered after time equal to 2L/c. Physically, this is the time needed for the lowest-
energy phononic excitation to travel around the entire length of the system twice and return
back to its initial position in the same direction of motion. At the same time all higher energy
excitations travel an integer number of times around the system. At half of this time the lowest
excitations have travelled once around the system and the state is a mirror reflection of the
initial one, which also results in a recurrence of phase coherence, since given the reflection
symmetry of the initial state phase correlations are identical to the initial ones. Therefore the
first recurrence is expected at time Trec = L/c. In Ref. [30], not only one but two recurrences
have been clearly observed, yet exhibiting a decreasing amplitude indicating the eventual loss
of coherence in the experiment after a sufficiently long time.

The emergence of recurrences is a property very sensitive to the commensurability of the
energy spectrum. More than that, in a TLL the energy levels are equally spaced, a characteristic
consequence of the linear dispersion, which makes the observation of recurrences easier.
If the above requirement is not met, approximate recurrences are expected, however, the
fidelity between the recurrence state and the initial one would be strongly suppressed in the
experimental settings. For this reason, it is not by accident that the observation of recurrences
was only achieved when it became possible to construct external trapping potentials of a hard-
wall box shape [30]. Satisfying this condition required a new technique for the implementation
of a blue detuned optical dipole potential. Until then the trapping potential used in the
experiment was of the standard parabolic shape, resulting in an incommensurate energy
spectrum En = ħhc

p

n(n+ 1)/R where R is the Thomas–Fermi radius of the trapped gas. Even
though approximate recurrences of coherence are expected for this type of spectrum [58],
these are strongly suppressed and so never observed in the experiment. From the above,
it should be now clear how fragile recurrences are as an aspect of the dynamics and, for
that reason, how accurate witness of the linearity of the phononic dispersion relation their
experimental observation is.

4.3 Deviations from the non-interacting phonon dynamics in the experiment

The effective field theory model describing the dynamics in the system on the level of non-
interacting models constitutes a good approximation, but is nonetheless an approximation
after all. Here, we will discuss it in general, naming the possible deviations that may be
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relevant in the experiment. The model at hand can actually be derived by a low energy
approximation of the Lieb-Liniger model by looking at the fluctuations around the classical
density and phase profiles obtained from the Gross-Pitaevskii equation. Hence, one obtains a
hierarchy of effective models each containing terms including only up to a fixed number of
phase and density fluctuation operators. The first non-trivial order is quadratic and yields an
effective description of the system in terms of non-interacting phonons. As we have shown,
this first order approximation matches quantitatively the experimental observations up to
intermediate time scales, but for long evolution times various deviations start becoming visible
in the experiment. One aspect of the dynamics that is generally sensitive to deviations is the
recurrences that occur because the system is isolated and the phonons have a sufficiently linear
spectrum [30]. The occurrence of recurrences quantitatively matches with the predictions of
the quadratic phononic model, in particular in terms of the timing (recurrence period) which
is dictated by the speed of sound and length of the system. The former can be controlled
by changing the mean atom density and the latter by choosing the width of the box-like
potential. For the experimentally accessible values the quadratic model accounts for the
observed recurrence times. Furthermore, recurrences are not visible for non-homogeneous
systems which arise, e.g., from harmonic trapping, again in accordance with this model [55].

While the overall timing of the recurrences seems to be robust, the quality of the recur-
rences deteriorates over time [30]. This damping may be accounted for by fluctuations in
the atom number in each experimental realization, which result in fluctuations of the speed
of sound, by deviations from homogeneity of the experimental mean density profile, or by
higher-order interaction effects present in a stochastic Gross-Pitaevskii model [30]. On the ex-
perimental level, a tomographic analysis has shown that the damping of the revivals is closely
connected with a steady and irreversible reduction of the thermal squeezing in the eigen-
mode quadratures. During this squeezing damping process there are only small indications of
the overall growth of phonon occupation numbers. This suggests that the higher-order terms
responsible for this effect are irrelevant under the renormalization group as the equilibrium
features remain intact, while out-of-equilibrium ones are not. A small drift can also arise from
a linear coupling between the relative and the symmetric phase-density sectors of the two
coupled condensates, which, however, is expected to be less substantial than the non-linearity
effects.

There are a number of additional effects that seem to play a negligible role and are
discussed in detail in Appendix C. These include in particular the possibility of wave-packet
spreading due to phononic dispersion non-linearities. One source of such effects which is
significant at large wavelengths occurs when the trap is not homogeneous. For harmonic traps,
in particular, the energy dispersion isωn∝

p

n(n+ 1), i.e., the spectrum is non-linear for the
lowest eigen-modes, which correspond to large wave-lengths. As the spectrum converges for
large n towards a linear function, like in the homogeneous trap case, sufficiently compact
wave-packets are unaffected by this non-linearity and do not disperse substantially enough to
play a key role in the Gaussification dynamics. Hence, we conclude that even in the case of
dynamics in a parabolic trap the effect is not strong enough in the experiment to facilitate the
delocalizing dynamics pillar of the Gaussification by spatial scrambling mechanism.

The second possibility for a non-linearity that could potentially lead to dispersion of wave-
packets comes from the finite healing length of the atomic gas. The effect of this on the
spectrum can be accounted for by the Bogoliubov dispersion relation, which gradually deviates
from linear at small momenta to parabolic at high momenta. This deviation enters through
the Galilean kinetic energy part of the Bose gas energy. However, as discussed in Appendix C,
the k3 correction to the linear dispersion relation ωk = ck is negligible compared to the
momentum cut-off dictated by the read-out spatial resolution and its spreading effect is also
negligible for the duration of the experiment. Again, while cubic perturbations to the spectrum
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could potentially induce a dynamical delocalization effect as needed for the spatial scrambling
mechanism, we find that this does not play any role in the experiment.

Finally, the effective boundary conditions at the edge of the system can affect the dynamics.
While Neumann conditions seem to be the physically most soundly motivated, since they
correspond to a vanishing particle current at the edges, the fact that the density profile falls
off smoothly rather than sharply means that the assignment of an effective length for the
experimental system cannot be unambiguously done at arbitrary precision. For this reason, it
is reasonable that the right effective boundary condition of the system is of mixed type with a
small admixture of the Dirichlet type. However, for all practical purposes Neumann boundary
conditions seem to allow accounting for all observations made.

5 Characteristics of Gaussification in the experiment

Before we analyze the above experimental observations into the context of the earlier pre-
sented Gaussification mechanisms, we discuss some further characteristics of Gaussification in
the experiment and different ways of how one can observe and study it.

5.1 Gaussification in the dynamics of full counting statistics

The picture of Gaussification put forth here complements the previous discussion, in that
Gaussification is now being considered from the perspective of full counting statistics and its
dynamics. Each interferometric measurement in the experiment yields a phase profile which
consists of a few dozen data points for typical system sizes. Treating the measured phase
profiles as samples of a random variable (classical, because the quantum phase operators at
equal times are mutually commuting for any two positions) we can study the time evolution
of its distribution by plotting the corresponding histograms at various times.

Fig. 12 shows experimental results for the phase difference distribution function, initially
and during the dynamics. More specifically, the histograms correspond to phase differences
∆ϕ between all pairs of points in the middle part of the system at the same distance r = 18δz
where δz = 1.952µm is the pixel size, at the same time t. We observe that the initial
distributions are visibly non-Gaussian in scans 3 and 4: There is a central peak around ϕ ≈ 0,
but also long tails extending far from the peak whose presence renders the distribution non-
Gaussian. This is also clear in the log-scale histograms of Fig. 12 which display significant
deviations from the inverse parabola of a Gaussian distribution.

The central peak can be intuitively understood by the presence of a strong energetic
penalty on phase fluctuations. Because the sine-Gordon potential is of the form∝ cos(ϕ̂(z)),
the weight of the probability distribution of the phase values is expected to be concentrated
around integer multiples of 2π, reflecting the presence of soliton configurations. The presence
of smooth jumps by 2π in some of the observed phase profiles is a clear demonstration of
soliton configurations in the physical system which are a typical characteristic of the sine-
Gordon model. These manifest themselves as satellite peaks in the phase distribution located
at ∆φ ≈ ±2π. Such peaks have indeed been observed when fast cooling is used for the
preparation of the quantum states [22]. In the present case, however, where the initial
states are prepared by slow cooling, to a good approximation they correspond to thermal
equilibrium states of the sine-Gordon model in which soliton configurations turn out to be
strongly suppressed for the temperatures of the experiment. Nevertheless, the non-parabolic
shape of the cosine interaction is reflected in the presence of the non-Gaussian long tails in
the phase histograms of the initial states.

Over time, the deviations from the Gaussian shape relax: As we see in Fig. 12, the
probability distributions remain centered around ϕ ≈ 0 (which is a gauge choice implemented
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Figure 12: Histograms of the phase difference distributions and their dynamics for
each of the four main experimental scans. Top: Histograms of the state just before the
quench ramp (t = −2 ms). Scan 1 corresponds to a narrow bell-shaped distribution
that is close to the Gaussian shape. Scans 2, 3 and 4, while still characterized by bell-
shaped distributions in the center, progressively deviate from the Gaussian for larger
ϕ, exhibiting long tails, as one would expect from thermal states of an interacting
model with a cosine potential. Bottom: Histograms at different times in logarithmic
scale: just before the quench ramp, at an intermediate time and at the last measured
time. The plots are presented in logarithmic scale to facilitate the identification of
the Gaussian bell shape (inverse parabola). The time t = 0 corresponds to the end
of the quench ramp.

by referencing the profiles) but becomes substantially wider, gradually converging towards a
profile closely resembling a Gaussian one. This is quantitatively demonstrated by the time
evolution of the moments (the variance and kurtosis) of the phase distribution, as shown in
Fig. 13.

The dynamics of the phase distributions can be explained in the same way as the dynamics
of the M (4) measure. In the TLL model, which effectively describes the dynamics after the
interaction quench, the non-Gaussian features of the initial phase distributions are diluted in
the dominant Gaussian bath of the density fluctuations. Additionally, after the quench the
phase locking due to the cosine potential is removed resulting in the broadening of the phase
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Figure 13: Time evolution of the variance (left) and kurtosis (right) of the phase
difference distribution as a function of time t, in the four different scans. The variance
increases, while the kurtosis tends to the Gaussian value (i.e., to 3).
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distribution. In more detail, because of the phase space rotation the initial phase field is
mixed with the initial density field and since the latter shows purely Gaussian fluctuations, is
independent from the former and exhibits a much larger variance, the resulting distribution
broadens with time. This can be seen from (15) expressed in coordinate space

ϕ̂(x , t) =
1
2
(ϕ̂(x + c t) + ϕ̂(x − c t)) +

π

2K

∫ x+c t

x−c t
δ%̂(x ′)dx ′ . (44)

As we see, the fluctuations of the phase field at any time and any position can be traced
back to initial fluctuations of the phase and density fields. In a large system, these initial
fluctuations are independent from each other because, on the one hand, the phase fluctuation
contributions originate from distant points, on the other hand, the density fluctuations are
independent from the phase ones. In this case, the distribution of ϕ̂(., .) is the convolution of
those of the independent constituent initial fields. As a result, given the above characteristics
of δ%̂, the field ϕ̂(., .) approaches a Gaussian distribution and broadens with time. The same
arguments apply for the statistics of phase differences ∆ϕ.

5.2 Temporal properties of the decaying connected correlations

We can understand the temporal onset of Gaussification in the experiment by assuming
decaying initial correlations of the velocity field in combination with the CFA properties of
the Gaussianity of the density fluctuations and independence from the phase fluctuations. In
Appendix B, we show that under these assumptions the magnitude of an n-point correlation
function will be reduced by factor 2−n+1. In the case of the 4-point correlation functions
which are in focus here, this amounts to almost an order of magnitude reduction of the extent
of connected functions in the phase sector.

This reduction of the connected functions is derived from a similar starting point as the
considerations leading up to Gaussification by spatial scrambling but using only the first pillar,
i.e., correlation clustering for the density and velocity fields, and without assuming validity
of the second pillar, i.e., dynamical delocalization. The presence of this second pillar which
pertains to dynamics wherein wave-packets delocalize over time and would essentially imply
Gaussification by spatial scrambling is not verified in the experiment. In contrast, we will now
assume non-dispersive TLL dynamics and hence no delocalization of the correlation wave-
fronts which remain concentrated at the edges of the effective light-cone. Intuitively, this
consideration shows how the absence of the delocalization pillar affects the physics that would
be seen if it was present.

In the appendix, we make the following intuition more precise. While in TLL dynamics
there is no delocalization, any local operator will split into two parts which stay local but
propagate in opposite directions to the left and right of the initial position. If we then consider
a 4-point function of the velocity fields

Cu(z, t = 0) = 〈û(z, 0)4〉con , (45)

then after time t we will find that only 1/8 of the possible correlation functions resulting from
this simple splitting have significant correlations. These are those that precisely overlap in
time

Cu(z, t) =
1
8
〈û(z ± c t, 0)4〉con +O(e−c t/ξ) , (46)

where the second term comprises by all the other contributing terms which are tightly upper
bounded in time and become suppressed as long as the size of the light-cone becomes larger
than the correlation length c t � ξ.
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(a)                                                             (b)                                                             (c)

Figure 14: Schematic explanation of the equilibration time scaling in the canonical
transmutation mechanism. Due to the linear dispersion of the TLL liquid, the phase
field propagates according to the wave equation, meaning that it depends on initial
data in the interior of the past light-cone (a). However, the phase field is not a
physical observable itself: It is only phase differences with respect to some reference
point∆φ(x) = φ(x)−φ(x0) (b) or derivatives of the phase field (c) (corresponding
to the hydrodynamic fields like the velocity û∼ ∂zφ and density field δ%̂ ∼ ∂tφ) that
are well-defined observables. The propagation of these fields as derived from that
of the phase field is constrained to remain localized in the vicinity of the light-cone
edges. The time evolved correlations between two (or more) such fields relax shortly
after their initial-time spatial supports stop overlapping, which happens when the
light-cone edges distance from each other, thus resulting in a linear scaling with time
for phase differences and exponential scaling for derivative fields (c.f. Appendix B).

We see that the above arguments result in a prediction for the dynamics of connected
correlation functions of the velocity fields. Namely, we expect a linear in time decrease to a
plateau value that is reduced compared to the initial correlations. By integrating the velocity
correlations this suppression pre-factor will be translated to a decrease of the connected part of
phase correlations. This explanation is schematically illustrated in Fig. 14 and in more detail
in Appendix B.

The temporal profile of linear scaling followed by saturation is a general feature of
the dynamics of correlations in the TLL model. An intuitive explanation is given by the
quasi-particle description of quantum quenches. In the particular case of TLL dynamics this
interpretation says that the quench creates quasi-particle excitations that travel with the speed
of sound c and spread correlations from their initial positions throughout the system [6,59]. If
the initial correlations are of short range then this mechanism gives rise to the above described
profile and the change from linear scaling to saturation is sharp, otherwise the temporal profile
gets smeared. If the dispersion relation is not linear as in the TLL, then the quasi-particles travel
with a range of different velocities, which also results in a smearing of the temporal profile.
Moreover, it results in a slower equilibration process typically characterized by power-law tails,
since the slowest quasi-particles arrive later than the fastest and the transient dynamics lasts
longer, consistently with the discussion in Sec. 2.1. These arguments apply also in the case
of non-Gaussian initial states and higher-order connected correlation functions [16]. Even
though it is harder to estimate the scaling of M (4) given that it is a spatially integrated measure,
the same qualitative behavior is valid also here.

We hence obtain an interesting answer to the question what happens if the delocalization
pillar of Gaussification by spatial scrambling is missing: We find that non-Gaussianity can
still reduce over time, but it does not tend towards zero and is rather reduced by a certain
factor. It should be pointed out that this decrease can be significant. Nevertheless, as shown
in the Supplementary Information of Ref. [24] based on numerical simulations in the classical
fields approximation, this decrease is still insufficient to explain the experimentally observed
decrease. Indeed the experimental decrease stops at a much smaller value that was only
possible to explain through the canonical transmutation mechanism.

In Fig. 3, we see that the decay of non-Gaussianity corresponds to a rapid decrease to a
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Figure 15: Left: Time evolution of M (4) in a theoretical simulation of the experiment
for typical parameters. The simulations are based on a stochastic method for the
construction of thermal states of the classical sine-Gordon model [27], followed by
TLL dynamics. The parameter values of the theoretical model used here have been
estimated from the experimental data as discussed in detail in [24]. The red line
corresponds to one of the non-Gaussian initial states and its dynamics agrees very
well with those observed in the experiment. The blue line corresponds to the artificial
dynamics of the same initial state if the contribution of density correlations is ignored.
Equivalently, it corresponds to an initial state with the same phase fluctuations but
with the initial density fluctuations set to zero. The dashed lines correspond to
Gaussian fluctuations with finite statistics and set the bias level. Right: CFA estimate
of the ratio of phase over density initial fluctuations of the lowest cosine mode,
calculated in thermal states of the sine-Gordon model as a function of the coherence
factor 〈cosφ〉, which is monotonically increasing for increasing coupling J . The gray
vertical lines indicate the values corresponding to the experimental initial states (c.f.
Fig. 3). We observe that in this parameter range the estimated ratio varies between
1/2 and close to zero, values consistent with the tomographic estimates of Fig. 9.
For higher modes the corresponding ratio is always larger than that of the first mode.
This suggests that even for moderately small values of the ratio, the corresponding
time evolution shown on the left exhibits a significant decrease of non-Gaussianity
comparable to the experimental observations.

level that is practically indistinguishable from mere Gaussian bias due to finite sample size. We
find that the profile of the decay of the non-Gaussianity measure M (4) appears to match with
the description of a fast linear decrease to a value much lower than the initial one. The decay
profile can be contrasted with the power-law decay of the upper bound envelopes obtained via
spatial scrambling. Therefore we may conclude that the decay profile is fully consistent with
that of the canonical transmutation mechanism rather than the slower decay of the spatial
scrambling mechanism. This is further corroborated by theoretical simulations based on the
classical fields approximation as shown in Fig. 15. Using parameter values consistent with the
experimental data to model the initial states and subsequently applying TLL dynamics on them,
we find that the time evolution of non-Gaussianity, in particular the rapid and almost linear
decrease to the bias value, agrees very well with the experimental observations. Moreover, if
we ignore the contribution of the initial density fluctuations field to the dynamics, we clearly
see that, although the non-Gaussianity decreases from the initial value also in this case, it does
not reach the bias value but stops decreasing far above it.

What we should stress is that the non-Gaussianity measure M (4) = S(4)con(t)/S
(4)
full(t) shown

in Fig. 3 is a relative measure of non-Gaussianity. The absolute value of the integrated four-
point connected correlation function S(4)con(t) in the experiment decreases but does not decay to
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almost zero. It is partly this decrease and partly the increase in S(4)full(t) that results in the drastic
decrease of M (4). This is indeed observed and has been pointed out in Ref. [24]. Eq. (46)
indicates a linear in time decrease of the non-Gaussianity of connected correlation functions
in absolute, not relative size. Note that extracting estimates of higher-order correlations of
the derivative fields from experimental data seems futile due to the stronger effects from noise
and error sources. For this reason, it has not been possible to use non-Gaussianity measures
based on derivative fields in the experiment.

The analysis of Appendix B can explain these qualitative characteristics of the temporal
profile of the non-Gaussianity measure M (4) as observed in the experiment and predicted by
the numerical simulation of Fig. 15. In particular, it explains the reduced but nonzero value of
M (4) at large times when the density correlations of the initial state are artificially set to zero.
It also explains why it is only the relative measure M (4) that decays and not the absolute value
S(4)con(t) of the integrated four-point connected correlation function. According to the above,
the latter is expected to decrease to a relatively small but considerable fraction of the initial
value. The lesson drawn is that, while TLL dynamics do lead to a decrease of non-Gaussianity,
which is due to the partial mixing of initial left and right moving field correlations induced
by the dynamics, that alone is not sufficient to explain the experimentally observed decrease,
which instead can be easily explained by the mixing of phase and density fluctuations accord-
ing to the canonical transmutation mechanism.

5.3 Interpretation of the experimental data

We now turn to a discussion of the experimental findings of Gaussification and how they
relate to the two mechanisms laid out above. Let us first summarize our findings regarding
the occurrence of the conditions of the two mechanisms in the experiment and then reach
what could be called a verdict on which of the two is mainly responsible for the observed
Gaussification. While this analysis will not come to a fully consistent conclusion that settles
the question in all detail beyond any doubt, the comprehensive analysis put forth here as well
as the substantial data taken will paint a pretty clear picture on the mechanisms that can be
held responsible for Gaussification in the experiment.

We again would like to start by evaluating the applicability of the spatial scrambling
mechanism for the data at hand. We have argued that the initial state exhibits clustering
(referred to as mechanism 1, pillar 1, in the above description) only for a class of the
physical fields, specifically those that are space or time derivatives of the phase field ϕ̂, which
correspond to the fluid velocity û and density displacement δ%̂. These are the fundamental
(local) fields of the hydrodynamic description. A demonstration of the decay of û initial
correlations with the distance has been shown for the two point function (Fig. 6). The same can
be inferred for the ϕ̂ initial correlations based on the tomographic reconstruction, as shown
in Fig. 10. The phase field ϕ̂ itself can only be measured through the difference between
two points and therefore its correlations increase with the distance from the reference point.
It is no surprise that this field does not exhibit clustering. Moreover, from the observation
of relatively sharp light-cone fronts and – more importantly – of strong recurrences of the
initial state, we have to conclude that the experimental dynamics do not exhibit delocalization
(referred to as mechanism 1, pillar 2 in the above description). This is consistent with the
theoretical dynamics of a TLL, which is characterized by a linear phononic dispersion relation.
In the absence of this second pillar, the first mechanism results in only a mild decrease of non-
Gaussianity that can be attributed to the mixing of left and right moving components of the
hydrodynamic fields û and δ%̂, as shown in Fig. 15 and discussed in Subsection 5.2.

Having said that, we now turn to elaborating on the canonical transmutation mechanism.
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The requirement of quadrature rotation (so mechanism 2 and pillar 1) is automatically satisfied
on the basis of the above verification that the system is subjected to TLL dynamics. Based on
the classical fields approximation, we have argued that the initial state, modelled as a thermal
state of the sine-Gordon model, is expected to exhibit two crucial properties with respect to
the correlations of the two canonical fields.

Firstly, the two canonical sectors should decouple, i.e., the correlations of the density and
the phase should be independent, which at the same time means that only the latter are non-
Gaussian (mechanism 2, pillar 2). Secondly, the density correlations should be larger than
those of the phase (mechanism 2, pillar 3) for any value of the coupling J and temperature
β−1. Both of these statements have been verified in the experiment, at least on the level of
second moments, using the tomographic reconstruction of the initial state: Density-density
mode correlations are indeed generally larger than phase-phase ones, and both are typically
much larger than the density-phase correlations (Fig. 8 and 9). Even though the ratio of
density over phase quadrature correlations is not excessively larger than one in the initial
state, it is still of sufficient magnitude to justify the validity of pillars 2 and 3 and explain the
dominance of the Gaussian density correlations in the subsequent dynamics. This is explicitly
verified in the simulation plots of Fig. 15. We would like to stress that these simulations are
based on the classical field approximation using estimates of the (not directly measurable)
experimental parameters J and β−1. In addition to the above, the temporal profile of the
observed decay of non-Gaussianity has been shown to be consistent with simple geometric
arguments following from the light-cone propagation of hydrodynamic fluctuations, which
are more rigorously backed by analytical calculations presented in Appendix B.

Overall, it seems fair to say that the evidence laid out before suggests that the canonical
transmutation mechanism is primarily at play in the experiment and constitutes the underlying
explanation of the decay of non-Gaussian correlations. The spatial scrambling mechanism
also contributes a partial decrease of non-Gaussianity, despite the absence of dynamical
delocalization, but that alone is not sufficient to explain the observed decrease quantitatively,
without the additional properties giving rise to the canonical transmutation mechanism.

6 Conclusions

To conclude, in this work, we have observed the dynamical emergence of Gaussianity from
an initially non-Gaussian state and comprehensively discussed the mechanism responsible for
it. We explained the experimental observations and findings with a simple model of canonical
rotation and mixing of phononic modes and properties of the initial state. Our analysis stresses
the importance of the, often overlooked, higher-order correlations in characterizing and
identifying not only equilibrium states but also dynamical mechanisms in quantum systems.

Future experiments will aim at further exploiting the potential of controllable space and
time dependent cold-atom traps based on digital micromirror devices [56,57], which is what
made the implementation of box shaped traps and the observation of recurrences of non-
Gaussianity possible. Given the high levels of control that are technologically reached in
the experimental platform considered here, in conjunction with the perspective of reaching
regimes beyond the effectively classical description, this set-up can be regarded as a promising
dynamical quantum simulation [60, 61]. Such dynamical quantum simulations provide new
insights into the dynamics of interacting quantum systems, in instances beyond the scope of
known classical simulation methods. The understanding of the precise dynamical mechanisms
at work in this context is also important for realizing quantum field machines [57], an idea that
involves ultra-cold continuous atomic systems to perform quantum thermodynamic tasks and
to treat them as instances of thermodynamic machines in situations in which quantum effects
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are expected to play a role.
It would be interesting to investigate the effect of particle statistics on the two mechanisms

studied here. Due to the boson-fermion correspondence in one spatial dimension the effective
description of the experimental system can be expressed equivalently in terms of either bosonic
or fermionic degrees of freedom and in fact the quasi-fermionic nature of excitations has
been demonstrated in a recent experiment [62]. This suggests that, at least the canonical
transmutation mechanism, where locality plays no role, should be relevant also in fermionic
systems. Even though this mechanism is new and has not been studied before under more
general settings, we indeed expect it to be applicable to certain cases of interaction quenches in
superconducting matter, spinful fermions, spin ladders, or other systems involving two or more
types of fermions that get mixed by the dynamics, but are initially decoupled and not all are
interacting. In such cases the non-Gaussianity of initial correlations would oscillate between
the different types, similarly to the present problem. This mechanism is expected to be more
clearly distinguishable from the spatial scrambling mechanism in the case of critical dynamics
and for smeared observables, which depend more on the long-wavelength excitations that
evolve following a linear dispersion relation in this case. The spatial scrambling mechanism,
on the other hand, has been shown to work equally well for bosonic or fermionic degrees
of freedom and spin chains that can be mapped to non-interacting lattice fermions [7], even
though the non-local nature of this mapping (Jordan–Wigner transformation) clearly plays a
non-trivial role in the validity of the relevant conditions.

Another question for future study is the possible effects of topological excitations (sine-
Gordon solitons) on the two Gaussification mechanisms. As discussed earlier, solitons are rare
in the initial state ensembles of scans of the present analysis, but earlier experiments [22] have
demonstrated significant presence of solitons in states prepared through a fast non-equilibrium
process (for example, fast evaporative cooling) within the coupled double well regime. Given
that the validity of some of the pillars of the two mechanisms is shown only in equilibrium and
can be affected by the presence of initial solitons, it is unclear what to expect in such a case.

On a more conceptual level, the work presented here can be seen as a comprehensive
discussion of the mechanisms of the emergence of Gaussian correlations in physical systems,
a type of correlations that is ubiquitous in physics, to say the least. Our theoretical study is
matched and underpinned by a body of fresh experimental data that exemplify Gaussification
in time in a clear-cut fashion. The diagnostic tools that a tomographic recovery offers provide
novel insight into the precise mechanism that is at work here. It is our hope that the present
work inspires further studies on the emergence of apparent equilibrium in non-equilibrium
quantum dynamics, a field of research at the interface of strongly correlated quantum systems
and quantum field theory, of quantum information theory, and of statistical physics.
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A Tomonaga-Luttinger liquid description of the experimental sys-
tem

The theoretical description of the experimental system is based on bosonization or Tomonaga-
Luttinger liquid (TLL) theory. The system consists of a cold atomic gas confined in two parallel
one-dimensional traps at short distance. The two components of the gas are coupled to each
other with their coupling being controlled by the height of the barrier between the two traps.
The system is therefore described by the Hamiltonian

H =
∑

i=1,2

�

ħh2

2m

∫

dx ∂xΨ
†
i (x)∂xΨi(x) +

∫

dxdx ′ V (x − x ′)Ψ†
i (x)Ψi(x)Ψ

†
i (x

′)Ψi(x
′)

+

∫

dx (Vext(x)−µ)Ψ
†
i (x)Ψi(x)

�

−ħhJ

∫

dx
�

Ψ†
1(x)Ψ2(x) +Ψ

†
2(x)Ψ1(x)

�

,

(47)

where Ψi(.) is a two component boson field, V (.) the inter-particle interaction, Vext(.) the
external trap potential, µ the chemical potential and J the tunnelling coupling between the two
components. The inter-particle interaction is practically point-like V (x− x ′) = 1

2 gδ(x− x ′) for
points x and x ′. The confining trap is in general inhomogeneous in the longitudinal direction
(parabolic Vext(x)), although homogeneous box traps have also been used in the experiment.
In both cases the edges of the system x = ±L/2 are characterized by vanishing particle current
at all times. Let us assume for the moment that the trap is homogeneous.

In the bosonization or TLL description [63], each of the bosonic fields is expressed in terms
of density and phase

Ψ̂†(x) =
Æ

ρ̂(x)eiφ̂(x) (48)

and the density ρi(.) is represented as

ρ̂(x) =
�

n(x)−
1
π
∂x θ̂

� +∞
∑

`=−∞

exp[2`πi(
∫ x

n(x ′)dx ′ − 1
π θ̂ (x))] ,

where n(.) is the average density. The auxiliary field θ̂ expresses local deviations of the density
from the average value, with ∂x θ̂ corresponding to long-wavelength density fluctuations and
exp[2`πi(

∫ x
n(x ′)dx ′ − 1

π θ̂ (x))] corresponding to short-wavelength kinks at the positions of
the particles [47, 63]. As long as we are interested in long-wavelength density fluctuations
only, we can write

δρ̂(x) := ρ̂(x)− n(x)≈ −
1
π
∂x θ̂ . (49)
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However, it should be kept in mind that the short-wavelength kinks are also low-energy exci-
tations like the long-wavelength fluctuations and can play a significant role in the dynamics.
From the bosonic commutation relations of Ψ̂†

i (.), it can be shown that φ,θ obey the canonical
commutation relations

[δρ̂i(x), φ̂ j(y)] = iδi, jδ(x − y) . (50)

In the same long-wavelength approximation, the particle current ĵ(.) is given by

ĵ(x) := −iħh
�

Ψ̂†(x)∂x Ψ̂(x)− ∂x Ψ̂
†(x)Ψ̂(x)

�

≈ ħhn(x)∂x φ̂(x) , (51)

from which we can recognize ħh∂x φ̂(.) as playing the role of the local velocity field. The
long-wavelength fields δρ̂ ∼ ∂x θ̂ and ĵ ∼ ∂x φ̂ representing the particle density and current
respectively are the two fundamental local fields in the hydrodynamic description of the
quantum liquid.

From now on we focus on the homogeneous case where the mean density n is assumed to
be constant in space (and also in time). Replacing the bosonic field Ψ in the Hamiltonian (47)
using the above representation, expanding in powers of φ,δρ and keeping only quadratic and
lowest gradient terms, we obtain the Hamiltonian

H = H1 +H2 −ħhJ
p

n1n2

∫

dx cos(φ̂2(x)− φ̂1(x)) , (52)

where H1, H2 are of the form of the TLL Hamiltonian

HTLL =

∫

dx
�

ħh2

2m
n
�

∂x φ̂i(x)
�2
+

1
2

gδρ̂i(x)
2
�

. (53)

The Hamiltonian (52) provides a low-energy description of the system. Since the sys-
tem is symmetric under interchange of the two components, introducing the symmetric
φs = φ1+φ2,δρs =

1
2(δρ1+δρ2) and anti-symmetric fields ϕ = φ2−φ1,δ% = 1

2(δρ2−δρ1),
the Hamiltonian decouples into independent symmetric and anti-symmetric parts H = Hs+Ha.
The symmetric part Hs is a TLL Hamiltonian for the symmetric fields φ̂s and δρ̂s

HTLL =

∫

dx
�

ħh2

4m
n
�

∂x φ̂s(x)
�2
+ gδρ̂s(x)

2
�

, (54)

while the anti-symmetric part is

HsG =

∫

dx
�

ħh2

4m
n (∂x ϕ̂(x))

2 + gδ%̂(x)2
�

− 2ħhJn

∫

dx cos ϕ̂(x) , (55)

where ϕ̂ and δ%̂ are the antisymmetric or simply the relative phase and density fluctuation
fields. The expression in the last equation is the sine-Gordon Hamiltonian. We see that
the coupling between the two components of the gas plays the role of a Josephson junction
corresponding to a cosine self-interaction of the relative phase field.

From now on, our focus will be on the relative density and phase fields described by
Eq. (55). Due to the presence of interaction, the ground and thermal states of this model
are non-Gaussian in terms of the canonical fields ϕ̂(.),δ%̂(.). By setting the barrier height to
a large value, the two components are decoupled, i.e., J → 0 and the sine-Gordon reduces to

HTLL =

∫

dx
�

ħh2

4m
n (∂x ϕ̂(x))

2 + gδ%̂(x)2
�

, (56)
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which is of the standard TLL form

ĤTLL =
ħhc
2

∫

d x
�

π

K
(δ%̂(x))2 +

K
π
(∂x ϕ̂(x))

2
�

, (57)

where

c :=
s

gn
m

(58)

is the speed of sound and

K :=
ħhπ
2

√

√ n
mg

(59)

is the Luttinger parameter. In the opposite limit of small barrier height, the two components
are strongly coupled, i.e., J is large, and the equilibrium properties are determined by the
parabolic approximation of the cosine interaction, that is, the KG Hamiltonian

HKG =

∫

dx
�

ħh2

4m
n (∂x ϕ̂(x))

2 + gδ%̂(x)2
�

+ħhJn

∫

dx ϕ̂2(x) . (60)

The phonon excitations are now massive with a mass proportional to
p

J .

B Tomonaga-Luttinger liquid dynamics of correlations in a homo-
geneous infinite system

In this section, we are going to calculate the large time asymptotics of phase correlations
in a thermodynamically large system based on the assumptions of i) Tomonaga-Luttinger
liquid dynamics, ii) initial clustering of correlations, iii) homogeneity of the system and iv)
the validity of classical field approximation (CFA) for the initial state which as discussed in
subsections 3.2 and 3.2 means that the density fluctuation operator has vanishing connected
correlation functions and vanishing correlations with the phase operator.

Let us begin by expressing the time evolved phase correlations in terms of initial correla-
tions using the Heisenberg picture and the fact that TLL dynamics is Gaussian. Specifically, the
Hamiltonian describing the dynamics is assumed to be (56), therefore the Heisenberg equation
of motion for the phase field is the wave equation

∂ 2
t ϕ̂(x , t)− c2∂ 2

x ϕ̂(x , t) = 0 , (61)

with the general solution in infinite space and for arbitrary initial conditions ϕ̂(x) = ϕ̂(x , 0),
δ%̂(x) = δ%̂(x , 0), given by the D’Alembert solution

ϕ̂(x , t) =
1
2
(ϕ̂(x + c t) + ϕ̂(x − c t)) +

π

2K

∫ x+c t

x−c t
δ%̂(x ′)dx ′ , (62)

where we have used ∂tϕ̂|t=0 = (cπ/K)δ%̂. As already mentioned, given that the phase field
is only measurable in the form of differences between two points, we will need to consider
either the non-local phase difference field with respect to some reference point or the local
phase derivative field. Let us focus first on the latter from which we can derive the former by
integration. From the last relation, we see that the time evolution of û= ∂x ϕ̂ is given by

û(x , t) = ∂x ϕ̂(x , t) =
1
2
(û(x + c t) + û(x − c t)) +

π

2K
(δ%̂(x + c t)−δ%̂(x − c t)) . (63)
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The time evolution of û = ∂x ϕ̂ can be characteristically expressed as the sum of left- and
right-moving fields defined as

û(x , t) = ψ̂+(x , t) + ψ̂−(x , t) , (64)

where

ψ̂±(x , t) :=
1
2

�

û(x , t)∓
π

K
δ%̂(x , t)

�

. (65)

Their name originates from the observation that they follow the simple time evolution
ψ̂±(x , t) = ψ̂±(x ± c t, 0). From Eq. (63), it is easy to derive time evolved phase correla-
tion functions of any order


∏n
i=1 û(x i , t)

�

from initial ones. All we have to do is substitute
(63) and expand to express the result as a sum of initial velocity and density correlations. The
same applies to connected correlation functions, since they are multi-linear with respect to the
fields. In this way we see that the time evolution of correlations between a set of points is noth-
ing but the result of mixing initial correlations originating from the past light-cone projections
of these points.

This expansion simplifies significantly when we take into account the classical field approx-
imation and the property of clustering of correlations which constrain the initial state. Below
we state more formally the precise definition that we need for our argument.

Definition 1 (Classical field approximation (CFA)). We say that a state satisfies the CFA
property, if

*

n
∏

j=1

δ%̂(x j)

+

con

= 0 , for n> 2 (66)

and
*

n1
∏

i=1

û(x i)
n2
∏

j=1

δ%̂(x j)

+

con

= 0 , for all n1, n2 > 0 . (67)

Definition 2 (Clustering of correlations). We say that a state has exponentially clustering
correlations if

*

n1
∏

i=1

û(x i)
n2
∏

j=1

δ%̂(y j)

+

con

= O(e−
∑

i< j |x i−x j |/ξ−
∑

i< j |yi−y j |/ξ) , for n1, n2 > 0 , (68)

where ξ > 0 is a correlation length. If the bound is a polynomially decaying function then we
speak of polynomially clustering correlations.

Let us consider a higher-order connected correlation function with n > 2 and unequal
positions x i 6= x j unless i = j

® n
∏

i=1

û(x i , t)

¸

con

=
1
2n

∑

σ∈{−1,1}×n

µ∈{0,1}×n

D

[û(x1 +σ1c t)]µ1[
πσ1

K
δ%̂(x1 +σ1c t)]1−µ1 . . .

×[û(xn +σnc t)]µn[
πσn

K
δ%̂(xn +σnc t)]1−µn

E

con
.

(69)

Notice that this formula is already simpler than the general case of Gaussian dynamics (11)
where the Green’s functions characterizing the propagation are not simply localized (δ-like)
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functions. This property is directly related to the fact that under TLL dynamics wave-packets
do not spread. For n= 2, we have

〈û(x1, t)û(x2, t)〉=
1
4

∑

σ1,σ2=±

�

〈û(x1 +σ1c t)û(x2 +σ2c t)〉

+
�π

K

�2
〈δ%̂(x1 +σ1c t)δ%̂(x2 +σ2c t)〉

�

.

(70)

Here, we see explicitly that whenever σ1 = σ2 = σ then the time dependent correlation
function is just a rigid translation of the initial one between the points x1+σc t and x2+σc t.

The field operators in the correlation functions can be freely reshuffled for n > 2 because
any field commutators resulting from this reordering do not contribute to the connected
correlations. After ordering the operators, we use the CFA property to evaluate the terms
involving only ϕ̂(.) fields or both c f (.) and ϕ̂(.) fields, which simply vanish since n > 2 and
we are left with the terms involving û(.) fields only
® n
∏

i=1

û(x i , t)

¸

con

=
1
2n

∑

σ∈{−1,1}×n

µ∈{0,1}×n

® n
∏

i=1

[û(x i +σic t)]µi

n
∏

i=1

[
σiπ

K
δ%̂(x i +σic t)]1−µi

¸

con

=
1
2n

∑

σ∈{−1,1}×n

〈û(x1 +σ1c t) . . . û(xn +σnc t)〉con . (71)

Further simplification applies when we consider the large time limit of correlations and
exploit the clustering of initial correlations of local fields. In this limit the initial correlations
involved in the above expansions are non-trivial only if all σi have the same sign. This is
because the fields with σi > 0 propagate to the right and those with σi < 0 to the left and
therefore become quickly uncorrelated since they originate from distant points. For sufficiently
long times, the light-cone separation of these points c t is substantially longer than the constant
diameter of the initial points diam{x i} and the correlation length ξ > 0. We can hence bound
asymptotically the connected function as

lim
t→∞

® n
∏

i=1

û(x i +σic t)

¸

con

= lim
t→∞

O(e−c t/ξ) = 0, for signs σi not all equal. (72)

Therefore we can simplify the connected correlation functions accordingly
® n
∏

i=1

û(x i , t)

¸

con

=
1
2n

® n
∏

i=1

û(x i + c t)

¸

con

+
1
2n

® n
∏

i=1

û(x i − c t)

¸

con

. (73)

This means that for late times, what is left are correlations between points at fixed distances.
Assuming also translational invariance of the initial state, the two terms above are equal

lim
t→∞

® n
∏

i=1

û(x i + c t)

¸

con

= lim
t→∞

® n
∏

i=1

û(x i − c t)

¸

con

=

® n
∏

i=1

û(x i)

¸

con

. (74)

This allows us to drop the dependence on signs and we finally obtain the following result for
the large time correlations under the above assumptions

® n
∏

i=1

û(x i , t)

¸

con

=
1

2n−1

® n
∏

i=1

û(x i)

¸

con

+O(e−c t/ξ) , (75)
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for n> 2 and for n= 2

lim
t→∞

〈û(x1, t)û(x2, t)〉=
1
2

�

〈û(x1)û(x2)〉+
�π

K

�2
〈δ%̂(x1)δ%̂(x2)〉

�

.

In particular, for an auto-correlation function, we have

〈û(x , t)n〉con =
1

2n−1
〈û(x , 0)n〉con +O(e−c t/ξ) . (76)

In a similar way, we can derive the scaling of phase difference correlations which turn
out to decrease linearly with time until they reach a saturation value. This is due to a purely

+ct

x0 x

x0 x

−ct

+ct−ct

x0 x

t = 0

t = 0

0

t

0.0

1.0

C
2(

x,
t)

a)

b)

c)

Figure 16: Geometric explanation of the temporal profile of cumulants of the phase
difference field ∆ϕ̂ = ϕ̂(x , t) − ϕ̂(x0, t). (a) Seen from a space-time perspective,
the splitting of ∆ϕ̂ into two components (left and right moving) can be depicted
by two stripes of different color. For times t < |x − x0|/2c the two projections on
the t = 0 line still overlap with each other, while for t > |x − x0|/2c they do not.
(b) To compute the 2nd order cumulant of C2(x , t) =




∆ϕ̂(x , t)2
�

con we integrate
〈û(y1, t)û(y2, t)〉con over the variables y1 and y2 in the overlapping region of the
corresponding stripes which are shifted from the original interval [x0, x] by ±c t.
Given that this correlation function is of short range, i.e., decays quickly away from
the diagonal y1 = y2, the integration gives simply a value proportional to the length
of the intersections of these regions and the diagonal (red lines). The stripes move
apart with speed 2c, so the overall length of the intersection intervals at first decreases
linearly with time and eventually stops changing. (c) The resulting temporal profile
of C2(x , t) exhibits a linear decrease to a plateau value, which is half of the initial
one. The exponential tails of the correlation function away from the diagonal have
the effect of smearing the otherwise sharp temporal profile [59]. Following the same
arguments applied to higher order cumulants Cn(x , t) we get a decrease by a factor
1/2n−1.
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geometric reason, as we can see by integrating the phase derivative correlations. From (73)
the integration interval [x0, x] is split into two intervals [x0− c t, x − c t] and [x0+ c t, x + c t]
corresponding to the light-cone projections when we trace the time-evolved correlations to
initial correlations. The two intervals overlap in the sub-interval [x0+ c t, x− c t] whose length
is linearly decreasing with time, up to the time t∗ = |x0 − x |/(2c) beyond which they do not
overlap anymore. Since the initial correlations of the phase derivative are short-range, the
integral is simply proportional to the length of the overlap, as illustrated in Fig. 14 and in
more detail in Fig. 16, resulting in the above described behavior. The large time asymptotic
value can be easily related to the initial one

〈∆ϕ̂(x , t)n〉con =

∫

[x0,x]n

n
∏

i

d yi

® n
∏

i

û(yi , t)

¸

con

(77)

=
1
2n

∫

([x0−c t,x−c t]∪[x0+c t,x+c t])n

n
∏

i

d yi

® n
∏

i

û(yi , 0)

¸

con

→
1

2n−1
〈∆ϕ̂(x , 0)n〉con .

For the second cumulant the decrease is by a factor 1/2, for the fourth cumulant by 1/8
and so on. As discussed in Subsection 5.2, the above analysis can explain the qualitative
characteristics of the temporal profile of the non-Gaussianity measure M (4) in the experiment.

C Deviations from the Tomonaga-Luttinger liquid dynamics

The TLL Hamiltonian provides a very good description of equilibrium properties of cold atom
systems as can be shown by means of renormalization group theory [47]. However, it is less
clear how accurate this description is in far from equilibrium dynamics, like after a quantum
quench. As discussed in the main text, deviations from the TLL model that are irrelevant at
equilibrium in the renormalization group sense may be important out of equilibrium. One
class of deviations comes from the fact that, in passing from the original Hamiltonian (47) to
(54), we ignored powers and gradients of the density-phase fields of order higher than two.
Higher power terms in particular induce an effective self-interaction of the phonons resulting in
non-Gaussian dynamics. Moreover, some of these corrections correspond to coupling between
the symmetric and anti-symmetric modes, meaning that the dynamics of the anti-symmetric
modes is not completely closed. In Sec. 4.3 of the main text we have discussed the dynamical
effects of deviations from the TLL description and presented evidence that such deviations
are negligible in the experiment. As we argued, despite its simplicity the Hamiltonian (54)
actually captures the dynamics of the system sufficiently well within the time scales of the
experiment.

Here, we will analyze in more detail two of the main deviations from this model that
are potentially relevant for the Gaussification mechanism. The first one is related to the
presence of inhomogeneity in the system. In general cold atom gases are inhomogeneous due
to the longitudinal trapping potential, which is typically parabolic. However, in the present
experiment a homogeneous box trap with hard walls was used, so that the atom density
was practically homogeneous. It is still interesting to observe that even in the parabolic trap
case, the time evolution does not induce delocalization as required for the spatial scrambling
mechanism. The second type of deviation refers to non-linear corrections to the phonon
dispersion relation, which are present due to the higher gradient terms that were ignored in the
derivation of (54). These are quadratic in the density and phase fields and therefore preserve
the Gaussianity of dynamics but induce dispersive spreading of the phononic excitations. Since
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these physical effects are relevant in Gaussification, it is important to estimate their role in the
experiment.

C.1 Effects of a non-uniform trap potential

The trap inhomogeneity can be taken into account by allowing the density profile n in (54) to
be a function of the spatial coordinate x

Ĥinhom =

∫

dx
�

ħh2n(x)
4m

(∂x ϕ̂(x))
2 + gδ%̂(x)2

�

. (78)

In the experimental settings, the Luttinger parameter K is sufficiently large in which case the
Thomas-Fermi approximation is applicable. In this approximation and for a parabolic trap
Vext(x) =

1
2ω

2 x2, the density profile n(x) turns out to be

n(x) = n0

�

1−
x2

R2

�

Θ(R2 − x2) , (79)

where n0 =
1
2ω

2R2 is the density at the middle and R =
p

2µ/ω is the semi-classical (or
Thomas-Fermi) radius of the system, which is half of the system size.

The Hamiltonian (78) corresponds to an inhomogeneous TLL [64]. In the present special
case (weak boson interaction and parabolic trap) an exact solution is possible by expanding the
fields ϕ̂ and δ%̂ in Legendre polynomials instead of the cosine plane waves of the homogeneous
case. The energies of these modes are En =

p

n(n+ 1)/R (instead of integer multiples of
2π/L). Approximate recurrences are expected to occur at integer multiples of T = 2πR
(instead of T = 2L), since at higher mode numbers all energies are close to integer multiples of
1/R. The inhomogeneity of the trap affects significantly the dynamics. A wave packet initially
localized at the centre propagates to the edges following curved light-cones at a position-
dependent speed, as expected for a curved background. In addition, however, edge effects are
present, which grow and spread inwards to the centre of the trap. Instead of (62), the time
evolution of the phase field is now given by

ϕ̂(x , t) =

∫

dy Gφφ(x , y, t)ϕ̂(y, 0) +

∫

dy Gφρ(x , y, t)δ%̂(y, 0) , (80)

where the qualitative form of the phase-phase and density-phase propagators Gφφ(x , y, t)
and Gφρ(x , y, t) in the parabolic trap is presented in Fig. 19, which should be compared with
Figs. 17 and 18 for the hard-wall box trap with Neumann or Dirichlet boundary conditions,
respectively.

From our analysis we conclude that despite its special characteristics, the dynamics does
not induce delocalization that could justify Gaussification via wave packet spreading. In
contrast we find that for all relevant aspects, the dynamics up to the maximum time studied
in the experiment are unaffected by edge effects and practically the same as that of a
thermodynamically large homogeneous system.

C.2 Effects of a non-linear phonon dispersion

The linear dispersion of the TLL in its standard form (54) is a rather idealistic property that
is far from true in realistic systems. The most important source of nonlinear dispersion comes
from the Galilean form of the kinetic energy in the original Hamiltonian (47) [65]. In the
density-phase representation this reads

Ĥkin =

∫

dx
�

ħh2n
4m
(∂x ϕ̂(x))

2 +
ħh2

4mn
(∂xδ%̂(x))

2
�

, (81)
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Figure 17: Phase-phase Gφφ(x , y, t) (top) and density-phase Gφρ(x , y, t) propaga-
tors (bottom) for a homogeneous box with Neumann boundary conditions (real space
density plots at various times from zero to half of the recurrence time).
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Figure 18: Same as Fig. 17 but for a homogeneous box with Dirichlet boundary
conditions.
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Figure 19: Same as Fig. 17 but for a parabolic trap as described by the Thomas-Fermi
approximation.

meaning that the extra term

Ĥdisp =
ħh2

4mn

∫

dx (∂xδ%̂(x))
2 , (82)

should be added to the TLL Hamiltonian (54). The new Hamiltonian is Gaussian with a
different dispersion relation

E(k) = ħh|k|

√

√

√

c2 +
�

ħhk
2m

�2

= ħhc|k|

√

√

√

1+
�

ξhk
2

�2

, (83)
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with c =
p

gn/m as in Eq. (58) and ξh = ħh/
p

gnm is the healing length. This is the Bogoliubov
dispersion relation, which is linear at small k (E(k)∼ ħhc|k| ) consistently with TLL theory, and
quadratic at large k (E(k) ∼ ħh2k2/(2m)). The linear dispersion of Eq. (54) is an excellent
approximation at equilibrium as long as we are interested in length scales much larger than
ξh. In the experiment phase measurements refer to smeared local fields due to the finite
imaging (spatial) resolution which is of the order of 32µm. On the other hand, the healing
length is estimated to be ξh ≈ 0.352µm, much smaller than the smearing length. Therefore for
equilibrium states the short distance effects of the nonlinear dispersion (83) are unobservable
and negligible. This is not necessarily true, however, for the dynamics: As the non-linearity
of the dispersion relation induces spreading of local fields following an algebraic scaling
with time, this spreading effect will eventually become significant and manifest itself in the
measurements, even if these are restricted to smeared local fields. Nevertheless, by evaluating
the spreading effect in the time scale of the experiment, i.e., up to the recurrence time, we
find that it is still negligible and unimportant.
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Figure 20: A reconstruction for the same experimental scan as in Fig. 8 but with a re-
striction of the eigen-mode correlations to the diagonal, i.e., instead of a reconstruc-
tion over unrestricted Gaussian states, here, we restrict the variational states with
an additional product-state constraint in eigen-mode space. We notice a remarkable
stability of the values of correlations on the diagonal. The absence of off-diagonal
eigen-mode correlations due to the restriction leads to a reduced fidelity of the fit.
While the precision is a little worse, the accuracy of extrapolation of the time evo-
lution is improved as the restriction forces proximity to steady states which behave
more stably upon extrapolation outside of the input time window.
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D Further tomographic reconstruction plots

In this section we include additional plots of tomographic reconstructions of one of the
experimental scans (Figs. 20, 21 and 22) that provide more details on the quality of the
reconstruction for different choices of the variational states or of the number of modes used
in the tomographic method.
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Figure 21: A reconstruction for the same experimental scan as in Fig. 8 but now
allowing for an larger number of eigen-modes N = 20. Comparing with the earlier
reconstruction using N = 10 eigen-modes we find a rather good convergence in
the sense that the correlations which are well-resolved in space and time (modes
with k ≤ 7) are accurately reproduced in both reconstructions. It should be stressed
that the time step of the measurements and the spatial resolution of the read-
out camera do not allow the accurate resolution of higher momentum modes, and
the reconstruction favors diagonal non-squeezed correlations in these modes. The
inclusion of additional modes softens the hard cut-off at high momentum modes
leading to less off-diagonal artifacts.

Figure 22: The real space representation of the reconstructed density fluctuation
covariance matrix for the same experimental scan as in Fig. 8 but based on N = 20
eigen-modes. We see a much more pronounced localization in coordinate space
since the inclusion of higher momentum modes allows us to observe more short-
range structures. Most notably in comparison to N = 10 we observe the typical
anti-correlation stripes close to the diagonal.
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