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Abstract

We study the impact of gravitational waves originating from a first order phase transi-
tion on structure formation. To do so, we perform a second order perturbation analysis
in the 1 + 3 covariant framework and derive a wave equation in which second order,
adiabatic density perturbations of the photon-baryon fluid are sourced by the gravita-
tional wave energy density during radiation domination and on sub-horizon scales. The
scale on which such waves affect the energy density perturbation spectrum is found to
be proportional to the horizon size at the time of the phase transition times its inverse
duration. Consequently, structure of the size of galaxies and bigger can only be affected
in this way by relatively late phase transitions at ≥ 106 s. Using cosmic variance as a
bound we derive limits on the strength α and the relative duration (β/H∗)−1 of phase
transitions as functions of the time of their occurrence which results in a new exclu-
sion region for the energy density in gravitational waves today. We find that the cosmic
variance bound forbids only relative long lasting phase transitions, e.g. β/H∗ ® 6.8 for
t∗ ≈ 5× 1011 s, which exhibit a substantial amount of supercooling α > 20 to affect the
matter power spectrum.
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1 Introduction

With the first ever-measurement of a gravitational wave (GW) signal in 2016 from a black hole
binary merger by the LIGO-Virgo collaboration [1] (now LIGO-Virgo-KAGRA), a new window
of probing the universe has been opened. While this technique probes so far mostly astrophys-
ical processes, future experiments like the space interferometer LISA [2] have the potential to
explore also cosmological sources like first order phase transitions (FPT) in the early universe.
In particle physics these phase transitions occur when the dropping temperature of the universe
causes the vacuum expectation value (VEV) of a field to change discontinuously. If the field is
hindered for a while from adapting to the new VEV by a barrier in its potential then bubbles
enclosing the new VEV form, expand and eventually fill the universe with the new VEV. While
such FPTs can produce GWs via the dynamics of the bubbles like collisions, soundwave forma-
tion and magneto-hydrodynamical effects, second order phase transitions and cross overs are
not expected to produce substantial amounts of GWs, essentially because they lack the mecha-
nism of vacuum bubble formation. The latter applies to the standard model of particles physics
(SM), well described by the symmetry group SU(3)QC D×SU(2)L×U(1)Y . It undergoes a cross
over phase transition during the electro-weak symmetry breaking SU(2)L×U(1)Y → U(1)QED
when the Higgs boson acquires a non-zero VEV [3, 4] and hence no GW signal is expected.
The SM has, however, various problems, motivating for new physics beyond the SM (BSM).
Many alternative models which incorporate new symmetries and particles allow for FPTs. The
observation of GWs has therefore triggered many studies of FPTs in BSM models [5–12]where
often GWs are expected to be seen in future GW experiments. For reviews see e.g. [13–17].
Future GW experiments can therefore valuably constrain BSM physics.
However, adding a FPT to the history of the universe might also affect other cosmological pro-
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cesses such as formation of structure. This potential consequence is studied in this work. In
the standard model of cosmology, linear density perturbations develop from inflation and seed
over- and under densities in the various fluid components of the early cosmological medium.
They propagate through the universe and undergo, depending on their scale, various changes
caused by physical processes like the decoupling of a fluid component until they eventually
form the structure we observe today. FPTs and the emerging GWs might influence this evolu-
tion depending on strength and duration. GWs are linear tensor perturbations of the metric
sourced by an anisotropic stress distortion in the fluid while density perturbations of the fluid
are scalar perturbations of the metric. At linear order in perturbation theory, they do not
couple, but they can interact at second order and source second order density perturbations.
Hence, we have to perform a second order expansion in order to capture effects that strong
GW events may have. Typically, phase transitions are expected to occur while the universe is
dominated by radiation and on sub-horizon scales. Consequently, potential effects on density
perturbations are tied to the scale and thus the time of the transition. We shall work within the
1+ 3 covariant approach to gravity [18–23] in which an exact, non linear equation of density
perturbations is given.
Imprints of phase transitions in the matter power spectrum1 have been of interest in the past,
[25,26]. In contrast to our work these papers focus on the QCD phase transition during which
they predicted a significant drop in the sound speed. This in turn affects the preexisting linear
density perturbations and induces large peaks in the Harrison-Zel’dovich spectrum. Similar
effects could happen in BSM transitions if the sound speed drops significantly which could be
possible for theories with massive fermions or weakly interacting scalars but is not expected
e.g. in simple scalar extensions of the SM [27].
This work is organized as follows. In Sec. 2 we investigate second order density perturbations
and their coupling to GWs. In Sec. 3 we then summarize the physics of GWs from FPTs and
present our results in Sec. 4. Subsequently we discuss in which way and under which con-
ditions the GWs from FPTs do or do not affect the matter power spectrum, but also debate
the limitations of our approach. Finally we conclude and give an outlook in Sec. 5. Further
leading material and many details can additionally be found in the attached appendix.

2 Second order density perturbations

Let us begin with the study of second order density perturbations and the search for an equa-
tion in which density perturbations are sourced by GWs. To do so, we use the 1+3 covariant
approach to cosmological perturbation theory for which a pedagogical introduction can be
found in Appendix A. In this formulation spacetime is decomposed into the direction of the
four-velocity, ua, along the world line of a fundamental comoving observer and in its orthog-
onal direction, hab, where Latin indices run from 0 to 3. The energy momentum tensor of the
cosmic fluid is split according to this decomposition

Tab = ρuaub + 2u(aqb) + phab +πab , (1)

where the individual components are ρ := T abuaub the energy density, qb := h b
a Tbcu

c the
energy current density, p := Tabhab/3 the pressure and πab := T〈ab〉 the trace-free anisotropic
stress. Geometric quantities emerge from the splitting of the covariant derivative of the four-
velocity. This includes the shear tensor σab := D〈bua〉, the antisymmetric (hence tracefree)
vorticity tensorωab := D[bua], the volume expansion scalarΘ := Daua and the four-acceleration

1Linear matter power spectrum and measurements can be found in [24].
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Aa = ub∇bua such that

∇bua = σab +ωab +
1
3
Θhab − Aaub . (2)

Then the comoving density gradient and the comoving volume gradient are given as

∆a :=
a
ρ

Daρ , (3)

Za := aDaΘ , (4)

where the first one involves the notion of density contrast. It can be shown [28] by taking into
account the equations and constraints from the Bianchi identities that the projected comoving
density gradient and the projected comoving volume gradient evolve according to the full
non-linear equations

∆̇〈a〉 =
p
ρ
Θ∆a −

�

1+
p
ρ

�

Za + a
Θ

ρ

�

q̇〈a〉 +
4
3
Θqa

�

−
a
ρ

DaDbqb + a
Θ

ρ
Dbπab

−
�

σb
a +ω

b
a

�

∆b −
a
ρ

Da

�

2Abqb +σ
bcπbc

�

+ a
Θ

ρ
(σab +ωab)q

b + a
Θ

ρ
πabAb

+
1
ρ

�

Dbqb + 2Abqb +σ
bcπbc

�

(∆a − aAa) , (5)

and

Ż〈a〉 =−
2
3
ΘZa −

1
2
κρ∆a −

3
2
κaDap− a

�

1
3
Θ2 +

1
2
κ(ρ + 3p)−Λ

�

Aa + aDaDbAb

−
�

σb
a +ω

b
a

�

Zb − 2aDa

�

σ2 −ω2
�

+ 2aAbDaAb

− a
�

2
�

σ2 −ω2
�

−DbAb − AbAb

�

Aa . (6)

Here σ2 := 1
2σabσ

ab and ω2 := 1
2ωabω

ab. In order to find an expression that describes
the influence that gravitational waves could induce on density perturbations, we seek for a
relation between the orthogonal projected gradient ∆a and linear perturbations of the shear
tensor σ(1)ab , since the latter one describes the effects of GWs in the 1+3 approach. This occurs
for the first time at second perturbative order in the density gradient ∆(2)a . Therefore, in the
following we will use Eqs. (5) and (6) to derive a linear equation for the time evolution of the
density contrast ∆(2)a with a non-zero linear shear contribution σ(1)ab .
To do so, we will choose a model for the cosmic fluid which will significantly simplify the
non-linear equations. Then, we will resolve the remaining angular brackets in the indices and
take the orthogonal projected gradient of the equations in order to obtain scalar equations.
While terms that are at least of third order will be directly neglected during the calculation, the
explicit expansion of the remaining quantities to second order is performed after obtaining the
scalar equation. Finally we set the background cosmology to FLRW and specialize the result for
a radiation dominated fluid. During the calculation we will set κ = 8πG = 1 and reintroduce
the units at the end. For our fluid model we impose the requirements

Assumption 1: At the background level, the matter-energy density is described by a (single
component) perfect fluid.

Assumption 2: To all orders, we assume a negligible contribution from vorticityωab = 0=ωa,
current density qa = 0 and anisotropy πab = 0 in the fluid.
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In this model the full non linear equations Eq. (5) and Eq. (6) reduce to

∆̇〈a〉 =
p
ρ
Θ∆a −

�

1+
p
ρ

�

Za −σab∆
b , (7)

with

Ż〈a〉 = −
2
3
ΘZa −

1
2
ρ∆a −

3
2

aDap+ aΘ̇Aa + aDaDbAb −σabZ b − 2aDaσ
2 + 2aAbDaAb . (8)

Additionally we fix the relation between pressure and energy density by imposing

Assumption 3: Perfect barotropic fluid: This implies p = ωρ with constant ω and
together with Eq. (A.21) and qa = πab = 0 the acceleration is to all orders

Aa =
−c2

s ∆a
a(1+ω) due to Dap = ρ

a c2
s∆a. The perturbations are adiabatic. We also assume

Daω= ω̇= Dac2
s = ċ2

s = 0.

Our perturbation procedure will extend to second order and thus we can neglect terms that are
at least of third order in advance. This is the case for the term a

�

2σ2 − AbAb

�

Aa ¦O(ε3) since
the acceleration Aa and the shear σab are zero at zero order. Applying the third assumption
to Eq. (7) and Eq. (8) our equations reduce to

∆̇〈a〉 =ωΘ∆a − (1+ω) Za −σab∆
b, (9)

Ż〈a〉 =−
2
3
ΘZa −

�

1+ 3c2
s

� ρ

2
∆a −

c2
s

1+ω
Θ̇∆a −

c2
s

a(1+ω)
Da∆−σabZ b

− 2aDaσ
2 +

c4
s

a(1+ω)2
Da

�

∆b∆b

�

. (10)

The next step is to deal with the projected time derivative of the density perturbation. We
expand it by applying the inverse product rule

∆̇〈a〉 := h b
a ∆̇b = ˙(h b

a ∆b)− ḣ b
a ∆b , (11)

but since h b
a Db = Da and ua∆a = uah b

a ∇b = 0 we find for the two terms

h b
a ∆b := h b

a
a
ρ

Dbρ =
a
ρ

Daρ =∆a , (12)

ḣ b
a ∆b = (uaAb + ubAa)∆b = uaAb∆b . (13)

We thus get

∆̇〈a〉 = ∆̇a − uaAb∆b , (14)

which reflects the fact that the orthogonally projected time variation of density inhomogeneities
is the same as the complete time derivative of the density perturbation minus the projection
of the density perturbation on the flow lines. The four acceleration in turn can be expressed

by the relation Aa = −
c2
s

a(1+ω)∆a and we find

∆̇〈a〉 = ∆̇a + ua
c2
s

a(1+ω)
∆b∆b . (15)

For the expansion gradient we repeat this calculation and find

Ż〈a〉 = h b
a Żb =

˙�

h b
a Zb

�

− ḣ b
a Zb = Ża − uaAbZb , (16)
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for the same reason as for the density perturbations, h b
a Zb = Za and uaZa = 0. Plugging these

identities into Eqs. (9) and (10) results in

∆̇a + ua
c2
s

a(1+ω)
∆b∆b =ωΘ∆a − (1+ω) Za −σab∆

b , (17)

Ża + ua
c2
s

a(1+ω)
∆bZb =−

2
3
ΘZa −

�

1+ 3c2
s

� ρ

2
∆a −

c2
s

1+ω
Θ̇∆a −

c2
s

a(1+ω)
Da∆

−σabZ b − 2aDaσ
2 +

c4
s

(1+ω)2a
Da (∆

a∆a) . (18)

2.1 Taking the orthogonal projected gradient

We are interested in the density fluctuations described by the comoving divergence of the
density perturbations ∆ := aDa∆a. Hence, we will take the divergence of Eqs. (17) and (18)
which will yield a scalar equation.

Comoving fractional density gradient: Let us start with the divergence of the first term in
Eq. (17) which gives according to [29]

aDa∆̇a = ahab∇buc∇c∆a + ahabuc∇b∇c∆a (19)

= ∆̇+σab∆〈ab〉 −ωab∆[ab] +
1
3

aΘAa∆a − aAa∆̇a − aqa∆a + a
�

σab +ωab
�

∆aAb .

Applying our assumptions to this equation sets qa =ωab = 0. Ignoring again terms vanishing
at second order we find

aDa∆̇a = ∆̇+σ
ab∆〈ab〉 −

c2
s

3(1+ω)
Θ∆a∆a +

c2
s

1+ω
∆a∆̇a +O(ε3)

= ∆̇+σab∆〈ab〉 +
c2
s

1+ω

�

1
2

d
dt
−

1
3
Θ

�

∆a∆a . (20)

We have also replaced Aa = −
c2
s

a(1+ω)∆a. Using uaDa = 0 the second term in Eq. (17) becomes

aDaua
c2
s

a(1+ω)
∆b∆b =

c2
s

a(1+ω)
∆b∆b aDaua =

c2
s

(1+ω)
∆b∆bΘ . (21)

The first term on the right hand side of Eq. (17) becomes

aDaωΘ∆a =ω(Z
a∆a +Θ∆) , (22)

while the second term reads

−(1+ω)aDaZa = −(1+ω)Z . (23)

Moving on to the third term we note that in general the space-like constraint on the shear
is not zero but rather given by Eq. (A.25). However, in our model the shear plays the role
of GWs. Hence we only consider the transverse component of the shear, thus Dbσab = 0
(following [28–30]). This implies for the last term in Eq. (17)

aDa(−σab∆
b) = −(a Daσab∆

b
︸ ︷︷ ︸

=0

+aσabDa∆b) (24)

= −σab

�

1
2
∆hba +∆〈ba〉 +∆[ba]

�

(25)

= −σab∆
〈ab〉 , (26)
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where we have made use of the fact that the shear is also tracefree σabhab = σa
a = 0 and that

the complete contraction of an antisymmetric with a symmetric tensor vanishes. Altogether,
the differential equation for density fluctuations becomes

∆̇=ω(Za∆a +Θ∆)− (1+ω)Z − 2σab∆
〈ab〉 −

c2
s

1+ω

�

2
3
Θ+

1
2

d
dt

�

∆a∆a . (27)

Comoving volume expansion: Now we move on to the differential equation for the volume
expansion gradient Za in Eq. (18). Starting on the left hand side analogously to ∆̇ we find for
the first term

aDa Ża = Ż +σabZ〈ab〉 +
1
3

aΘAaZa − aAa Ża

= Ż +σabZ〈ab〉 −
c2
s

3(1+ω)
Θ∆aZa +

c2
s

1+ω
∆a Ża (28)

and for the second term

aDaua
c2
s

a(1+ω)
∆bZb =

c2
s

1+ω
∆bZbΘ . (29)

Taking the comoving divergence of the first line on the right hand side of Eq. (18) gives

−
2
3
(ZaZa +ΘZ)− (1+ 3c2

s )
1
2
(ρ∆+ρ∆a∆a)−

c2
s

1+ω

�

a∆aDaΘ̇+ Θ̇∆
�

−
c2
s

1+ω
D2∆ , (30)

where we have applied the definition aDaΘ =: Za as well as aDaZa =: Z and used aDaρ = ρ∆a.
In the second line of Eq. (18), we find for the comoving divergences

−σabZ 〈ab〉 , −2a2D2σ2 and +
c4
s

(1+ω)2
D2 (∆a∆a) , (31)

where we have used in the first term aDbZa = 1/3Zhab + Z〈ab〉 + Z[ab]. So far we find for the
evolution of the volume expansion gradient

Ż =−
2
3

c2
s

1+ω
Θ∆aZa −

c2
s

1+ω
∆a Ża

−
2
3
(ZaZa +ΘZ)−

1
2
(1+ 3c2

s )(ρ∆+ρ∆
a∆a)

−
c2
s

1+ω
D2∆− 2σabZ 〈ab〉 − 2a2D2σ2

−
c2
s

1+ω
(∆aaDaΘ̇+ Θ̇∆)

+
c4
s

(1+ω)2
D2 (∆a∆a) . (32)

2.2 Second order differential equation for second order perturbations

Taking a further time derivative of Eq. (27) leads to an equation of motion for ∆ which reads

∆̈=ω(Ża∆
a + Za∆̇a + Θ̇∆+Θ∆̇)− (1+ω)Ż

− 2
d
dt

�

σab∆
〈ab〉�−

c2
s

1+ω

�

2
3
Θ̇+

2
3
Θ

d
dt
+

1
2

d2

dt2

�

∆a∆a . (33)
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This equation still depends on the volume expansion gradient. In what follows we eliminate
this dependence. First, we substitute Ż from Eq. (32) in Eq. (33) and find

∆̈=
2
3
(1+ω)ΘZ +ωΘ∆̇+ (ω+ c2

s )Θ̇∆+
(1+ω)(1+ 3c2

s )

2
ρ∆+ c2

s D2∆

− 2
d
dt

�

σab∆
〈ab〉�+ 2(1+ω)σabZ 〈ab〉 + 2a2(1+ω)D2σ2

−
c2
s

1+ω

�

2
3
Θ̇−

(1+ω)2(1+ 3c2
s )

c2
s

ρ

2
+ c2

s D2 +
2
3
Θ

d
dt
+

1
2

d2

dt2

�

∆a∆a

+ (ω+ c2
s )Ż

a∆a + (ω∆̇a +
2
3

c2
s Θ∆a +

2
3
(1+ω)Za)Z

a + c2
s (∆aaDaΘ̇) . (34)

We then replace Θ̇ by the Raychaudhuri equation (A.22)

Θ̇ = −
1
3
Θ2 −

1
2
(1+ 3ω)ρ − 2σ2 −

c2
s

a2(1+ω)
∆+

c4
s

a2(1+ω)2
∆a∆

a +Λ (35)

and the scalar version of the volume expansion gradient

Z = −
1

1+ω

�

∆̇−ωZa∆a −ωΘ∆+ 2σab∆
〈ab〉 +

c2
s

1+ω

�

2
3
Θ+

1
2

d
dt

�

∆a∆a

�

, (36)

which is taken from Eq. (27). The spatial gradient of the Raychaudhuri equation yields

c2
s∆aaDaΘ̇ = −c2

s
2
3
Θ∆aZa −

c2
s

2
(1+ 3ω)ρ∆a∆

a −
c4
s

(1+ω)a
∆aDa∆ . (37)

Inserting the last three equations into Eq. (34) we find

∆̈+
�

2
3
−ω

�

Θ∆̇−
�

(ω− c2
s )
Θ2

3
+ (1+ 2c2

s − 3ω2)
ρ

2
+ (ω+ c2

s )Λ+ c2
s D2

�

∆

=− 2
�

2
3
Θ+

d
dt

�

�

σab∆
〈ab〉�+ 2(1+ω)σabZ〈ab〉 + 2a2(1+ω)D2σ2

−
c2
s

1+ω

�

2
9
Θ2 −

1
c2
s

�

(1+ω)2 +
�

8
3
+ 4ω

�

c2
s

�

ρ

2
+ c2

s D2 +
2
3
Λ+Θ

d
dt
+

1
2

d2

dt2

�

∆a∆a

+ (ω+ c2
s )Ż

a∆a +
�

ω∆̇a +
2
3
Θω∆a +

2
3
(1+ω)Za

�

Za

− c2
s

ω+ c2
s

(1+ω)a2
∆2 −

c4
s

(1+ω)a
∆aDa∆ . (38)

Let us emphasize once more that products of three variables for which S(0) = 0 are at least of
third order and are thus neglected here.

Perturbative expansion: So far we have neglected terms that are at least of third order in a
perturbative expansion of the dynamical variables. To complete the perturbative analysis, we
expand the remaining variables and truncate the series at second order

∆≈∆(0) +∆(1) +∆(2) ≡∆(1) +∆(2) , (39)

Z ≈ Z (0) + Z (1) + Z (2) ≡ Z (1) + Z (2) , (40)

σ ≈ σ(0) +σ(1) +σ(2) ≡ σ(1) +σ(2) , (41)

Θ ≈ Θ(0) +Θ(1) +Θ(2) , (42)

ρ ≈ ρ(0) +ρ(1) +ρ(2) . (43)
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Vector and tensor versions of a quantity are expanded in the same manner as their scalar
counterparts given above. In Eq. (38) the shear couples either to itself, to∆ or Z whose zeroth
order term is zero. Thus in an expansion to second order only the first order perturbation term
of the shear will survive and thus we can immediately put σ ≈ σ(1). Also note that ρ(2) and
Θ(2) will not occur in our perturbed formula because ρ and Θ always appear in combination
with a linearly gauge independent quantity for which the zeroth order term is zero.
Expanding the variables in Eq. (38) in this manner we get

∆̈(2)+
�

2
3
−ω

�

Θ(0)∆̇(2) −
�

1
3
(ω− c2

s )Θ
(0)2 + (1+ 2c2

s − 3ω2)
ρ(0)

2
+ (ω+ c2

s )Λ+ c2
s D2

�

∆(2)

=−
�

2
3
−ω

�

Θ(1)∆̇(1) +

�

2
3
(ω− c2

s )Θ
(0)Θ(1) + (1+ 2c2

s − 3ω2)
ρ(1)

2

�

∆(1)

− 2
�

2
3
Θ(0) +

d
dt

�

�

σ
(1)
ab∆

(1) 〈ab〉
�

+ 2(1+ω)σ(1) abZ (1)〈ab〉 + 2a2(1+ω)D2σ(1)2

−
c2
s

1+ω

�

2
9
Θ(0)2 −

1
c2
s

�

(1+ω)2 +
�

8
3
+ 4ω

�

c2
s

�

ρ(0)

2

+c2
s D2 +

2
3
Λ+Θ(0)

d
dt
+

1
2

d2

dt2

�

∆(1) a∆(1)a

+ (ω+ c2
s )Ż

(1) a∆(1)a +
�

ω∆̇(1)a +
2
3
Θ(0)ω∆(1)a +

2
3
(1+ω)Z (1)a

�

Z (1) a

− c2
s

ω+ c2
s

(1+ω)a2
∆(1)2 −

c4
s

(1+ω)a
∆(1)a Da∆(1) . (44)

We have ordered the terms in this equation such that second order quantities appear on the
left hand side of the equation and combinations of first order variables appear on the right
hand side. At this point it is also useful to replace the contractions with Z (1)a and Ż (1)a . To do
so, we use Eq. (9) which yields

Za =
ωΘ∆a − ∆̇〈a〉 −σab∆

b

1+ω
, (45)

⇒ Z (1)a =
ωΘ(0)∆(1)a − ∆̇

(1)
a

1+ω
+O(ε2) . (46)

Similarly, from Eqs. (18) and (46) we get for the time derivative of Z (1)a

Ż (1)a =
1
3
Θ(0)2

1+ω

�

c2
s − 2ω

�

∆(1)a +
2
3

1
1+ω

Θ(0)∆̇(1)a −
c2
s

a(1+ω)
Da∆(1)

+

�

c2
s

1+ω
(1+ 3ω)− (1+ 3c2

s )

�

ρ(0)

2
∆(1)a . (47)
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The respective terms in Eq. (44) become

(ω+ c2
s )Ż

(1) a∆(1)a =
1
3

ω+ c2
s

1+ω
(c2

s − 2ω)Θ(0)2∆(1)a ∆
(1) a

+
1
3

ω+ c2
s

1+ω
Θ(0)

d
dt
(∆(1) a∆(1)a )−

c2
s (c

2
s +ω)

a(1+ω)
∆(1)a Da∆(1)

+ (ω+ c2
s )

�

c2
s

1+ω
(1+ 3ω)− (1+ 3c2

s )

�

ρ(0)

2
∆(1)a ∆

(1) a , (48)

and

(ω∆̇(1)a +
2
3
Θ(0)ω∆(1)a +

2
3
(1+ω)Z (1)a )Z

(1) a =

ω− 2
2

ω

1+ω
Θ(0)

d
dt
(∆(1) a∆(1)a ) +

2
3 −ω
1+ω

∆̇(1) a∆̇(1)a +
4
3
ω2

1+ω
Θ(0)2∆(1) a∆(1)a . (49)

With these we can eliminate Ża and Za completely and our perturbed second order differential
equation for second order density perturbations in a perfect fluid with shear reads

∆̈(2) +
�

2
3
−ω

�

Θ(0)∆̇(2) −
�

1
3
(ω− c2

s )Θ
(0)2 + (1+ 2c2

s − 3ω2)
ρ(0)

2
+ (ω+ c2

s )Λ+ c2
s D2

�

∆(2)

=−
�

2
3
−ω

�

Θ(1)∆̇(1) +

�

2
3
(ω− c2

s )Θ
(0)Θ(1) + (1+ 2c2

s − 3ω2)
ρ(1)

2

�

∆(1)

− 2
�

2
3
Θ(0) +

d
dt

�

�

σ
(1)
ab∆

(1) 〈ab〉
�

+ 2(1+ω)σ(1)ab Z (1) 〈ab〉 + 2a2(1+ω)D2σ(1)2

−
c2
s

1+ω

��

2
3
−

2ω2 + c4
s −ωc2

s

c2
s

�

Θ(0)2

3
+

1
c2
s

�

−1−ω−ωc2
s −

5
3

c2
s + 2c4

s

�

ρ(0)

2

+c2
s D2 +

2
3
Λ+

�

2
3
+

2ω
3c2

s
−
ω2

2c2
s

�

Θ(0)
d
dt
+

1
2

d2

dt2

�

∆(1) a∆(1)a

+
2
3 −ω
1+ω

∆̇(1)a ∆̇
(1) a −

c2
s (c

2
s +ω)

(1+ω)a2
∆(1)2 −

c2
s (2c2

s +ω)

(1+ω)a
∆(1)a Da∆(1) . (50)

We fix the background cosmology by introducing a further assumption.

Assumption 4: As background we choose an FLRW universe: Θ(0)(t) = 3H(t) andρ(0) = ρ(t)
is given by the Friedmann and continuity equations

Ḣ = −H2 −
1
6
(ρ + 3p) +

1
3
Λ , ρ̇ = −3H(ρ + p) , and

H2 =
1
3
ρ −

K
a2
+

1
3
Λ .

On this background our equation eventually yields

∆̈(2) + 2H
�

1−
3
2
ω

�

∆̇(2)

−
�

3
2

�

1+ 2ω− 3ω2
�

H2 −
1
2

�

1− 2ω− 3ω2
�

Λ+
�

1+ 2c2
s − 3ω2

� 3K
2a2
+ c2

s D2
�

∆(2)

=−
�

2
3
−ω

�

Θ(1)∆̇(1) +

�

1
3
(ω− c2

s )6HΘ(1) + (1+ 2c2
s − 3ω2)

ρ(1)

2

�

∆(1)

− 2
�

2H +
d
dt

�

σ
(1)
ab∆

(1) 〈ab〉 + 2(1+ω)σ(1)ab Z (1) 〈ab〉 + 2(1+ω)a2D2σ(1)2

10

https://scipost.org
https://scipost.org/SciPostPhys.12.3.114


SciPost Phys. 12, 114 (2022)

−
c2
s

1+ω

�

�

−1−ω+
7
3
ωc2

s −
5
3

c2
s − 4ω2

�

ρ(0)

2c2
s
+ c2

s D2 +

�

ω− 2
ω2

c2
s
− c2

s +
2
3

�

Λ

+

�

2
3
+

2ω
3c2

s
−
ω2

2c2
s

�

3H
d
dt
+

1
2

d2

dt2

�

∆(1) a∆(1)a

+
2
3 −ω
1+ω

∆̇(1)a ∆̇
(1) a −

c2
s (c

2
s +ω)

(1+ω)a2
∆(1)2 −

c2
s (2c2

s +ω)

(1+ω)a
∆(1)a Da∆(1). (51)

In this equation the second order density perturbations on the left hand side are sourced by
couplings of first order perturbations on the right hand side. In particular, we find source
terms in which the shear tensor couples to first order density perturbations but also to itself.
The next step is to study our equation in the two important regimes where either radiation or
matter dominates. For that we reintroduce κ := 8πG.

Matter dominated universe: For a matter dominated universe we have ω = c2
s = 0. The

linearized evolution equation for the shear tensor and the Gauss-Codazzi equation [29] de-
termine the projected Ricci tensor by the shear R〈ab〉 = −3Hσab − σ̇ab. For super-horizon
shear modes D2σ2 = 0 in a flat universe K = 0, this identity together with the relations
∆̇〈ab〉 = −Z〈ab〉 and ∆̇a = −Za (details see ref. [29]) reduces Eq. (51) to

∆̈(2) + 2H∆̇(2) −
1
2
(3H2 −Λ)∆(2) =

3H2

2
κ∆(1)a ∆

(1) a +
2
3

Z (1)a Z (1) a + 2Hσ(1)ab∆
(1) 〈ab〉

+ 4σ(1)ab Z (1) 〈ab〉 + 2R(1)〈ab〉∆
(1) 〈ab〉

−
2
3
Θ(1)∆̇(1) +

1
2
ρ(1)∆(1) . (52)

which partially reproduces the result in [29] for Λ = 0. We find two additional terms
−2HΘ(1)∆̇(1) + 1

2ρ
(1)∆(1) which were missed by the reduction procedure used in [29].

Radiation dominated universe: Important for this work is the evolution of the per-
turbations during radiation domination where we have ω = c2

s = 1/3. For our pur-
pose it is also convenient to eliminate Z〈ab〉 such that we get an equation only depend-
ing on σab and ∆ in its various forms. We also take a flat universe with K = 0 and
Λ = 0. Again by using Eq. (17) the volume expansion gradients yield to linear order
(1 +ω)Z (1)a = ωΘ∆(1)a − ∆̇

(1). Taking the comoving derivative aDb of the previous expres-
sion, using the decomposing rule aDbZa = 1/3habZ + Z〈ab〉 + Z[ab] (analogously for ∆a) and
the linear rule aDb∆̇

(1)
a = a d

dt (Db∆
(1)
a ) we can estimate

Z (1)〈ab〉 =
ωΘ(0)∆(1)hab +ωΘ(0)∆

(1)
〈ab〉 − ∆̇

(1)
〈ab〉

1+ω
+O(ε2) . (53)

Finally our equation yields in a flat universe without cosmological constant

∆̈(2)+H∆̇(2) − 2H2∆(2) −
1
3

D2∆(2)

= −2
�

Hσ(1)ab∆
(1) 〈ab〉 + σ̇(1)ab∆

(1) 〈ab〉 + 2σ(1)ab ∆̇
(1) 〈ab〉

�

+ 8
3 a2D2σ(1)2

©

GW sources

− 1
3Θ
(1)∆̇(1) + 2

3ρ
(1)∆(1)

+
�

2H2 − 1
12D2

�

∆(1)a ∆
(1) a − 7

4 H∆̇(1)a ∆
(1) a − 1

4∆̈
(1)
a ∆

(1) a

− 1
6

1
a2∆

(1)2 − 1
4

1
a∆
(1)
a Da∆(1).











Pure density sources

(54)
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3 First order phase transitions and GWs

First order phase transitions occur when a configuration does not minimize the energy any-
more. In this process the minimum 〈φ〉 (order parameter) of the temperature dependent
potential VT (φ) evolves from a symmetric (unordered) phase 〈φ〉 = 0 to an asymmetric (or-
dered) phase 〈φ〉 6= 0. If the former minimum and the new minimum in the potential are
separated by a potential barrier then the order parameter does not smoothly roll into the new
minimum but rather jumps or tunnels (see Fig. 1). The barrier of a FPT prevents the system
from continuously relaxing into a new state with lower energy which results in latent heat be-
ing stored and later released in a shorter time interval. This delayed energy releasable makes
FPTs particularly interesting in comparison to other phase transitions. The temperature at
which the two minima are degenerate is called the critical temperature Tc while the temper-
ature at which the probability per volume element of reaching the new minimum is unity is
called nucleation temperature Tnuc.
In the early universe such phase transitions could have happened and are realized in many
extensions of the SM [5–10,12,14–17] where a Lagrangian L({φi}) with extra fields φi , sym-
metries and couplings is introduced. Here the order parameter is the vacuum expectation
value (VEV) of the field which acquires a non zero mass in the low temperature phase. This
results in a "spontaneous breaking” of the involved symmetries, i.e. a non-linear realization
of the symmetry in the vacuum at zero temperature. In a FPT the field does not accept the
new VEV everywhere in space at the same time. Instead bubbles with the new VEV inside
nucleate with some initial sizes and begin to spatially expand into regions formerly occupied
by the high temperature, symmetric VEV. Hereby the bubbles release the stored energy, the
latent heat fraction

α=
ρvac

ρrad(Tnuc)
, (55)

where ρvac ∼ |VTnuc
(〈φ〉)|, and release it in the form of motion but also while their surfaces,

called walls, eventually collide. The time needed until the field φ has acquired the new VEV
everywhere in the universe is denoted by 1/β (see Fig. 1 second plot) and is the inverse of
the nucleation rate per Hubble volume

Γ = Γnuc exp(β(t − tnuc)) . (56)

The rate β , in turn, is deduced from the O(3)-symmetric, effective action [31]

S3 = 4π

∫ ∞

0

r2dr

�

1
2

�

dφ
dr

�2

+ VT (φ)

�

, via
β

Hnuc
= Tnuc

dS3

dT

�

�

�

�

Tnuc

, (57)

whose minimization determines the tunneling trajectory from the former, symmetric vac-
uum to the low temperature, forming vacuum. In this way, via the form of the potential
VT (φ) ⊂ L(φ), the phase transition parameters α and β are directly connected to the details
of the particle physics model. Whether or not a certain model posseses a potential barrier and
a FPT depends therefore on both the model details and the choice of coupling parameters.
The formation of bubbles has an important implication. By their expansion and collision, they
induce three different forms of anisotropic stress into the fluid, which in turn generate GWs.

1. Bubble collision: The collision of the forming and expanding bubbles leads to an
anisotropic stress that sources GWs [32–34],

2. Turbulence: The highly ionized plasma can develop magnetic and hydrodynamical tur-
bulence from the percolation of the fluid induced by the bubble collisions [35,36],
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3. Sound waves: The bulk fluid motion produces pressure waves in the fluid that source
GWs [37–39],

such that the total abundance of GWs from a FPT reads

ΩGW(k) = ΩBC(k) +ΩSW(k) +ΩMHD-turb(k) . (58)

In summary the important parameters are:

• The nucleation temperature Tnuc (∼ Hnuc) which sets the scale of the released energy
density in GWs ρGW.

• The strength of the phase transition is described by the latent heat fraction α and its
duration by the inverse nucleation rate β−1.

The strength of the GW signal also depends on the bubble wall velocity vw. Its calculation is
more involved (see eg. [16,40–42]). Depending on the bubble dynamics not all of the released
energy produces GWs. The fraction of the released energy actually transmitted to the kinetic
energy of the fluid is provided by the efficiency factor κeff. If the phase transition does not reheat
the universe too much one can approximate the temperature at which the GWs are released
as T∗ ≈ Tnuc. On the other hand in models with large α > 1 there will be a supercooling phase
which separates the nucleation temperature from the percolation temperature Tnuc� T∗ [16].
The release of GWs then falls together with reheating of the universe T∗ = Treh which turns
the universe back into radiation domination. If the reheating is fast enough we do not need
to distinguish between H(Tnuc) and H∗ [17]. The two cases constitute very different bubble
dynamics. In the former the contribution from bubble walls to the GW signal is only relevant
for so called run-away dynamics in which the bubble walls strongly accelerate until they reach
the speed of light. However, they expand into a still radiation dominated universe such that
parts of the available energy are absorbed by the plasma and thus the efficiency factor κeff
is smaller than unity. In the latter case, where the bubbles propagate with the speed of light
vw = c in a vacuum energy dominated universe, the efficiency factor equals unity and bubble
walls are the only contribution to GW production. The efficiency factor thus reads [16]

κeff = 1 for α > 1 . (59)

Note, that for the purpose of this paper only the time and scale of GW production is important
and therefore we will always refer to t∗ and not bother about tnuc, also in the case of strong
supercooling because in any case H(t∗)≈ H(tnuc).
The sufficient set of parameters describing the phase transition is then (H∗,β ,α,κeff(α)).

3.1 Analytic description of bubble collision

We study the GW energy density originating from bubble collisions as source of second order
density perturbations following the literature, e.g. [32,34,40,43,44]. Typical central assump-
tions in these derivations are:

1. Thin wall: the bubble walls are infinitesimal thin and all energy is stored on them,

2. Envelope approximation: Already collided walls do not source GWs. Only the remain-
ing envelope of collided bubbles carries energy and momentum.

3. The phase transition performs in less than a Hubble time.

13

https://scipost.org
https://scipost.org/SciPostPhys.12.3.114


SciPost Phys. 12, 114 (2022)

"Today"

Phase 1

Minimum at zero

Phase 2

Minimum evolves to 

VEV

Tunneling

Figure 1: Left: Qualitative temperature dependence of a typical potential in particle
physics developing a barrier and new global minimum as temperature drops. Right:
Schematic illustration of the temperature dependence of the VEV (order parameter)
in a FPT. Shown are also the two important temperatures Tc and Tnuc at which the
minima are degenerated and at which the nucleation probability reaches one bubble
per Hubble volume, respectively. The temperature at which the transition is com-
pleted is denoted by T f .

GWs originate from linear tensor perturbations (for consistency with the literature in this sub-
section Latin indices are spatial and run from 1 to 3.)

ds2 = −dt2 + a2(t)(δi j + 2hi j)dx idx j , (60)

by a tracefree and transverse tensor hi j(x, t). The GWs propagate according to the wave equa-
tion [45,46] and are sourced by the transverse and tracefree component of the anistropic stress
tensor Π⊥i j(x, t). In Fourier space (k denotes comoving wave number) the equation of motion
reads

ḧi j(k, t) +
k2

a2
hi j(k, t) = 16πGΠ⊥i j(k, t) . (61)

Solving this equation for a given anisotropic stress tensor allows to derive the energy density
of GWs

ρGW(t) :=
〈ḣi j ḣi j〉

8πG
=

∫ ∞

0

k3

2π
|ḣ(k, t)|2d ln k . (62)

In the case of FPTs, the collision of bubbles produces an anistropic stress tensorΠ⊥i j(k, t)which
drives GWs through Eq. (61). This leads to an energy density per logarithmic frequency, which
is given by (since the FPT is short we can put a(t)≈ a∗)

Ω
log
GW(k/a∗, t) :=

1
ρtot

dρGW

d ln k
= κ2

eff

�

H∗
β

�2 � α

1+α

�2
∆(k/a∗,β , t, vw) , (63)

where κeff is the efficiency factor. The challenge for analytical [32, 33, 43, 44] and numerical
studies [47–49] is to find an expression for the dimensionless power spectrum ∆(k/β , t, vw).
The essential ingredients are the homogeneous solution of the wave equation Eq. (61) and the
power spectrum of the anisotropic stress tensor evaluated at different times. Here we simply
refer to the literature and stick to an approximate formula from Caprini et al. [40] which
incorporates the most important features2 . Following this reference the dimensionless power
spectrum is well described by

2In fact the approximation seems very close to more refined analyses like [44]. The latter reference explic-
itly mentions that the underling assumptions listed above are especially well fulfilled for bubbles expanding into
vacuum. This is in particular important for this work since significant impact will only be generated in this regime.
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Figure 2: Left: The dimensionless power spectrum (with approximated time inte-
gral) of GWs sourced by a FPT evaluated at halftime τ = τ∗ + 0.5 · H∗/β . Right:
The time evolution of the peak of the dimensionless power spectrum. The inverse
duration in terms of Hubble time is denoted by rβ =

β
H∗

and τ̄ev := τev+τ∗
2 is the time

mean while ∆τev := τev −τ∗.

∆(k,β , t, vw) = β
2k3

�

�

�

�

�

∫ t

t∗

f (k, t̃)ei t̃kd t̃

�

�

�

�

�

2

≈ k3β2(t − t∗)
2 f 2(k, (t + t∗)/2) , (64)

with the broken rational function

f (k, t)2 = L(t)2
�

vwε

β

�

�

1+ ( kL
3 )

2

1+ ( kL
2 )2 + (

kL
3 )6

�

(65)

and the characteristic length- and time-functions

L(t) =
vw

β
g(t) , (66)

g(t) = 4β2(t − t∗)
�

1
β
− (t − t∗)

��

ΘHv (t − t∗) ·ΘHv

�

1
β
− t∗

��

, (67)

where ε is a small parameter (taken to 0.01 in the following), vw is the bubble expansion
speed, t∗ the starting time of the release of GWs and ΘHv(t) is the Heaviside step-function. In
Fig. 2 we show the dimensionless power spectrum achieved from these functions.
In terms of the rescaled time τ := H∗ · t, rescaled Fourier mode κ := ck/(a∗H∗) (note that we
put k→ k/a∗) and the relative phase transition duration H∗/β we get (also reintroducing the
speed of light c)

k/a∗ · L(t) =
k

a∗H∗
·H∗ ·

c
β

� vw

c

�

g(t) = κ
� vw

c

�

�

H∗
β

�

g̃(τ) = κL(τ) , (68)

where the time-dependent function g̃(τ) and the broken rational function f (κ,τ) becomes

g̃(τ) = 4
�

β

H∗

�2

(τ−τ∗)
��

H∗
β

�

− (τ−τ∗)
�

ΘHv(τ∗,τ∗ +
H∗
β
) , (69)

k3 f (k, t) = κ3 f 2(κ,τ) = (κL(τ))2
�

κ
vw

c
H∗
β
ε

�





1+
�

κL(τ)
3

�2

1+
�

κL(τ)
2

�2
+
�

κL(τ)
3

�6



 . (70)
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Figure 3: The dimensionless power spectrum of GWs sourced by a FPT (light red and
light green) and the approximation of the time integral in Eq. (64) (bold lines) close
to the start and the end of the FPT. The yellow curve shows the horizon mode. The
notation is the same as in Fig. 2.

Therefore, the rescaled function for the GW abundance is

ΩGW(κ,τ) = κ2
eff(τ−τ∗)

2
� α

1+α

�2
∫ κ

κ∗

dκ̃ κ̃2 f 2(κ̃, (τ+τ∗)/2) , (71)

with k∗ := a∗H∗/c the scale of the horizon at t∗.
The left plot in Fig. 2 shows the spectrum as a function of time for a fixed mode while the right
plot shows the time evolution of the peak∆(κpeak(τ),τ). In Fig. 3 we show the approximation
Eq. (64) for different times. The main three features of the power spectrum of GWs from FPT
are

• It peaks around ∼ kpeak =
1.3πβ

c·L(τ(ev+τ∗)/2)
which is 2πβ

c at the end of the transition,

• For small wave numbers the spectrum grows as k3,

• For large wave numbers the spectrum decreases as k−1.

4 Results

In this section we present the results obtained from Eq. (54) for the following scenario (see
also sketch 4):
During radiation domination a FPT is triggered at time tnuc and emits GWs by bubble collision
at time t∗ on sub-horizon scales k� a∗H∗. The GWs manifest themselves as shear perturba-
tions. The transition completes within less than a Hubble time t∗ + 1/β , where β > H(t∗).
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The shear distortions induce second order density perturbations via Eq. (54). After sourcing
the induced density perturbations remain imprinted in the spectrum. Hence we need to iden-
tify the source terms, calculate the density perturbations they induce and transfer them to the
matter power spectrum in order to estimate their impact on structure formation.

Figure 4: Timeline and schematic flow chart of the model described in the text. The
green line depicts the time of the phase transition and the radiation of GWs. The flow
chart on top of the line shows the processes happening during that phase on sub-
horizon scales. We assume that these processes happen during the whole period of
the transition. After the transition is completed, the induced perturbations affect the
matter power spectrum today. The two angled lines indicate that the time between
the end of the phase transition and today is much longer than the duration of the
transition.

To do so, we have to use the solution of Eq. (54) to derive the transfer function T (k). In order
to induce any changes at all, the FPT must be strong enough such that the terms not involving
the shear tensor are subdominant. Moreover, as we will see in Eq. (75) the shear is related
to the GW abundance at the transition time via |σ(1)| ∼ H∗

p

3ΩGW(κ,τ) and the first order
perturbations can be estimated as |∆(1)| ∼ 10−4, see Eq. (103). This implies

|∆(1)|2 ∼ 10−8 and σab∆
〈ab〉 ∼ |σ(1)| × 10−4 . (72)

Therefore we find the pure shear term to be the most interesting and powerful source term
if |σ(1)| > |∆(1)| ∼ 10−4. The latter condition is fulfilled for a relatively wide range of phase
transition parameters. For α → ∞ the duration can be as small as β/H∗ ≈ 100 until the
high-κ plateau of ρGW reaches a magnitude of 10−4.
Thus, in the following we focus on the self coupling of the shear, namely

∆̈(2) +H∆̇(2) − 2H2∆(2) −
1
3

D2∆(2) =
8
3

a2D2σ(1)2 . (73)

Following references [28,50,51] the shear tensor is related to the linear, tracefree and trans-
verse metric perturbation by σab = a(hαβ)′ and σab = a−3(hαβ)′ (see also Eq. (A.48)). Recall
that in this work a, b = 0, 1,2, 3 and α,β = 1, 2,3 and the prime denotes derivative with
respect to conformal time. Using the definition of the energy density of GWs

ρGW(x, t) =
(hαβ)′(x, t)(hαβ)′(x, t)

2a2 8πG
=

ḣαβ(x, t)ḣαβ(x, t)

16πG
, (74)

we observe that the squared shear σ2(x, t) = 1/2σabσ
ab is nothing but

ρGW(x, t) =
1

8πG
σ2(x, t) . (75)

We can also transform the divergence of the fractional energy density gradient into a more
familiar variable. To do so, we note, that in a vorticity free and spatially flat space (K = 0) the
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projected derivatives become spatial Laplacians

DaDa =
∇2

a2
(76)

and thus the divergence of the fractional density gradient can be written as the Laplacian of
some function δ̃ which depends on the relative energy density perturbation δ := δρ/ρ̄

∆(x, t) =∇2δ̃(x, t) . (77)

If∆(x, t)≡∆(1)(x, t) is a linear perturbation then δ̃ is equivalent to Bardeen’s variable for the
relative energy density perturbation δ̃(1) := δ+ 3H(1+ω)ξ0 with the time component ξ0 of
an arbitrary gauge transformation xµ → xµ + ξµ [52] (see also subsection A.6). Therefore,
using Eq. (75) and Eq. (77) the 1+ 3 covariant variables can be expressed in a more standard
manner.
Similarly, in a spatially flat spacetime the harmonic decomposition of the variables reduces to
standard Fourier modes (see [52,53])

f (x, t) =

∫

k

fk eik·x , (78)

where k is the comoving wave vector and x is the comoving space vector. Applying the Fourier
decomposition to our Eq. (73) while the source is active yields

− k2 ¨̃δ(2)k (t) +H(t)(−k2) ˙̃δ(2)k (t)− 2H2(t)

�

1−
1
6

�

k
a(t)H(t)

�2
�

(−k2)δ̃(2)k (t)

= −
8
3

k2

a(t)2
a(t)2 8πGρGW(k/a(t)) . (79)

and the factor −k2 can be canceled such that

¨̃δ(2)k (t) +H(t) ˙̃δ(2)k (t)− 2H2(t)

�

1−
1
6

�

k
a(t)H(t)

�2
�

δ̃
(2)
k (t) =

8
3

8πGρGW(k/a(t), t) .

(80)

For sub-horizon modes we can neglect the unity on the left hand side of the equation. Ad-
ditionally, the right hand side can be formulated in terms of standard abundance ΩGW by

replacing ρGW = ρtotΩGW and using ρtot =
3H2
∗

8πG at the time of the phase transition. We assume
that the generation of GWs coincides with the duration of the FPT and thus completes within

less than a Hubble time. Hence we can neglect the friction term H(t) ˙̃δ(2)k (t), approximate
a(t) ≈ a(t∗) ≈ a(t∗ + 1/β) and H(t) ≈ H(t∗) ≈ H(t∗ + 1/β) and use ρGW from the previous
subsection. After the phase transition completes the energy density of GWs simply redshifts as
a radiation and we assume that during that time its power as source is negligible. In total our
result reads

¨̃δ(2)k (t) +
1
3

k2c2

a(t∗)2
δ̃
(2)
k (t) = 8H2

∗ΩGW(k/a(t∗), t) for t ∈ [t∗, t∗ + 1/β] , (81)

¨̃δ(2)k (t) +H(t) ˙̃δ(2)k (t) +
1
3

k2c2

a(t)2
δ̃
(2)
k (t) =

8H(t)2
�

a∗
a(t)

�4

ΩGW(k/a(t), t)≈ 0 for t > t∗ + 1/β . (82)
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Figure 5: The integrated dimensionless power spectrum of GWs sourced by a FPT.
The spectrum is evaluated in the middle of the phase transition τev. The yellow line
shows the horizon mode and the pink dashed dotted line indicates the peak wave
number of the logarithmic GW abundance. We chose β/H∗ = 1 for demonstration
reasons.

Note that the right hand side of Eq. (82) decays as H(t)2/a(t)4 and thus can be safely ne-
glected. We have checked this approximation semi-analytically and found it to be consistent,
see Appendix C. Also note that the choice of gauge is of negligible importance for sub-horizon
modes.

Solving the equation: Next, we solve Eq. (81) to find δ̃(2)k (t) and estimate its impact on
the matter power spectrum. This requires us to calculate the energy density in GWs from the
fractional, logarithmic energy density Ωlog

GW in Eq. (63). Integrating the equation gives

ΩGW(k, t) :=
1
ρtot

ρGW(k, t) = κ2
eff

�

H∗
β

�2 � α

1+α

�2
∫ k

kmin

∆(k′/β , t, vw)d ln k′ , (83)

where we take for kmin =
a∗H∗

c the inverse size of the horizon at transition time and vw = c
for the bubble wall velocity. The resulting energy density of GWs as a function of the wave
number is shown in Fig. 5 for the dimensionless time τ := H∗ t and wave number κ := c

a∗H∗
k.

With this scaling the differential equation becomes

δ̃(2) ′′(κ,τ) +
1
3
κ2δ̃(2)(κ,τ) = 8 ·ΩGW(κ,τ) , (84)

where primes denote the derivative with respect to unit free time τ := H∗ · t. The numerical so-
lution at the end of the phase transition δ̃(2)(κ,τ∗+

H∗
β ) is shown in Fig. 6 for initial conditions

δ̃(2)(κ,τ∗) = δ̃(2)′(κ,τ∗) = 0. For an analytical resolution of Eq. (84) in various simplifying
limits see appendix D. How to interpret this equation? From the expansion of the pressure to
second order we see that for adiabatic perturbations and small changes in the sound speed on
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sub-horizon scales, that

p(2) = c2
s ρ
(2) +σs(2) +

∂ c2
s

∂ ε
ρ(1)2 +

∂ c2
s

∂ s
s(1)2 +

∂ σ

∂ s
s(1)2 ≈ c2

s ρ
(2) , (85)

with σ := (∂ p/∂ s) [54]. Therefore, as for linear perturbations, photon perturbations are
characterized by c2

s = 1/3 and hence Eq. (84) describes the evolution of photon perturbations
δ̃(2) ≡ δ̃(2)γ . Comparing this equation with the wave equation for photon perturbations in the
photon-baryon fluid before photon decoupling [55,56]

δ̈γ + c2
s

k2

a2
δγ =

4
3

4πG
�

ρ
(0)
D δD +ρ

(0)
B δB +ρ

(0)
γ δγ

�

, (86)

δ′′γ + c2
s κ

2δγ = 2
�

Ω
(0)
D δD +Ω

(0)
B δB +Ω

(0)
γ δγ

�

, (87)

we notice, that what we found is a very similar system. But in our case their oscillations are
driven by the gravitational wave density instead of matter or radiation density component.
Since at that time baryons are still tightly coupled to photons they follow almost the same
wave equation and thus we interpret our findings as baryon acoustic oscillations (BAOs) at
a second order perturbative level driven by the GW energy density. As seen in Fig. 6 the
oscillations lie on top of a dominant peak. The typical sound horizon of the oscillations is
given by

rGW
s :=

∫ t∗+1/β

t∗

dt
a∗

cs =
1

p
3a∗β

2π
p

3 kpeak
. (88)

For comparison, the typical sound horizon for standard BAOs and our BAOs is

rs = 147Mpc [57,58] , (89)

rGW
s = 3Mpc , (90)

respectively. Like for the standard BAOs after photon decoupling the baryons will transfer this
information gravitationally to the dark matter perturbations and will thus be imprinted in the
matter power spectrum.
Let us estimate the time on which a FPT has to occur in order to impact the matter power
spectrum by density fluctuations produced via Eq. (84). The typical comoving scale on which
the GW energy density per logarithmic frequency Ωlog

GW(k, t) peaks at the end of the transition
is at

kpeak

a∗
≈

2πβ
c

, (91)

with the phase transition duration 1/β . Around this scale, the source term, the fractional
energy density ΩGW, becomes approximately constant (see Fig. 5). Hence we can use it as a
typical scale which will also be inherited to the induced density perturbations via Eq. (84). We
rewrite the phase transition duration in terms of the Hubble parameter β = rβH∗ = rβH(t∗),
where rβ > 1 for transitions shorter than a Hubble time. Therefore, the comoving wave
number where the density fluctuation spectrum is approximately maximal is

kpeak =
2πrβH∗a∗

c
, or

κpeak = 2πrβ . (92)

20

https://scipost.org
https://scipost.org/SciPostPhys.12.3.114


SciPost Phys. 12, 114 (2022)

100 101 102

κ = ck
H∗a∗

10−4

10−3

10−2

10−1

100
F
ra

ct
io

n
s

o
f
ρ

to
t κ−2

κ3

H
o
ri

zo
n

-m
o
d

e
k
∗

=
a
∗
H
∗

c

δ̃(2)(κ, τ∗ + H∗
β

)

ΩGW(κ, τ∗ + H∗
β

))

10−2 10−1 100 101 102

k in 1
Mpc

10−4

10−3

10−2

10−1

100

δ̃
(2

)
(k

)

H
M

k
p

e
a
k

H
M

k
p

e
a
k

H
M

k
p

e
a
k

H
o
ri

zo
n

-m
o
d

e
k

e
q

t∗ = 5 · 107 s

t∗ = 5 · 109 s

t∗ = 1 · 1011 s

Figure 6: Left: In blue the numerical solution of Eq. (84) at the end of the phase
transition and with initial conditions δ̃(2)(κ, t) = δ̃(2) ′(κ, t) = 0 and for α → ∞
and β/H∗ = 1. We also show the source term in orange at the end of the phase
transition τev = τ∗ + H∗/β . Right: Induced density perturbation by GWs from FPT.
For demonstration purposes we chose α → ∞,β = H∗. Shown are solutions for
different scales a∗H∗ in comparison with the horizon at matter-radiation equality.

This is analogous to a primordial density fluctuation which enters the horizon at H∗a∗, only
that in our case we can shift the scale relative to H∗a∗ by the duration ratio rβ of the phase
transition.
From then on the scale of the density fluctuation is fixed and the time of a phase transition
that impacts the matter power spectrum at its typical scale must fulfil the condition

2πrβH∗a∗
c

¦ keq . (93)

This condition is met by late phase transitions around

t : 106 s− teq ∼ T : (O(100)−O(1))eV . (94)

We calculate the Hubble rate for these times using

H(t) =
ȧ
a
= H0

p

Ωm0

p

a+ aeq

a2
, (95)

where H0 ≈ 70Mpc/(km s) ≈ 2.27 · 10−18s−1 denotes the Hubble rate today and
aeq =

Ωrad0
Ωm0

= 8.5·10−5

0.3 = 2.4 · 10−4 is the scale factor at equality (the Hubble rate is

Heq = H(aeq) = 9.1 · 10−14 1
s or teq ≈ 70000years). Integrating this equation leads to an

implicit equation for the scale factor

t ·H0 =
2
3

1
p

Ωm,0

�

Æ

a+ aeq(a− 2aeq) + 2a3/2
eq

�

. (96)

For events sufficiently far enough from equality a� aeq we can approximate Eq. (96) and get

as limiting equation for the scale factor a(t) =
q

3 ·H0
p

Ωrad,0 · t.

Impact on matter power spectrum: Due to the production of extra deviations δ̃(2) from the
energy density by the phase transition the primordial modes around k∗ = 2πa∗H∗/c experience
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a modification compared to their standard evolution. The change is captured by the transfer
function

T2
δ̃(2)
(k) := 1+

�

δ̃(2)(k)

δ
(1)
∗ (k)

�2

, (97)

where δ(1)∗ (k) are the primordial perturbations inside the horizon at t∗. Then the altered mat-
ter power spectrum with the amplitude at matter radiation equality compared to the spectrum
today P0(k) is

P̃eq(k) = T2
δ̃(2)
(k)P0(k)D

2
+(aeq) , (98)

with the approximate linear growth function

D+(a)≈
5
2

aΩm0

Ω
3/4
m0 −ΩΛ + (1+Ωm0/2)(1+ΩΛ/70)

, (99)

which is D+(aeq) ≈ 2.5 · 10−4 around equality. The linear matter power spectrum linearly
extrapolated to today is given by the fitting formula [59]

P0(k) = A0 k ·
ln(1+ c1q)

c1q
·
�

1+ (c2q) + (c3q)2 + (c4q)3 + (c5q)4
�− 1

4 , (100)

with

q :=
k

Ωm0h · exp
�

−Ωbaryon0 −
p

2h · Ωbaryon0

Ωm0

� ≈ 0.073
k

keq
, (101)
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Figure 7: The estimated first order density fluctuations from the matter power spec-
trum in Eq. (103) as a function of dimensionless wave number for different times.
Here k∗ =

a∗H∗
c . The κ-axis and the Hubble horizon shown in yellow are given in

terms of the respective time for each of the curves.
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Figure 8: Schematic summary of the deduction of the matter power spectrum with
the effect from gravitational wave induced second order density fluctuations.

and c1 = 2.34, c2 = 3.89, c3 = 16.1, c4 = 5.46 and c5 = 6.71. The reduced Hubble parameter
is set to h = 0.7 and the abundance of baryons today is Ωbaryon0 = 0.05 and Ωm0 = 0.3 [58].
The amplitude A0 of P0(k) is calibrated such that the variance becomes [58]

0.82 = σ2
8 =

∫ ∞

0

dk̃
k̃2

2π2
P0(k̃)×

�

3 j1(k̃R)

(k̃R)

�2

. (102)

Here j1(x) := sin(x)/x2 − cos(x)/x and R= 8 Mpc/h.
In order to derive the transfer function Tδ̃(2)(k) we estimate the amplitude of a typical density
perturbation δ(1)∗ (k) for sub-horizon modes as standard deviation from P

δ(1)∗ (k)
∼= D+(aeq)

√

√

√

∫ ∞

0

dk̃
k̃2

2π2
P0(k̃)W 2

k (k̃) for k∗ ≤ k , (103)

where Wk(k̃) =
3

(k̃/k)3
(sin(k̃/k)− k̃/k cos(k̃/k)) is called window function. The restriction to

modes with k∗ < k is necessary since only modes that have entered the horizon at the time of
the phase transition are relevant. In Fig. 7 we show Eq. (103) in terms of the dimensionless
wave number κ, δ(1)∗ (κ · k∗) for 100 ≤ κ, at different transition times.
We use the estimated primordial density fluctuations to define the transfer function Eq. (97)
which is show in Fig. 9 for some example cases together with the modified matter power
spectrum P̃ at equality. Note that δ(2)� 1 is fulfilled at all times, see for example Fig. 7. The
whole procedure is schematically summarized in Fig. 8.
As seen in Figs. 9, 10 and 11 the GWs produced by the FPT imprint a peak on the matter
power spectrum around the comoving scale kpeak. The transfer functions decrease rapidly
with smaller phase transition duration rβ and also with smaller strength α. This behaviour is
expected from the prefactors of the GW energy density in Eq. (83).
Hence, the height of the peak is determined by the parameters t∗, α and rβ . We can put limits
on them by requiring that the height of the peak should not exceed the bound set by the cosmic
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Figure 9: The impact of a late phase transition for different starting times t∗ on the
linear matter power spectrum. We chose for each time an inverse duration of β = 3H∗
and latent heat α= 3, respectively.

variance of the linear matter power spectrum. The latter is defined via [60]

σ(k) :=
Æ

cov(P0(k),P0(k)) = P0(k)

√

√

�

2
N
+

1
n

�

, (104)

which holds for Gaussian random fields. N denotes the number of modes and n is related to
the so called band-averaged trispectrum which can be estimated to 1/n≈ 0.00792 (Gpc/h)3/V
[61]. We estimate the number of modes as 2/N = (2π)2/(V · k2∆k) with V ≈ 1(Gpc/h)3

and ∆k ∼ 0.02 · log (k Mpc) (Mpc/h)−1 (typical distance between galaxies) which reproduces
approximately the cosmic variance found in [61].
The modified matter power spectrum P̃ should not exceed this bound, i.e

P̃(k)� σ(k) , ∀k . (105)

In Fig. 12 we show a parameter scan in the α-β-plane for different phase transition times t∗.
The red shaded regions are excluded by the cosmic variance bound, while values in the white
region are consistent with it. We observe that only very long rβ < 5− 6.8 and strong α > 1
phase transitions can be ruled out.
The earlier the phase transition takes place the less is it constrained. FPTs with such extreme
parameter values have been proposed in the past. Long lasting transitions are realized for
example in SUSY [62] and models with a lot of supercooling are for example Randall-Sundrum,
composite Higgs models [42] and models with an almost conformal symmetry in general [16].
In Fig. 13 we convert contour line values into a bound on the GW signal today in the stan-
dard frequency - GW abundance plane. The logarithmic GW abundance today due to bubble
collisions is [34]

h2Ω
log
GW 0( f ) = 1.67× 10−5 · r−2

β ·
�

κeff(α)α
1+α

�2�100
g∗

�
1
3
�

0.11 v3
w

0.42+ v2
w

�

3.8( f fpeak)2.8

1+ 2.8( f / fpeak)3.8
,

(106)

with the peak frequency fpeak today

fpeak = 16.5× 10−6 Hz
0.62

v2
w − 0.1vw + 1.8

rβ

�

T∗
100

�

� g∗
100

�
1
6

. (107)
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Figure 10: The impact of a late phase transition for different strength α on the linear
matter power spectrum. We chose for each α an inverse duration of β = 3H∗ and
fixed the transition time to t∗ = 5× 109 s, respectively.
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Figure 11: The impact of a late phase transition for different duration ratios rβ on
the linear matter power spectrum. We chose for each rβ a strength α = 3 and fixed
the transition time to t∗ = 5× 109 s, respectively.

The time of the phase transition can be converted into the temperature of the plasma by

T∗ =
30
π2

3
4g3
∗

�

1
8πGt2

∗

�
1
4

(108)

and the number of relativistic degrees of freedom g∗ after the QCD phase transition (and hence
for a late phase transition) is 3.36. Note, that for BSM models this value differs depending on
the field content and their properties. The frequency window is set to f ≈ 1.5× 10−16 Hz as
lower bound and f ≈ 1.5×10−14 Hz as upper bound which approximately corresponds to the
right, big k slope of the matter power spectrum. For smaller frequencies our assumption of a
radiation dominated universe becomes very weak.
For comparison, we show also the projected bounds for LISA [2], the timing pulsar arrays [63]
NANOGrav [64,65], PPTA [66], EPTA [67] and CMB [68–70].

25

https://scipost.org
https://scipost.org/SciPostPhys.12.3.114


SciPost Phys. 12, 114 (2022)

5 10 15 20 25 30 35 40

Strength α

3

4

5

6

7

8

D
u

ra
ti

o
n
r
β

t∗ = 5× 1011 s

t∗ = 1× 1011 s
t∗ = 5× 1010 s

t∗ = 1× 1010 s

t∗ = 5× 109 s

t∗ = 1× 109 s

t∗ = 5× 108 s

Figure 12: Parameter scan of α and rβ for different transition times t∗. The red
colored regions are excluded by cosmic variance and thus a late FPT with these pa-
rameter combination would change structure formation too strongly.

Following reference [17,71,72] the GW energy density can be limited by the effective number
of neutrino species Nν via

h2ΩGW( f )≤ 5.6 · 10−6∆Nν , (109)

where ∆Nν denotes the deviation from the SM value Nν = 3. BBN constrains this number to
∆Nν ≤ 0.2 [73] giving the bound on the allowed amount of GW before BBN shown in Fig. 13.
The indirect bound for the CMB is taken from [68].

5 Conclusion

Let us summarize the results. In this work we have studied the possible impact of a FPT on
small scale structure via the production of GWs in the radiation dominated epoch. A linear
relation between the energy density of GWs ρGW(k) and adiabatic density perturbations has
been found by expanding the full non-linear Eqs. (5) and (6) to second order in the 1 + 3
covariant formulation. In this formalism the spacetime is decomposed into the direction of
fluid flow and its orthogonal hyper-surface. Then, a set of gauge invariants to first order with
clear geometrical interpretations can be constructed.
When only considering parameters for which the GW energy density surpasses the other source
terms during the transition, the adiabatic density perturbations follow a wave equation which
is driven by the GW energy density. In this case our equation describes photon acoustic oscilla-
tions induced by the GW energy density. Since the photons are still coupled to the baryons at
such times, the baryons undergo the same oscillations which manifest themselves eventually
in the matter power spectrum.
Since phase transitions are typically taking place within the Hubble horizon H∗ at the time of
the transition the scale on which the perturbations are affected is bounded by the horizon size
k∗ = a∗H∗/c. However, we found that the scale that is maximally impacted equals the scale
where the GW energy density per logarithmic frequency has a maximum k∗ = 2πrβ a∗H∗/c.
This implies that the linear matter power spectrum, if at all, can only be affected on the length
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Figure 13: The GW abundance today as a function of today frequency. Shown are the
projected bound by LISA [2] (dashed-dot blue), the bound set by PTAs [64–67] (solid
blue) and the indirect bounds from CMB and BBN [68–70] (hatched areas). As the
result of our calculation, the red colored regions are excluded by structure formation.
However, many assumptions went into our calculation so the bound should be taken
with care.

scales of galaxies and above if the transition occurred at very late times ≥ 106 s but still within
the radiation dominated regime. Late phase transitions and their impact on structure forma-
tion (also due to gravitational waves) have been discussed in the past, for example in the
matter dominated era [74–76] (in the literature the phrase late time phase transition is some-
times used for transitions after equality or photon decoupling). Specific particle models have
been discussed in [77] and a model with a very late phase transition including a dark energy
component is presented in [78].
The maximally allowed duration β−1 and strength α of a phase transition is bounded by cos-
mic variance and depends on the time of the transition. We find that this bound constrains
these parameters only very weakly, excluding transitions that last longer than ¦ 1/6.8 Hubble
times in the case the transition is close to equality and ¦ 1/5 in the case the transition takes
place on galaxy scales. From the parameter set t∗,β and α we derived the GW abundance
per logarithmic frequency today and translated the bounds from structure formation into an
exclusion region in Fig. 13.
Our results are based on the following assumptions. First of all we looked at adiabatic per-
turbations only. We simplified our calculation further by neglecting anisotropy and vorticity
effects as well as current density effects. In principle the anisotropic stress could be also have
effects on the matter power spectrum directly. As a next step it would be reasonable to study
the possible effects of the anisotropic stress on the density perturbations in more details. For
example, its scalar part (corresponding to the quadruple term in the momentum distribution
caused by the bubble collision in the fluid) could constitute a difference in the Bardeen po-
tentials Ψ −Φ∼ Π analogous to neutrino and photon anisotropies and in this way even affect
linear perturbations. The effect of an extra anisotropic stress on the CMB and on curvature
perturbations has been discussed in [79] also using the 1+ 3 covariant formalism. Addition-
ally, one could consider effects of the anisotropic stress on a second perturbative level. A non
zero and transverse anisotropic stress tensor can appear in the non-linear Eqs. (5), (6) and
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the conservation laws Eqs. (A.20), (A.21) coupled to the acceleration Aa and the shear σab.
The acceleration A(2)a is thus not parallel to the density gradient any more which will make the
calculation much more complex when including the anisotropic stress.
In our derivation we assumed the equation of state parameter ω and the sound speed c2

s are

constant in time and space and also that δρδp =
δ2ρ
δ2p = c2

s . In general these parameters could
depend on space and time. However, on the one hand the decline ofω close to equality is very
gentle and on the other hand the change within a Hubble time is expected to be negligible. As
closer we get to matter-radiation equality ω departs more and more from being 1/3. A rough
estimation gives ω≈ 0.27 at t ≈ 1011 s.
In this work we found that only strong GWs sourced by phase transitions with a lot of super-
cooling can have effects on structure. In this regime the bubble dynamics is fixed to bubbles
expanding into vacuum and hence the only source of GWs are bubble collisions.
Note also that our study is limited to phase transitions on sub-horizon scales which complete
within a Hubble time β > H∗. Our results are very close to this boundary and hence effects
of the Hubble friction terms in the wave equation for the GWs and the density perturbations
might suppress the amplitudes even further, shrinking the constrained region in parameter
space.
For perturbations induced from phase transitions at high wavenumbers, it should be also men-
tioned that these will experience non-linear growth at later times. Hence, if there was an
impact at those scales, it will be overlaid by non-linear structure formation.
In future work we will look at more direct consequences of the phase transition on structure
formation. One idea is to take up on the work done Schmid et al. [25,26] and study the effect
on linear perturbations by changing sound speed. As mentioned, in [27] it was shown that the
sound speed does not change a lot in particle models with many scalar fields, but could depart
from 1/

p
3 in fermion rich models. Another possibility is to study the direct impact of the

anisotropic stress on linear perturbations, as mentioned before through the difference in the
Bardeen potentials Ψ−Φ∼ Π. Also, the huge amount of supercooling α� 1 in our calculation
turns the background cosmology from radiation dominated to vacuum energy dominated such
that the equation of motion of the linear density perturbations changes which could also lead
to direct effect on the matter power spectrum.
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A The 1+3-covariant formulation

Quantities in perturbation theory are in general gauge dependent, i.e. they change under
infinitesimal coordinate transformations x̃µ = xµ + εξµ, where ε � 1 is a small parameter
and ξµ ∈ R4 is some vector field. Under a linear perturbation an arbitrary tensor field S is
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split into its zeroth-order part3 S(0), also referred to as background value, and its first-order
part δS ≡ εS(1), i.e. S = S(0) + εS(1). Under a gauge transformation the latter perturbative
component is not simply mapped to itself but rather receives an additional term dependent of
the gauge vector ξµ according to

S(1)→ S(1) +LξS(0) , (A.1)

where this additional term is the Lie-derivative Lξ along ξµ of the background term S(0) [52,
80, p.59]. In order to make universally valid predictions for a perturbative physical model we
need to introduce gauge invariant quantities.
A tensor field is called gauge invariant to first order if for any vector field ξµ the Lie-derivative
vanishes LξS(0). Based on the gauge transformation rule in Eq. (A.1) the Stewart & Walker
lemma [81] states that a tensor is gauge invariant4 if and only if it either vanishes in the
background, is a constant scalar on the background or can be written as a sum of products of
Kronecker-deltas with constant coefficients [52].
In the spirit of this lemma, Ellis, Bruni and co-authors developed the so called 1+ 3 covariant
formulation of gravity [22,23] based on earlier papers by Heckmann and Schücking [18], Ray-
chaudhuri [19], Ehlers [20] and Hawking [21]. In this section we will follow closely ref. [28].
The advantage of this approach resides in the simple geometric meaning of the central vari-
ables and their gauge invariance which is due to the fact that they vanish in a spatially homoge-
neous background, for example in the background of a Friedmann-Lemaître-Robertson-Walker
(FLRW) metric. These variables are constructed by decomposing the spacetime into the direc-
tion of the four-velocity of a comoving observer that follows the fluid flow lines xa and the
projection tensor into the instantaneous rest space of ua,

ua =
dxa

dτ
and hab := gab + uaub , (A.2)

with the proper time τ, uaua = −1 and gab being the metric tensor with signature
(− + ++). We follow the convention of the literature and use Latin indices for four-vectors
a, b, c, · · ·= 0, 1,2, 3 and α,β ,γ · · ·= 1, 2,3 for spacelike three-vectors.
The two tensors are perpendicular projectors

habub = gabub + uaubub = ua − ua = 0 (A.3)

that project a spacetime quantity onto the flow lines or in the orthogonal direction which
enables a unique splitting into irreducible timelike and spacelike components (establishing
the name 1+ 3).
Exemplarily the time- and space derivative of a general tensor S cd...

ab... is obtained by projecting
the covariant derivative ∇a:

Ṡab...
cd... := ue∇eSab...

cd... and DeSab...
cd... := he

sha
f hq

c · · ·∇sS f ···
q··· . (A.4)

The next step is to describe the kinematics of an observer in this framework under the influence
of gravity and matter represented by the energy momentum tensor Tab. We will set the speed
of light c = 1 and the gravitational coupling κ := 8πG = 1, where G is the gravitational
constant.

3Subscripts in parentheses denote the perturbative order.
4Unless stated otherwise, we mean by gauge invariant always gauge invariant to linear order.
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A.1 Kinematic variables

In the 1+3-covariant approach to gravity, the kinematic quantities that determine the motion of
a test particle are the tracefree shear tensorσab := D〈bua〉, the antisymmetric (hence tracefree)
vorticity tensorωab := D[bua], the volume expansion scalarΘ := Daua and the four-acceleration
Aa = ub∇bua, which emerge from the irreducible decomposition of the covariant derivative of
the four-velocity

∇bua = σab +ωab +
1
3
Θhab − Aaub . (A.5)

The here used brackets are defined as

S(ab) :=
1
2
(Sab + Sba) , S[ab] :=

1
2
(Sab − Sba) , (A.6)

S〈ab〉 := h c
a h d

b Scd −
1
3

hcdScdhab , V〈a〉 := h b
a Vb . (A.7)

Useful identities for these objects are collected in Appendix A.7. In an FLRW universe at zeroth-
order the shear, the vorticity and the acceleration vanish and hence the Stewart & Walker
Lemma provides gauge invariant quantities [82]. Moreover in a spatially homogeneous model
like the FLRW metric the background value of the scalar Θ(0)(t) depends solely on time and
thus the spatial derivative DaΘ is equally gauge-invariant.

A.2 Gravity

In general relativity gravitation arises from intrinsic properties of the spacetime manifold and
matter. Einstein’s field equations formulate this relation by

Rab −
1
2

Rgab = κTab −Λgab , (A.8)

where Rab and R are the Ricci tensor and scalar, respectively, and Λ is the cosmological con-
stant. The Ricci tensor is the contraction of the Riemann tensor Rabcd which encodes the
curvature of the spacetime manifold. The latter can be split into two parts

Rabcd = Cabcd +
1
2
(gacRbd + gbdRac − gbcRad − gadRbc)−

1
6

R(gac gbd − gad gbc) . (A.9)

While Ricci tensor Rab and scalar R express volume changes due to a local matter source
and hence reflect the local part of the gravitational field, the Weyl tensor Cabcd

5 contains
information about the propagating degrees of freedom. Using the four-velocity vector, Cabcd
can be decomposed further into the so called electric and magnetic parts [83,84]

Eab = Cacbducud and Hab =
1
2
εcd

a Ccd beu
e, respectively . (A.10)

Both tensors are symmetric, tracefree and gauge invariant due to C (0)abcd = 0 in the FLRW
background. As we shall see, the propagation of GWs is mainly governed by the magnetic part
Hab while the electric part Eab is closely related to tidal forces.
Having discussed long range gravitational effects, let us focus on local gravity which is ex-
pressed by the Ricci tensor and the energy-momentum tensor. For a general fluid the energy-
momentum tensor decomposes with respect to the fundamental timelike velocity field into

Tab = ρuaub + 2u(aqb) + phab +πab , (A.11)

5The Weyl tensor shares all symmetries with the Riemann tensor Rabcd = Rcdcb, Rabcd = R[ab][cd] and Ra[bcd] = 0
and is, by construction, additionally tracefree.
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where ρ := T abuaub is the energy density, qb := h b
a Tbcu

c is the energy current density,
p := Tabhab/3 is the pressure and πab := T〈ab〉 the trace-free anisotropic stress. While both
the anisotropic stress and the energy current density again vanish in a FLRW universe and are
thus gauge invariant, the pressure and the energy density depend only on time and hence their
spatial gradients are also gauge invariant to first order.
Rewriting Einstein’s equation as Rab = κ(Tab −

1
2 Tab) + Λgab leads to three equations that

relate the Ricci tensor and the matter-fields [28],

Rabuaub = κ
1
2
(ρ + 3p)−Λ , (A.12)

ha
bRbcu

c = −κqa , and (A.13)

ha
chb

dRcd = κ
1
2
(ρ − p)hab + κπab +Λhab . (A.14)

A.3 Equations of motion

As discussed in the previous sections, the 1 + 3 covariant approach identifies gauge invari-
ant components of the energy-momentum tensor, the Riemann tensor and the four velocity
gradient with a clear geometrical and physical meaning. The equations of motion for these
variables are inferred from the Bianchi and Ricci identities and are accompanied by constraint
equations. The equations quoted in this section have been derived in [85, 86], for details see
also the review [28]. Using Eq. (A.14) and the Bianchi identities for the Weyl tensor

∇d Cabcd =∇[bRa]c +
1
6

gc[b∇a]R (A.15)

one finds the non-linear propagation equations of the electric and magnetic components of the
Weyl-tensor,

Ė〈ab〉 = −ΘEab −
1
2
κ (ρ + p)σab + curl Hab −

1
2
κπ̇ab −

1
6
κΘπab −

1
2
κD〈aqb〉 − κA〈aqb〉

+3σ〈a
c
�

Eb〉c −
1
6
κπb〉c

�

+ εcd〈a

�

2AcHb〉
d −ωc

�

Eb〉
d +

1
2
κπb〉

d
��

, (A.16)

Ḣ〈ab〉 = −ΘHab − curl Eab +
1
2
κ curlπab + 3σ〈a

cHb〉c −
3
2
κω〈aqb〉

−εcd〈a

�

2Ac Eb〉
d −

1
2
κσc

b〉q
d +ωcHb〉

d
�

, (A.17)

while the spacelike constraints become

DbEab = κ
�

1
3

Daρ −
1
2

Dbπab −
1
3
Θqa +

1
2
σabqb

�

− 3Habω
b + εabc

�

σb
d H cd −

3
2
κωbqc

�

(A.18)

and

DbHab = κ(ρ + p)ωa −
1
2
κ curl qa + 3Eabω

b −
1
2
κπabω

b − εabcσ
b

d

�

Ecd +
1
2
κπcd

�

.

(A.19)

Here, the vorticity vector ωa := εabcω
bc/2 has been introduced together with the projection

εabc := ηabcdud of the totally antisymmetric tensor ηabcd .
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Table 1: Perturbative expansion of the central quantities in the 1+3 covariant theory
in a FLRW background and their first order gauge invariant version. In the third
column the first term refers to the zeroth-order component and the second term to
δS ≡ εS(1). Since for most quantities the zeroth-order part is zero and hence S = δS
we often neither use the superposed index nor the δ-symbol for their first-order term.

Variable Symbol
Perturbative Expansion

S = S(0) + εS(1)
First order GI

Energy density ρ ρ(t) +ρ(x, t) Daρ(x, t)
Pressure p p(t) + p(x, t) Dap(x, t)

Anisotropic stress π 0+π(x, t) π(x, t)
Energy density current q 0+ q(x, t) q(x, t)

Volume expansion Θ Θ(t) +Θ(x, t) DaΘ(x, t)
Shear σ 0+σ(x, t) σ(x, t)

Vorticity ω 0+ω(x, t) ω(x, t)
Acceleration A 0+ A(x, t) A(x, t)

Long range grav. field (Weyl tensor) C 0+ Cabcd(x, t) Cabcd(x, t)

From the Bianchi identity expressing the conservation of energy and momentum ∇aTab = 0
we find the propagation equations for the energy density and the energy flux,

ρ̇ = −Θ(ρ + p)−Daqa − 2Aaqa −σabπab , (A.20)

q̇〈a〉 = −Dap− (ρ + p)Aa −
4
3
Θqa − (σab +ωab)q

b −Dbπab −πabAb . (A.21)

Finally the Ricci-identities 2∇[a∇b]uc = Rabcdud give the Raychaudhuri equation for the vol-
ume expansion and the propagation equations for the shear and the vorticity

Θ̇ = −
1
3
Θ2 −

1
2
κ (ρ + 3p)− 2(σ2 −ω2) +DaAa + AaAa +Λ , (A.22)

σ̇〈ab〉 = −
2
3
Θσab −σc〈aσ

c
b〉 −ω〈aωb〉 +D〈aAb〉 + A〈aAb〉 − Eab +

1
2
κπab , (A.23)

ω̇〈a〉 = −
2
3
Θωa −

1
2

curl Aa +σabω
b . (A.24)

These identities also imply the following constraints for the shear, the vorticity and the mag-
netic component of the Weyl tensor

Dbσab =
2
3

DaΘ+ curlωa + 2εabcA
bωc −κqa , Daωa = Aaω

a, (A.25)

Hab = curlσab +D〈aωb〉 + 2A〈aωb〉 . (A.26)

These equations allow us to find the behavior of density perturbations and GWs on a FLRW
background. For a detailed derivation of these equations see [28]. In table 1 we have sum-
marized the central quantities of the 1 + 3 approach, their interpretation and their gauge
properties.
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A.4 Linear density perturbations

Spatial inhomogeneities in the matter density are described by the spatial comoving fractional
gradient and the comoving expansion gradient [22]

∆a :=
a
ρ

Daρ , (A.27)

Za := aDaΘ , (A.28)

which are both orthogonal to the fluid flow. In a spatially homogeneous background they
are gauge invariant because ρ and Θ depend only on time such that the spatial gradient
Daρ|background = Daρ(t) = 0 vanishes in the background. The time- and space dependent
variations of over- and under densities which are expressed by the orthogonal projected di-
vergence of the comoving fractional gradient aDa∆a =:∆ are closely related to the Laplacian
of the density contrast δ := δρ/ρ. However, besides the usual over- and under densities also
distortions ∆〈ab〉 and vorticity ∆[ab] can be introduced by the splitting

aDb∆a =
1
3
∆hab +∆〈ab〉 +∆[ab] . (A.29)

Taking into account the equations and constraints from the Bianchi identities, spatial inhomo-
geneities evolve according to the full non-linear equations (5) and (6).
As these equations are too complex to solve we seek to perturb the equations to first order.
Therefore, we have to choose a background model, the FLRW metric, which reads in spherical
coordinates

ds2 = −dt2 + a2(t)

�

d2r
1− Kr2

+ r2dΩ(φ,θ )

�

. (A.30)

The curvature parameter K can be −1, 0,+1. In this background the volume expansion is
related to the Hubble parameter H(t) := ȧ/a by Θ(0)(t) = 3H(t) and thus Raychaudhuri’s
equation, the continuity equation and the Friedmann equation read

Ḣ = −H2 −
κ

6
(ρ + 3p) +

1
3
Λ , ρ̇ = −3H(ρ + p) , and (A.31)

H2 =
κ

3
ρ −

K
a2
+

1
3
Λ. (A.32)

The evolution equation for linear density perturbations in a barotropic perfect fluid p =ωρ in
a FLRW universe Θ = 3H(t) with zero vorticityωab = 0 is then obtained from these equations
setting the energy current density and the anisotropic stress to zero. This leads to [23]

∆̈=− 2
�

1− 3ω+
3
2

c2
s

�

H∆̇

+ κ

�

�

1
2
+ 4ω− 3c2

s −
3
2
ω2
�

ρ + (5ω− 3c2
s )Λ−

12(ω− c2
s )K

a2

�

∆

+ c2
s D2∆ . (A.33)

Since for first order gauge invariant variables the zeroth order is zero we omit their perturba-
tive labels and since appearing ρ’s, p’s and Θ’s always occur together with a gauge invariant
variable they must be of zeroth order such that we can also omit their superscripts.
It is useful to convert this equation into k-space by expanding ∆ in scalar harmonics Qk such
that ∆ =

∫

k∆kQk. The latter ones have the properties Q̇k = 0 and D2Qk = −
k2

a2Qk (see
appendix B for more information). In a spatially flat spacetime K = 0 the scalar harmonics
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are plane waves. For a radiation dominated, flat universe we have ω= c2
s = 1/3, H = 1/(2t),

a(t) = a0

p

t/t0, κρ ≡ ρ(0) = 3/(4t2) and K = 0 such that in a comoving frame the dynamical
equation for the k-th density perturbation mode yields

d2∆k

dt2
+

1
2t

d∆k

dt
−

1
2t2

�

1−
1
6

�

k
a(t)H(t)

�2
�

∆k = 0 , (A.34)

which during radiation domination yields an oscillatory solution on sub-horizon scales and a
linearly growing solution on super-horizon scales. During matter domination all modes grow
with ∼ t2/3.

A.5 Linear metric perturbations: Gravitational waves

In the 1+3 covariant approach long range gravity effects are incorporated by the Weyl tensor
and hence GWs are monitored by means of the transverse and tracefree components of its
electric and magnetic parts. Linearizing the propagation equations Eq. (A.16), Eq. (A.17) and
the constraints Eq. (A.18), Eq. (A.19) these equations read [87]

Ėab = −ΘEab + curl Hab −
1
2
κ

�

(ρ + p)σab −D〈aqb〉 + π̇ab +
1
3
Θπab

�

, (A.35)

Ḣab = −ΘHab − curl Eab −
1
2
κπab , (A.36)

DbEab = κ
�

1
3
Θqb +

1
3

Daρ +
1
2

Daπab

�

and DbHab =
1
2
κ [2(ρ + p)ωa + curl qb] . (A.37)

Hence in the absence of vorticity, the electric and magnetic parts of the Weyl tensor that are
not sourced by density gradients (Daρ = DaΘ = 0) are transverse tensors for a perfect fluid
(πab = qa = 0) on a FLRW background (Θ = 3H(t)) and due to Eq. (A.25) this is also true for
the shear

DaEab = 0 , DaHab = 0 and Daσab = 0 . (A.38)

Using the linearized equations of motion for the shear Eq. (A.23) and the Weyl tensors, the
latter ones can be eliminated from the discussion, see [29], to give the propagation equation

σ̈ab + 5H(t)σ̇ab +
1
2
κρ(1− 3ω)σab −D2σab = 0 , (A.39)

in the absence of curvature K = 0.

A.6 Connection to Bardeen-formalism and Newtonian theory

The standard formalism frequently used for studying structure formation is based on the ap-
proach introduced by Bardeen [88]. In reference [52] Bruni et al. gave the transformation
equations between the 1+3-formalism presented here, and the 3+1-slicing used by Bardeen.
For later use and to connect to the more common formalism of Bardeen let us briefly re-
peat here the transformation rules. Primes denote in the following the conformal derivative
dη= dt/a. We introduce the perturbed metric parametrized as

ds2 = a2(η)
�

−(1+ 2A)dη2 − 2Bαdηdxα + [(1− 2D)δαβ + 2Eαβ]dxαdxβ)
	

, (A.40)

or gab = ηab +δgab = a2

�

ηab +

�

−2A −Bα
−Bα −2Dδαβ + 2Eαβ ,

��

,

where D = 1/6 ·δga
a and δαβ Eαβ = 0. The vector B is commonly split into a curl free, longitu-

dinal part∇×B|| = 0 and a source free, transverse∇·B⊥ = 0 such that B= B||+B⊥. While the
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first part can be written in terms of a scalar potential B the latter one originates from a vector
potential. Similarly the tensor E can be split into the components Eαβ = E||

αβ
+E⊥

αβ
+ET

αβ
, where

the first two again can be derived from a scalar and a vector potential E and E, respectively,
and the last one fulfils the transversity conditions for tensors

E||
αβ
= (∂α∂β −

1
3
δαβ∇2)E , (A.41)

E⊥αβ = −
1
2
(∂β Eα + ∂αEβ) with ∇ · E= 0 , (A.42)

δαγ∂γET
αβ = 0 and δαβ ET

αβ = 0 . (A.43)

The invariant form of the density variation δ := δρ/ρ under a gauge transformation
xa→ xa + εξa reads

δ̃ = δ+ 3
a′

a
(1+ω)ξ0 . (A.44)

With the splitting introduced above and the scalar potential B|| =: −∇B the gauge invariant
form of the scalar perturbations in terms of the metric perturbation parameters is

δ̃ = δ− 3(1+ω)
a′

a
(v − B) , (A.45)

where the fluid velocity perturbation is δuα =: 1/a · vα, which also splits like the vector B in
v = v|| + v⊥ with the potential v|| = −∇v. A gauge is specified by choosing values for v and
B. Similarly, the other perturbative quantities can be made gauge invariant. The projected
comoving density gradient ∆a is

∆= a∇δ̃− 3a′(1+ω)Vc , (A.46)

where Vc := v⊥ −B⊥. Hence its divergence yields

∆=∇2δ̃ , (A.47)

due to ∇ · v⊥ = ∇ · B⊥ = 0. Eq. (A.47) is the desired connection between the common gauge
invariant Bardeen variable for the density perturbation and the 1+ 3 scalar variations.
The shear tensorσαβ , describing GWs in the 1+3 formalism, is closely related to the transverse
and tracefree part of the tensor perturbation E⊥

αβ
which equals the commonly used hαβ in the

transverse tracefree gauge and is gauge invariant by itself. The shear tensor expressed in terms
of Bardeen parametrized metric perturbation reads

σαβ = a(∇αβVS +∇(αVS β) + ET ′
αβ) , (A.48)

where ∆αβ := ∇α∇β −
1
3δαβ∇

2 and VS := v − D′. For the purpose of this work we will
only need the relations between the projected density gradient and the shear with Bardeens
variables given in Eqs. (A.47) and (A.48), respectively. Analog expressions for other quantities
can be found in [52].

A.7 Important identities in 1+3 covariant theory

The orthogonal projected gradient and the time derivative of the orthogonal projection oper-
ator hab meet the relations [28,52]

Dahbc = 0 , (A.49)

Dahab = ubΘ , (A.50)

ḣab = ubAa + uaAb . (A.51)
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Calculating the projected gradient of the four velocity gives

Dbua = σab +ωab +
1
3
Θhab . (A.52)

Also important are the commutation laws for the derivatives which we simply repeat from
reference [28]. For a scalar f , a vector va and a tensor Sab we have for the spatial derivative

D[aDb] f = −ωab ḟ , (A.53)

D[aDb]vc = −ωab v̇〈a〉 +
1
2
Rdcbavd , (A.54)

D[aDb]Scd = −ωabhc
ehd

f Ṡe f +
1
2
(RecbaSe

d +Red baSc
e) , (A.55)

where Rabcd is the Riemann tensor in the local rest space of the observer.
Similarly the time derivative and the space derivative do not commute in general

Da ḟ − ha
b ˙(Db f ) = − ḟ Aa +

1
3
ΘDa f +Db f

�

σb
a +ω

b
a

�

. (A.56)

B Harmonic Decomposition

It is convenient to expand all scalars, vectors and tensors in harmonic functions. No matter
if scalar harmonic Qk, vector harmonic Qk,a or tensor harmonic Qk,ab, their defining prop-
erty is to be an eigenfunction of the orthogonal projected Laplace operator (Laplace-Beltrami
equation)

D2Qk,{ ,a,ab} = −
k2

a2
Qk,{ ,a,ab} , (B.1)

with eigenvalue −k2/a2. In case of a flat space K = 0 the orthogonal projected Laplace oper-
ator D2 reduces to the usual Laplace operator ∇2/a2 such that the harmonic functions Q are
Fourier transforms [80,89]. Scalar, vector and tensor modes thus transform like

f (x, t) =

∫

dk fk(t)Qk , V⊥a (x, t) =

∫

dk
∑

m=−1,1

V⊥ [m]k Q[m]k,a , (B.2)

ST
ab(x, t) =

∫

dk
∑

m=−2,2

ST [m]
k Q[m]k,ab , (B.3)

with

Qk = exp (ik · x) ,

Q[±1]
k,a =

−i
p

2
(e1 ± ie2)a exp (ik · x) ,

Q[±2]
k,ab = −

√

√3
8
(e1 ± ie2)a(e1 ± ie2)b exp (ik · x) ,
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where e1 and e2 are orthonormal basis vectors. The scalar part of a vector and the scalar- and
vector part of a tensor expand like

V ||a =

∫

dk
�

−i
ka

k

�

VkQk , (B.4)

S||ab =

∫

dk
�

−
kakb

k2
+

1
3

hab

�

SkQk , (B.5)

S⊥ab =

∫

dk
∑

m=−1,+1

�

−
i

2k

�

(kaS⊥ [m]k Q[m]k,b + kbS⊥ [m]k Q[m]k,a ) , (B.6)

respectively.

C Decay of the source after the FoPT

We will now show that the GW source decays sufficiently fast after the PT such that we can take
the right hand side of Eq. (82) to zero. We first perform the adimensional change of variables

δ̃′′(κ,τ) +
a[τ]′

a[τ]
δ̃′(κ,τ) +

1
3

a2
∗

a[τ]2
κ2δ̃(κ,τ) = 8

H[τ]2

H2
∗

a4
∗

a[τ]4
·ΩGW(κ,τ) . (C.1)

Note thatΩGW(κ,τ > τ f ) = ΩGW(κ,τ f ) := ΩGW(κ) is a constant in time, where τ f = τ∗+1/rβ
is the time when the PT ends. We can now solve the homogeneous part of Eq. (C.1) for a
general a[τ]:

δ̃h(κ,τ > τ f ) = Cκ cos





a∗κp
3

∫ τ

τ f

1
a[τ′]

dτ′



+ Dκ sin





a∗κp
3

∫ τ

τ f

1
a[τ′]

dτ′



 , (C.2)

which in the radiation dominated universe simplifies to a(τ) = a∗
q

τ
τ∗

and H(τ) = H∗
1

2τ

δ̃h(κ,τ > τ f ) = Cκ cos
�

2τ∗κp
3

�p
τ−

p

τ f

�

�

+ Dκ sin
�

2τ∗κp
3

�p
τ−

p

τ f

�

�

. (C.3)

This is the solution sourced solely by the GW energy during the PT. Turning now to the solution
sourced by the GW after the PT, using the variation of parameters method we find

δ̃(κ,τ > τ f ) =δ̃h(κ,τ > τ f ) + δ̃nh(κ,τ > τ f ) , (C.4)

δ̃nh(κ,τ > τ f ) =CΩ(κ,τ) cos
�

2
p
τ∗κp
3

�p
τ−

p

τ f

�

�

+ DΩ(κ,τ) sin
�

2
p
τ∗κp
3

�p
τ−

p

τ f

�

�

, (C.5)

CΩ(κ,τ) =−
∫ τ

τ f

p
38 H[τ′]2

H2
∗

a4
∗

a[τ′]4 ·ΩGW(κ)
Ç

τ′

τ∗
sin

�

2κ
p
τ∗

�p
τ′−
p
τ f

�

p
3

�

κ
dτ′ , (C.6)

DΩ(κ,τ) =

∫ τ

τ f

p
38 H[τ′]2

H2
∗

a4
∗

a[τ′]4 ·ΩGW(κ)
Ç

τ′

τ∗
cos

�

2κ
p
τ∗

�p
τ′−
p
τ f

�

p
3

�

κ
dτ′ . (C.7)
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For demonstration purposes we will now recombine the trigonometric functions into a single
one with a phase by using the identity

C cos x + D sin x = Asin(x +φ) , (C.8)

where the new amplitude is given by A =
p

C2 + D2 and the relative phase φ = arctan C
D .

Applying this identity into Eqs. (C.3) and (C.5) we obtain

δ̃h(κ,τ > τ f ) = Aκ sin
�

2τ∗κp
3

�p
τ−

p

τ f

�

+φκ

�

, (C.9)

δ̃nh(κ,τ > τ f ) = AΩ(κ,τ) sin
�

2
p
τ∗κp
3

�p
τ−

p

τ f

�

+φΩ

�

. (C.10)

We now compare the relative sizes of the amplitudes Aκ, the amplitude of the solution sourced
by the gravitational wave energy at t f , and AΩ(κ,τeq), the amplitude of the solution sourced
by the gravitational wave energy after t f at teq. As can be seen in Fig. (14), the homogeneous
solution dominates and thus taking the right hand side of Eq. (82) to zero is a sound approxi-
mation.

100 101 102

κ = ck
H∗a∗

101

102

A
κ
/
A

Ω

Figure 14: Ratio between the amplitudes in Eqs. (C.9) and (C.10) evaluated at teq
for a benchamark strong PT with α → ∞, rβ = 1 and t∗ = 1010 s. Note that the
ratio is always bigger than 20, meaning that the solution sourced by the decaying
GW source after t f can be safely neglected in Eq. (82).

D Analytical solution of the GW sourced wave equation in the
small and high wave number limit

We start from the source given by Eq. (64). By performing the variable tranformations t = H∗τ
and k = H∗a∗

c κ and by slightly abusing the notation, we obtain
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L(τ) =
4vβ
H2
∗
(τ−τ∗)(τ f −τ) , (D.1)

f 2(κ,τ) = L(τ)2
vε
β

1+
�

κ
3 L(τ)

�2

1+
�

κ
3 L(τ)

�2
+
�

κ
3 L(τ)

�6
, (D.2)

∆ (κ,τ) = κ3
�

rβ
�2
(τ−τ∗)2 f 2

�

κ,
τ+τ∗

2

�

, (D.3)

Ω
log
GW

�

κ′,τ
�

=
�

rβ
�−2 α2

(1+α)2
∆ (κ,τ) , (D.4)

ΩGW (κ,τ) =

∫ κ

κmin

Ω
log
GW

�

κ′,τ
�

d logκ′ . (D.5)

Then, we want to expand the quantity ΩGW (κ,τ) around κ = 0 and κ→∞. The expansion
around κ= 0 can simply be done by first expanding Ωlog

GW and then integrating:

Ωlow
GW = C low

GW (κ− κmin)
3(τ∗ −τ)4(τ+τ∗ − 2τ f )

2 , with (D.6)

C low
GW =

1
3

rβ
α2

(1+α)2
ε . (D.7)

Note, however, that the same cannot be applied for the high κ limit, since the integration of
Ωlow

GW will necessarily run over small values of κ′. In order to solve this issue, we first obtain
the value of κpeak defined as

�

Ω
log
GW(κpeak,τ f )

�low
=
�

Ω
log
GW(κpeak,τ f )

�high
→ κcross = 3

H∗
β

c
v

1
(τ f −τ∗)2

, (D.8)

which is the value of κ for which the low and high κ limits of the GW energy density intersect
at τ= τ f . Then for the high κ approximation of ΩGW we can write

Ω
high
GW =

∫ κpeak

κmin

�

Ω
log
GW(κ,τ)

�low
d logκ′ +

∫ κ

κpeak

�

Ω
log
GW(κ,τ)

�high
d logκ′

= C low
GW (κpeak − κmin)

3(τ∗ −τ)4(τ+τ∗ − 2τ f )
2 + Chigh

GW
κ−κmin

κκmin

1
(τ+τ∗ − 2τ f )2

,

(D.9)

and Chigh
GW = 81 c

v
H3
∗
β3

α2

(1+α)2εκeff.
In these two regimes the differential equation Eq. (84) can be solved analytically. Note,
that the equation is only valid during the FPT, i.e. τ∗ < τ < τ f . The homo-
geneus part of the equation is given by δ̃′′(κ,τ) + 1

3κ
2δ̃(κ,τ) = 0 with a trivial solution:

δ̃h(κ,τ) = Aκ cos
�

κp
3
τ
�

+ Bκ sin
�

κp
3
τ
�

, where Aκ and Bκ are given by the initial condi-
tions. We can then use the variation of parameters method to obtain the solution to the
non-homogeneous solution which is given by

δ(2)(κ,τ) = δ(2)h (κ,τ)+
8
p

3
κ

�

sin
�

κ
p

3
τ

�

∫ τ f

τ∗

cos
�

κ
p

3
τ̃

�

ΩGW(τ̃,κ)dτ̃

− cos
�

κ
p

3
τ

�

∫ τ f

τ∗

sin
�

κ
p

3
τ̃

�

ΩGW(τ̃,κ)dτ̃

�

. (D.10)
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Since ΩGW(τ,κ) is 0 for times before the phase transition the non-homogeneus part is 0 when
τ < τ∗. The lower limit of the integral becomes τ∗ if τ > τ∗. If we assume that the source
decays quickly after τ f the upper limit of the integral becomes τ f if τ > t f . Therefore, the
expression evaluated at τ > τ f , i.e. right after the end of the phase transition, becomes

δ̃(κ,τ > τ f ) = δ̃h(κ,τ) +
8
p

3
κ

�

sin
�

κ
p

3
τ

�

∫ τ f

τ∗

cos
�

κ
p

3
τ̃

�

ΩGW(τ̃,κ)dτ̃

− cos
�

κ
p

3
τ

�

∫ τ f

τ∗

sin
�

κ
p

3
τ̃

�

ΩGW(τ̃,κ)dτ̃

�

.

(D.11)

We can see that before τ∗, δ̃ behaves as an harmonic oscillating function with constants Ak and
Bk given by an initial value. During the phase transition, the time dependence of δ̃ will be a
complicated function. However, for times τ > τ f the integrals become constants in time (they
still depend on κ) and therefore δ̃ is again an harmonic oscillation with modified amplitudes
for each κ.
We can now solve these integrals in the limits for low and high κ by substituting ΩGW in
Eq. (D.11) by Eqs. (D.7) and (D.9). The solution for δ̃(2) low becomes

δ̃low(κ,τ > τ f ) = δ̃h(κ,τ) + δ̃GW (κ,τ)

=
�

Aκ + Alow
GWκ

�

cos
�

κτ
p

3

�

+
�

Bκ + Blow
GWκ

�

sin
�

κτ
p

3

�

, (D.12)

where Alow
GWκ and Blow

GWκ are the ’modified’ amplitudes due to the effect of the FPT in the low k
limit. They are given by

Alow
GWκ =−

24C low
GW

�

κ3 −κ3
min

�

κ8
�

2
p

3r−1
β κ

�

2160sin
�

κτ∗p
3

�

+
�

1080+ 36r−2
β κ

2 + r−4
β
κ4
�

sin
�κτ f
p

3

��

+
�

19440+ 216r−2
β κ

2 − 6r−4
β
κ4 − r−6

β κ
6
�

cos
�κτ f
p

3

�

+ 432
�

2r−2
β κ

2 − 45
�

cos
�

κτ∗p
3

��

, (D.13)

BGWκlow =
24C low

GW

�

κ3 − κ3
min

�

κ8
�

2
p

3r−1
β

�

2160κ cos
�

κτ∗p
3

�

+κ
�

1080+ 36r−2
β κ

2 + r−4
β

�

cos
�κτ f
p

3

��

+
�

−19440− 216r−2
β κ

2 + 6r−4
β
κ4 + r−6

β κ
6
�

sin
�κτ f
p

3

�

+ 432
�

45− 2r−2
β κ

2
�

sin
�

κτ∗p
3

��

. (D.14)

Analogously, for high κ we have

δ̃high(κ,τ > τ f ) = δ̃h(κ,τ) + δ̃high
GW (κ,τ)

=
�

Aκ + Ahigh
GWκ

�

cos
�

κτ
p

3

�

+
�

Bκ + Bhigh
GWκ

�

sin
�

κτ
p

3

�

, (D.15)
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with the constants Ahigh
GWκ and Bhigh

GWκ given by

Ahigh
GW = Alow

GWκpeak
−

4Chigh
GW (κ− κpeak)

3
p

3κ2κpeak

�

6rβ sin
�κτ f
p

3

�

− 3rβ sin
�

κτ∗p
3

�

+2
p

3κ

��

Ci

�

κ
p

3rβ

�

−Ci

�

2κ
p

3rβ

��

cos

�

κ(2τ f −τ∗)
p

3

�

+

�

Si

�

κ
p

3rβ

�

− Si

�

2κ
p

3rβ

��

sin

�

κ(2τ f −τ∗)
p

3

�

��

, (D.16)

Bhigh
GW = Blow

GWκpeak
−

4Chigh
GW (κ− κpeak)

3
p

3κ2κpeak

�

6rβ cos
�κτ f
p

3

�

− 3rβ cos
�

κτ∗p
3

�

+ 2
p

3κ

��

Ci

�

2κ
p

3rβ

�

−Ci

�

κ
p

3rβ

��

sin

�

κ(2τ f −τ∗)
p

3

�

+

�

Si

�

κ
p

3rβ

�

− Si

�

2κ
p

3rβ

��

cos

�

κ(2τ f −τ∗)
p

3

�

��

. (D.17)

Here the functions Ci(x) and Si(x) are the CosIntegral and SinIntegral functions, respectively,
defined by Ci(x) =

∫ x
0

cos t
t d t and Si(x) =

∫ x
0

sin t
t d t.

In order to compare these results with the numerical solution, we evaluate Eqs. (D.12) and
(D.15) in τ = τ f . As a a benchmark scenario, we choose extreme values for the phase tran-
sition parameters: β = H∗, α→∞, v = c, keff = 1, ε = 0.01, which yields κpeak = 3. In Fig.
15 we show the analytic results in the two κ-regimes compared to the numerical solution for
zero initial conditions.
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Figure 15: Comparison between the analytic solution for the density perturbations
at second order δ̃(2) evaluated at τ = τ f in the low- and high κ limit with the full
numerical solution.
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