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Abstract

In the context of quantum field theory (QFT), unstable particles are associated with
complex-valued poles of two-body scattering matrices in the unphysical sheet of rapidity
space. The Breit-Wigner formula relates this pole to the mass and life-time of the particle,
observed in scattering events. In this paper, we uncover new, dynamical signatures of
unstable excitations and show that they have a strong effect on the non-equilibrium prop-
erties of QFT. Focusing on a 1+1D integrable model, and using the theory of Generalized
Hydrodynamics, we study the formation and decay of unstable particles by analysing the
release of hot matter into a low-temperature environment. We observe the formation of
tails and the decay of the emitted nonlinear waves, in sharp contrast to the situation
without unstable excitations. We also uncover a new phenomenon by which a wave of
a stable population of unstable particles may persist without decay for long times. We
expect these signatures of the presence of unstable particles to have a large degree of
universality. Our study shows that the out-of-equilibrium dynamics of many-body sys-
tems can be strongly affected not only by the spectrum, but also by excitations with finite
life-times.
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1 Introduction

Physics far from equilibrium has received a large amount of interest recently. It is now under-
stood that non-equilibrium dynamics offers a powerful new way of studying strongly correlated
many-body systems, as it brings out properties that can be hidden in equilibrium situations.
This viewpoint has gained strong traction, particularly in one dimension [1-8]. It is interest-
ing to apply this principle to quantum field theory (QFT) far from equilibrium. A paradigm
is that the essence of quantum dynamics in QFT is accessed by scattering theory, describing
how few particles interact [9-11]. But scattering events — perhaps the simplest example of
non-equilibrium dynamics — mainly teach us about the vacuum state, and what happens at
low densities. Further, in the context of applications to many-body systems, scattering exper-
iments are difficult to implement. Dynamics with finite energy and spatial particle densities
can be argued to be more common and accessible, and to have a richer physics.

A case in point is the spectrum of asymptotic particles. This is a basic ingredient of
scattering theory, but it is not sufficient in order to fully understand finite-density physics.
Other emergent structures of QFT may play an important role. One example is the phe-
nomenon of confinement, which taps into the internal structure of asymptotic particles. As
found in [12-14] this and other qualitatively similar [15] phenomena can be linked quite ex-
plicitly to the non-equilibrium dynamics that follows so-called quantum quenches [16, 17].
Another phenomenon, only indirectly observed in scattering events, is the existence of parti-
cles with finite life-times, which are absent from the asymptotic spectrum. Technically, they
appear as poles in the unphysical sheet of the analytically continued scattering phase func-
tion [11]. The Breit-Wigner formula allows one to evaluate their mass and life-time from the
position of this pole [18]. At nonzero temperatures, physical intuition suggests that unstable
particles are constantly formed and destroyed, and thus truly exist in finite proportions. As
such, they may be expected to have a strong effect on the dynamics far from equilibrium at
finite densities.

In this paper, we argue that this is the case, by studying the propagation of nonlinear
waves at finite energy densities. We focus on a 1+1D integrable QFT, which admits one unsta-
ble particle interpreted as a loosely bound state of two different asymptotic particle types. We
analyse the setup where a high-temperature finite region, with enough energy to form a large
number of unstable particles, is released into a colder environment, with few unstable parti-
cles. We study the emitted waves and their large-time behaviour by numerically solving the
associated hydrodynamic equations. At the energies considered, asymptotic particles have ve-
locities extremely near to the speed of light (set to ¢ = 1). Then, the standard picture, without
unstable particles, is that after the splitting of the initial high-temperature region, long-lived,
well-localised regions of higher energy density propagate at unit velocity in both directions
(if the colder environment is the vacuum, over extremely long times, the waves would slowly
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decompose into their asymptotic particle content). We argue that the formation, propagation
and decay of unstable particles drastically modifies this dynamics. Three main observations are
made: (a) the emitted waves partially decay after the splitting of the initial high-temperature
region; (b) long tails trail the well localised high-density waves; and (c) in an environment
with nonzero but low temperature, higher waves persist, seemingly indefinitely.

We interpret all observations using the physics of unstable particles. We show that obser-
vations (a) and (b) are due to the decay of unstable particles as the waves propagate. This is
the expected physics, of which our non-equilibrium finite-density dynamics offer a novel and
perhaps more direct observation. Observation (c) is associated to a new phenomenon hitherto
not observed: although the low-temperature bath does not support unstable particles, due to
subtle interaction effects, residual stable waves of unstable particles emerge. These may play
the role of stable excitations in an effective scattering theory at finite densities.

This paper is organized as follows: in Section 2 we briefly introduce the model and the
generalised hydrodynamic description of the problem. In Section 3 we present and interpret
the main numerical results of the paper. In Section 4 we provide further details on the structure
of the subsidiary peak, focussing on its distribution of effective and propagation velocities. In
Section 5 we discuss in further detail the stark differences between our results and those for
a free theory, particularly when analyzing the particle densities. We conclude in Section 6. In
Appendix A we review some features of the numerical algorithm.

2 Model and Hydrodynamic Equations

1+1D quantum integrable models have found many applications over the past two decades.
Besides having a rich underlying mathematical structure, they play a role in various areas
of modern theoretical physics: from the emergence of integrability in string/gauge theories
[19], to the experimental realisation of quantum integrability [20,21] and the measurement of
quantities that can be directly compared to analytic formulae [22,23]. The investigation of the
out-of-equilibrium dynamics of integrable models, largely spurred by the Quantum Newton’s
Cradle experiment [24], has become an active area of research [25]. In particular, generalised
hydrodynamics (GHD) [26,27], the hydrodynamic theory based on generalised thermalisation
(GGE) [28] in quantum integrable models, has been very successful (see e.g. [8] for a recent
review).

Integrability implies that multi-particle scattering is elastic and factorises into two-body
events [29-31]. Interestingly, these constraints do not forbid the existence of unstable bound
states even if few theories with this feature are known. In this paper, we use the GHD ap-
proach to study a model whose two-body S-matrix has a pole in the rapidity’s unphysical sheet,
which, as mentioned, implies the presence of an unstable particle. In a previous work [32]
it was found that the presence of this unstable excitation gives distinctive features of various
hydrodynamic quantities in stationary states. Here, using GHD and these results, we obtain a
direct observation of the physics of unstable particles in real space, including their decay and
long-time persistence.

We study the SU(3),-homogenous sine-Gordon (HSG) model. It has a spectrum of two
self-conjugate particles, and a S-matrix that breaks parity invariance. It is the simplest of
the large family of G;-HSG models labelled by a simply-laced algebra G and an integer index
k (the level), whose integrability and S-matrices were studied in [33-36]. Much work was
devoted to the computation of form factors [37-40], the application of the thermodynamic
Bethe ansatz [41-43], and the study of mass-coupling relations [44,45]. The GHD equations
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require the two-body scattering phases of the model:

v+4+(0)=0, ¢17(0) =sech(f +o0), o€R, (D

where 6 is the rapidity difference and (+) label the particle species. Particles (+) have equal
mass m. The Breit-Wigner formula predicts the formation of an unstable particle with mass and
decay width both proportional to e®!/2 for |o| » 0. For o positive the scattering phases dictate
that a particle (+) has maximum interaction with a particle (F) if it hits it from the right/left
and their rapidity difference is of order 8 = Fo. This feature means that interaction for each
particle is maximised for either positive or negative rapidities, whereas particles behave as
free fermions otherwise. Particles of the same kind interact as free fermions. Thus, in a Gibbs
ensemble at temperature 1 « T < el°l/2 the theory flows to the conformal field theory of
central charge ¢ = 1 for two free fermions, whereas for T » el?!/2 it flows to an interacting
theory with central charge ¢ = 6/5 [33]. The larger number of degrees of freedom at high
temperatures is linked to the presence of a finite proportion of unstable particles, allowed by
the large energy.
We choose an initial Gaussian temperature profile

T(x) =Ty + (Tp—Ty)e ™, with T, Ty eRo, 2)

where x is the space coordinate. We will refer to T, as the bath temperature. Given such
an initial configuration, the dynamics can be obtained by GHD as described for instance in
[46-49]. In GHD, asymptotic particles, characterised by their rapidity 6 and quantum number
b, are “dressed", within finite density states, into fluid modes. The state at any space-time
point x, t is then described by an occupation function n” (x,t,0). The thermodynamic Bethe
ansatz [52] allows us to evaluate the initial condition nb(x,O, 0) from (2) using the local
density approximation. For our analysis, the three quantities of interest are the spectral density
of particles p;—r (x,t,0), their contributions to the spatial particle density q(J)—r(x, t), and their

effective velocities veffh:* (x,t,0), which is the fluid velocity of mode 0, +. They are defined as

pl;i(x, t,0) = edr’i(x, t,0)n* (x,t,0), 3
+ ©do

qa(x,t) = J—oo ﬂpp_(x) t,@), 4

veihE(x,t,0) = p¥E(x,t,0)/edE(x,t,0). (5)

Here e®(6) = cosh 0 is the energy, and p*(0) = sinh @ the momentum (the mass is set to
unity). Note that the quantities q:)—r (x,t) represent a natural identification of the contribu-
tion of each quasiparticle to the total particle density and since they are linear in the spectral
densities as per (4) they are also conserved. The total density g (x, t) = q (x,t) + qg (x, t),
is also conserved and parity symmetric. In this and previous work [32] we studied the indi-
vidual contributions because these reveal more clearly the special features due to the unstable
particle. The dressing operation “dr" of a quantity h*(0) is defined by the integral equations
“ da

hdr’i(x, t,0) = hi(Q) + %‘Piﬂa — G)hdr”_r (x,t, a)ni(x, t,a). (6)
-0

The occupation functions evolve according to the GHD equation [26,27]
denE(x,t,0) + veiEE(x, t,0)0,nt (x,t,0) = 0. @)

In free relativistic theories veff(x, t,0) = tanh 0, and therefore, at large temperatures, where
large rapidities are involved, excitations mostly move at velocities +1. Typically, interaction in
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most integrable QFTs does not qualitatively change the effective velocity, and the same holds
near interacting conformal points. This leads to the splitting of the original density maximum
at x = 0 into two identical maxima propagating in opposite directions [46-49]. This is in
fact also the phenomenology of non-integrable models, where the dynamics is dominated by
two “sound modes". We will see that the presence of unstable particles modifies this picture
substantially.

3 Numerical Results

In order to obtain numerical results, we adapted the iFluid package [53], a MATLAB code that
solves GHD for a wide range of conditions and models. More details are presented in Appendix
A. We choose o = 10: for temperatures 2T < e° the model describes two free Majorana
fermions, at higher temperatures unstable particles are formed. In order to best observe this
threshold, the bath temperature T, is either O or within the free fermion regime 2T, = ¢3, and
the maximum temperature 2T,, = e’ is within the interacting region. As emphasised in [32],
the analysis of spectral densities is helpful in determining the composition of finite-density
states. We note that the hydrodynamic approach is valid for typical inter-particle distances
(d) and interacting lengths (d’) much smaller than variation lengths (d”). With the chosen
parameters, d = 0(1072), d’ = max(¢(-))/p’(8) = 0(10~!) — 0(1073) for relevant values of
rapidities, and d” = O(1) (see FIG. 1), we indeed have d,d" « d”.

Consider a zero-temperature environment, FIG. 1. The first row illustrates the behaviour
of the spectral density of particle (+) as a function of time. At time t = O we observe the equi-
librium features first discussed in [32]: three local maxima in rapidity space centred around
0 ~ tlog(2T,,) = +7 and 6 ~ log(2T,,) — 0 = —3. The peak around 6 ~ 7 (free fermion

Figure 1: Particle (+) dynamics for various time snapshots. The parameters are
o =10, T, = 0 (no bath) and 2T,, = ¢’. Row 1: Spectral density exhibiting three
characteristic local maxima, the least of which decays in time leading to the forma-
tion of a tail. Row 2: Spatial particle density exhibiting both a tail and decay (red)
and its freely-evolved version (blue) exhibiting neither of the two. Row 3: Effec-
tive velocities dominated by the values +1 but exhibiting an intermediate plateau
in rapidity space which is correlated with the decaying peak of the spectral density.
The dynamics of particle — follows from the relations: p; (x,t,0) = P, (—x,t,—0),
qg (x,t) = qq (—x,t) and v¥T ¥ (x,t,0) = —v~(—x,t,-0).
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peak) in not interacting and has the free fermion shape for temperature T,,; the opposite max-
imum at 8 ~ —7 (interacting peak) is higher; the peak around 6 ~ —3 (subsidiary peak) is
a consequence of interaction with the interacting peak of particle — (it would not be present
for free fermions). The subsidiary peak represents the proportion of particles (+) loosely in-
volved in a bind with particles —: these are the unstable particles. The effective velocity (the
third row), for t = 0, shows that the interacting (free fermion) peak moves at speed —1 (+1),
and the subsidiary peak contains a spectrum of effective velocities captured by the “rainbow"
colouring and the presence of an intermediate plateau, see also FIG. 4 in Section 4. The parti-
cle (+)’s subsidiary peak’s velocities are pushed upwards as they form unstable but coherent
bounds with particles (—).

Turning on time, new features emerge not seen previously. The most salient feature is that
the subsidiary peak moves as per the initial splitting, but then falls apart, leaving behind a tail
of particles with velocities tending to —1. Unstable particles start moving at speed near +1,
but, as they enter the zero-temperature environment, decay faster than they can form, and we
see the particle + components un-binding and recovering their non-interacting speeds near
to —1. The effect can be seen directly in the spatial density, as shown in the second row of
FIG. 1. After the initial splitting, the right-moving wave reduces in time, leaving just the free
fermion contribution (which remains unchanged for larger times) and a tail attached to the
left-moving wave at x < 0. Comparison with what happens for free-particle evolution from
the same initial distribution reveals starkly that this is the physics of unstable particles, see
also Section 5. With free evolution two stable waves are emitted without decay as expected;
the right-moving wave agrees with the final stage of the decaying wave of the interacting
evolution, while the left-moving one is higher, as it contains particles that would otherwise lie
in the tail. Clearly, there is not enough dispersion in the original distribution of rapidities to
explain the decay and formation of tails: the interacting non-equilibrium dynamics, whereby
unstable particles decompose as they enter the low-temperature bath, is by far the dominant
effect.

Do these behaviours change in the presence of a bath at nonzero temperature? FIG. 2
shows the x > 0 part of the functions ppi (x,t,0) (see also the video [50]). Two main changes
occur. First, two continuous, static ridges are formed centred around 6 ~ +log(2T,) = +3:
the free fermion equilibrium distribution for temperature T,. Second, most importantly, the

Figure 2: Snapshots of the spectral densities pl;i (x,t,0) for x > 0 in the pres-

ence of a bath at temperature 2T, = e3>, 0 = 10 and 2T,, = e’. Recall that
p; (x,t,0) = P, (—x,t,—0). Whilst the interacting and free fermion peaks remain
largely unchanged, the bath facilitates the formation of a persistent peak that travels
at speed +1 “riding" on the bath. The two light-blue ridges are also due to the bath
whose temperature is in the free fermion region of the theory. The ridges look “static"
because they are uniformly distributed in space but represent particles propagating
with opposite effective velocities +1. See also the videos [50,51].


https://scipost.org
https://scipost.org/SciPostPhys.12.3.115

Scil SciPost Phys. 12, 115 (2022)

qy for <0

! ! 100 ' ' J—
100 Ta=1e? T.=0 i

80

90

80 -

70

60 -

50 -

40

30+

20 -

RSN b Tasa

x

Persistent Peak

5 10

Figure 3: The “partial" spatial particle density qa“ (x,t) obtained from integrating
p;r (x,t,0) for 8 < 0 showing the decay (no bath, inset) and persistence (bath, main
figure) of the subsidiary peak. See also the video [51].

subsidiary peak observed at time t = 0 no longer fully disintegrates under time evolution.
Instead, it largely persists, propagating on top of the & = —3 ridge. Because of the spread of
effective velocities in the initial subsidiary peak, this cannot be explained by a large population
of particles at constant velocity +1. Indeed, there is a large difference between the effective
velocity and the propagation velocity of these particles, as discussed in Section 4. Why is
this wave travelling at speed +1, riding on the bath? The answer is that the large wave
of particles — going at velocity +1 interacts with particles + in the bath, because they are
present around the rapidities of the subsidiary peak. They form unstable particles as they
pass by, thus changing the bath density. This is akin to having a fluid that is magnetic, and
running a magnet past it'. We see a wave that follows the magnet but the fluid itself does
not need to move. This is a hydrodynamic effect never previously seen in the GHD context.
We point out that the life-time of the unstable particles is of order e~ Z: unstable particles
rapidly decay and reform within the persistent peak, with the end result of preserving it for
large times. Comparing with free-particle evolution, where no persistent wave occurs, gives
further insight, as discussed in Section 5.

The effect of the bath is seen starkly in FIG. 3 (see also the video [51]): we plot the
“partial" spatial particle density for particle (+), integrating the spectral density for 6 < 0.
This is equivalent to subtracting the free-fermion contribution, which remains unchanged over
time. Both the decay of the subsidiary peak in the absence of a bath (inset) and its persistence
in the presence of a bath (main figure) are made evident. It is worth mentioning that the
presence of a persisting peak is not a consequence of fine tuning of parameters but a robust
effect, present for o > log(2T,,) > 5 > log(2T,) > 0, as peaks have finite extension and will
overlap for a wide range of temperatures, see [54].

Further evidence that the signatures of decay found here provide a non-trivial characteri-
sation of unstable particles is provided in Sections 4 and 5.

Hereafter we use the terminology “magnetic fluid" in a very loose sense. We are not claiming that we see the
physics of magnetic fluids in all its complexity, only that the interaction between the interacting peak of particle
(—) and the bath of particle (+) is qualitatively similar in its effects to the interaction that occurs when a magnet
is run past a magnetic substance.
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Table 1: Numerical results for the subsidiary peak of the spectral density of particle
(+) in the absence (T, = 0) and presence (2T, = ) of a bath. The other parameters
are fixed to o = 10 and T,, = 2¢’ as before. x*, 6% and h* are the phase-space
coordinates and the height of the local maximum of the subsidiary peak, respectively
and v* = v+ (x* t,0%). The quantity x*/t represents the observed propagation
velocity of the subsidiary peak of particle (+) resulting from its interaction with
the interacting peak of particle (—) which propagates at speed +1. The numerical
uncertainty of phase-space coordinates is Ax* = 0.10 and A6* = 0.07 to 0.08, with
lower rapidity resolution for less negative values of 6* (as discussed in Appendix A).

No bath Bath
t x* o* R* [ x*/t | v* x* 0* R* [ x*/t | v*

2.00 190 | -3.30 | 5.89 | 0.95 | 0.61 1.80 | -3.44 | 5.89 | 0.90 | 0.54
3.00 2.80 | -3.15 | 5.50 | 0.93 | 0.65 2.80 | -3.07 | 5.47 | 0.93 | 0.67
4.00 3.80 | -2.70 | 5.07 | 0.95 | 0.76 || 3.80 | -2.70 | 5.03 | 0.95 | 0.76
5.00 490 | -2.17 | 4.80 | 0.98 | 0.84 4.70 | -2.54 | 453 | 0.94 | 0.77
6.00 5.70 | -2.17 | 457 | 0.95 | 0.82 || 5.70 | -2.24 | 4.06 | 0.95 | 0.81
7.00 6.50 | -2.17 | 3.78 | 0.93 | 0.78 || 6.90 | -2.39 | 3.42 | 0.99 | 0.81
8.00 7.50 | -1.79 | 2.90 | 0.94 | 0.81 790 | -2.39 | 3.41 | 0.99 | 0.81
9.00 8.40 | -1.64 | 219 | 093 | 0.79 || 9.00 | -2.39 | 3.41 | 1.00 | 0.81
10.00 | 9.40 | -1.26 | 1.50 | 0.94 | 0.80 || 10.00 | -2.39 | 3.41 | 1.00 | 0.81
11.00 | 10.30 | -1.03 | 0.96 | 0.94 | 0.77 || 11.00 | -2.39 | 3.42 | 1.00 | 0.81
12.00 | 11.30 | -0.50 | 0.56 | 0.94 | 0.78 || 12.00 | -2.39 | 3.42 | 1.00 | 0.81

4 A Closer Look at the Subsidiary Peak

We have seen that both the partial spatial particle density (see FIG. 3) and the spectral density
(see FIGs. 1 and 2) exhibit a peak which either decays or persists for large times, depending
on whether or not there is a bath. In this section, we examine the features of this peak in a
bit more detail. A more complete analysis will be presented elsewhere [54]. For now, we will
look at cross-sections of the spectral density’s subsidiary peak and of the velocity distribution
for particles in this peak, for fixed values of x and t. We will make an important distinction
between effective and propagation velocities and show that these are in general different, a
feature that is dictated by interaction with the interacting peak of the opposite particle type
and would therefore be absent if evolution was free, as explored in Section 5.

4.1 Effective vs. Propagation Velocities

Let us consider the effective velocity of particles both in the presence and in the absence of a
bath. We will report on particle (+) with particle (—) admitting an analogous analysis. Data
facilitating this discussion is presented in Table 4.

We consider two different velocities: the standard effective velocity v* := veff(x*, t, 6%)
evaluated at the maximum of the subsidiary peak, and the propagation velocity, x*/t that is
the actual speed at which the maximum of the peak is seen to propagate. The choices of
times t € [2,12] was dictated by the time of clear separation of the subsidiary peak from the
interacting peak at t = 2 and the time at which almost complete decay of the subsidiary peak
is observed for no bath at t = 12.

Looking at this table it is perhaps most striking that the effective and propagation velocities
are markedly different both in the presence and in the absence of a bath. Thus, even if the
presence of a bath gives rise to the magnetic fluid phenomenon described in the paper, that is,
the emergence of a persisting peak that seems to ride on top of the bath, the fact is that, in the
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Figure 4: Effective velocities (left axis, blue) and spectral density cross-sections (right
axis, red) of particle (+) in row 1 and (—) in row 2 at time t = 10 in the case
of no bath. For particle + we see the subsidiary (decaying) and free fermion peaks
whereas for particle (—) we see the interacting peak. Columns show these quantities
sequentially for positions x = 9,9.2,9.4,9.6,9.8. The central emphasised column
corresponds to x = x* = 9.4, that is the position of the maximum of the subsidiary
peak of particle (+). The vertical dashed lines indicate the maximum of particle (+)
subsidiary peak (6* = —1.26) in row 1 and the maximum of particle (—) interacting
peak in row 2, which is around the value 6* + o as dictated by the structure of the
scattering phases. The horizontal dashed lines indicate the effective velocity of the
maximum of particle (+) subsidiary peak and are annotated with the corresponding

numerical values.

absence of a bath, the interaction with particles of type (—) still has a huge influence on the
propagation velocity of the subsidiary peak. Indeed, the peak propagates faster than would be
expected from its effective velocity distribution and this can only be attributed to non-trivial
interaction with particles of type (—) which is inextricably linked to the presence of unstable
particles. This increase in velocity is however larger in the presence of a bath and for large

times it reaches the maximum value +1.
In addition, we can make the following interesting observations:

* For early times data are very similar both in the presence and absence of a bath. Indeed,
for times t € [2, 7] decay occurs whether or not there is a bath (a phenomenon we have
not discussed in the paper). We can see this decay most clearly from the table and the
height of maximum h* which reduces from 5.89 at t = 2 to 3.42 at t = 7. The way in
which this decay or particle loss occurs is asymmetric in 6 and results in an “under-cut”
in the shape of the subsidiary peak, with the lost particles contributing to a growing
tail linking the subsidiary peak to the interacting peak of the same particle species (this
tail is seen most clearly in FIG. 1 of the paper). As a result, not only the height of the
maximum is reduced but its position in phase-space shifts towards less negative values

of 0.

* In the absence of a bath, further asymmetric decay of the subsidiary peak continues until
the peak disintegrates first into a front-like feature and ultimately into a section of the
tail joining the free fermion and the interacting peak of the same species. It needs to
be emphasised that the decay rate cannot be accounted for by the velocity profile alone.

9
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Since the propagation and the effective velocity are different, we know that interactions
must play a fundamental role in this decay process.

* In the presence of a bath, the subsidiary peak becomes persistent from time t = 7, with
the rapidity space position fixed at 6* = —2.39, height h* = 3.42 and propagation
velocity x*/t = 1. The fact that the subsidiary peak moves along the interacting peak
at velocity +1 rather than the much slower effective velocity of its constituents is the
embodiment of the magnetic-fluid mechanism. The subsidiary peak does not consist of
the same particles propagating but instead of newly formed bound-states between the
particles of the interacting peak of particle (—) and the particle reservoir of particle
(+) available from the bath ridge. Nevertheless, the asymmetric decay process, being
independent from the persistent feature, is still present in the case with bath. It is only
masked by the dominant mechanism of the magnetic-fluid for times larger than t = 7.

4.2 On the Shape of the Subsidiary Peak

For time t = 10, a deeper understanding of the data can be reached in conjunction with FIGs. 4
and 5 which show cross-sections of the effective velocity and spectral density of particles (+)
for the bath and no bath situations. In particular, we focus here on the shape of the subsidiary
peak which can now be accessed more clearly through cross-sections at fixed space-time posi-
tions. Let us summarize our main observations:

* In FIG. 4. the subsidiary peak of particle (+), although very small compared to the free
fermion peak, can still be seen to be highly asymmetric both in the x-coordinate and
rapidity space. In fact, it is more akin to a wave-front, with particles at the back slower
than those in the front. As mentioned earlier, the effective velocity profile does not fully
explain the decay and eventual disintegration of the peak. It is worth noticing that by
time t = 10 the decaying peak is also significantly lagging behind the interacting peak
of particle (—) (since its propagating velocity is 9.4 whereas for the interacting peak it
is +1) and eventually falls out of its interaction range.

* This is in stark contrast to the persistent peak in FIG. 5. Here, the peak is symmetric in
the coordinate space and is accompanied by a velocity profile symmetric with respect
to its maximum. The maximum of the subsidiary peak of particle (+) coincides in the
coordinate space with the maximum of the interacting peak of particle (—) and both
can be found at x = 10 for t = 10. Despite slower effective velocity, the propagation
velocity of the subsidiary peak equals that of the magnet-like interacting peak, which
interacts with the bath and drags the subsidiary peak along. This is the magnetic-fluid
mechanism reported in the paper.

5 Comparison with Free-Particle Evolution

Section 4 makes a compelling case for the crucial role that non-trivial interaction between
particles (+) plays in determining the dynamics of this model, giving rise to the distinct
features that we have discussed in our paper: tail formation and the decay and/or persistence
of localized particle densities.

An alternative way to look at these phenomena is to compare our results with results ob-
tained in the absence interactions. We can then ask: what properties of the peak propagation,
decay, tails and persistence are really characteristics of the formation and decay of unstable par-
ticles due to nontrivial interaction? The evolution of free particles from an initial distribution
of velocities may produce tails due to dispersion. Is this enough to explain our observations?
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Figure 5: Effective velocities (left axis, red) and spectral density cross-sections (right
axis, blue) of particle (+) in row 1 and (—) in row 2 at time t = 10 in the case of
bath temperature 2T, = e3. For particle (4) we see the subsidiary (persisting) and
free fermion peaks whereas for particle (—) we see the (large) interacting peak a
very small bump corresponding to the bath (for particle (+) this is masked by the
persisting peak sitting right on top). Columns show these quantities sequentially for
positions x = 9.6,9.8,10,10.2,10.4. The emphasised central column corresponds
to x = x* = 10 the position of the maximum of subsidiary peak of particle (+).
The vertical dashed lines indicate the maximum of particle (+) subsidiary peak
(6* = —2.39) in row 1 and the maximum of particle (—) interacting peak in row
2, which is around the value 6* + o as dictated by the structure of the scattering
phases. The horizontal dashed lines indicate the effective velocity of the maximum
of particle (+) subsidiary peak and are annotated with the corresponding numerical

values.

In this section we show that this is not the case: the interaction is essential in order to
explain the observed effects. Thus, the presence of interaction can be deduced from the results
of the non-equilibrium dynamics. The striking difference between the HSG particle density and
its freely-evolved version has already been shown in FIG. 1. Here we discuss these differences
in more detail.

The comparison with free-particle evolution can be performed in a number of ways. One
might consider the same quench problem, with the same initial temperature distribution, in a
free theory. This however leads to a different initial density distribution, hence any comparison
with the interacting case is not very meaningful. Instead, one may compare with what would
happen for a free-particle system with the same initial spectral distribution of particles: the
distribution in space-rapidity p;f(x, 0, 0), describing the density of particles with positions x
and relativistic velocities tanh 6 at time t = 0.

We note that both in the interacting and non-interacting systems, tanh 8 has the physical
meaning of asymptotic velocity that would be observed if particles were let to expand an
“astronomically large" time in the vacuum. A distribution in space-rapidity can be measured
physically, in principle, by performing such an expansion independently for every mesoscopic
cell in space. The time must be large enough for all particles in the cell to spatially separate, no
matter how small their initial rapidity differences. This asymptotic distribution of rapidities,

in each fluid cell, does not depend on the interaction; it is thus a universal characteristic, and
the comparison between the interacting and non-interacting cases makes sense.
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Figure 6:  Particle density in the HSG-model p; (x,t,0) (red) versus
p;r(x — ttanh6,0,0) (blue). The top/bottom rows correspond to the ab-
sence/presence of a bath. The peak in the first column has been cut so as to show
the remaining figures more clearly. The dotted curves represent the change in the
height of the local maxima of the spectral densities as function of time. Red and
blue curves generally differ in the height of the local maxima as well as the presence
(absence) of a tail.

The comparison is presented in FIG. 6 (the first row of this figure is similar to row 2 of
FIG.1), where we see stark differences between free and interacting particle evolution. In
order to interpret the results, we remark, from FIG. 1 in the main text, that the distribution
of rapidities is very different from that of the initial effective velocities: particles (+) with
negative rapidities that pertain to the subsidiary peak have positive effective velocities, instead
of negative. Hence, with the free dynamics, these particles will start moving towards the left
instead of the right as observed with interactions. Thus, free-particle evolution according to
the initial spectral distribution is significantly different from the outset, with peaks of very
different sizes. Furthermore, the distribution of rapidities leads to sharply defined velocities,
which are all either very near to 1 or to —1. Hence there is very little dispersion, and no tail
or decay is observed. Those are thus a stark indication of the presence of interaction. It is also
striking to observe that in the case without bath, the decay under interacting evolution leads
to a final right-moving wave that agrees precisely with the right-moving wave emitted from
the initial distribution in the free evolution case. This indicated that all unstable particles,
represented by the original subsidiary peak, have decayed, and lie within the tail. With a bath,
there remains an additional particle density, representing the population of unstable particles
stabilised by the presence of the bath.

Another way of approaching these ideas is to consider what would happen if we were
to consider the free-evolution problem with HSG initial conditions not only for the spec-
tral density p;—“ (x,0,0), but also for the velocities veff’i(x, 0,0): setting the initial velocities
tanh 0 of the free particles at position x and rapidity 0, to the value of the effective velocity
v (x,0,0). We emphasise that this is more difficult to justify physically, as the effective
velocity already encodes nontrivial aspects of the interaction. However, it makes the free and
interacting problems closer, as both the initial condition, and its initial infinitesimal change,
are the same. This allows us to separate any features that are solely dependent on the initial
state from features that are truly dependent on the nature of the interaction in the model.
This is interesting because the initial density and effective velocity profiles are non-trivial. In
particular, there is a whole spectrum of effective velocities in the initial state, and so one may
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Figure 7: Particle density in the HSG-model (red) compared to the particle den-
sity that would result from free evolution of the same initial conditions (blue). The
top/bottom rows correspond to the absence/presence of a bath. The peak in the first
column has been cut so as to show the remaining figures more clearly. The dotted
curves represent the change in the height of the local maxima of the spectral densities
as function of time. Red and blue curves generally differ in the height of the local
maxima as well as the shape of the tail.

wonder to what extent the dispersion due to this spectrum of velocities explains the tails and
decaying/persisting peaks.

In this case we numerically implemented the free evolution using a molecular dynamics
simulation. The resulting particle density qar (x,t) is presented in FIG. 7 (in blue) and com-
pared with the corresponding function for our model (in red). Because of the statistical nature
of the simulation we see some noise around the blue curve. The main behaviours are however
clear.

First, a tail is also present for free evolution due simply to the presence of particles with
intermediate velocities (e.g. neither 1 nor —1). However, the shape of the tail is noticeably
different. Indeed it contains a much higher density of particles than in the interacting model.
This is due to the fact that in the interacting model even slower particles are carried forward
by their interaction with particles of the opposite type so that their propagation velocity is
higher than their effective velocity (see Section 4) and the decaying process is slowed down.
Essentially, this highlights the fact that unstable particles have a nonzero lifetime, and thus
carry densities more coherently, limiting the dispersion due to the original velocity spectrum.

Second, in the absence of interaction the left peak decays in time for all times we have
reached numerically (until, presumably, it eventually fully disintegrates, due to the slower
particles contained in it), whereas the right peak experiences some decay only for early times.
Instead, in the interacting model, the left peak experiences no reduction whereas there is some
decay of the right peak which is however slower than for the free model.

Finally, in the HSG-model in the presence of a bath there is a magnetic effect that gives
rise to a persistent particle density which contributes to the right peak of the particle density.
This effect is clearly absent for free evolution and as a result the red right peak is higher than
the blue peak for large times in the second row, whereas they are equal on the top row. The
extra density in the interacting model is a signature of the presence of a persisting population
of unstable particles, and is a specific characteristic of the interaction.

In summary, the signatures of instability, particle creation and decay that we have discussed
in our paper are robust features of our model which are strongly determined by interaction
and are not found for other related scenarios involving free particle evolution.
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6 Discussion and Conclusion

In this paper we have shown how unstable particles in integrable QFT can be seen in a new
light within the GHD framework. The presence of an unstable excitation substantially alters
the features of the densities and effective velocities of its stable constituents, an analysis of
which shows that, after release into a zero- or low-temperature environment, unstable particles
decay. In spatial density profiles, this is hallmarked by the slow decay of propagating waves and
the formation of tails, which cannot be explained by dispersion from free-particle evolution.
Importantly, in the presence of a bath, a new hydrodynamic phenomenon comes into play: the
long-time persistence of a small but significant wave of unstable particles “riding" on top of
the bath, propelled by its interaction with the large wave of particles of the opposite type.

We have chosen temperatures that are large enough so that the presence of a continuum of
fluid modes in integrable systems does not play an important role. The physics is dominated
by the renormalisation-group flow from interacting (¢ = 6/5) to free (c = 1) conformal field
theory. Importantly, our results suggest that the decay of the population of unstable particles
is a real-time dynamical implementation of this flow, an idea which may lead to a deeper
understanding of non-equilibrium dynamics. It is this flow that determines the required val-
ues of temperatures, and, as in our specific setup, they are achievable at the hydrodynamic
scale. The distinct signatures of instability identified within GHD are explained via the com-
bined phenomenology of unstable particles and hydrodynamics, and should reflect universal
behaviours. In this sense, we hope that our work provides a useful “toolbox" of behaviours for
experimentally measurable quantities, such as particle and spectral densities, which can pave
the way towards experimentally identifying the decay of matter in closed many-body quantum
systems.

The signatures of instability found here are new, and we do not know of any other theory
where the same features have been found. However, the staircase model [55], recently studied
in the partitioning protocol [56], could provide an interesting extension of our work. Also here
the effective velocities develop new plateaux (albeit how many depends on the energy scale)
and the spectral density develops new local maxima (again, how many depends on the energy
scale). However, the staircase model is parity symmetric and its physics is not traditionally
explained by the presence of unstable particles even though it is also dominated by the flow
between (infinitely many) different CFTs. It would be interesting to study the staircase model
in an inhomogeneous initial state and to see how the features found here extend to or are
modified in this model.

Given how rich the dynamics of the SU(3),-HSG model is, it would be very interesting
to study other models of the same family where more unstable particles with tunable masses
and decay widths are present. There is also still much to learn about the time evolution of
hydrodynamic quantities under variation of T,, T,, and o, which we will address in [54].
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A Numerics with iFluid

In this Appendix we describe in more detail the numerical simulations presented in the paper,
focussing on possible error sources, precision issues and consistency checks.

A.1 Generalities

As mentioned in the paper, our results have been obtained with iFluid (integrable-Fluid, ver-
sion 1.1.0) which is an open-source MATLAB framework specifically designed for solving the
GHD equations in integrable models [53]. It is worth mentioning also that an integral-equation
solution to the GHD equation (7) is also known [48], but its numerical stability has not been
sufficiently studied yet.

Thanks to a tensor-based numerical environment, iFluid boasts high efficiency and high
process running speed. Additionally, a new model can be easily implemented by extending
the iFluid package with a model-specific class. Such implementation can be done by follow-
ing the instructions provided in [53]. However, the SU(3),-HSG model requires additional
modifications and we have implemented them in this study.

The quantities studied in this paper feature in the iFluidCore class, which provides so-
lutions to the TBA equations and inputs for the GHD equations. By default, the definition
of spatial particle density included in the iFluidCore class, depends on the type-array. It
is a fundamental property of the class and is included in the model implementation as a
one-dimensional array composed of integers which label the particle types. In massive in-
tegrable QFTs with more than one particle in the spectrum, this definition of the particle den-
sity introduces multiplicative factors in its type components, which can lead to wrong results.
We have instead implemented the definition that reproduces the total spatial particle density
do(x,t) =qq (x,t) + g, (x, t) as defined in the main body of the paper and leads to a correct
result. Moreover, in our implementation of the model, some iFluidCore functions have been
modified to output the contributions from each particle type to a given quantity separately (i.e.
the functions q(J)—r (x,t)).

In iFluid, the propagation of the GHD quantities is computed via iFluidSolver class. In
our numerical simulation we have employed the SecondOrderSolver solver, whose details
can be found in section 3.2 in [53].

To the best of our knowledge, our work provides the first application of the iFluid package
to a system which is initially prepared in a state involving temperatures T » 1. Earlier exam-
ples provided with the package (i.e. sinh-Gordon model) were tested for temperatures T ~ 1.
We have successfully ensured the convergence of the thermodynamic Bethe ansatz equations
evaluated by the iFluidCore class for temperatures up to O(e'?). We have checked the
consistency of our results in several ways.

A.2 Precision and Consistency Checks

In order to make sure that the modified code gave meaningful results we carried out various
consistency checks, mainly comparing the outputs of iFluid with standard results that are
accessible by other numerical procedures.

A preliminary check was done on the initial state, which is given by the solution of the
(equilibrium) TBA equations for a given fixed temperature T (x) for each value of x. In the
iFluid code, the precision is controlled by two parameters, namely, the tolerance and the max-
imal number of iterations allowed. In order to guarantee the highest accuracy, we set the
former to 10~32 and the latter to 5000. We made these choices in part by comparing the out-
puts of iFluid in the initial state to results obtained for the same functions with a Mathematica
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Table 2: Numerical values of the total particle density Q, at several times. Here, the
parameters are: o = 10, log(2T,,) = 7 and T, = 0 (no bath). To evaluate Q,, we
have computed (4) in the main paper and performed a cubic spline interpolation,
implementing additional grid points whose spacing in x is Ax = 107°. Q, is numer-
ically conserved, up to a variation on the first decimal place, which can be attributed
to the discretisation procedure. ~We have performed a similar check for the total
energy density Q; and for the entropy S and found conservation with comparable
accuracy.

t 0 3 6 9 12 15
Qo 561.2520 561.2541 561.1937 561.1511 561.1156 | 561.0970

code used in [32], and established that, for the choices above, we achieved higher precision
with iFluid.

A similar check was performed by evaluating the TBA scaling function c¢(T) over a range of
temperatures (especially at high temperatures), and seeing that plateaus at the expected values
of the central charge [41] where reproduced. Likewise we computed the energy densities and
currents in the UV (high temperature) limit, reproducing once more the results of [32].

Having established that the ground state is accurately described, we then turned to consis-
tency checks of dynamical quantities. We calculated the total particle density Q, given by the
x-integral of the sum of spacial densities in Eq. (4) of the main paper. Q, should be conserved
in time and so its computation for various values of times provides a consistency check for
numerical solutions of the GHD equations. In Table 1 we have reported the numerical values
of the total particle density evaluated in the no-bath case. Q is confirmed to be conserved,
up to a numerical variation on the first decimal place, which is the order of the grid spacing
implemented in the simulation (see Table 2 for details).

Finally, we performed other consistency checks which exploit the connection of our model
with free theories. In particular, as explained in the main body of the paper, we have that
for T « el?l/2 our model should reduce to two Majorana free fermions. Thus, performing
numerics for the SU(3),-HSG model with o = 20 for the same temperature choices discussed
in this paper, we should obtain results which are fully in the free fermion regime where the
GHD equations can be solved exactly. Thus, in this regime numerical results from iFluid can
be compared to analytical solutions. We have confirmed that they are in perfect agreement.

A.3 Space and Rapidity Discretisations

Besides convergence of the numerical solution of the TBA equations, we have established that
the key source of numerical error is the choice of space discretisation. The values adopted in
our computations are given in Table 3.

We have devoted special attention to the discretisation of the rapidity interval. iFluid em-
ploys Gauss-Legendre quadrature integration, which has excellent convergence properties for
integrals over a finite interval [57,58]. However, this quadrature is optimised for minimising
boundary errors. This means that the number of data intervals is lowest in the middle of the
interval, precisely where we find the non-trivial behaviour of the thermodynamic quantities of
interest. The dependence of the size of the rapidity intervals, A6 on the rapidity 6 and the
number of points in the interval considered N for a fixed range of rapidities is shown in FIG. 8.

As a point of reference, we have chosen to compare the resolution at 6 = 0 and 10, as
a primary region with non-trivial dynamics. Although the discretisation interval for 6 = 0
remains the largest for any value of N, the distribution quickly flattens out when the number
of points is increased. Investigating the range of N values from 200 to 700, we achieve an
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Table 3: Discretisation parameters and quadratures chosen for the two numerical
simulations discussed in this paper (i.e. with and without a bath). From the left,
the columns indicate (respectively for t,x,8): the variable, the lowest resolution
(i.e. the largest spacing between two grid points Ap,,,), the number of grid points, the
largest absolute value the variable takes, and the type of quadrature implemented. In
the rectangular quadrature we have implemented equidistant grid points with fixed
spacing A pnax-

[ | Amax || No. Points | Max. Val. | Quadrature |
t 0.2500 61 15. Rectangular
X 0.1000 441 22. Rectangular
0 0.0762 700 17. Gauss-Legendre
0.35 T — N = 100
. —N = 200
03F. —N = 300
. . —N = 400,
0250 —N = 500
02 ® TV 00
3 A N = 800
0.15+ A

0.1

0.05

200 300 400

Figure 8: Right: The rapidity discretisation interval as a function of rapidity for
different numbers of points in a fixed rapidity interval 6 € [—-17,17]. The markers
indicate the values of N that are considered in FIG. 9. Left: Comparison of the
rapidity discretisation interval in the middle and towards the edges of the interval
with non-trivial dynamics. A6, and A8, are defined to be the rapidity discretisation
intervals for 6 = 0 and 6 = 10, respectively.

order of magnitude increase in resolution for both 8 = 0 and 10. Significantly smaller is also
the difference between these two quantities, which is consistent with the flattening of the curve
in the right panel of FIG. 8. The numerical values of the size of the discretisation interval for
a chosen numbers of points in the rapidity interval are included in Table 3.

In order to obtain the averages of conserved charges and currents in the SU(3),-HSG
model, it is necessary to integrate over the rapidity variable, as defined in (4) of the paper.
This integration procedure leads to the “accumulation” of any numerical errors present in the
original function and to the formation of regular structures that could be easily mistaken for
genuine physical phenomena. An example of this effect can be seen in the particle density
associated to particle (+) computed with different rapidity discretisations. Four examples are
presented in FIG. 9. As expected, the problem arises from the middle of the rapidity interval
where resolution is lowest. By changing N we can identify a large enough value that guaran-
tees a stable solution for the spatial particle density. In our code we have chosen N = 700. The
quantities not integrated over the rapidity integral did not exhibit any unusual behaviour even
for the values of N as low as 200. Interestingly, this applies also to the spectral density, which
produces then spatial particle density when integrated over rapidity. This further confirms that
the emergence of the oscillations seen in the top left FIG. 9 is genuinely a numerical effect
arising due to integration.
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Table 4: Numerical values of the rapidity discretisation intervals A6, for a given
number of rapidity points N in the range of rapidities used in this investigation

0e[-17,17].
LN [ 46 [ A6y [A6—A6]
200 0.2664 0.2157 0.0506
300 0.1777 0.1439 0.0338
500 0.1067 0.0864 0.0203
700 0.0762 0.0617 0.0145
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Figure 9: Close-ups of the spatial particle density of particle (+) for different num-
bers of points in the fixed rapidity interval 6 € [—17,17] and for various times
t =4,6,10,15. The N = 200 panel shows regular oscillations. The oscillations per-
sist for N = 300, disappear around N = 500 and are consistently absent for higher
numbers of points, such as N = 700. Variations of space and time discretisation pa-
rameters have not produced any significant changes in the same functions, indicating
that a fine enough discretization of the rapidity variable is particularly essential for
accuracy due to the integration in the 6 variable that is required to compute q(;r .
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