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Abstract

Band geometry plays a substantial role in topological lattice models. The Berry curva-
ture, which resembles the effect of magnetic field in reciprocal space, usually fluctuates
throughout the Brillouin zone. Motivated by the analogy with Landau levels, constant
Berry curvature has been suggested as an ideal condition for realizing fractional Chern
insulators. Here we show that while the Berry curvature cannot be made constant in
a topological two-band model, lattice models with three or more degrees of freedom
per unit cell can support exactly constant Berry curvature. However, contrary to the in-
tuitive expectation, we find that making the Berry curvature constant does not always
improve the properties of fractional Chern insulator states. In fact, we show that an
“ideal flatband” cannot have constant Berry curvature, equivalently, we show that the
density algebra of Landau levels cannot be realised in any tight-binding lattice system.
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1 Introduction

Landau levels (LL) arise in a two-dimensional (2D) electron gas under strong magnetic field.
The kinetic energy is frozen inside each LL and the topological character of single-electron
states leads to the integer quantum Hall effect (IQHE) [1] when a LL is completely filled. At
fractional fillings, the system is dominated by the electron-electron interaction and the frac-
tional quantum Hall effect (FQHE) [2–5] can take place. These phases have attracted much
attention in the past decades, due to the potential applications of their anyonic excitations as
building blocks of a topological quantum computer [6–8]. While quantum Hall physics origi-
nates from the LL structure in 2D continuum, many of its characteristic aspects are also repro-
duced in lattice models with discrete translational symmetry. The key ingredient of IQHE lies
in the band geometry [9], characterized by the Berry curvature. The Berry curvature acts anal-
ogously to an external magnetic field, but in momentum space, and has several applications in
transport calculations [10,11]. Chern insulators [12], which host bands with nontrivial Berry
curvature whose integral is quantized to the Chern number, display the quantized conductance
and topological edge states associated with the IQHE.

Due to the similarity between Chern bands and LLs, an analogue of the FQHE state ap-
pears when the bandwidth is small compared to the interaction scale and a Chern band is
partially filled: the fractional Chern insulator (FCI) [13–15]. While FCI states have been ex-
perimentally realized in the presence of weak external magnetic field [16], there has been no
experimental realization yet in the absence of any external magnetic field. Much effort has
been invested in looking for conditions stabilizing these FCIs [17–19]. Intuitively, one would
expect that the more the band structure is similar to a LL, the more robust the FCI states are.
A LL has completely flat dispersion and the projected density operator satisfies the Girvin-
Macdonald-Platzman (GMP) algebra [20]. The possibility of realizing these properties has
attracted further interest since the discovery of topological flatbands in Moiré systems [21–29].

All this raises the natural questions: can these LL properties be exactly reproduced in a
lattice system? If so, how do they stabilize the FCI states? Ref. [30] points out the negative
result that an exactly flat Chern band with no dispersion cannot be realized for finite-range
hoppings. Besides the energy dispersion, band structures are characterized geometrically by
the Berry curvature and the Fubini-Study metric, which constitute the real and imaginary parts
of the quantum geometric tensor defined in sec. 2. The role of the Berry curvature has been
well understood in quantum Hall physics, and it has been shown through numerical studies
that there is a correlation between the stability of FCI states and Berry curvature fluctuations
in a number of lattice models [31]. This motivated a search for bands with as flat as possible
energy dispersion, and Berry curvature with as small as possible variations [13,15,18,32,33].
The Fubini-Study metric has been recently identified to play a role in the collective mode of
FQHE [34,35], and Ref. [18] showed that the GMP algebra is recovered in a Chern band with
constant Berry curvature and constant Fubini-Study metric saturating a certain inequality.

In this manuscript we ask the basic question: is it possible to construct bands with a Berry
curvature that is exactly constant? We answer this question by providing a construction to
obtain constant curvature bands in models with three or more bands (sec. 3 and Fig. 1), and
proving that this is impossible in 2-band models (sec. 4). Next, we investigate the conse-
quences of constant curvature on the physics of FCI states in such bands (sec. 5). We find that
minimizing curvature variations does not generally make the FCI state more “ideal”. The key
property that governs the degeneracy pattern of the FCI droplet is the relation between the
Berry curvature and the Fubiny-Study metric. We show that this relation cannot be satisfied
while keeping the curvature constant (sec. 6). This is equivalent to the fact that the exact
GMP density algebra cannot be reproduced in a lattice system with finite number of degrees
of freedom per unit cell.
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Figure 1: Berry curvature of the 3-band Kapit-Mueller model (left), after one iteration
of the flattening algorithm (middle), and after 12 iterations (right). Note the scales
of the colorbars. The curvature is scaled such that average curvature of 1 corresponds
to a band with Chern number 1. Because of the magnetic translation symmetry by
one lattice constant, the Berry curvature pattern repeats three times, and we only
show one third of the magnetic Brillouin zone.

2 Band geometry in tight-binding models

The non-interacting band structure of a translation-invariant tight-binding system is charac-
terized by the n × n Bloch Hamiltonian H(k), where n is the number of orbitals inside each
unit cell, and its normalized eigenstates u(m)k with m as the band index. The quasimomentum k
takes values in the Brillouin zone (BZ) corresponding to the magnetic unit cell that has integer
magnetic flux penetrating it. In the following we study properties of a single occupied band,
and drop the band index m.

When the unit cell has more than one site at different spatial coordinates, it is conventional
to use the periodic gauge of Bloch states [10]. This basis simplifies calculations of electromag-
netic properties, correctly taking the real-space structure into account. The boundary condition
for the Bloch Hamiltonian in this basis is

H(k+G) =WGH(k)W−G , (1)

where WG = exp(iG · r) with G a reciprocal lattice vector and r the position operator. This is a
diagonal operator in the basis of the localized tight-binding orbitals, (WG)i j = δi j exp(iG · ri)
where i, j index the n orbitals of the unit cell and ri is the real space position of orbital i. The
wavefunction obeys the boundary condition

uk+G =WGuk . (2)

These boundary conditions can also be interpreted as the prescription to extend H(k) and uk
from the first BZ to R2.

The geometrical properties of the band are characterized by the quantum geometric tensor

ηµν(k) = gµν(k) +
i
2
εµνF(k) =

�

∂µu†
k

��

1− uku†
k

�

(∂νuk) , (3)

where µ,ν index spatial directions x , y , ∂µ = ∂ /∂ kµ, εµν is the antisymmetric tensor, and
we introduced the decomposition into the real symmetric Fubini-Study metric g and the scalar
Berry curvature F . The Chern number is a quantized topological invariant proportional to the
Hall conductivity, given by the integral of the Berry curvature over the BZ, C = 1

2π

∫

BZ F .
For topological bands with nonzero Chern number, we need to interpret uk as a mapping
to the complex projective space CPn−1, as it cannot be a global section of Cn, (2) is only
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satisfied up to an overall complex phase for the wavefunction inCn. The geometrical properties
of the band are insensitive to changing the wavefunction by a k-dependent overall complex
phase, and (3) is well defined both for a gauge-fixed normalized wavefuntion in Cn or the
wavefunction in CPn−1. It should be noted, however, that these properties, with the exception
of the Chern number, depend on the embedding in real-space, i.e. on the spatial structure of
the unit cell [36].

3 General method to make the curvature constant

In this section we provide an algorithm to construct a Bloch Hamiltonian with constant Berry
curvature, through a deformation of any Hamiltonian with nonzero curvature. We start with a
Hamiltonian H(k) and replace it with H ′(k) = H (f(k)) where f is a smooth, periodic function
mapping the BZ to itself. If H had a Berry curvature F it transforms into

F ′(k) = F (f(k))det
�

df
dk

�

, (4)

because it transforms as a volume form. According to Moser’s theorem [37] a deformation
with F ′(k) = const. exists for any smooth F that does not have any zeros.

To get an approximate solution, let us assume that the curvature is already almost con-
stant, so with proper normalization it can be written as F(k) = 1 + ε(k) with |ε(k)| � 1.
The transformation we are looking for is f(k) = k + h(k) with small h. We can expand the
determinant as

det
�

df
dk

�

≈ 1+ tr
�

dh
dk

�

. (5)

Choosing

tr
�

dh
dk

�

≡∇k · h(k) = −ε(k) (6)

the curvature F ′ is 1 up to second order in ε and its derivatives. This is accomplished by using
the Fourier series (using x as the reciprocal coordinate of k) and setting

h(x) = i
x
|x|2
ε(x) . (7)

In our numerical implementation we sample k and x on a discrete N × N grid, and use the
inverse of the discrete divergence operator, replacing |x|2 in the denominator of (7) with
N/(2π)x · sin(2πx/N)).

This transformation of F → F ′ can be iterated until the desired flatness is reached. Find-
ing the exact conditions for the convergence of this algorithm is outside of the scope of this
manuscript, but we find that the algorithm converges quickly for the smooth functions that we
encounter in our test cases.

Smooth Bloch Hamiltonians H(k) correspond to tight-binding Hamiltonians in real space
with hopping matrix elements decaying exponentially. The above deformation maintains the
smoothness of the Hamiltonian, the resulting H ′ remains exponentially localized in real space.
Moreover, the new energy spectrum is E′(k) = E(f(k)), hence the flatness of bands is unaf-
fected.

We numerically demonstrate that the above flattening procedure results in lattice models
with almost constant Berry curvature to arbitrary precision. We use three and four-band mod-
els with both different and the same positions of the orbitals within the magnetic unit cell.
Similar constructions work for any N ≥ 3 number of bands. We start from the Kapit-Mueller
(KM) Hamiltonian [32] with φ = 1/3 flux per plaquette and three sites in the magnetic unit
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Figure 2: Magnitude of hopping matrix elements in the modified KM Hamiltonian
with constant Berry curvature, as function of relative site positions.

cell. The lowest band in this model is an exact flat band and the Berry curvature is posi-
tive everywhere in the BZ. In the numerical calculations we truncate the KM model to tenth
neighbor hoppings, further neighbor hoppings have relative amplitude under 10−8 and do not
significantly change the band structure.

Applying the flattening iteration described above 12 times, the Berry curvature becomes
constant within 10−9 relative variation, see Fig. 1. After this point, numerical noise starts
to dominate the variations of the curvature, and further iterations do not improve the result.
After the optimization procedure to minimize fluctuations of the Berry curvature, the resulting
Hamiltonian still is exponentially localized in real space, see Fig. 2.

We also apply the optimization algorithm to the four-band (φ = 1/4 flux per plaquette)
Hofstadter model with Chern number C = 1 in the lowest band. The resulting Berry curvature
has relative variations of order 10−6, as shown in Fig. 3. Furthermore, we demonstrate the
algorithm on the 3-band model of Ref. [38], which has Chern number C = 3, the results are
shown in Appendix A.

−π
4 0

π
4

kx

−π
4

0

π
4

k
y

0.50

0.75

1.00

1.25

1.50

1.75

2.00

−π
4 0

π
4

kx

−π
4

0

π
4

k
y

0.4

0.6

0.8

1.0

1.2

−π
4 0

π
4

kx

−π
4

0

π
4

k
y

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

×10−6 + 1

Figure 3: Berry curvature of the 4-band (φ = 1/4) Hofstadter model (left), after one
iteration of the flattening algorithm (middle), and after 19 iterations (right). Note
the scales of the colorbars. The curvature is scaled such that average curvature of
1 corresponds to a band with Chern number 1. Because of the magnetic translation
symmetry by one lattice constant, the Berry curvature pattern repeats four times, and
we only show one fourth of the BZ.
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4 No-go theorem in two-band models

Before moving on to study FCI physics in constant curvature bands, we prove a no-go theorem:
in two-band models the fluctuations of the Berry curvature have a finite lower bound, hence
constant curvature is impossible. This may be a reason why such band structures eluded
discovery so far. This result has also been proved recently in the case of a single site per unit
cell [39]. Here we give a more detailed proof and generalize the statement to systems where
the unit cell has spatial structure so that the Bloch Hamiltonian is not necessarily periodic in
reciprocal lattice vectors.

We first look at the case when all the orbital positions inside a unit cell coincide with the
lattice sites. In this situation, we can view the Chern band as a map from the torus T2 to
the Bloch sphere S2 ' CP1, which is denoted as p. The Berry curvature has the geometric
meaning of the solid angle on the Bloch sphere, |F |dkx dky = dΩ. If the Berry curvature is
non-vanishing everywhere, then the map p is a local diffeomorphism according to the inverse
function theorem. From the local diffeomorphism, we can deduce that the image p(T2) is
open in S2. On the other hand, as T2 is compact, p(T2) is also compact and thus closed in
S2. So p is a surjection from T2 to S2. For each point x on S2, we denote its preimage as
p−1(x). Since x is closed, the preimage p−1(x) is closed and therefore compact in T2. On the
other hand, for each point yi ∈ p−1(x), the local diffeomorphism tells us that there is an open
neighbourhood Ui of yi which does not contain other preimages of x . These Ui form an open
cover of p−1(x) and can only be a finite set due to the compactness. As a result, we can choose
an open neighborhood

⋂

i p(Ui) of x which is evenly covered by p. In this case, we have a
covering map from T2 to S2. A covering map induces an injective map for the homotopy group
π1 [40]. However, the homotopy group π1 of the torus is Z×Zwhile π1 of the sphere is trivial,
leading to a contradiction. This shows that F must vanish somewhere in the Brillouin zone.

If the site positions are all rational multiples of the unit vectors, there are reciprocal lattice
vectors G̃i such that WG̃i

= 1. These define an extended Brillouin zone where the wavefunction
is periodic. The Berry curvature is the same in every copy of the first BZ, because a constant
unitary transformation does not change the curvature. So the Chern number is also nonzero
in the extended BZ, and the no-go theorem for 2-band models with BZ periodic wavefunctions
applies, meaning that the curvature has to vanish somewhere.

The Berry curvature F is a continuous function of the components of the position operator
r. As

∫

F = 2πC , maxF ≥ 2πC/A where A is the area of the BZ. Since for rational r we know
F must vanish somewhere, we have maxF −minF ≥ 2πC/A (we assume max F positive) at
rational r. As F is a continuous function of the site positions (keeping the onsite and hopping
terms in the tight-binding model constant), it is not hard to show that maxF and minF are
also continuous based on the compactness of BZ. So maxF −minF ≥ 2πC/A is also satisfied
for irrational positions. Thus, the Berry curvature cannot be uniform even if we deform the
position of the sublattice sites.

5 Fractional Chern insulators with constant curvature

In this section, we test the expectation that fractional Chern insulator states are more stable
in flatbands with smaller Berry curvature variations. While this might hold in some cases, we
argue here that it is not generally true. We demonstrate this by studying bosonic FCI states in
the modified KM model with constant Berry curvature defined in section 3.

The original KM model has the remarkable property that its lowest-band eigenstates are
lattice versions of the lowest LL wave functions [32]. On the torus, this implies the existence of
two exact zero modes in the many-body spectrum at half filling for on-site interactions, since
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Figure 4: (a) The many-body spectrum at half filling for a 3-band (φ = 1/3) KM
model and its modified version with the constant Berry curvature for a lattice of
N1×N2/φ = 9×8 sites. The inset shows the two-fold degenerate ground states. The
dashed horizontal line is the zero energy line. (b) The two-fold ground state degen-
eracy splitting ∆E0 at half filling for different systems of Nb bosons in a Nb × 2/φ
lattice. The dashed horizontal line is the zero ground state splitting line. When the
lattice is perfectly square (Nb = 6), the modified model has the same ground state
energies as the original model hence the same ground state splitting. (c) The two-
body spectrum for a system of N1×N2 = 12×4 magnetic unit cells. The inset shows
the lowest non-zero two-body energy per total momentum sector for the modified
KM model.
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Figure 5: (a) The many-body spectrum at half filling for a 4-band (φ = 1/4) Hofs-
tadter model and its modified version with the constant Berry curvature for a lattice
of N1×N2/φ = 9×8 sites. (b) The two-fold ground state degeneracy splitting∆E0 at
half filling for different systems of Nb bosons in a Nb × 2/φ lattice. When the lattice
is perfectly square (Nb = 8), the modified model has the same ground state energies
as the original model hence the same ground state splitting. (c) The two-body spec-
trum for a system of N1×N2 = 12×4 magnetic unit cells. The inset shows the lowest
non-zero two-body energies per total momentum sector for both models.

bosonic Laughlin states are exact zero modes of a parent Hamiltonian described by contact
interactions V (r1, r2) = V0δ

2(r1 − r2) in the continuum. Exact zero modes have been also
found for lattice models with arbitrary Chern numbers that are built using the KM model [41].
By diagonalizing the Hamiltonian H = PHintP of the modified KM model at filling ν = 1/2
on the torus with Hint =

∑

i :nini:, where P is the projection operator to the lowest flatband
and : : denotes normal ordering, we find that the two lowest energies are no longer exact
zero modes as shown in Fig.4(a). When looking at the ground state degeneracy splitting for
different system sizes, we find that such splitting is no longer zero for most system sizes as
indicated in Fig.4(b). While this modified KM model with the constant Berry curvature still
displays excellent ground state degeneracy, it’s less ideal than the original KM model with the
non-flat Berry curvature in this regard.
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To further corroborate these ideas, we study the interacting two-body problem in the orig-
inal and modified KM model. Any rotationally and translationally invariant interaction poten-
tial V (r) can be decomposed in terms of the Haldane psuedopotentials [4, 42]. In the lowest
Landau level, they read

V (r) =

∫

d2q
∑

n

vn Ln(q
2)e−q2/2eiq·r , (8)

where vn are the psuedopotential parameters. The ν = 1/2 bosonic Laughlin states are the
densest zero-energy eigenstates of such Hamiltonian for contact interactions vn = δn,0v0. The
two-body spectrum for contact interactions in the continuum has only one non-zero constant
energy at each center of mass momentum K= (k1 + k2)/2, E(K) = v0.

Moving on to the lattice, the two-body spectrum is no longer guaranteed to be constant.
There exist more than one non-zero energy in the two-body spectrum that depend on the
center of mass momentum [43]. In the limit of a large unit cell, approaching the Landau level
continuum, the two-body spectrum on the lattice approaches the continuum one (albeit with
the difference that the number of finite levels per sector differs corresponding to the lower
symmetry, hence fewer sectors, of the lattice system) [44]. The number of non-zero energies
per momentum sector in the two-body spectrum is bounded from above by the number of
non-zero eigenvalues of the interaction Hamiltonian. For on-site interactions, this number is
hence bounded by the number of sites in the unit cell. The existence of two exact zero modes
at half filling for the KM model with on-site interactions, on the other hand, implies that there
is a maximum of two non-zero two-body energies per total momentum sector. This is indeed
the case as shown in Fig 4(c). However, we find that the modified KM model exhibits an extra
non-zero two-body energy per total momentum sector, implying a slight deviation from the
ideal KM model that has only two non-zero two-body energies irrespective of the number of
bands.

While we have demonstrated that flattening the curvature does not always imply more
ideal FCI states, it is indeed beneficial to do this for certain models. We apply the optimiza-
tion algorithm to the Hofstadter model with flux φ = 1/4 per plaquette to obtain a modified
Hofstadter model with constant Berry curvature. With on-site interactions and at half filling,
we find that the modified Hofstadter model with the constant Berry curvature exhibits a two-
fold ground state degeneracy with smaller energies and smaller ground state splitting than the
original model as indicated in Fig 5(a-b). While both models have more than two non-zero
two-body energies per total momentum sector as shown in Fig 5(c), we find that the extra non-
zero two-body energies are smaller for the modified model (c.f the inset of Fig 5(d)). In this
case, flattening the Berry curvature does make the Hofstadter model more ideal in the sense of
having smaller energies (closer to zero) and smaller ground state splitting at half filling with
on-site interactions in addition to having smaller extra two-body non-zero energies per total
momentum sector. This is in agreement with the results of Ref. [31] that correlates the sta-
bility of FCI models with Berry curvature fluctuations. Our results suggest that the number of
non-zero two-body energies per momentum sector could be a good a measure for the ideality
of an FCI model while the Berry curvature fluctuations, by themselves, are generally not.

6 No ideal flatbands with constant curvature in lattice systems

As we saw in the previous section, making the curvature of the KM model constant does not
always improve its properties in the FCI phase. Here we investigate the effect of other “ideal”
band geometry conditions on the FCI physics, and their relation to the constant Berry curvature
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condition. Following Refs. [19,38] we call a QH liquid in a band with

4det g(k) = F(k)2 (9)

an a ideal droplet. This condition, together with det g(k) 6= 0, can equip the BZ with a Kähler
structure pulled back from its image in the complex projective planeCPn−1 [39]. If the stronger
condition

2gµν(k) = δµν |F(k)| (10)

is satisfied, we talk about an a ideal isotropic droplet. Ref. [45] uses a slightly weaker constraint
to define an ideal flatband:

2gµν(k) =ωµν |F(k)| , (11)

where ω is a constant, unit determinant positive definite matrix. This condition is equivalent
to the previous one after an appropriate affine reparametrization of k-space and gives rise to
Bloch wave functions that are holomorphic functions of kx + iky .

In order to quantify the deviation from the ideal flatband condition (11) with constant
ωµν, we compute the standard deviation of ω(k)µν = 2g(k)µν/|F(k)| over the BZ, summed
over all components. This quantity is lowered by the flattening procedure in the Hofstadter
model, but is increased in the KM model. Comparing the average third-highest 2-body energy,
and the finite-size splitting of the ground state, we find that these properties of the interacting
system are correlated with the degree of deviation from (11), and not the flatness of the Berry
curvature, see Fig. 6.

In the rest of this section we show that it is not possible to simultaneously satisfy the ideal
flatband condition (11) and have constant Berry curvature in any lattice system that has a
finite number of degrees of freedom per unit cell.

We use the result of Ref. [18], which proves that condition (11) together with k-independent
F (hence g) implies that the density operators obey the generalized GMP, or W∞ algebra:

�

ρ̄q, ρ̄q′
�

= 2i sin

�Fεµνqµq′ν
2

�

egµνqµq′νρ̄q+q′ , (12)

where ρ̄q = PeiqrP is the projected density operator with P =
∑

k |k〉 〈k| the projector onto the
lowest Chern band and r the position operator.

In a lattice system with a single site per unit cell, ρ̄q is Brillouin zone periodic, ρ̄q = ρ̄q+G
for reciprocal lattice vectors G. If there are multiple sites per unit cell, but the orbital coordi-
nates are rational linear combinations of the lattice vectors, the BZ can be extended such that
ρ̄q is periodic with respect to the extended BZ. Substituting q→ q+ G̃ in (12) shows that this
periodicity is incompatible with the density algebra, completing the proof by contradiction. In
Appendix B we extend the proof to the case of irrational coordinates.

We note that the Kapit-Mueller model is a system with a finite number of degrees of free-
dom that has an ideal flatband satisfying (11). However, it does not pose a counterexample
to our theorem, because the curvature is not constant for any finite flux per unit cell. The
deformation of the Hamiltonian H ′(k) = H(f(k)) described in Sec. 3 preserves the weaker
ideal droplet condition (9), however, in general it does not maintain condition (11) for gen-
eral f(k), hence our modified KM model no longer has an ideal flatband, as we illustrate in
Fig. 6. Condition (11) is equvalent to the quantum geometric tensor η(k) having a constant
null vector |w0〉. We calculate the overlap of the approximate null vector |w(k)〉 of η(k) with
the exact null vector for the KM model |w0〉= (1, i). We see that the KM model has a constant
null vector of η to high precision, while the optimized model’s null vector shows fluctuations.
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Figure 6: Above: Overlap of the null vector |ω(k)〉 of the quantum geometric tensor
with the exact null vector for the 3-band KM model (left), and optimized KM model
with constant curvature (right). Note the scales of the colorbars. Below: Dependence
of the average third highest 2-body energy (full symbols) and the average ground-
state splitting (empty symbols) on the deviation from the ideal condition for the
quantum metric.

7 Conclusion

In this manuscript we have studied the question whether constant Berry curvature, similar
to Landau Levels, is possible in Chern bands. We answered in the affirmative, providing an
explicit construction for systems with at least 3 orbitals per magnetic unit cell. Next we in-
vestigated the properties of bosonic fractional quantum Hall states in bands with constant
curvature. We found that in the interacting case minimizing the curvature fluctuations does
not necessarily result in properties that imitate LLs better. Instead we found that the ideal flat-
band condition (11) (satisfied by the Kapit-Mueller model) determines the interacting physics,
specifically the rank of the 2-body problem with on-site interactions, the number exact zero
energy eigenstates per momentum sector. Finally we proved that it is not possible to have an
ideal flatband with constant curvature satisfying the GMP algebra for density operators in a
lattice model.

Our results indicate that it is necessary to go beyond the level of single-particle physics in
order to better understand the connection between FCIs and FQHE. While constant curvature
gives the identical algebra for the projected coordinates in FCIs and FQHE, it does not always
improve the many-body spectra. The many-body properties in FQHE are captured by Hal-
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danes’s pseudopotentials [42]. In lattice models, both rotational and translational symmetries
are broken. It is known that the model FQHE states and their pseudopotentials can naturally
adapt to the breaking of rotational symmetry [34, 46–49]. In comparison, the discrete trans-
lational symmetry of FCIs leads to a different number of (two-body) states per momentum
sector [43] and needs a more careful treatment.

Our results raise some open questions for future investigation. It is known that exactly flat
bands are not possible with finite-range hoppings in lattice models [30]. Is it possible to prove
an analogous statement about constant curvature, or ideal flatbands? While we showed that
the GMP algebra (which follows from the ideal flatband condition with constant curvature) is
not realizable in lattice models, we also conjecture that there is no nontrivial closed density
algebra that lattice systems can admit; however, we do not have a rigorous proof of this state-
ment. It is an interesting mathematical question, whether simultaneously constant curvature
and metric are possible to satisfy globally (even without the ideal flatband condition). Put
differently, we conjecture that a two-dimensional submanifold of CPn with vanishing scalar
curvature cannot be a torus with nonzero Chern number. Ref. [50] proposed a general for-
mula for the Hall conductivity in interacting systems in terms of the Berry curvature and the
momentum-dependent occupation number, however, this result remains controversial. [51,52]
As the counterargument of Ref. [51] relies on non-constant curvature, our construction of flat-
bands with constant curvature can serve as a test case to elucidate this debate.
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A C = 3 model with constant curvature

We also apply the optimization algorithm to the three-band model with Chern number 3 of
Ref. [38]. The resulting Berry curvature has relative variations of order 10−11, as shown in
Fig. 7.
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iteration of the flattening algorithm (middle), and after 10 iterations (right). Note
the scales of the colorbars. The curvature is scaled such that average curvature of 1
corresponds to a band with Chern number 3.

B Ideal flatband with constant curvature is not possible in a lattice
model

Following Ref. [18], first we show that the projected density operator factorizes in an ideal
flatband with constant curvature. The Fubini-Study metric and the Berry curvature have the
relation

tr g(k) = 〈k|Pr+Qr−P|k〉 −F(k) = 〈k|Pr−Qr+P|k〉+F(k) , (13)

where Q = 1 − P and r± = x ± i y . The operators Pr−Qr+P = (Qr+P)†Qr+P and
Pr+Qr−P = (Qr−P)†Qr−P are positive semi-definite. For simplicity, we assume that k-space is
parametrized in a way, such that the isotropic ideal droplet condition 2gµν = δµν |F | is also
satisfied with constant g and F . For positive F , this implies Qr+P = 0. From this we can
deduce r+P = Pr+P, and taking its adjoint, Pr− = Pr−P. Now writing the projected density
operator

ρ̄q = P exp(iq · r)P

= P exp
�

i
2

q+r−

�

exp
�

i
2

q−r+

�

P

= exp
�

i
2

q+Pr−P
�

exp
�

i
2

q−Pr+P
�

= exp(iq · PrP)exp

�

−
Fq2

4

�

, (14)

where q± = qx ± iqy . We used the previous identities to propagate the band projector all
the way into the power series from the left and right, and in the last step used the Baker-
Campbell-Hausdorff formula and the commutation relation of the projected position operators
[P x P, P yP] = −iF . This factorization immediately implies that the GMP algebra is satisfied.
The result for negative F is similar and we only need to replace F by |F |.

On the other hand, writing the projected density operator in terms of the Bloch wavefunc-
tions we find

ρ̄q =
∑

k

u†
k+quk |k+ q〉 〈k| . (15)

As the k-space translation operator
∑

k

|k+ q〉 〈k| ∝ exp(iPq · rP) (16)
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up to a complex phase, if (14) is satisfied then

F(q)≡
�

�

�u†
k+quk

�

�

�= exp

�

−
|F |q2

4

�

(17)

independent of k. For rational site coordinates, the periodicity of the Bloch wavefunctions
with respect to the extended BZ implies that F(G̃) = 1 for all G̃ extended reciprocal lattice
vectors. This is incompatible with (17), providing an alternate proof for the case with rational
site coordinates, which we extend to the irrational case in the following.

Let us assume that for some irrational site coordinates F(q) satisfies (17). We can simulta-
neously approximate all the x coordinates (and separately the y coordinates) of the sites, and
deform the positions to their rational positions without changing any of the onsite or hopping
parameters in the tight-binding Hamiltonian. (Here for simplicity we assume a unit square unit
cell, but the same argument is applicable with arbitrary unit cell shape writing the positions as
linear combinations of the primitive lattice vectors.) Such a deformation of the coordinates by
r̃i = ri +∆ri changes the Bloch wavefunctions as ũk,i = exp(ik ·∆ri)uk,i , but does not change
the energy spectrum and leaves the Chern number invariant. Because uk is normalized, the
resulting change in F(q) is bounded from above as

∆F(q)≤max
i
|q ·∆ri| . (18)

The n-dimensional version of the Dirichlet approximation theorem states that there are
infinitely many denominators px ∈ Z such that the error in the rational approximation of all
x coordinates with fractions mi/p is bounded by

�

�

�

�

mi

px
− ri x

�

�

�

�

= |∆ri x | ≤
c

p(1+1/n)
x

, (19)

where n is the number of degrees of freedom in the unit cell and c is some constant [54]. The
same applies to the y coordinates.

On the other hand, for extended reciprocal lattice vectors (17) gives

∆F(G̃) = 1− exp

�

−
|F |G̃2

4

�

. (20)

Choosing sufficiently large denominator px and accurate approximation, substituting G̃= pxGx
(an extended reciprocal lattice vector in the x direction) we get

∆F(pxGx)≤
c

p1/n
x

(21)

leading to a contradiction with (20) and completing the proof.
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