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Abstract

We consider 2d QFTs as relevant deformations of CFTs in the thermodynamic limit. Using
causality and KPZ universality, we place a lower bound on the timescale characterizing
the onset of hydrodynamics. The bound is determined parametrically in terms of the
temperature and the scale associated with the relevant deformation. This bound is typi-
cally much stronger than

1
T , the expected quantum equilibration time. Subluminality of

sound further allows us to define a thermodynamic C -function, and constrain the sign
of the T T̄ term in EFTs.
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1 Introduction and Bound on Thermalization

We consider relativistic quantum field theories (QFTs) in two spacetime dimensions obtained
from UV conformal field theories (CFTs) with a relevant deformation

λ

∫

d2 x O , ∆≤ 2 . (1)

In the high temperature limit, the equation of state of the QFT approaches that of the UV
CFT, so that in particular the speed of sound approaches the conformal value limT→∞ cs = 1.
Causality leaves no room for hydrodynamic spreading about the sound front when cs = 1, and
one finds indeed that thermal correlation functions of CFTs in the thermodynamic limit are
entirely fixed by symmetry [1]. Instead, at intermediate temperatures, the QFT is expected to
enter a hydrodynamic regime at late times t � τeq with speed of sound cs < 1; however the
near-luminal speed of sound will place important constraints on the equilibration time τeq at
which hydrodynamics emerges.

In Ref. [2], Hartman, Hartnoll and Mahajan showed – following earlier work on hydrody-
namics and causality [3–5] – that the vanishing of commutators outside the lightcone x > c t
imposes a parametric bound on τeq in diffusive systems. The bound arises because diffusion
x2 ∼ Dt is superluminal at early times, and hence cannot emerge too soon. It reads

τeq ¦
D
c2

, (2)

where D is the diffusion constant. A simple generalization of this bound for hydrodynamic
modes with dispersion relation ω' csk− iDkz (instead of ω∼ −iDk2) is

τeq ¦
D1/(z−1)

(c − cs)z/(z−1)
. (3)

In the following we set c = 1. As we review below, the hydrodynamics of interacting QFTs in
two spacetime dimensions is governed by the KPZ universality class, with z = 3/2 rather than
z = 2 for diffusion (note that z is unrelated to the zero temperature dynamic critical exponent,
which for relativistic QFTs is always unity). Eq. (3) captures the absence of hydrodynamics in
2d CFTs, since it requires τeq→∞ when cs→ 1. For QFTs, corrections to the equation of state
from breaking of conformality at intermediate temperatures will control 1−cs. They also control
D, as dissipation in the KPZ universality class is entirely fixed by thermodynamics. Putting
these together, one finds that at large but finite temperature T � λ1/(2−∆) ≡ Λ, thermalization
is allowed but strongly constrained

τeq ¦
1
T

1
cUV

�

T
Λ

�2(2−∆)
, (4)
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Figure 1: Left: 2d QFT obtained from a UV CFT and a relevant deformation with scale
Λ. Right: Sketch of a correlator (e.g., 〈T00(t, x)T00〉) at high temperatures T � Λ.
The solid line is the lightcone x = t. The correlator is well described by the CFT
expression at early times t ® τeq, and by KPZ hydrodynamics at late times t ¦ τeq
where a sound front emerges along the dashed line x = cs t.

where cUV is the central charge of the UV CFT. We argue that this bound is in fact parametrically
saturated, as long as cUV = O(1) and the RG flow is not near-integrable. Similar arguments
show that thermalization is also strongly constrained at low temperatures. At intermediate
temperatures, the bound depends on the details of the equation of state which can no longer
be accessed with conformal perturbation theory, but generically requires

τeq ¦
1
T

1
so

�

d log so

d log T

�−1

, (5)

where so(T) ≡ s(T)/T is the dimensionless entropy density. The last factor is sensitive to
conformal breaking: it is typically O(1) at intermediate temperatures T ∼ Λ, but becomes
large at high temperatures (where one recovers Eq. (4)) and low temperatures. The precise
expression for this thermodynamic factor is given in Eq. (42).

It has been conjectured that the equilibration times of interacting quantum systems satisfy
a quantum bound τeq ¦

1
T [6] – our results show that all 2d QFTs that do not have a large

number of degrees of freedom satisfy this bound, and satisfy a parametrically stronger bound
(4) at high or low temperatures (for marginally relevant deformations ∆= 2, the parametric
enhancement is logarithmic). The case ∆ = 0, which formally applies to a free scalar CFT with
a φn deformation, is special and is treated separately – one finds that the bound (4) is replaced

by τeq ¦
1
T

� T
Λ

�
4

n+2 . The slow thermalization in the high temperature limit is illustrated in Fig. 1.
Depending on microscopic details, some 2d QFTs may have the emergence of diffusive

hydrodynamics before ultimately reaching KPZ universality – in these cases (4) still holds for
the onset of diffusion (and in fact can be strengthened). This occurs for example in theories
with many degrees of freedom cUV � 1. Since KPZ universality arises from hydrodynamic
fluctuations, which are suppressed at large cUV, the bound (4) becomes weak in this limit;
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however we show that causality still leads to a strong constraint on thermalization and the
bulk viscosity, through the following bound

ζ

s
® (1− cs)Tτeq , (6)

when 1− cs� 1.
In higher dimensions, QFTs thermalize slowly at high (low) temperatures if they become

free in the UV (IR), a process which can be studied with Boltzmann kinetic theory. Instead,
2d QFTs always thermalize slowly in these regimes, regardless of the nature of the UV and IR
CFTs; our results do not rely on a particle description.

This paper is organized as follows. In Sec. 2, we study the thermodynamics of 2d QFTs; we
show that the dimensionless entropy density so(T) defines a C-function, and use conformal
perturbation theory to obtain the equation of state at high temperatures. We then turn to
hydrodynamics in Sec. 3, explaining how KPZ universality emerges in 2d QFTs. Sec. 4 is devoted
to the derivation of the bound (4). A number of extensions are discussed in Sec. 5, where we
show that thermalization is also slow in the low temperature limit, and comment on higher
dimensions, theories with additional global symmetries, and theories with a large number of
degrees of freedom.

2 Thermodynamics

The equation of state of the QFT can be parametrized by the energy density ε(T ) or pressure
P(T ), defined as the thermal expectation value of the stress tensor

〈Tµν〉β = (ε + P)δ0
µδ

0
ν + Pηµν , (7)

where η ≡ diag(−1,1) and β = 1/T is the inverse temperature. We work in the thermody-
namic limit, with volume V →∞. It is convenient to study the equation of state using the
dimensionless entropy density, defined as

so(T )≡
s
T

, s =
dP
dT

. (8)

One can show that in two dimensions, so(T ) is a C-function interpolating between the central
charges of the UV and IR CFTs. First note that its high and low temperature limits are given by
the Cardy formula

lim
T→∞

so(T ) =
π

3
cUV , lim

T→0
so(T ) =

π

3
cIR . (9)

If the IR is gapped, cIR = 0. Next, strict subluminality of sound propagation for nonintegrable
flows implies that so(T) is monotonic: the speed of sound is given by c2

s = dP/dε, or, using
dε = T ds,

1
c2
s
=

d log s
d log T

= 1+
d log so

d log T
> 1 ⇔ s′o(T )> 0 . (10)

This implies cUV > cIR, at least for nonintegrable RG flows. Note that this C-function is
qualitatively different from the one introduced by Zamolodchikov [7], which involves vacuum
two-point correlators of the stress tensor instead of thermal correlators. Subluminality of
sound therefore offers an alternative proof of the 2d C-theorem in flows where hydrodynamics
emerges.1 A related thermodynamical C-function has been previously considered in the

1Even in integrable flows, turning on an irrelevant integrability breaking deformation should restore hydrody-
namics, so that one expects c2

s ≤ 1 there as well. The C-function so is illustrated in an integrable flow in Appendix
A.2.
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literature [8–12], which however is sensitive to the regulation scheme and requires fine-tuning
the T = 0 vacuum energy density to zero. We comment further on the relation between these
two C-functions in Appendix B. The advantage of the C-function proposed here, so(T ), is that
it is insensitive to the vacuum energy density. In particular, one can measure it or calculate
it at some specific temperature, without needing perfect knowledge of the vacuum energy or
equivalently the pressure at T = 0 (should those be difficult to obtain).

The leading correction to the equation of state at high T can be obtained from conformal
perturbation theory in the UV CFT. Up to quadratic order in the deformation λ, the pressure is
given by2

P =
T
V

log Z

=
π

6
cUVT2 −λ〈O〉β +

λ2

2

∫ β

0

dτ

∫

d x 〈O(τ, x)O〉β + · · · .
(11)

All correlation functions are evaluated in the UV CFT at finite temperature. In two dimensions,
only global primaries in the identity multiplet can acquire thermal expectation values – since
O 6= 1 is a relevant scalar, the linear term vanishes. The quadratic term involves the thermal
two-point function, which is fixed by conformal invariance3

〈O(x ,τ)O〉β = cUV

�

(πT )2

sinh πβ (x + iτ) sinh πβ (x − iτ)

�∆

. (12)

Integrating over x and τ gives [13,15]:

∫ β

0

dτ

∫

d x 〈O(x)O〉β = cUVπ(2πT )2∆−2 Γ (1−∆)Γ (
∆
2 )

2

Γ (∆)Γ (1− ∆2 )2
. (13)

Note that for 1 < ∆ < 2, a UV (OPE) divergence has been removed before performing the
integral. Writing the pressure as

P =
π

6
cUVT2

�

1−
α∆
∆− 1

�

λ

T2−∆

�2

+ · · ·
�

, (14)

with

α∆ = 3(2π)2(∆−1) Γ (2−∆)Γ (
∆
2 )

2

Γ (∆)Γ (1− ∆2 )2
≥ 0 , (for 0<∆≤ 2) , (15)

one finds that the dimensionless entropy is

so =
1
T

dP
dT
=
π

3
cUV

�

1−α∆
�

λ

T2−∆

�2

+ · · ·
�

. (16)

Since only temperature independent UV divergences were removed in (13), these do not
contribute to the entropy so that so is UV insensitive as anticipated above (and in contrast to

2This expansion is free of IR divergences as long as ∆> 0. There are power-law UV divergences when ∆> 1,
which can be removed with temperature independent counterterms. Finally, there are physical (temperature-
dependent) logarithmic UV divergences at order λn in conformal perturbation theory when ∆ = 2 − 2

n , for
n = 1,2,3, . . . [13, 14]. Examples with n = 1 and 2 are discussed in Appendix A – for n > 2 these terms with
logarithmic enhancements do not control the leading correction to the equation of state.

3We have normalized the deforming operator as limx→0 O(x)O ∼ cUV/x2∆ rather than 1/x2∆. This is unimportant
when cUV ∼ 1, but when cUV � 1 it guarantees that the relative correction to the equation of state is order 1 at
temperatures T ∼ Λ≡ λ1/(2−∆).
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a previously proposed thermodynamic C-function, see Appendix B). The correction to so is
negative as expected from Eq. (10) – degrees of freedom are lost as T is decreased. Sound
therefore propagates subluminally

c2
s = 1− 2(2−∆)α∆

�

λ

T2−∆

�2

+ · · · < 1 , (17)

and the speed of sound cs approaches the conformal value cs = 1 from below as the temperature
is increased. These expressions diverge for ∆= 0 – although no unitary CFT has a nontrivial
operator of vanishing dimension, the free scalar with a relevant deformation φn formally
realizes this possibility. This case is treated in Appendix A. For marginally relevant deformations
∆= 2 this correction vanishes. The first correction to the equation of state arises at order λ3,
and a logarithmically enhanced contribution arises at order λ4 [13] – resumming the leading
large logarithms4 and taking the high temperature limit leads to a correction

δcs ∼
δso

so
∼ −

1
(log T/Λ)3

. (18)

3 Hydrodynamics

The real time dynamics of interacting systems at finite temperature is described by hydrodynam-
ics at sufficiently late times t � τeq (see [16] for an introduction to relativistic hydrodynamics).
The equilibration time τeq can be interpreted as the UV cutoff of the effective hydrodynamics
description. In this regime, the only surviving excitations are those associated with conserved
quantities. For QFTs with no internal continuous global symmetry, these are the stress tensor
components T 00 and T 0x , whose lifetimes are protected by the conservation laws

∂µT µν = 0 . (19)

We can parametrize these long-lived collective excitations (i.e., sound modes) either directly in
terms of the local energy density ε(x) and momentum density π(x) ≡ T 0x , or alternatively,
in terms of the local temperature T(x) and velocity uµ(x), satisfying uµuµ = −1. The latter
choice is often useful for making the Lorentz invariance of the underlying QFT more manifest.

At late times in the thermal state, correlation functions of any neutral operator of the QFT
can be expanded in terms of these hydrodynamic degrees of freedom in a derivative expansion
– these operator matching equations are called constitutive relations. For the stress tensor, the
most general constitutive relation up to first order in derivatives is

T µν = (ε + P)uµuν + Pηµν − ζ∂λuλ (ηµν + uµuν) +O(∂ 2) , (20)

where ζ is the bulk viscosity.5 Note that there is no shear viscosity in two dimensions. For
notational simplicity, we have suppressed the dependence on position, but it is important to
note that the densities on the right-hand side of (20) are all local (i.e., ε(x) and P(x)).

For d > 2, all interactions for the hydrodynamic modes are technically irrelevant and
the late-time dynamics in generic QFTs is governed by diffusion, such that the collective

4More explicitly, the β function for the coupling λ is βλ = (2 −∆)λ − Cλ2, with C = COOO being an OPE
coefficient, so the running coupling λ(T) ∼ 1

λ−1
0 −C log(T/T0)

at ∆ = 2. Then δP ∼ 〈T µ
µ
〉 ∼ βλ〈O〉 ∼ βλλ〈OO〉, and

βλλ∼
1

C2 log3 T
after using the running coupling at large T .

5A term T µν ⊃ a1 u(µ∂ ν)T was removed with a field redefinition uµ → uµ + δuµ, and similarly for
T µν ⊃ uµuν (a2 ∂ · u+ a3 u · ∂ T ) using T → T + δT . Finally, the leading equations of motion uµ∂νT µν = 0 were
used to absorb a term T µν ⊃ a4(ηµν + uµuν)u · ∂ T in the bulk viscosity, up to higher derivative terms.

6
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excitations largely propagate freely, but dissipate due to the viscosities. All late-time thermal
correlators are therefore determined by the two-point functions of the densities ε(x), π(x)
(or equivalently T (x), uµ(x)). However, as we will show below, in two dimensions there are
relevant interactions, which significantly alter the late-time dynamics. Before discussing the
effects of interactions in 2d, though, we briefly review the usual linearized analysis applicable
in higher dimensions.

The typical approach is to expand the densities around their thermal expectation values,

ε(x) = ε +δε(x) , π(x) = 0+δπ(x) , (21)

or equivalently,

T (x) = T +δT (x) , uµ(x) =
1

p

1−δv2(x)

�

1
δv(x)

�

, (22)

with the relation between these two parametrizations given by

δε(x)'
dε
dT
δT (x) , δπ(x)' (ε + P)δv(x) . (23)

Thermal correlation functions can be obtained by inserting (20) into (19), expanding around
the thermal background to linear order in the fluctuations δε, δπ (or δT, δv), and solving for
the densities in terms of the sources [17], see [16] for details. This procedure leads to the
following retarded Green’s function for momentum density:

GR
T0xT0x

(ω, k)' sT
c2
s k2 − iDωk2

c2
s k2 −ω2 − iDωk2

, (24)

with diffusion constant6 given by

D ≡
ζ

sT
. (25)

The Fourier transform of the Wightman function can be obtained from (24) using the general
relation

〈AA〉(ω, k) =
2

1− e−βω
Im GR

AA(ω, k)'
2
βω

Im GR
AA(ω, k) , (26)

where in the last step we used the fact that βω � 1 in the hydrodynamic regime. For the
energy density, this gives

〈T0xT0x〉(ω, k)' 2T2s
Dω2k2

(ω2 − c2
s k2)2 + (Dωk2)2

'
sT2

Dk2

ω

csk

�

gdiff

�

ω− csk
1
2 Dk2

�

− gdiff

�

ω+ csk
1
2 Dk2

��

.

(27)

In the second line we have separated the contributions from the two poles and expressed the
result in terms of a ‘diffusion scaling function’ gdiff(x) ≡

2
1+x2 . In two dimensions, all other

components of the stress tensor Green’s function can be obtained from (27) through the Ward
identity [18] pµ〈TµνTλρ〉(p) = contact terms.

However, Eq. (27) does not correctly describe stress tensor thermal correlators in generic
two-dimensional QFTs. We have incorrectly assumed in Eq. (21) that hydrodynamic fluctuations
could be linearized around equilibrium. It is well known, but perhaps not entirely appreciated

6While D is more accurately a sound attenuation (or damping) rate, in a slight abuse of language we will refer
to it as a diffusion constant.

7

https://scipost.org
https://scipost.org/SciPostPhys.12.4.119


SciPost Phys. 12, 119 (2022)

in the high-energy literature, that sound modes in two dimensions lead to large hydrodynamic
fluctuations. In other words, there are relevant interactions, which lead to a breakdown of
diffusive spreading of ballistic modes and trigger a flow to a new ‘dissipative fixed point’ in the
Burgers-Kardar-Parisi-Zhang (KPZ) universality class [19–22]. Let us review how this arises in
the present context. Expanding the hydrodynamic equations (19) and (20) in perturbations
gives the equations of motion

0= ∂tδε +∇δπ+
1

ε + P
∂t(δπ)

2 + · · · , (28a)

0= ∂tδπ+ P ′(ε)∇δε − D∇2δπ+
1
2

P ′′(ε)∇(δε)2 +
1

ε + P
∇(δπ)2 + · · · , (28b)

where∇≡ ∂x . The ellipses · · · contain terms that are higher order in derivatives or fluctuations
O(∂ δ3,∂ 2δ2). To leading order, we can factorize these coupled differential equations by
introducing the right- and left-moving modes

π± ≡ δπ± csδε , (29)

with cs ≡
p

P ′(ε), obtaining

0= ∂tπ+ + cs∇π+ −
1
2

D∇2π+ +
1
2
κ∇π2

+ + · · · , (30a)

0= ∂tπ− − cs∇π− −
1
2

D∇2π− +
1
2
κ∇π2

− + · · · , (30b)

with coefficient for the nonlinear term

κ=
1
2

�

1
2

P ′′(ε)
P ′(ε)

+
1− P ′(ε)
ε + P

�

. (31)

Here we have ignored interactions between the two modes as these are irrelevant [22]7. The
linear terms for these modes reproduce the two poles ω' ±csk−

i
2 Dk2 in Eq. (27).

The fact that interactions are relevant in 2d follows from a simple scaling argument. Let us
focus on the right-moving π+ mode for concreteness and work in the coordinates x ′ = x − cs t,
t ′ = t where the equation of motion simplifies to

0= ∂t ′π+ −
1
2

D∇2π+ +
1
2
κ∇π2

+ + · · · . (32)

In these coordinates, the linearized density correlator from (27) is diffusive,

〈π+π+〉(t, x ′ = 0)∼
sT2

|Dt|1/2
, (33)

showing that densities scale as π+ ∼ω′1/4 ∼ k1/2. The interaction term ∇π2
+ ∼ k2 is therefore

more relevant than the diffusive term ∇2π+ ∼ k5/2. At late times, hydrodynamic modes in 2d
are therefore strongly-interacting, unlike in higher dimensions.

The hydrodynamics that arises from Eq. (32) has been thoroughly studied (see [22] for a
review). Rather than being diffusive, it is described by the KPZ universality class: the correlation
function in Eq. (27) is replaced by8

〈T0xT0x〉(ω, k)'
sT2

2Dk3/2

ω

csk

�

gKPZ

�

ω− csk
D|k|3/2

�

− gKPZ

�

ω+ csk
D|k|3/2

��

. (34)

7Indeed, in coordinates where theπ+ correlator scales as (33), π− decays exponentially 〈π−π−〉(t, x ′ = 0)∼ e−t/D
p

Dt
.

This factorization, arising due to the peculiarities of 1+1d kinematics, is reminiscent of the holomorphic factorization
of CFTs.

8This expression holds near the singularitiesω' ±csk, where the correlator is large. Away from the singularities,
the decoupling between π+ and π− is no longer valid (c.f. footnote 7); the solution to the resulting coupled KPZ
equation is not known in general [22]. The correlator (34) may therefore be multiplied by a function of ω

cs k equal
to unity when ω= ±csk. Its k→ 0 limit must however take the form in (34) because T0x is a conserved quantity.
We will only use these two properties of this function in what follows.
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Here gKPZ is the KPZ scaling function and the parameter D is fixed in terms of the equation of
state through the interaction κ in (31)

D =
Æ

Tχπ+π+ |κ|=
p

2sT2|κ| , (35)

where the susceptibility associated with π+ was evaluated using (29) and (23):

χπ+π+ = χππ + c2
s χεε ≡

dπ
dv
+ c2

s T
dε
dT
= 2sT . (36)

The KPZ scaling function is not known analytically but known numerically to high precision [23];
it has the following properties

∫

d x
2π

gKPZ(x) = 1 , lim
x→∞

gKPZ(x) =
2a

x7/3
, lim

x→0
gKPZ(x) = b , (37)

with a ≈ 0.417816 and b ≈ 3.43730. We comment on a few similarities and differences
between KPZ and diffusive correlators. Both the KPZ hydrodynamic correlator (34) and the
diffusive one (27) saturate the sum rules at small wavevector9 k� T

∫

dω
π

1
ω

Im GR
T0xT0x

(ω, k) = Re GR
T0xT0x

(ω= 0, k) = sT , (38a)

∫

dω
π

1
ω

Im GR
T00T00

(ω, k) = Re GR
T00T00

(ω= 0, k) = T
dε
dT

, (38b)

as can be checked by using (26) and
∫ d x

2π gKPZ(x) =
∫ d x

2π gdiff(x) = 1. However, in the KPZ
regime, the bulk viscosity is singular at low frequencies

ζ(ω)≡ lim
k→0

1
ω

Im GR
Tx xTx x

(ω, k) = sT
7
3 aD4/3

ω1/3
, (39)

with a given below Eq. (37). Similar behavior has been found for heat or charge conductivities in
1+1d non-relativistic systems [21,24,25]; in the present relativistic context the heat conductivity
vanishes because the energy current is a conserved density.

It is a striking feature of dissipation in the KPZ universality class that real time correlation
functions (34) are entirely fixed in terms of thermodynamic quantities, in contrast to (27)
which involves an unknown diffusion constant. In relativistic two dimensional QFTs at high
temperatures T � λ1/(2−∆) ≡ Λ, the thermodynamic results from Sec. 2 can be used in (31)
and (35) to obtain the KPZ transport parameter

D
p

T '
√

√ 6
πcUV

(2−∆)(3−∆)α∆
�

Λ

T

�2(2−∆)
+ · · · . (40)

Breaking of conformal invariance by the deformation (1) therefore has two consequences:
First, it opens a window for hydrodynamics by allowing for cs < 1, and second, it produces
nonlinearities in the hydrodynamic equations of motion (30), ultimately leading to large
hydrodynamic fluctuations and dissipation in the KPZ universality class with transport parameter
given by (40).

In certain situations (notably when cUV� 1), D is small so that there may be an intermediate
window with diffusive hydrodynamics, before a cross-over time when the system ultimately
enters KPZ universality. This time scale can be found by balancing the last two terms in (32),

τcross-over ∼
D3

D4
∼

1
T

c2
UV(DT )3

�

T
Λ

�8(2−∆)
, (41)

where in the last step we used the high temperature expansion T � Λ for D in (40).
9One can estimate the contribution to the sum rule from large frequencies using the CFT correlator

1
T

∫∞
T

dω〈T0xT0x 〉 ∼ cUVk2� so T 2 which is indeed suppressed compared to (38) when k� T .
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4 Derivation of the Bound

Let us start by reviewing (a suitable generalization of) the thermalization bound of Ref. [2]. A
retarded Green’s function GR(t, x) involving a hydrodynamic mode with dispersion relation
ω ' csk − iDkz is exponentially suppressed except for ||x | − cs t| ® (Dt)1/z. At early times
and for z > 1, these points are outside of the lightcone |x |= t, where the commutator in GR

vanishes by causality. These two statements can be reconciled only if hydrodynamics emerges
at later times, leading to the bound in Eq. (3) on τeq. For the hydrodynamic correlators of 2d
QFTs in Eq. (34), KPZ dissipation with z = 3

2 leads to

τeq ¦ τKPZ bound ≡
D2

(1− cs)3
=

1
T

1
so

�

1
2

1
(1− cs)3

�

d log cs

d log s
+ 1− c2

s

�2�

, (42)

where we expressed D in terms of the equation of state using (35) and (31). This is a bound
on the equilibration time of 2d QFTs involving only equilibrium thermodynamic quantities.
QFTs that do not have a large number of degrees of freedom have so ∼ 1 and therefore satisfy
the ‘Planckian’ bound τeq ¦

1
T [6], as long as the equation of state leads to a ¦ O(1) quantity

in square brackets in (42). At high temperatures T � Λ, one can in fact show that this quantity
is always large, so that 2d QFTs (with so ∼ 1) always thermalize much more slowly than the
Planckian time 1

T in this regime. The same is true at low temperatures, see Sec. 5.2. In the
remainder of this section, we focus on the high temperature limit T � Λ. Using the expressions
for cs (17) and D (40) obtained from conformal perturbation theory and dropping numerical
coefficients, the bound for T � Λ becomes

τeq ¦ τKPZ bound ∼
1
T

1
(2−∆)α∆cUV

�

T
Λ

�2(2−∆)
, (0<∆< 2) . (43)

This is the result quoted in Eq. (4). For marginally relevant deformations (∆ = 2), the
logarithmic corrections to the equation found in (18) give

τeq ¦ τKPZ bound ∼
1
T

1
cUV

�

log
T
Λ

�3

, (∆= 2) . (44)

The case ∆ = 0, which applies to a massless scalar with φn deformation, is discussed in
Appendix A.3 – a result similar to (43) holds.

In certain situations, diffusive hydrodynamics will emerge first, before ultimately settling
to KPZ hydrodynamics after the cross-over time (41). In this situation it is more pertinent
to define thermalization as the emergence of diffusive hydrodynamics. The bound on the
emergence of diffusion can be found by setting z = 2 in (3), leading to

τeq ¦ τdiff. bound ≡
D

(1− cs)2
=

D
Dcr
τKPZ bound , (45)

where in the last step we expressed the result in terms of a critical diffusive constant which in
the high temperature limit reads

T Dcr ≡
TD2

1− cs
∼
�

Λ

T

�2(2−∆) (2−∆)α∆
cUV

. (46)

In this notation, the cross-over time (41) is

τcross-over ∼
�

D
Dcr

�3

τKPZ bound . (47)
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Figure 2: Hydrodynamic timescales as a function of the diffusion constant D, for
T � Λ. For D ® Dcr, hydrodynamics is governed by KPZ (gray region), with the
equilibration time bounded by τKPZ bound (black line). For D ¦ Dcr, the equilibration
time satisfies a stronger diffusive bound τdiff. bound (blue dashed line); hydrodynam-
ics is initially governed by diffusion (blue region) before transitioning to KPZ at
τcross-over (gray dotted line). The equilibration time therefore satisfies the bound
τeq ¦max(τKPZ bound,τdiff. bound) (red line).

The fate of thermalization then depends on how the diffusion constant D compares to the value
(46), as shown in Fig. 2. If D ® Dcr, then the cross-over to KPZ physics (47) happens before
diffusion can kick in; the only hydrodynamic regime is KPZ and the bound (43) is unchanged.
If instead D ¦ Dcr, diffusion can emerge before KPZ physics – the appropriate bound is then
(45), which is stronger than the KPZ bound (43) by a factor of D/Dcr

τeq ¦ τdiff. bound ∼
D

Dcr
τKPZ bound . (48)

In this situation, the cross-over time (47) determines when the system ultimately settles to KPZ
dissipation.

4.1 Identification of the long-lived modes

The slow thermalization of 2d QFTs suggests the existence of long-lived non-hydrodynamic
modes.10 At high temperatures, the physics is governed by a CFT; we start by considering the
case where that CFT is free, and then discuss the general case. If the UV CFT is free (i.e. the
QFT is asymptotically free) these long-lived modes are particles, and – ignoring IR issues which
we comment on further at the end of this section – thermalization can be studied perturbatively
using Boltzmann kinetic theory as in higher dimensions (see, e.g., [26]). In this case the
equilibration time can be estimated from a thermally averaged cross-section 〈σ〉 ∼ λ2/T2(2−∆)

as

τeq ∼
1

sv〈σ〉
∼

1
T

1
cUV

T2(2−∆)

λ2
, (49)

showing that the bound (43) is parametrically saturated11. However, the bound (43) holds for
any UV CFTs, not only for those with a quasiparticle description. In the following, we give an

10We thank Sean Hartnoll and Tom Hartman for discussions that led to the argument presented in this section.
11KPZ dissipation can moreover be derived in certain weakly coupled 2d QFTs [27,28].
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argument for the saturation of the bound that does not rely on kinetic theory.
When thermalization is impeded by a single slow operator, the equilibration time can be

obtained in a systematic expansion using the memory function formalism to compute the small
relaxation rate of the slow operator [29, 30] (see [31] for a recent review). In the present
situation, we expect an infinite tower of operators to be approximately conserved at high
temperatures due to the Virasoro symmetry (or KdV charges) in the UV. However one can
nevertheless estimate the equilibration time by choosing one of them (we will comment below
on situations where this estimate is too naive). The first KdV charge whose conservation is
broken by the relevant deformation O is [32]

Q3 ≡
∫

d x : T 2 : , ∂tQ3 ∼ λ
∫

d x eO , (50)

where eO is a level-3 Virasoro descendent ofO (only the global primary eO ⊃ L−3O will contribute
below). The memory function formalism roughly amounts to modeling the correlator of the
long lived operator as GR

Q3Q3
(ω)' χQ3Q3

Γ
−iω+Γ and working perturbatively in its rate relaxation

Γ (or the deformation λ) to obtain the following Kubo formula [31]

Γ '
1

χQ3Q3

lim
ω→0

1
2T
〈Q̇3Q̇3〉β(ω)∼ λ2 1

χQ3Q3

lim
ω→0

1
T
〈 eO eO〉β(ω) . (51)

Here the λ→ 0 limit is taken before ω→ 0, so that the Wightman functions (related to the
retarded Green’s function by (26)) are evaluated in the unperturbed CFT. Since χQ3Q3

∼ c2
UVT6

and 〈 eO eO〉 ∼ c2
UVT2∆+4 one finds

τeq ∼
1
Γ
∼

1
T

�

T
Λ

�2(2−∆)
. (52)

This suggests that, at least for theories with cUV ∼ 1, the bound (43) is parametrically saturated.
We expect this argument to hold in generic 2d QFTs, with no small parameter.

There are three situations where the analysis is slightly more subtle: (i) In integrable or
nearly integrable flows (such as the one considered in Appendix A.2), there exist operators
that are much longer lived than the spin-4 current in (50), leading to a further parametric
enhancement in the thermalization time, so that the bound (43) is not tight. (ii) In theories with
a large number of degrees of freedom cUV� 1, although the operator (50) is very long-lived it
decouples from the ‘single-trace’ sector12 and therefore does not preclude thermalization. We
in fact expect certain cUV � 1 theories to thermalize fast, τeq ∼

1
T , see Sec. 5.4. (iii) Finally,

IR divergences at finite temperature can make the perturbative expansion more subtle. While
some of these divergences can be resolved within perturbation theory by resumming hard
thermal loops [34,35], others are due to truly non-perturbative dynamics, such as the ‘Linde
problem’ at the scale ∼ g2T in QCD [36]. This breakdown of perturbation theory also affects
real time quantities [37–41]. In Appendix A.3, we study a 2d QFT – the free scalar with a
φn deformation – where such nonperturbative dynamics already arises in the first correction
to the pressure, and in the leading contribution to transport quantities. For example, for a
deformation λφ4 at high temperatures T �

p
λ the pressure is P − π

6 T2 ∼ −λ1/3T4/3 and our
thermalization bound becomes Tτeq ¦ T2/3/λ1/3.

It would be interesting to study the dynamics of these slow excitations more systematically,
and we encourage the community to do so, perhaps in the context of ‘generalized hydrodynamics’
with small relaxation rates (see, e.g., Refs. [42–44]) applied to the KdV charges.

12More precisely, in the large cUV limit, Q3 and all the other KdV charges Q2k−1 become redundant with the
conserved energy from the stress tensor T , up to 1/cUV corrections; see e.g. [33].
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5 Extensions

5.1 Higher dimensions

Although Eq. (3) holds in any dimension d, in d > 2 it is not as constraining since the speed of
sound does not approach the lightcone at high temperatures limT→∞ c2

s =
1

d−1 , and our bound
(4) does not hold – we therefore have no reason to doubt the expectation that generic strongly
interacting QFTs in d > 2 have ‘Planckian’ thermalization τeq ∼ 1/T [6].

However one can still study the leading corrections to the high T equation of state using
conformal perturbation theory as in Sec. 2, although this expansion is only controlled if the UV
CFT has a finite thermal mass (Appendix A.3 shows a simple example where the expansion
is not controlled, see also [45] for a related discussion). If the relevant deformation breaks a
symmetry, O does not have a thermal expectation value in the UV so that like in d = 2 the linear
λ term in Eq. (11) vanishes. The leading correction to the entropy density is therefore negative
∝−λ2 as in Eq. (16), and the conformal value of the speed of sound is approached from below
as the temperature is increased. This was found in 4d holographic models in [46,47]; we have
shown more generally that this result is a consequence of conformal perturbation when the
deformation does not have a thermal expectation value 〈O〉β = 0. Instead, when the relevant
deformation breaks no symmetry of the UV CFT, it should acquire a thermal expectation value
in the UV – in this case the leading correction to the pressure is instead

δP ' −λ〈O〉β = −λbOT∆ , (53)

where generically one expects bO = O(1) [48, 49]. The correction to the speed of sound at
high temperatures is then

1
c2
s
' (d − 1) +∆(d −∆)

bO
bT

λ

T d−∆ +O
� λ2

T2(d−∆)

�

, (54)

where we wrote bT ≡ limT→∞ so(T ). This correction can have either sign, depending on the
sign of λ, implying that the speed of sound can approach the conformal value either from below
or above in d > 2 (for this same reason, so(T ) cannot be a C-function in d > 2 [10,12]). As an
explicit example, one can consider the 3d O(2) CFT with a mass deformation of either sign
±m2φ2.

5.2 Irrelevant deformations and low temperature limit

In this work we have focused on the high temperature limit of QFTs obtained from UV CFTs with
a relevant deformation. Similar results apply to the low temperature limit of two-dimensional
effective field theories (EFT), or CFTs deformed by irrelevant operators. One interesting
difference arises because the scalar deformation O can now be a Virasoro descendant of the
identity. In this case O acquires a thermal expectation value in the CFT, and the leading
correction to the equation of state is linear in the deformation (as happens for d > 2, see
Eq. (53)). The lightest such scalar is O = T T̄ . In the context of effective field theory, one
expects all irrelevant operators to be present as deformations of the CFT, so that the theory is
described by

SQFT = SCFT +
∑

i

λi

∫

d2 x Oi −λT T̄

∫

d2 x T T̄ , (55)

where the Oi have dimension 2≤∆i and we have separated the T T̄ term; although it is not
the lightest irrelevant deformation, its contribution is enhanced because it is only linear in
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coupling, and the correction to the speed of sound at low temperatures takes the form

1
c2
s
' 1−

∑

i

α∆i
λ2

i T2(∆i−2) +λT T̄ cIRT2 + · · · , (56)

(we have absorbed positive numbers in the couplings λ). If there are irrelevant deformations
with dimension 2≤∆i < 3, these will control the leading correction to the equation of state,
and will give positive contributions to the C-function so(T ) and 1

c2
s
, as expected by causality and

mirroring the high temperature limit studied in Sec. 2 (notice that now α∆ < 0 for 2<∆< 3,
c.f. Eq. (15)).

However, if there is no irrelevant scalar of dimension 2≤∆i < 3 (or if their coefficients λi
are fine-tuned to zero), the leading correction to the equation of state seems to be non-sign-
definite. Causality then requires the coefficient λT T̄ to be positive in any QFT with a Lorentz
invariant UV completion. When SCFT is a free scalar, this is a well known result [50]. In the
context of the T T̄ deformation, the relation between superluminal sound and the ‘wrong sign’
of λT T̄ is also well known [51–53]. Our argument however does not require integrability:
λT T̄ must be positive even in the presence of an infinite tower of irrelevant terms in (55)
with dimension ∆i > 3. In fact, if the leading irrelevant scalar has dimension 3<∆i < 4, its
contribution to Eq. (56) is instead negative, because now α∆i

> 0. In this case the T T̄ term
arrives just in time to guarantee subluminality, and its coefficient cannot vanish but must satisfy,
roughly, λT T̄ ¦ |λi|2/(∆i−2). In the absence of irrelevant scalars of dimension 2≤∆i < 4 and
if λT T̄ is fine-tuned to zero, a similar statement can be made for the coefficient of the T T T̄ T̄
term, etc.

The fact that sound approaches the speed of light at low temperatures implies a strong
bound on thermalization, as in the high temperature limit discussed in Sec. 4. Depending on
whether the theory has an irrelevant scalar Oi with dimension 2 ≤ ∆i < 3, the bound will
either be controlled by that scalar deformation or the T T̄ deformation, and one has

τeq ¦
1
T

1
cIR

�

Λ

T

�p

, with

¨

p = 2(∆− 2) , if ∆≡mini∆i < 3 ,

p = 2 , if ∆≥ 3 ,
(57)

for T � Λ. Following the arguments made in Sec. 4.1, one can show that this bound is typically
saturated if mini∆i < 3. Instead, if T T̄ controls the leading correction to the equation of
state, the bound is loose: sound is made subluminal without a proportional decrease in the
equilibration time.

5.3 Extra symmetries

The results obtained so far straightforwardly generalize to QFTs with additional global sym-
metries, abelian or non-abelian. Each continuous symmetry will lead to a new hydrodynamic
degree of freedom; while these have subtle dynamics because of the large hydrodynamic
fluctuations [22, 24, 25], the KPZ sound mode is essentially unchanged and our bound (4)
follows.

This logic even applies to QFTs coupled to a finite chemical potential µ. We focus here on
a U(1) symmetry for concreteness. In higher dimensions, CFTs at finite density can have a
non-trivial equation of state P(T,µ) = T d f (µ/T ). However in d = 2 the Virasoro and current
algebra entirely fixes the equation of state (since correlators of spin-1 currents on the cylinder
are completely fixed by 2d conformal invariance) to [54–56]

P(T,µ) =
π

6
cT2 +

k
2
µ2 . (58)
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The densities can be obtained from the pressure as dP = sdT + ndµ – Eq. (58) leads to
( δs δn ) = χ

�

δT
δµ

�

with a diagonal and constant matrix of susceptibilities

χss =
π

3
c , χnn = k , χsn = 0 . (59)

The speed of sound at finite density is given by (see, e.g., [16])

c2
s =

dP
dε

�

�

�

�

S,N
=
( s n )χ−1 ( s

n )
sT + nµ

. (60)

Evaluating this for a constant susceptibility matrix gives c2
s = 1. Two-dimensional CFTs at

finite temperature and density therefore have no room for hydrodynamics; consequently,
thermalization is also strictly constrained in the high and low temperature limits of finite
density QFTs, and similar arguments to those of the previous sections lead to the bound (4) at
high temperatures and (57) at low temperatures.

5.4 Large cUV theories13

In theories with a large number of degrees of freedom cUV� 1, the bound (43) becomes weak,
but a diffusion bound of the form (45) still gives a strong constraint at high temperatures.
Physically, hydrodynamic fluctuations are suppressed by thermodynamic susceptibilities which
scale with cUV, so that when cUV � 1 the hydrodynamic interactions that led to KPZ can be
ignored, and the system is diffusive. We discuss the relevant bound for this situation in more
detail in this section, and highlight an important subtlety in applying causality bounds to
thermalization.

First note that, strictly, the inequality (3) bounds the time scale suppressing higher derivative
corrections near the lightcone, as these are the corrections that need to be large enough to
restore causality. Indeed, evaluating a retarded Green’s function along the trajectory

x(t) = cs t + (Dt)1/z , (61)

one expects to find corrections of the form

GR
T0x T0x

(t, x(t))∼
sT

t(tD)1/z

�

1+
�τcorrection

t

�#
+ · · ·

�

. (62)

When t < D1/(z−1)/(1 − cs)z/(z−1), the operators are spacelike separated and the retarded
Green’s function must vanish – for this to be possible the correction must be large enough, i.e.,

τcorrection ¦
D1/(z−1)

(1− cs)z/(z−1)
. (63)

One may expect that corrections are suppressed by the UV cutoff of hydrodynamics,
τcorrection ∼ τeq, which would then lead to Eq. (3). While this is correct for KPZ hydrody-
namics, it is not in diffusive hydrodynamics: we show below that in this case the correction is
τcorrection ∼ τ2

eq/tD, with the diffusion time defined as14

tD ≡
D
c2
s

. (64)

13We are thankful to Richard Davison for discussions that led to the identification of a mistake in a previous
version of this section. We also thank Hesam Soltanpanahi for related discussions.

14A similar subtlety does not arise in KPZ hydrodynamics relevant for 2d QFTs at finite cUV. There, irrelevant
corrections to diffusion can be ignored, and KPZ diffusion arises from relevant interactions in the coordinates that
follow the pulse x = ±cs t. The dynamics no longer depends on cs, nor therefore on the timescale D2/c3

s analogous
to tD. Irrelevant correction instead arise from corrections to KPZ scaling.
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To do this, we study higher derivative corrections to hydrodynamics – these are expected to
arise at the scale set by the cutoff and can be used as a proxy for τeq. In 1+1d, there is a single
term, τΠ, that is second order in derivatives in the constitutive relation [57]:

Tµν = εuµuν + P∆µν − ζ (1−τΠu · ∂ ) (∂ · u)∆µν + · · · , (65)

with ∆µν = ηµν+uµuν. Linearizing the continuity relations ∂µTµν = 0 as in Sec. 3 leads to the
following equation of motion for the right-moving mode π+ = δπ+ csδε:

(∂t + cs∂x)π+ −
1
2

D(1−τΠ∂t)∂x∂tπ+ = 0 , (66)

with D = ζ/(sT ). We have dropped a higher derivative mixing term with the left-moving mode
π−, as this will give exponentially suppressed contributions in the kinematics (61). Defining

x̃ ≡
x − cs tp

D
, (67)

the equation becomes

∂tπ+ +
1
2

�

1+
�

1
2

p

tD +
τΠp

tD

�

∂ x̃

�

∂ 2
x̃ π+ = 0 . (68)

These coordinates have diffusive scaling t ∼ x̃2. The equation above reveals the time scales
suppressing higher derivative corrections along the trajectory (61): tD and τ2

Π/tD, instead
of the cutoff τeq ∼ τΠ. Along this trajectory the Green’s function takes the form (dropping
numerical factors)

GR
T0x T0x

(t, x(t))∼
sT

t(tD)1/2



1+

�

tD +τ2
Π/tD

t

�1/2

+ · · ·



 , (69)

as can be verified by direct calculation. The bound (63) therefore applies to the timescale
τcorrection ∼max

�

tD,τ2
Π/tD

�

. At high temperatures one approaches the CFT, so that cs→ 1 and
tD→ 0 (because the bulk viscosity vanishes in the CFT). The bound then becomes

τeq ¦
tD

1− cs
. (70)

Alternatively, this bound can be expressed as an upper bound on the bulk viscosity

ζ

s
® (1− cs)Tτeq . (71)

This bound applies in particular to holographic 2d CFTs deformed by a relevant operator.
Identifying 1/τeq with the frequency of the first quasinormal mode [2, 58–60] ωqnm ∼ T ,
one finds that (71) is a strong bound on the diffusion constant (or, more precisely, the sound
attenuation rate) at high temperatures T � Λ:

ζ

s
® (1− cs)' (2−∆)α∆

�

Λ

T

�2(2−∆)
. (72)

It is interesting to contrast this with a conjectured lower bound on the bulk viscosity [61],
which in 2d reads ζs ≥

1
π(1− cs). Although this latter bound is known to be violated in certain

situations [62,63], the bulk viscosity in holographic models typically behaves as ζ/s ∼ (1− cs)
[62,64,65]. From the perspective of Eq. (71), these systems therefore thermalize as rapidly
as allowed by causality, in 2d. It would be interesting to further explore asymptotically AdS3
bulks with relevant deformations from this perspective; see Refs. [66–69] for partial results in
that direction15.

15In particular, it is surprising that the hydrodynamic Green’s function (69) receives large corrections even
at timescales parametrically larger than the equilibration time τeq ∼ τΠ at which ‘new physics’, in the form of
quasi-normal modes, arises. We leave further investigation of this issue for future work.
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6 Future Directions

We have found that (1+1)d QFTs thermalize slowly, with equilibration time bounded below. In
a similar vein, bounds on transport [70,71], chaos [72] and the equilibration time [2,6,73,74]
constrain the thermal dynamics of quantum systems without relying on a quasiparticle picture.
One distinguishing feature of our bound (4) is that temperature is not the only scale involved –
2d QFTs therefore have ‘sub-Planckian’ thermalization at high and low temperatures despite
the absence of a quasiparticle description, in contrast to what is expected in higher dimensions
or in systems without momentum conservation [6,73].

We have focused on QFTs obtained by perturbing UV CFTs with a relevant operator; another
possible way to define a QFT is as the continuum limit of a lattice model. In such theories the
spacetime symmetries of the QFT, in particular translation invariance, are only emergent. This
will entirely change the high temperature limit of the theory, and momentum will not be a
long lived collective excitation in the hydrodynamic regime. However, our results may apply to
lattice systems close to a critical point described by a CFT, in particular in the quantum critical
fan region, if a sufficiently large parametric window exists between the lattice scale a and the
scale of the relevant deformation: Λ� T � cs/a. KPZ dissipation was observed numerically
in a classical spin chain at intermediate temperatures in Ref. [75]. Our results also generalize
to Lorentz breaking relevant deformations, as long as the equation of state approaches that of
a CFT at high (or intermediate) temperatures.
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A Special Cases

A.1 Free fermion and scalar

The equation of state of a two-dimensional free fermion or scalar is given by

P = σT

∫

dk
2π

log
�

1+σe−β
p

m2+k2
�

, (73)

with σ = +1 for the fermion and σ = −1 for the boson. For the scalar, one finds that in the
high temperature limit T � m the pressure is

P =
π

6
T2 −

1
2

mT + · · · . (74)
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We will further comment on this system in Appendix A.3.
For the fermions, the mass term δS = m

∫

d2 xψ̄ψ is a relevant deformation with dimension
∆= 1. At high temperatures T � m the pressure is given by

P =
π

12
T2 −

m2

4π
log

T
m
+ · · · , (75)

leading to

so =
π

6

�

1− 6
(m/2π)2

T2
+ · · ·

�

, (76)

which agrees with the general result (16) from conformal perturbation theory, with cUV =
1
2 ,

∆ = 1 and λ = mp
2π

(this last identification follows from the fact that the CFT primary in

(12) is normalized as (ψ̄ψ)CFT =
p

cUV2πψ̄ψ). Note that the pressure (75) has a logarithmic
enhancement – correspondingly, there is a divergence in the conformal perturbation theory
expression (11) for the pressure when ∆→ 1.

A.2 Integrable Ising flows

The critical Ising model (Ising field theory) deformed by the magnetic σ operator,16

S = SIFT −
h
p

cUV

∫ β

0

d t

∫ ∞

−∞
d x σ(x) , (77)

is integrable [76], providing probably the simplest example of a nontrivial but solvable CFT
deformed by a relevant operator. The σ operator is a scalar with dimension ∆ = 1

8 and the UV
central charge is cUV =

1
2 , so according to conformal perturbation theory the pressure at high T

is

P =
cUVπT2

6
+ h2

4Γ
� 7

16

�

Γ
�17

16

�

π3/4T7/4Γ
� 9

16

�

Γ
�15

16

� +O(h3) =
πT2

12

�

1+ 7.71

�

h

T
15
8

�2

+O(h3)

�

. (78)

In the opposite limit, T → 0, the pressure is dominated by a temperature-independent vacuum
energy ΛIR, which does not affect the speed of sound cs. The leading temperature-dependent
contribution comes from the lightest particle, with mass m1, propagating around the thermal
circle:

δP = −
T2

2π

∫ ∞

−∞
d x log

�

1− e−
q

x2+m2
1/T

2
�

≈
T2

2π

√

√2πm1

T
e−

m1
T , (79)

and so at small T , c2
s ≈

T
m1

. By scaling, the mass m1 is proportional to a power of h, and in this
case, the proportionality constant can be computed exactly:

m1 = 4.402h8/15. (80)

For intermediate values of T away from these limits, the pressure can be computed using the
Thermodynamic Bethe Ansatz, as in [77]; the scaling function c̃(r) computed in Table 2 of [77]

is related to the pressure by P(T ) =
c̃(m1

T )πT2

6 −ΛIR. Using this result, in units where h = 1, we
show the speed of sound and dimensionless entropy so as a function of β in Fig. 3. As expected,
the exact result smoothly interpolates between the two limits, and in fact is well-approximated
by one or the other limit for most values of T .

16We are dividing h in the action by
p

cUV for simpler comparison with the literature, since this factor compensates
for our convention in this paper that 〈O(x)O(0)〉 ∼ cUV

x2∆ .

18

https://scipost.org
https://scipost.org/SciPostPhys.12.4.119


SciPost Phys. 12, 119 (2022)

��� ��� ��� ��� ���
���

���

���

���

���

���

���

β

��
�

��� ��� ��� ��� ���
���

���

���

���

���

���

β

��

Figure 3: Left: Speed of sound squared, c2
s =

dP
dT

T d2P
dT2

, as a function of inverse temperature

β in Ising Field Theory deformed by the σ operator in units with h= 1. The black,
solid line is the exact result from integrability. Also shown are the leading large T
result in conformal perturbation theory (blue, dotted) from (78) and the leading
small T result c2

s ≈
1

m1β
(red, dashed), where m1 is the mass of the lightest particle.

Right: Dimensionless entropy so =
1
T

dP
dT as a function of β . Again, the black solid

line is the exact result in the Ising Field Theory deformed by σ with h = 1, shown
together with the leading conformal perturbation theory result (blue, dotted), and

leading small T result so ≈
e−βm1 (βm1)3/2p

2π
(red, dashed).

Another integrable flow with the Ising model at an endpoint is the flow from the Tricritical
Ising Model (TIM) to Ising:

S = STIM +
g
p

cUV

∫ β

0

d t

∫ ∞

−∞
d x ε′ . (81)

The ε′ operator has dimension ∆ = 6
5 and the UV central charge cUV in this case is the TIM

central charge cUV =
7
10 . The pressure as a function of temperature was computed numerically

in [78]. For g = 1, we show the speed of sound cs and dimensionless entropy so as a function
of T for this flow in Fig. 4. The leading irrelevant operator as one approaches the Ising model
in this case is the operator T T̄ , so this is a case where the sign of λT T̄ is fixed by causality.

A.3 Scalar + φp

Consider the QFT obtained from the free scalar theory with the following relevant deformation

S =

∫

d2 x
1
2
(∂ φ)2 +

λ

p!
φp , (82)

with p ≥ 2 even. Although φp is not a primary or descendant of the CFT, its logarithmic
two-point function implies that it formally has dimension ∆= 0. The conformal perturbation
theory approach used in Sec. 2 predicts corrections to the equation of state that are analytic
in coupling δP∝ λ2 – however the results obtained there diverge when ∆→ 0. In fact, the
pressure of free massive scalar (74) already shows that for p = 2 the correction is not analytic
in coupling δP∝

p
m2. We will show more generally that the high temperature equation of

state of the theory (82) is non-analytic in coupling. This breakdown of conformal perturbation
theory stems from the absence of a thermal mass of the two-dimensional massless scalar, which
leads to IR divergences in the expansion (11).

19

https://scipost.org
https://scipost.org/SciPostPhys.12.4.119


SciPost Phys. 12, 119 (2022)

��� ��� ��� ��� ��� ��� ��� ���
����

����

����

����

����

����

β

��
�

��� ��� ��� ��� ��� ��� ��� ���
����

����

����

����

����

����

����

β

��

Figure 4: Same as Fig. 3, but for flow from tricritical Ising model deformed by ε′

to the critical Ising model. Red, dashed lines in this case are the leading correction
in the IR due to the T T̄ deformation around Ising; blue, dotted lines are leading
correction in UV from conformal perturbation theory; and black, solid line is numeric
result from [78].

We start with p = 4 and generalize later. When computing the partition function on the
thermal cylinder, it is convenient to expand the scalar field into a zero mode and KK modes

φ(x ,τ) = φ0(x) +
∑

n6=0

eiωnτφn(x) , (83)

with Matsubara frequencies ωn = 2πnT , see e.g. Refs. [45,79]. The dimensionally reduced
action reads, after canonical normalization

S =

∫

dd−1 x
1
2
(∇φ0)

2 +
λT
4!
φ4

0 +
∑

n>0

�

|∇φn|2 +ω2
n|φn|2 +

λT
2
φ2

0 |φn|2 + · · ·
�

. (84)

There are also two other interaction terms: λTφ0φ
3
n and λTφ4

n. We have generalized to
arbitrary spacetime dimension, and will restore d = 2 below. The KK modes have mass ωn and
interaction λT . Their dimensionless interaction is therefore

λT
ω5−d

n
∼
�

Λ

T

�4−d

, (85)

with Λ≡ λ1/(4−d). In d < 4, where the interaction is relevant, the KK modes are weakly coupled
at high temperatures T � Λ. Let us now turn to the zero mode. It acquires a thermal mass from
its coupling to the KK mode shown in (84) – to leading order in λ one finds, after performing
the Matsubara sum

m2
th =

λT
2

∫

dd−1k
(2π)d−1

β

2|k|
coth

β |k|
2
−

1
k2

. (86)

This integral is free of IR divergences since only KK modes are running in the loop, and
temperature-independent UV divergences can be removed with a mass counterm in (82). In
d = 4, this integral leads to the well known thermal mass m2

th =
1
4!λT2 – this implies that

the zero-mode dimensionless coupling λT/m5−d
th is also small at high temperatures (if λ is

small). In d = 3, the thermal mass is m2
th = −

λT
4π log ΛT [79], implying that the zero-mode is

only logarithmically weakly coupled at high temperature. Finally, in the case d = 2 of interest
one finds a thermal mass

m2
th =

λ

4π
log
Λ

T
. (87)
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The zero-mode is therefore strongly coupled at high temperatures T �
p
λ. This explains the

issues encountered in conformal perturbation theory (11) (which is a weak coupling expansion)
when ∆ = 0. Similar infrared effects lead to a breakdown of perturbation theory in high
temperature QCD [36]; they are stronger for the two-dimensional theory (82) and already
dominate the leading correction to the high-temperature equation of state.

Let us study the contribution of the strongly coupled zero-mode to the pressure. After
integrating out the KK modes, the partition function takes the form

Z = eβV PKK

∫

Dφ0 e−
∫

d x 1
2φ0(m2

th−∇
2)φ0+

λT
4! φ

4
0 , (88)

so that the pressure P = T
V log Z is

P = PKK + Pzm

=
π

6
T2
�

1+O(λ/T2)
�

− T Egs(m
2
th, λT ) ,

(89)

where Egs(m2, g) is ground state energy of the (0+1)-dimensional anharmonic oscillator
1
2 φ̇

2 + 1
2 m2φ2 + 1

4! gφ4 (we note in passing that setting mth → m and λ → 0 reproduces
the equation of state of the free scalar (74), since Egs(m2, 0) = 1

2 m). At high temperatures, Egs
will have a strong coupling expansion which by dimensional analysis must take the form

Egs(m
2
th,λT ) = (λT/4!)1/3



a0 + a1

�

m2
th

(λT/4!)2/3

�

+ a2

�

m2
th

(λT/4!)2/3

�2

+ · · ·



 . (90)

Although the zero-mode sector is strongly coupled, as a quantum mechanical system it is well
amenable to numerics; see e.g. Ref. [80], which found a0 ≈ 0.667986 and a1 ≈ 0.143668. We
therefore find that the leading correction to the equation of state at high temperature is

P =
π

6
T2 − a0T (λT/4!)1/3 + · · · . (91)

Notice that it has the right sign required by subluminality of sound, as found in Sec. 2. Unlike
the other special cases studied in appendices A.1 and A.2 which are integrable, φ4 theory is
non-integrable and expected to have emergent KPZ hydrodynamics at finite temperature and
late time. Following similar arguments to those in the main text, this leads to a strong bound
on the equilibration time of this theory at high temperatures T � Λ≡

p
λ

τeq ¦
1
T

�

T
Λ

�2/3

. (92)

This result can be generalized to the theory (82) with other values of the exponent φp,
fine-tuning lower powers away. By dimensional analysis, the ground state of the quantum

mechanical system H = 1
2 φ̇

2 + λT
p−2

2 φp is Egs ∼ (λT
p−2

2 )
2

p+2 leading to a correction to the
pressure

P =
π

6
T2 − a′0T (λT

p−2
2 )

2
p+2 . (93)

The equilibration time of this QFT is therefore bounded by

τeq ¦
1
T

�

T
Λ

�
4

p+2

. (94)
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B Comparison with Free Energy as a C-theorem

In this paper, we have discussed the bound on the speed of sound c2
s ≤ 1 as a C-theorem, since

it implies the dimensionless entropy density so ≡
s
T =

1
T

dP
dT is monotonic and equal to πc

3 at
fixed points. This is closely related to, but different from, a similar C-theorem in the literature
from considering the dimensionless free energy [8–12]:

f (T )≡
P(T )
T2

. (95)

In defining the above quantity, it is important that zero-temperature vacuum energy density
(aka cosmological constant) ΛIR be set to zero. Setting it to zero is equivalent to tuning the
constant term ΛIR in the Lagrangian at low energies to zero. Since Λ usually preserves all
symmetries of the theory (aside from supersymmetries), it is generated along RG flows and
therefore setting it to zero in the IR is not the same as setting it to zero in the UV. Therefore,
to compute f (T ) in practice in a CFT with a relevant deformation, we must solve the theory
deep in the IR where the relevant deformation is strongly coupled, even if we only want to know
f (T ) at high temperatures where the relevant deformation is weakly coupled.

To see why the value of Λ affects the monotonicity of f (T ), note that

T3 d f
dT
= ε(T )− P(T ) , (96)

where we have used the relation T dP
dT = ε + P. Therefore, f (T) is monotonic if and only if

ε ≥ P. However, Λ contributes to P and ε with opposite sign, P(T) = −ε(T) = −Λ. So by
shifting the value of Λ, we can make ε − P take any value we want. In a sense, d f

dT > 0 is a
scheme-dependent statement, since it is true or false depending on our prescription for the
bare value of ΛUV in the UV.

To emphasize this point, consider the value of Λ in CFTs deformed by strongly relevant
(0<∆< 1) operators. In this case, there are no UV divergences in the theory and a natural
choice is to set the bare value ΛUV in the UV Lagrangian to zero. However, from equation (14),
we see that the leading correction to f (T ) in conformal perturbation theory gives

T3 d f
dT
= −

πcUVα∆(2−∆)
3(1−∆)

�

λ

T1−∆

�2

+ 2ΛUV + . . . , (97)

where . . . are subleading at large T . Therefore, if 0 < ∆ < 1 and ΛUV = 0, then d f
dT < 0 at

sufficiently large T , violating its claimed monotonicity.
Take for instance the Ising model with a magnetic field deformation (77) as an explicit

example. The deformation σ in this case has ∆ = 1/8, so f (T ) will not be monotonic if we set
ΛUV = 0. Because the RG flow is integrable, the IR value ΛIR is known exactly:

ΛIR−ΛUV = −1.1976h16/15 . (98)

Usually in the integrability literature, ΛUV is implicitly set to vanish, and one finds ΛIR in that
case is nonzero and negative. However, in the definition of f (T ) we are suppose to set ΛIR = 0,
so we must set ΛUV = 1.1976h16/15 > 0, which pushes d f

dT in (97) to be positive again.
In contrast, the C-function we consider in this paper, so =

1
T

dP
dT , does not depend on the

value of Λ since Λ contributes a constant to P. Therefore, it can be computed (or measured!)
at a temperature T using only the value of observable quantities at that temperature. More-
over, monotonicity of so implies monotonicity of f (T) (with Λ chosen as described above),
as follows. From (17), monotonicity of so is equivalent to c2

s < 1, which is equivalent to

1> c2
s =

dP
dε =

dP/dT
dε/dT . Therefore, monotonicity of so implies that ε increases faster as a function

of T than P does, d
dT (ε − P)≥ 0. If Λ is tuned to zero in the IR, so that ε = P at T = 0, then it

follows that ε ≥ P at all T , which by (96) implies d f
dT ≥ 0.
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