
SciPost Phys. 12, 120 (2022)

Low-energy effective theory and
anomalous Hall effect in monolayer WTe2
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Abstract

We develop a symmetry-based low-energy theory for monolayer WTe2 in its 1T′ phase,
which includes eight bands (four orbitals, two spins). This model reduces to the con-
ventional four-band spin-degenerate Dirac model near the Dirac points of the material.
We show that measurements of the spin susceptibility, and of the magnitude and time
dependence of the anomalous Hall conductivity induced by injected or equilibrium spin
polarization can be used to determine the magnitude and form of the spin-orbit coupling
Hamiltonian, as well as the dimensionless tilt of the Dirac bands.

Copyright S. Nandy and D. A. Pasin
This work is licensed under the Creative Commons
Attribution 4.0 International License.
Published by the SciPost Foundation.

Received 08-11-2021
Accepted 22-03-2022
Published 07-04-2022

Check for
updates

doi:10.21468/SciPostPhys.12.4.120

Contents

1 Introduction 1

2 Low-energy models near the Γ -point 2
2.1 Eight-band model 2
2.2 Four-band model near Dirac points 6

3 Physical consequences of the low-energy model 8
3.1 Effective Zeeman coupling 8
3.2 In-plane spin susceptibility 11
3.3 Anomalous Hall effect in and out of equilibrium 12

4 Conclusions 14

A Tight-binding Hamiltonian of monolayer WTe2 15

References 16

1 Introduction

The two dimensional topological insulator has been a prime topic of interest in recent years due
to its intriguing properties as well as being a potential candidate for technological applications.
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After initial theoretical proposals, quantum-well heterostructures based on three-dimensional
semiconductors (e.g., HgTe/CdTe and InAs/GaSb quantum wells) were at the center of the
experimental attention, see Refs. [1,2] for review.

Recently, the focus has shifted to truly two-dimensional materials, in particular, transitional
metal dichalcogenides. Among these, monolayer WTe2 in its 1T′ phase with a large bulk band
gap (∼ 0.055 eV) has been theoretically proposed as a candidate material for quantum spin
Hall insulator [3–6]. Soon after the theoretical prediction, several experiments have been
done, which strongly supported the presence of helical edge channels, as well as quantized
electronic conductance of 2e2

h over a large range of temperatures (up to 100 K) [7–13]. In
addition to the quantum spin Hall state, the distorted 1T′ WTe2 shows interesting phenomena
associated with various types of interactions, such as gate-induced superconductivity [14,15],
exciton condensation [16], nonlinear edge magnetotransport [17], and possibly charge density
wave [18,19].

Typically, various attempts of theoretical description of the aforementioned variety of in-
teresting phenomena, (for instance, see Refs. [20–23]), rely on some low-energy models, pre-
sumed capable of capturing the relevant physics. However, the first-principles understanding
of 1T′ WTe2, which usually forms the basis for construction of low-energy models, has been
steadily evolving. There are now several proposals regarding the exact pattern of band inver-
sion in this material, and the closely related question of the symmetry and the orbital nature
of the states at the Γ -point [3, 4, 24–28]. It can be said that most of theoretical works that
employ a type of low-energy theory derive that from the symmetry analysis based on Ref. [3],
in which the conduction and valence bands closest to the Fermi level were assumed to have
opposite parities.

In this paper, we develop effective low-energy k·p model Hamiltonians for monolayer WTe2
in its 1T′ phase, and discuss predictions for spin dynamics and anomalous charge transport that
follow from these models. We start out with an eight-band model, using the symmetry analysis
based on recent first-principle calculations [4, 25–28]. The key observation made in those
works is that the orbitals that give rise to the conduction and valence bands closest to the Fermi
level have the same parity. This fact affects the form of the spin-orbit coupling, the leading
part of which is momentum-independent near the Γ -point. Subsequently, we reduce the eight-
band model to a four-band one valid near the Dirac points, and discuss the implications of this
model for the spin dynamics and anomalous charge transport in monolayer WTe2.

The rest of the paper is organized as follows. In Section 2, we develop low-energy k · p
model Hamiltonians of monolayer WTe2 using symmetry analysis. Section 3 is devoted to
physical implications of the models developed in Section 2. Finally, in Section 4 we discuss
the obtained results.

2 Low-energy models near the Γ -point

The monolayer WTe2, which belongs to the space group P21/m, is the only material among
TMDCs to show the topologically non-trivial 1T′ structure as its stable ground state and gives
rise to quantum Hall insulating phase [3–13, 17]. In the absence of SOC, the bulk states of
monolayer WTe2 show a two-dimensional Dirac semimetal phase due to presence of two tilted
gapless Dirac cones near the Γ point, which are protected by the nonsymmorphic glide-mirror
symmetry [25, 27, 28]. When spin-orbit coupling is included, small gaps close to the Dirac
points appear. Our immediate goal is to start with a k · p-model near the Γ -point that involves
the eight bands (two spin projections included) near the Fermi level, and derive a reduced
four-band model valid near the two Dirac points. In doing so, we generalize the six-band
analysis of Ref. [20].
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Figure 1: (Color online) The unit cell of monolayer WTe2. d-orbitals centered at
purple tungsten, W, sites, and p-orbitals centered at red tellurium, Te, cites, give rise
to the low-energy bands near the Fermi level. The orbitals of the yellow Te′ sites do
not participate in the low-energy physics. Also shown are the glide plane M̄x , and
the screw axis C̄2x that run through the inversion center I .

2.1 Eight-band model

The 1T′ structure of monolayer WTe2 belongs to C2
2h point symmetry group. Its unit cell is

show in Fig. 1. It has the following symmetries [25, 27, 28]: (i) lattice translations t( x̂) and
t( ŷ), (ii) two-fold screw symmetry around the x axis: C̄2x=t( x̂/2)C2x which is the product
of a two-fold rotation C2x and a translation t( x̂/2) by half a lattice vector, (iii) a glide mirror
symmetry: M̄x=t( x̂/2)Mx , which is the product of Mx–reflection with respect to the yz-plane,
and a translation, the same as for screw symmetry, and (iv) time-reversal symmetry. Since, Mx
operates as (x , y, z) → (−x , y, z) and C2x operates as (x , y, z) → (x ,−y,−z), the combined
operation of these two operators i.e. C̄2x M̄x gives rise to spatial inversion I that sends r→−r.
The four irreducible representations of C2

2h, and the corresponding character table is shown in
Table. 1.

There are four nondegenerate (apart from the Kramers degeneracy) states at the Γ -point,
which are close to the Fermi level. We denote them as {ψ1,ψ2,ψ3,ψ4}. The lowest con-
duction and highest valence bands, which form the Dirac points, derive from the two middle
orbitals,ψ2 andψ3, respectively. According to recent DFT analysis [4,9,25,28], these orbitals
transform according to Γ1 and Γ2 irreducible representations, respectively, as shown in Table. 1.
They have the same parity, but opposite mirror eigenvalues. The highest conduction band,ψ1,
and lowest valence band, ψ4, transform according to Γ3 and Γ4 representations, respectively
(see Fig. 4 of the Appendix).

A general eight-band k · p model Hamiltonian can be written as

Ĥ =
∑

α,β

|ψα〉〈ψβ |Hαβ(K) , (1)

where Hαβ(K) is a 2× 2 (in spin space) matrix element connecting states ψα and ψβ , and K
denotes a tensor operator formed by combinations of wave vectors.

Since |ψα〉〈ψα| is even under all symmetry operations mentioned in Table. 1 (i.e.,
Γi⊗Γi = Γ1), the blocks Hαα(K), therefore, must be composed of K operators that are also even
under those symmetry operations. For each off-diagonal blocks, we can make the following
observations:
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Table 1: Character Table of C2h point group. Γi ’s are the irreducible representations
of the group.

C2h I I Mx C2x

Γ1 1 1 1 1
Γ2 1 1 -1 -1
Γ3 1 -1 -1 1
Γ4 1 -1 1 -1

i) H12(K) and H34(K): Both |ψ1〉〈ψ2| and |ψ3〉〈ψ4| are even under C2x and odd under
both Mx and I and therefore transform according to Γ3 representation.

ii) H13(K) and H24(K): Both |ψ1〉〈ψ3| and |ψ2〉〈ψ4| are even under Mx and odd under
both I and C2x , therefore transform according to Γ4.

iii) H14(K) and H23(K): Both |ψ1〉〈ψ4| and |ψ2〉〈ψ3| are odd under both Mx and C2x and
even under I and therefore transform according to Γ2 representation.

So, these off-diagonal blocks must be composed of K operators that also transform
under their corresponding Γ representation. Now, we know Mx : (kx , ky) → (−kx , ky),
(σ1,σ2,σ3) → (σ1,−σ2,−σ3); C2x : (kx , ky) → (kx ,−ky), (σ1,σ2,σ3) → (σ1,−σ2,−σ3);
I : (kx , ky)→ (−kx ,−ky), (σ1,σ2,σ3)→ (σ1,σ2,σ3); and TRS sends σ→−σ and k →−k.
Following the above operations the terms that can appear in the off-diagonal blocks of this k ·p
Hamiltonian are given in Table. 2.

Table 2: Terms (upto second-order in momentum) that can appear for eight-band
k · p Hamiltonian blocks.

Hαα(k) H12(k), H34(k) H13(k), H24(k) H14(k), H23(k)
σ0, k2

xσ0, k2
yσ0,

iσ1, ik2
xσ1, ik2

yσ1

ikxσ0, kxσ1,
kyσ2, kyσ3

ikyσ0, kyσ1,
kxσ2, kxσ3

kx kyσ0, iσ2, iσ3,
ikx kyσ1, ik2

xσ2,
ik2

xσ3, ik2
yσ2,

ik2
yσ3

Since the k · p Hamiltonian is Hermitian, the diagonal block of the Hamiltonian (Hαα(k))
should also be Hermitian and therefore, ik2

xσ1, ik2
yσ1, iσ1 will not appear in the Hamilto-

nian. Using (ψ1↑,ψ1↓,ψ2↑,ψ2↓,ψ3↑,ψ3↓,ψ4↑,ψ4↓) as the basis, the full eight-band k·p model
Hamiltonian (up to O(k) in off-diagonal terms) in the absence of the spin-orbit coupling can
be written as

Hk·p
0 =























ε1 0 iv1kx 0 iv2ky 0 d1kx ky 0
0 ε1 0 iv1kx 0 iv2ky 0 d1kx ky

−iv1kx 0 ε2 0 d2kx ky 0 iv3ky 0
0 −iv1kx 0 ε2 0 d2kx ky 0 iv3ky

−iv2ky 0 d2kx ky 0 ε3 0 iv4kx 0
0 −iv2ky 0 d2kx ky 0 ε3 0 iv4kx

d1kx ky 0 −iv3ky 0 −iv4kx 0 ε4 0
0 d1kx ky 0 −iv3ky 0 −iv4kx 0 ε4























, (2)
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Table 3: Value of parameters for the low-energy model given in Eq. (2). These val-
ues are obtained after fitting this low-energy model to the tight-binding model (see
Eq. (33)).

Parameter Value Unit Parameter Value Unit

c01 1.48 eV c11 -1.33 eV·Å2

c02 1.12 eV c12 -0.15 eV·Å2

c03 -0.12 eV c13 -1.13 eV·Å2

c04 -0.96 eV c14 0.11 eV·Å2

c31 0.18 eV·Å4 c21 -0.02 eV·Å2

c32 0.08 eV·Å4 c22 -1.50 eV·Å2

c33 0.18 eV·Å4 c23 0.02 eV·Å2

c34 0.07 eV·Å4 c24 1.50 eV·Å2

v1 -1.02 eV·Å d1 -0.24 eV·Å2

v2 0.18 eV·Å d2 0.24 eV·Å2

v3 -1.77 eV·Å λ 0.04 eV·Å3

v4 1.02 eV·Å V ′ 0.04 eV

where εi = c0i + c1ik
2
x + c2ik

2
y + c3ik

4
x . By fitting this model to the tight-binding one derived in

Ref. [25], we can get the values of the coefficients ci ’s, di ’s and vi ’s. The values of the parame-
ters are given in Table. 3. It is important to note that although the energy dispersion obtained
from the low-energy model (see Eq. (2)) matches well with the tight-binding Hamiltonian,
there is a little mismatch (a few meV) between the dispersions close to the Dirac nodes. This
discrepancy appears because the Dirac nodes are quite far from the Γ -point in the Brillouin
zone, whereas our low-energy model has been written near the Γ -point. A near-perfect match
of the k · p-model dispersion with the tight-binding one can be obtained if one includes addi-
tional λk3

x terms in the interband couplings in Eq. (2). The value of λ is also given in Table. 3.
Since the tight-binding model cannot not reproduce exactly the energy dispersion obtained
from the DFT calculations anyway [27, 28], we ignore such terms from now on. Their inclu-
sion would not improve the accuracy of quantitative results obtained from the tight-binding
model.

We now turn to the discussion of the spin-orbit coupling. We ignore possible Rashba spin-
orbit coupling terms, which may arise in this system by breaking inversion symmetry due to a
substrate. According to Ref. [27], the leading spin-orbit coupling term within the eight-band
manifold near the Fermi level stems from the spin-flip hops along the W-Te bonds that lie in
the symmetry plane, see Fig. 1. Within the k · p model, this corresponds to k-independent
spin-orbit coupling term written as

Hk·p
SO =























0 0 0 0 0 0 iV ′ V
0 0 0 0 0 0 −V −iV ′

0 0 0 0 iV ′ V 0 0
0 0 0 0 −V −iV ′ 0 0
0 0 −iV ′ −V 0 0 0 0
0 0 V iV ′ 0 0 0 0
−iV ′ −V 0 0 0 0 0 0

V iV ′ 0 0 0 0 0 0























, (3)
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Table 4: Terms that can appear for four-band k · p Hamiltonian blocks.

Hαα(k) H12(k)
σ0, iσ1, k2

xσ0, k2
yσ0,

ik2
xσ1, ik2

yσ1

kx kyσ0, iσ2, iσ3,
ikx kyσ1, ik2

xσ2, ik2
xσ3,

ik2
yσ2, ik2

yσ3

where parameters V and V ′ describe the spin-orbit coupling strength. The value of
p

V 2 + V ′2,
which we take to be 40 meV in this work, determines the size of the gap around the Fermi
energy, and their relative magnitude defines the orientation of the conserved spin projection
for the low-energy model, see Section 2.2 for further details.

Corrections to the k-independent spin-orbit coupling (3) stem from other spin-flip hop-
ping paths, and appear to be small in first-principles calculations [28]. Furthermore, as will be
shown in Section 2.2, the leading k-independent spin-orbit coupling gives rise to the conser-
vation of the spin projection on a particular axis near the Γ -point. This is consistent with the
sample, edge-orientation, and gate-voltage independent spin quantization axis on edges of a
sample, as experimentally observed [17]. This provides us with empirical evidence that the
spin-orbit coupling (3) indeed describes the states close to the Fermi level in monolayer WTe2.
The sub-leading spin-orbit coupling terms, which are quadratic in the quasimomentum and
would break conservation of any spin projection away from the Γ -point, are not important.

Taken together, the Hamiltonians (2) and (3) define the eight-band k · p-model for mono-
layer WTe2.

2.2 Four-band model near Dirac points

Since the two Dirac nodes appears in the bulk due to middle two bands, we now want to
develop a four-band (including spin) low-energy k · p model Hamiltonian near the Γ point.
As mentioned above, both of these bands have same parity eigenvalues and opposite mirror
eigenvalues, the screw eigenvalues are also opposite for these bands. Aside from the spin
degrees of freedom, each of these orbitals at the Γ point is nondegenerate and transforms
according to one of the irreducible representations of the Table. 1.

Using basis (ψc↑,ψc↓,ψv↑,ψv↓), the generalized low-energy four-band k ·p model Hamil-
tonian (up to O(k2) in off-diagonal terms) near Γ point in the absence of SOC for ML WTe2
can be written as

Hk·p
0 =







εc 0 dkx ky 0
0 εc 0 dkx ky

dkx ky 0 εv 0
0 dkx ky 0 εv






, (4)

where εα = a0α + a1αk2
x + a2αk2

y + a3αk4
x with α = c, v. Here, the coefficients aα’s and d can

be expressed in terms of ci ’s, di ’s and vi ’s of the eight-band low-energy model. The relation
between the coefficients of these two models can be obtained using the method as described in
Ref. [20]. Using the similar analysis described in ref. [20], the effective four-band k · p model
Hamiltonian extracted from the eight-band k · p model Hamiltonian given in Eq. (2) can be
written as

Hk·p
0 = S−1/2(hq − uh−1

d u†)S−1/2 , (5)
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where

hd =







ε2 0 d2kx ky 0
0 ε2 0 d2kx ky

d2kx ky 0 ε3 0
0 d2kx ky 0 ε3






,

hq =







ε1 0 d1kx ky 0
0 ε1 0 d1kx ky

d1kx ky 0 ε4 0
0 d1kx ky 0 ε4






,

w=







−iv1kx 0 iv3ky 0
0 −iv1kx 0 iv3ky

−iv2ky 0 iv4kx 0
0 −iv2ky 0 iv4kx






,

S = 1+wh−2
d w† . (6)

We find that the expressions of aα’s and d in terms of ci ’s, di ’s and vi ’s are cumbersome.
Therefore, one can simply get the values of aα’s and d by fitting this model to the eight-band
model. For example, we find that d = 0.56 eV·Å2 for the four-band Hamiltonian given in
Eq. (4) at the Dirac point k ≈ (0.84,0)−1.

Now, we will discuss the SOC in this model. Using the same basis of the Eq. (4), the leading
order SOC term in the k · p model can be written as

Hk·p
SO = V1τ2σ2 + V ′1τ2σ3 ≡ τ2Vs ·σ , (7)

where V1 and V ′1 are the spin-orbit coupling strength. Here, Vs = (0, V1, V ′1) can be thought of
as a vector lying in the mirror plane making an angle of tan−1( V1

V ′1
) with the z axis [17].

In the absence of the spin-orbit coupling, the lowest conduction and highest valence bands
are degenerate at two points located at the x-axis perpendicular to the mirror plane. We
label these two Dirac points as Kξ, with the valley index ξ = ±1. The effective four-band
Hamiltonian describing electronic states near each of such Dirac points is obtained by adding
the spin-orbital coupling Hamiltonian (7) to Hamiltonian (4), and expanding in k near a Dirac
point. It follows from Eqs. (4) and (7) that close to either of K±, the low-energy Hamiltonian,
written in the basis of the conduction and valence bands making up the Dirac cone, is given
by

Hξ = ξσ0(−ukxτ0 + vx kxτ3 + vy kyτ1) +∆so(σ · ds)τ2 , (8)

where Pauli matrices τ act in the space of the conduction and valence bands, vx and vy are the
Fermi velocity along x and y directions respectively, ∆so is the spin-orbit coupling strength,
and u describes band tilting. The unit vector ds points along Vs of Eq. (7), while the spin-orbit
coupling parameter ∆so is given by the magnitude of Vs. Each band that the Hamiltonian
describes is doubly degenerate at every k-point, as appropriate for a system with both time-
reversal and inversion symmetries. The corresponding tilted Dirac dispersions are shown in
the inset of Fig. 4 in the Appendix.

There are several notable features of Hamiltonian (8). It is clear from the form of Hamil-
tonian (8) that the projection of spin onto the axis defined by ds is a good quantum number
for Hamiltonian (8), since effectively only a single (σ) Pauli matrix enters the Hamiltonian,
so one can replace σ · ds with its eigenvalue, σ · ds → η = ±1 while diagonalizing (8). Fur-
thermore, the dispersions of the conduction, c, and valence, v, bands near the Fermi level
are given by Ec,v

k = −ξukx ±
q

(v2
x k2

x + v2
y k2

y +∆2
so). Because of the band tilt, the band ex-

trema are shifted from Kξ. If we denote u/vx ≡ β > 0, the conduction band minima are
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located at Kξ + (ξkmin, 0), such that vx kmin/∆so = β/
p

1− β2. The full indirect gap is
Eg = 2∆so

p

1− β2. To determine the parameters of the low-energy model, we used those
reported for the tight-binding model of Ref. [25], but reduced the strength of the spin-orbit
coupling to match the experimental value of the gap, which is around 55 meV [9]. As a result,
we obtained ∆so = 40 meV, vx = 6.44× 105 m/s, vy = 3.65× 105 m/s and β = 0.72.

We note that previous works all arrived at similar forms of four-band Hamiltonians near
Dirac points, see, for instance, Refs. [3,20–22]. This is despite the fact that the assumed sym-
metry of the conduction and valence band states was different in those studies. For instance, in
Refs. [3,21,22], the mirror symmetries of the conduction and valence bands were taken to be
the same, while their parities are opposite. As a result, the leading spin-orbit coupling is linear
in momentum component perpendicular to the mirror plane, and evaluates to a constant near
a Dirac point. This leads to the same type of the spin-orbit coupling near a Dirac point as in
Eq. (8). In Ref. [20], both the mirror symmetries, and parities of the conduction and valence
band states at the Γ -point are assumed to be opposite. This leads to a spin-orbit coupling linear
in the momentum component in the mirror plane, while the gap at the Dirac points on the axis
perpendicular to the mirror plane is opened even without spin-orbit coupling. Even in the case
of Ref. [20], a unitary transformation can bring the four-band Hamiltonian studied there to a
form used in Ref. [3]. In view of this analysis of existing works, we would like to emphasize
that despite the uniformity of four-band models near the Dirac point, they look quite different
away from them. This fact can be important for studies of many-body physics, like exciton
condensation [16], which is sensitive to the wave functions of the bands both near the Dirac
points, and the Γ -point, or optical phenomena near the Γ -point. In such cases, it is probably
best to use the eight-band model of Eqs. (2) and (3) of the present work.

The predictions of the low-energy model near a Dirac point, Eq. (8), for the spin suscep-
tibility, spin splitting, and the anomalous Hall effect will be studied in the rest of this paper.
The bulk spin transport for this model, and its optical properties were studied in Refs. [22]
and [29], respectively.

3 Physical consequences of the low-energy model

Below we will be interested in the behavior of electronic spins in monolayer WTe2 in a magnetic
field. We will restrict ourselves to energies close to the bottom of the conduction bands, located
at momenta near the Dirac points. These minima are much more pronounced than the valence
band maxima due to a considerable band tilting near Dirac points.

3.1 Effective Zeeman coupling

The coupling of electronic spin to a magnetic field stems from the associated magnetic moment.
For electrons in a crystal, this magnetic moment can be divided into an intrinsic part related to
the electronic spin, and an orbital part related to the rotation of electronic wave packets moving
throughout the crystal [30]. We will first describe the orbital contribution to the effective g-
factor.

In general, one expects all three Cartesian components of the carrier orbital magnetic mo-
ment to have nonzero values in bulk monolayer WTe2. However, the in-plane ones stem from
the relative atomic displacements in the z-direction, which are of the order of a few Å. On
the contrary, the z-component of the magnetic moment comes from the in-plane spread of
the electronic wavepackets, and near a Dirac point the scale of this spread is given by the ef-
fective Compton wavelength, ħhvD/∆so ∼ 100 Å, where vD ∼ 5× 105m/s is the typical value
of the Dirac speed, which is anisotropic in monolayer WTe2, as mentioned above. There-
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Figure 2: (Color online) Depicts the effective orbital g-factor for out-of-plane mag-
netic field, gz as a function of n

n0
. Inset shows the magnitude of the orbital magnetic

moment (in units of µB) as a function of kx for the lowest conduction band using
tight-binding model (solid line) and the Hamiltonian given in Eq. (8) (dashed line).
Here we have taken ∆so = 40 meV, vx = −6.44× 105 m/s and vy = 3.65× 105 m/s.

fore, the effects associated with the in-plane orbital magnetic moments are suppressed by two
orders of magnitude with respect to the out-of-plane one, and we will neglect them below.
The expression for the z-component of the orbital moment of the Dirac electron described by
Hamiltonian (8) has the standard form [30]:

mz(k) =
evx vy∆so

2ε2
k

(σ · d s ) , (9)

where εk =
q

v2
x k2

x + v2
y k2

y +∆2
so. The lack of dependence on the valley index, ξ, in Eq. (9)

reflects the presence of the inversion symmetry.
In the inset of Fig. 2, we compare the orbital magnetic moment of the conduction band

electrons calculated from the low-energy Hamiltonian (8), and the eight-band tight-binding
model of Ref. [25]. It is clear that the magnetic moment calculated from the low-energy
theory agrees well with the results of a more general model. It is also apparent that the orbital
magnetic moment depends strongly on the momentum. For instance, for σ · ds = +1, and at
the Dirac point, it is given by mz(k = 0) = evx vy/2∆so ≈ 33µB, where µB < 0 is the Bohr
magneton; for the same spin projection, but at the bottom of the conduction band, the orbital
moment becomes mz(kmin) = evx vy(1− β2)/2∆so ≈ 16µB.

The aforementioned strong momentum dependence of the orbital magnetic moment sig-
nals that the effective g-factor for out-of-plane magnetic fields depends strongly on the doping
level. At low doping, it comes predominantly from the orbital moment of electrons, and can
be expressed through its value averaged over the Fermi contour:

mz =
1

ν(EF )

∫

(dk)mz(k)δ(Ek − EF ) = evx vy
∆so(1− β2)3/2

EF

q

E2
F + β2∆2

so

σ · ds . (10)
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In the above expression, we introduced the density of states per spin per valley:

ν(EF ) =
EF

2πvx vy(1− β2)3/2
. (11)

It can be useful in practice to give the values of the effective g-factor as a function of
density, rather than of the Fermi energy. The dependence of the total density on the Fermi
level is given by

n(EF ) = NsNv
E2

F −∆
2
so(1− β

2)

4πvx vy(1− β2)3/2
, (12)

where Ns = Nv = 2 are the spin and valley degeneracies, respectively. Eq. (12) shows that the
characteristic scale for the density is given by

n0 = NsNv
∆2

so

4πvx vy(1− β2)1/2
≈ 8 · 1011cm−2 . (13)

We introduce the effective orbital g-factor for out-of-plane magnetic field, gz , using the
average spin splitting on the Fermi surface, given by 2|mz|Bz ≡ µB gzBz . Eqs. (10), (12),
and (13) then allow to plot gz as a function of n/n0, which is done in Fig. 2. The plot suggests
that for out-of-plane magnetic fields, the spin-Zeeman effects become comparable to the orbital
ones for n/n0 ∼ 10.

The spin part of the Zeeman coupling is dominant for in-plane magnetic fields. To describe
it, we will assume that the atomic g-factors of the monolayer WTe2 constituents are all equal
to 2. That is not necessarily the case in general in view of the atomic spin-orbit coupling. How-
ever, in the case of WTe2, the atomic spin-orbit coupling is quenched in the orbitals comprising
the low-energy manifold, so one expects that the deviation from the free-space value are small
in the ratio of the spin-orbit coupling strength and crystal field splitting for each atom, which
should be small for extended 5p and 5d orbitals.

With the bare g-factor being equal to 2, the spin-Zeeman term in the 4-band Hamiltonian
near a Dirac point reads

Hspin
Z = −µB(σ · B)τ0 , (14)

where B is external magnetic field. We are interested in the matrix elements of this Hamilto-
nian in the space spanned by the two spin-degenerate conduction band close to the Fermi level.
It is clear from Hamiltonian (8) that the wave functions of these states can be written as |s,χsξ〉,
where s is the eigenvalue of the spin projection onto ds, such that σ ·ds |s,χsξ〉= s|s,χsξ〉, with
s = ±, ξ is the valley index, and χsξ labels the corresponding states in the orbital space.
Explicitly, one choice for these states is given by

|χsξ〉=
√

√1
2
+
ξvx kx

2εk

�

1, is
εk − ξvx kx

∆+ isξvy ky

�T

. (15)

The overlaps of these orbital states strongly affect the matrix elements of the spin-Zeeman
term. For instance, at a Dirac point one has kx = ky = 0, and thus 〈χsξ|χs′ξ〉 = δss′ , hence
a magnetic field oriented in any direction can at most shift the two spin states in energy (as
long as it is not orthogonal to ds), but cannot flip the spin.

There is a large degree of arbitrariness to the matrix elements of the spin-Zeeman Hamil-
tonian between the low-energy states because of arbitrary relative k-dependent phase con-
ventions that can be chosen for them. Different choices of the relative phase amount to a
unitary transformation performed on the Hamiltonian. Therefore, these matrix elements are
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not observable, and do not define any physical g-tensor, and they do not directly define the
effective Zeeman field that determines spin precession. What is observable is the spin splitting
generated by these matrix elements (the spectrum, of the Hamiltonian), and the associated
spin susceptibility, as well as the effective fields that enter the Heisenberg equation of motion
for the spin operator.

The spin susceptibility for in-plane Zeeman fields was calculated numerically in Ref. [21]
for the case of the conduction and valence band states having the opposite parity, but the same
mirror eigenvalues. Here we provide the corresponding analytic expressions for the present
case.

Below we will specialize to K+ valley, setting |χsξ〉 → |χ±〉 for s = ±. Because of the
inversion symmetry of the system, the expressions for physical observables obtained below are
exactly the same for K− valley. First, we define the matrix elements of the spin polarization in
the basis of the two spin-degenerate conduction band states,

Σa
s,s′ = 〈s,χs|σaτ0|s′,χs′〉 , (16)

where the placement of the Cartesian upper index a on Σa is done only for notational con-
venience. Note that Σ · ds acts like σz in the basis of the degenerate conduction band states.
Using matrices Σ, the effective Zeeman Hamiltonian, which includes both the spin and orbital
magnetic moment contributions, is written as

H tot
Z = −µBΣ · B−mz(k)BzΣ · ds . (17)

It is apparent that the orbital magnetic moment leads to an effective Zeeman field directed
along ds, and whose magnitude is given by mz(k)Bz/µB. For out of plane fields, this effective
field dominates over the spin-related counterpart at low doping levels, due to the large value
of mz at the conduction band edge. For in-plane fields it vanishes.

3.2 In-plane spin susceptibility

We start with a discussion of the in-plane spin susceptibility. It was suggested in Refs. [14,15],
and numerically explored in Ref. [21], that the reduction of the normal-state in-plane spin
susceptibility may be a reason for the enhancement of the in-plane critical field in gate-induced
superconductivity in monolayer WTe2 beyond the paramagnetic limit. Below we present an
analytic calculation of this quantity.

The expression for the in-plane spin susceptibility χab has the standard linear-response
form,

χab(EF ) =
Nv

2
µ2

B

∫

(dk)Tr{Σa(k),Σb(k)}δ(Ek − EF ) , (18)

where {. . . , . . .} denotes the anticommutator. Further considerations are simplified if one in-
troduces the projectors onto the direction of ds, P‖, and onto the plane perpendicular to ds,
P⊥. These projectors satisfy P‖ + P⊥ = 1, and are given by

Pab
‖ = da

s d b
s ; P⊥ = δ

ab − da
s d b

s . (19)

In terms of these projectors one easily obtains

Tr{Σa(k),Σb(k)}= 4
�

Pab
‖ + |〈χ+|χ−〉|

2Pab
⊥

�

. (20)

It is apparent that Eq. (20), and hence Eq. (18), are not sensitive to the choice of an arbitrary
relative phase for the two conduction band states. The overlap that enters Eq. (20) is given by

|〈χ+|χ−〉|2 =
ε2

k −∆
2
so

ε2
k

. (21)
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Mirror Plane

Figure 3: (Color online) Schematic diagram of the spin-orientation axis ds which
makes an angle θs from the z-axis in monolayer WTe2.

Near the conduction band bottom, where εk =∆so/
p

1− β2, we have |〈χ+|χ−〉|2 ≈ β2.
The spin susceptibility of Eq. (18) is essentially the Fermi-surface average of the trace of

Σ-matrices given in Eq. (20). Performing the necessary integrations, which are the same as in
the case of the orbital moment, one obtains

χab(EF ) = Nvχ0



Pab
‖ +

 

1−
∆2

so(1− β
2)3/2

EF

q

E2
F + β2∆2

so

!

Pab
⊥



 , (22)

where χ0 = 2µ2
Bν(EF ).

It can be seen from Eq. (22) that for ∆so ∼ 40 meV, and EF ∼ 100 meV, for which the
doping density is around 1013cm−2, that the difference between components of χab and χ0 is
at most a few percent. It does not seem plausible that the difference between χ and χ0 can
explain the aforementioned increase.

It is somewhat curious that in the low-doping limit, where the Fermi energy approaches
the bottom of the conduction band, EF → ∆so

p

1− β2, the χ x x susceptibility is reduced by
a factor of β2 ≈ 0.5 as compared to the naive value 2µ2

Bν(EF ) for g = 2. The reason χ x x

vanishes for β = 0 is, again, the fact that the orbital parts of the two degenerate states at the
bottom of the conduction band are then orthogonal to each other, and there is no response to
the magnetic field to linear order in B.

If the tilt, β , is known, then the orientation of ds ≡ (0, sinθs, cosθs) can be inferred (see
Fig. 3) from the ratio of the diagonal in-plane susceptibilities in the EF →∆so

p

1− β2 limit:

sin2 θs =
β2

1− β2

�

χ y y

χ x x
− 1

�

. (23)

Therefore, we conclude that the in-plane spin susceptibility in the low-doping limit can be
directly linked to the properties of the low-energy Hamiltonian: the tilt, and the orientation
of the conserved spin direction.

3.3 Anomalous Hall effect in and out of equilibrium

In the presence of a magnetic field, one expects WTe2 to show Hall effect. For out-of-plane
field direction, the Hall effect is dominated by the usual semiclassical Drude value, and has
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little to do with the underlying wave functions of the low-energy Dirac model. However, due
to the low symmetry of the sample, even an in-plane magnetic field, which does not produce
substantial orbital effects (but still has some due to the monolayer extension in the z-direction,
see above) can induce anomalous Hall effect. A similar effect induced by the planar magnetic
field has also been proposed in two-dimensional hole gas (p-type semiconductors) [31] and
trigonal crystals with sizable spin-orbit coupling [32]. The effect is the strongest close to
the bottom of the conduction band, where the Berry curvature is the largest. Since the spin
projection onto dS is a good quantum number in the low-energy theory, the Berry curvature
for the degenerate conduction bands can be calculated for each of the spin projections, the
result being the standard expression for the Berry curvature of a two-level system, described
by Hamiltonian (8):

Ωz(k) = −
vx vy∆so

2ε3
k

(Σ · d s ) . (24)

This expression does not depend on the valley index ξ, so it is suppressed. In the low-energy
limit, εk → ∆so/

p

1− β2, it is obvious that the Berry curvature is directly proportional to
the spin projection onto ds. Therefore, the momentum-space integral of its expectation value,
which determines the anomalous Hall conductivity [30], can be expressed through the spin
susceptibility of Eq. (22). Before writing down the expression for the anomalous Hall con-
ductivity for energies near the conduction band bottom, we note that one must include the
side-jump contribution, since it is parametrically identical to the intrinsic one, described by
the Berry curvature of Eq. (24). For a Dirac model, and at low energies the side-jump contri-
bution is twice as big in magnitude, and opposite in sign as compared to the intrinsic one [33].
Effectively, its inclusion just changes the sign of the intrinsic contribution. Keeping this sign
change in mind, using Eqs. (24) and (22), and the fact that da

s Pab
‖ = d b

s , da
s Pab
⊥ = 0, one can

write the anomalous Hall conductivity as

σAHE
x y = Nv

e2

2π
|µB|B · ds

∆so
. (25)

We emphasize that the magnetic field enters the expression for the Hall conductivity via the
Zeeman splitting of the bands, which removes the degeneracy between the two bands with
opposite values of the Berry curvature. It is apparent from Eq. (25) that if the orientation of
ds is known, measuring the anomalous Hall conductivity for in-plane magnetic field oriented
in the mirror plane provides a direct way to measure the strength of the spin-orbit coupling in
the low-energy model. The orientation of ds can be determined as in Ref. [17].

The anomalous Hall conductivity (25) was obtained under the conditions of equilibrium,
when the spin polarization of a sample is described by susceptibility (22). However, experi-
ments on spin polarization injection into monolayer dichalcogenides are also commonplace. It
then follows from Eq. (24) that transient spin dynamics manifests itself in the Hall conductivity
of monolayer WTe2. That is, the Hall signal provides a direct window into the spin dynamics.

To understand what information can be extracted from the time dependence of the Hall
signal driven by nonequilibirum spin polarization, one has to study the spin precession dy-
namics in WTe2. The equations of motion for the spin polarization operators can be written
in Heisenberg representation with Hamiltonian (17). For simplicity, we will assume that an
in-plane magnetic field is applied, Bz = 0. Generalization to arbitrary field direction is triv-
ial, and amounts to the replacement B → B +mzBzds, as follows from Eq. (17). We also do
not consider spin relaxation here, which can be added phenomenologically, if needed. The
equations of motion for the Cartesian components of the spin polarization then read

dΣa

d t
= i[H tot

Z ,Σa] , (26)
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which has to be supplemented with the expression for the commutator of Σ-matrices:

[Σa,Σb] = 2i f abcΣc . (27)

The third-rank pseudotensor F abc has the following form:

f abc = εabl
�

P lc
⊥ + |〈χ+|χ−〉|

2P lc
‖

�

. (28)

To proceed, we define the expectation value of the spin polarization density with respect to
the non-equilibrium single-particle density matrix,

S =

∫

(dk)〈Σ(k)〉 , (29)

and restrict ourselves to the energies close to the conduction band bottom, |〈χ+|χ−〉|2 ≈ β2.
This allows us to write a closed set of equations for the spin polarization density using the
equations of motion for Σ. In components, the equation of motion for S looks as follows:

dSa

d t
= −2µB f abcBbSc . (30)

It is convenient to use the decomposition S = S‖dS + S⊥, such that S⊥ · ds = 0, since S‖
directly determines the Hall conductivity. Then we obtain

dS‖
d t
=− 2µBβ

2ds · B× S⊥ ,

dS⊥
d t
=− 2µBβ

2B× dsS‖ − 2µBB× S⊥ + 2µB(ds · B× S⊥)ds . (31)

These equations simplify in a great, and rather useful fashion when the B-field is perpen-
dicular to the mirror symmetry plane, B = (B, 0, 0). For such fields, the last two terms in
the second of Eqs. (31) cancel out, and the projection of S⊥ onto B does not change in time.
Finally, S‖, and the projection of S⊥ onto ds × B, which we will denote simply as S⊥, evolve
according to

dS‖
d t
= −2µBBS⊥ ,

dS⊥
d t
= 2µBβ

2BS‖ . (32)

The spin polarization rotates around the direction of B with the modified Larmor frequency,
given by ωL = 2β |µB|B, reduced by a factor of β from its free-space value. Clearly, the same
oscillation pattern is inherited by the anomalous Hall conductivity. Its oscillation frequency is
thus a direct measure of the tilt parameter β .

4 Conclusions

In this work, we have developed the k ·p model that describes the eight (four orbitals times two
spins) bands near the Fermi level of monolayer WTe2, Eqs. (2) and (3). We further reduced it to
a four-band model valid near the Dirac points, Eq. (8). The eight-band model should be useful
for studies of exciton condensation, which involves both states near the Γ -point and Dirac
points [16], and optical phenomena near the Γ -point. The four-band model is convenient to
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consider Fermi-surface type of phenomena, of which we considered the anomalous transport,
magnetic susceptibility for in-plane fields, and the effective g-factor for out-of-plane fields.

The choice of the above list of quantities to consider was motivated by the fact that they
provide insight into the parameters and form of the low-energy Hamiltonian that describes
monolayer WTe2. We have shown that most of the parameters describing this Hamiltonian can
be obtained from measuring its magnetic susceptibility, as well as the anomalous Hall effect
driven by equilibrium and non-equilibrium - injected - spin polarizations. Such measurements
can help to determine the orientation of the conserved spin projection, the dimensionless
tilt of band dispersion, and the strength of the spin-orbit coupling, see Eqs. (23), (25), and
(32). Perhaps to measure such quantities in a single experiment can be considered difficult.
However, the direction of ds, inferred from edge transport, was shown to be very robust from
sample to sample in Ref. [17], so the angle θs can be considered known. Further information
about this quantity can be inferred from spin transport measurements proposed in Ref. [22].
Then purely electrical measurements of the Hall conductivity provide full information about
the dimensionless band tilt, and the strength of the spin-orbit coupling. According to Eq. (25),
the value of the Hall conductivity in units of the conductance quantum is set by the ratio of the
Zeeman energy and the spin-orbit strength. For B ∼ 1T, it is of order of 10−3, and is measurable
in experiment. If the strength of the spin-orbit coupling and tilt are known, measurements of
the effective g-factor for out-of-plane fields yield information about the geometric mean of the
Dirac velocities, see Eq. (10), and the discussion in the preceding paragraph.

Overall, the results of this work should be useful for experimental characterization of
monolayer WTe2 samples, as well as for future studies of many-body and optical phenomena
in monolayer WTe2.
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A Tight-binding Hamiltonian of monolayer WTe2

In the absence of atomic spin-orbit coupling, including the spin s =↑,↓, sublattice c = A, B
and orbital l = d, p degrees of freedom, the minimal eight-band tight-binding Hamiltonian in
momentum space for monolayer WTe2 is given by [25,27]

H0 = σ0 ⊗









εd 0 t̃d gkeiky t̃01 fk
0 εp − t̃02 fk t̃p gk

t̃d g∗ke−iky − t̃02 f ∗k εd 0
t̃01 f ∗k t̃p g∗k 0 εd









, (33)

where εl = µl + 2t l cos kx + 2t ′l cos 2kx for l = p, d, gk = 1 + e−ikx , fk = 1 − e−ikx ,
t̃ l = tAB

l e−ik·(rB,l−rA,l ) with l = p, d, t̃01 = tAB
0 e−ik·(rB,p−rA,d ) and t̃02 = tAB

0 e−ik·(rB,d−rA,p). The
numerical values of the parameters are given in Ref. [27]. In the basis of the above Hamil-
tonian, the different symmetry operators can be represented as I=σ0ρ1τ3, T = iσ2ρ0τ0K1
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Figure 4: (Color online) Energy dispersion of the bulk bands of the monolayer WTe2
along the X-Γ -M k path. The middle two bands have the same parity eigenvalue
P = 1. This indicates that the band inversion occurs between the first conduction
and second valence band. We have taken V ′0 = 40 meV.

with K1 is the complex conjugation operator. For the nontranslational component of mirror
and screw symmetry operator, we have Mx = iσ1ρ0τ3 and C2x = −iσ1ρ1τ0 respectively.
Here, the Pauli matrices σi , ρi and τi (i = 0, 1,2, 3) act on the spin, sublattice and orbital
degree of freedom respectively. Each band is doubly degenerate due to presence of both TRS
and inversion symmetry (IS). Using the same basis of the Eq. (33), the intrinsic SOC term
with lowest order in k for the tight-binding model, which satisfies all the four symmetries
mentioned above, can be obtained as

HSO = V0σ2ρ3τ2 + V ′0σ3ρ3τ2 , (34)

where V0 and V′0 are the coefficients and two types of terms in Eq. (34) are related by spin
rotation by π/4 around σ1.

The energy dispersion of the bulk bands of the monolayer WTe2 based on the tight-binding
Hamiltonian along the X-Γ -M path in the momentum space is shown in Fig. 4.
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