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An inference problem in a mismatched setting:
a spin-glass model with Mattis interaction
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Abstract

The Wigner spiked model in a mismatched setting is studied with the finite temperature
Statistical Mechanics approach through its representation as a Sherrington-Kirkpatrick
model with added Mattis interaction. The exact solution of the model with Ising spins
is rigorously proved to be given by a variational principle on two order parameters, the
Parisi overlap distribution and the Mattis magnetization. The latter is identified by an
ordinary variational principle and turns out to concentrate in the thermodynamic limit.
The solution leads to the computation of the Mean Square Error of the mismatched recon-
struction. The Gaussian signal distribution case is investigated and the corresponding
phase diagram is identified.
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1 Introduction

The fruitful interplay between disordered Statistical Mechanics and high dimensional inference
has a classical example in the well known equivalence between the Sherrington-Kirkpatrick
model on the Nishimori line [1] and the Wigner spiked model (see [2] and references therein)
with Rademacher prior. The first is the prototype of mean-field disordered systems with a
special choice for the spin interaction distribution, whereas the second amounts to the problem
of reconstructing a binary signal sent through a noisy Gaussian channel in the optimal setting
when the receiver knows the distribution of the signal and the noise. The correspondence
is based on the fact that the Shannon entropy of the observations that the receiver uses to
retrieve the signal coincides, up to simple additive terms, with the free energy of the mentioned
Statistical Mechanics model. The proof of such correspondence relies on Bayes rule and the
gauge invariance property of such systems. From those one can also show that all these models
fulfill a set of identities and correlation inequalities [3–5] that imply the peculiar feature of
the emerging thermodynamics, known as replica symmetry, i.e. the system properties are fully
encoded in a self-averaging quantity, the overlap [6–8].

The more general setting instead, referred to as mismatched, in which the receiver has only
a guess of the signal distribution and/or does not know the strength of the noise is a new and
rapidly growing research field [9–13].

In this paper we work with a fully mismatched Wigner spiked model, where the receiver
has no apriori knowledge of the signal and tries to reconstruct it only through Ising spins.
Instead of using a max-likelihood approach to estimate the signal, which would correspond
to the search of the ground state of a given Hamiltonian, we choose a typical configuration of
the system at finite temperature, or equivalently we adopt the receiver’s posterior mean as the
estimator. The emerging Statistical Mechanics model turns out to be the sum of an SK with a
two-body mean-field Mattis interaction.

Our main result is the rigorous exact solution of such model described by the two natural
order parameters represented by the overlap distribution and the Mattis magnetization. We
show that, while the first obeys a functional variational principle of Parisi type, the second
is obtained through a classical one dimensional optimization problem. The proof relies on
the crucial property of self-averaging of the Mattis magnetization. When the signal distribu-
tion is Gaussian the phase space is investigated and a tricritical point is identified separating
paramagnetic, glassy and ferromagnetic phases.

The paper is organized as follows. Section 2 contains the definitions and the main results
from the Statistical Mechanics point of view. Section 3 briefly outlines the link between the
inference problem and the mentioned model. Section 4 contains the mathematical proofs. Sec-
tion 5 analyses in detail the phase diagram related to the case of Gaussian signal distribution.
Finally, Section 6 collects conclusions and outlooks.

2 Definitions and Main Results

Consider a system of N interacting Ising spins described by a Sherrington-Kirkpatrick Hamil-
tonian with external random iid magnetic fields and a further two body interaction of Mattis
type induced by the same magnetic fields. More specifically, to each site i = 1, . . . , N we asso-
ciate a spin σi ∈ {+1,−1}. The state of the system will be completely identified by the vector
σ = (σ1, . . . ,σN ) ∈ {+1,−1}N =: ΣN . Furthermore, we assume that the spins have a uniform
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prior distribution, namely P(σi = +1) = 1/2. The Hamiltonian of the model hereby studied is

HN (σ;µ,ν,λ)≡ HN (σ) = −
N
∑

i, j=1

�

zi j

s

µ

2N
σiσ j +

ν

2N
σiσ jξiξ j

�

−λ
N
∑

i=1

ξiσi , (1)

with µ,ν ≥ 0, λ ∈ R, zi j
iid∼ N (0,1) and ξi

iid∼ Pξ independent of the zi j ’s, where Pξ is any
distribution such that E[ξ4

1]<∞. The zi j ’s and ξi ’s play the role of quenched disorder in this
model. The model is going to be described by the couple of order parameters

qN (σ,τ) =
1
N
σ ·τ =

1
N

N
∑

i=1

σiτi , mN (σ|ξ) =
1
N

N
∑

i=1

σiξi , (2)

where σ ,τ ∈ ΣN and ξ = (ξ1, . . . ,ξN ). In what follows we will refer to mN (σ|ξ) as Mattis
magnetization. One can now separate the three contributions in the Hamiltonian (1), thus
obtaining

HN (σ) = −
p
µ

N
∑

i, j=1

zi j
p

2N
σiσ j −

Nν
2

m2
N (σ|ξ)− NλmN (σ|ξ) , (3)

where an SK-like term

HSK
N (σ) := −

N
∑

i, j=1

zi j
p

2N
σiσ j (4)

at temperature
p
µ is clearly recognizable. The Boltzmann-Gibbs average will be denoted by

〈·〉N =
1

ZN

∑

σ∈ΣN

(·)exp [−HN (σ)] , ZN =
∑

σ∈ΣN

exp [−HN (σ)] . (5)

Due to the presence of the quenched disorder, Boltzmann-Gibbs averages are in general ran-
dom quantities.

We define the random and quenched pressures of the model respectively as

pN (µ,ν,λ) =
1
N

log
∑

σ∈ΣN

exp
�

−pµHSK
N (σ) +

Nν
2

m2
N (σ|ξ) + NλmN (σ|ξ)

�

, (6)

p̄N (µ,ν,λ) = EpN (µ,ν,λ) , (7)

where the expectation in the latter is taken w.r.t. all the disorder: E ≡ EξEZ. For future
convenience, we also introduce the quenched pressure of an SK model with random magnetic
fields ξi

iid∼ Pξ and its limit:

p̄SK
N (β , h) :=

1
N
E log

∑

σ∈ΣN

exp

�

−βHSK
N (σ) + h

N
∑

i=1

ξiσi

�

, (8)

P(β , h) := inf
χ∈M[0,1]

P(χ;β , h) = lim
N→∞

p̄SK
N (β , h) , (9)

where M[0,1] is the space of distributions over [0, 1] and P(χ;β , h) is the Parisi functional
[14–17] (see Sect. 4.1 for a synthetic description). The last limit exists by a super-additivity
argument [18] and depends implicitly on the distribution Pξ. The main result of this paper is
the variational principle for the thermodynamic limit of (7).
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Theorem 1 (Variational solution). If E[ξ4
1]< +∞ then

pN (µ,ν,λ)
L2

−→ lim
N→∞

p̄N (µ,ν,λ) =: p(µ,ν,λ) = sup
x∈R
ϕ(x;µ,ν,λ) , (10)

where

ϕ(x;µ,ν,λ) := −
νx2

2
+P(pµ,νx +λ) . (11)

From the form of the variational principle we can deduce also the differentiability proper-
ties of the limiting pressure that we have collected in the following

Corollary 2. p(µ,ν,λ) is λ-differentiable if and only if ϕ( · ;µ,ν,λ) has a unique supremum
point x = x̄(µ,ν,λ) and in that case

x̄ =
∂

∂ h
P(pµ, h)

�

�

�

�

h=ν x̄+λ
= lim

N→∞
E〈mN (σ|ξ)〉N . (12)

p(µ,ν,λ) is ν-differentiable if and only if ϕ( · ;µ,ν,λ) has at most two symmetric supremum
points { x̄ ,− x̄} and it holds

∂

∂ ν
p(µ,ν,λ) =

x̄2

2
. (13)

Let ξ ∼ Pξ be centered and ν > 0. If ϕ( · ;µ,ν,λ = 0) has at most two symmetric supremum
points { x̄ ,− x̄} then p(µ,ν, 0) is µ-differentiable and it holds

∂

∂ µ
p(µ,ν, 0) =

1
4

�

1−
∫

q2dχ∗(
p
µ,ν x̄; q)

�

, (14)

where χ∗(β , h) denotes the unique Parisi measure solving the Parisi variational principle in (9)
for β =pµ, h= ν x̄ .

The proof of (10) relies on the adaptive interpolation introduced in inference in order to
rigorously prove replica symmetric formulas [19–23] (see also [24,25]). Within this technique
the presence of a small perturbation in the Hamiltonian, appearing also in Proposition 3 below
as ε, plays a fundamental regularizing role. Intuitively, it allows us to avoid singularities
that may occur in the thermodynamic limit in the vicinity of a possible phase transition. A
similar model was studied in [26] where the author solves a Sherrington-Kirkpatrick model
with an added ferromagnetic interaction, that can be derived from (1) setting Pξ = δpJ with
J > 0 as the interaction strength. Notice moreover that the variational principle in (10) is one
dimensional, as far as x is concerned, suggesting thus the self-averaging of an order parameter
to be identified with the Mattis magnetization as in (12). Indeed, the following concentration
result holds.

Proposition 3. Let ε ∈ [sN , 2sN ] with sN =
1
2 N−α, α ∈ (0,1/2). Denote by 〈·〉N ,y the Boltzmann-

Gibbs measure induced by the Hamiltonian HN (σ;µ,ν,λ+ y) for any y ∈ R. Then

lim
N→∞

1
sN

∫ 2sN

sN

dεE
¬

�

mN (σ|ξ)−E〈mN (σ|ξ)〉N ,ε

�2 ¶

N ,ε
= 0 , (15)

for all µ,ν≥ 0 and λ ∈ R.

The proofs of Theorem 1, Corollary 2 and Proposition 3 can be found in Section 4.2 and
require bounds on the fluctuations of mN (σ|ξ).
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2.1 The Gaussian case

Theorem 1 contains a variational representation for the thermodynamic limit of the quenched
pressure density pN (µ,ν,λ) under mild assumption on the distribution of the family ξ. We
should notice that despite the fact the variational problem is one dimensional, the potential
ϕ(x;µ,ν,λ) in (11) contains a very complicated object, namely the pressure of a SK model
which is given by the Parisi formula. For this reasons it can be very hard in general to obtain
analytical information on the solution of the above variational problem. For instance, an im-
portant question is when, once the potential ϕ(x;µ,ν,λ) is evaluated at the optimal value for
x , the Parisi term is solved by a non fluctuating order parameter, i.e. is replica symmetric. The
purpose of this subsection is to obtain some detailed insights on the model by studying it on
some analytically accessible case, in particular for a specific choice of the family ξ that allows
a quantitative description of the phase diagram. We choose the family ξ to be i.i.d centered
Gaussian, Pξ = N (0, a), and we set ν = µ and λ = 0. The above choice for the parameters
µ,ν,λ and its link with high dimensional inference problems is discussed in Sect. 3. We will
show that in this setting one can use the nice result in [27] on the sharpness of the de Almeida-
Thouless line for Gaussian centered external magnetic fields for the SK model, to perform an
in-depth analysis of the variational problem in Theorem 1. With a slight abuse of notation,
we denote the corresponding quenched pressure by p̄N (µ, a). We show that it is possible to
identify the regions in the phase plane (µ, a) where P defined in (9) can be replaced with its
replica symmetric version, thus obtaining the following replica symmetric potential

ϕRS(x;µ, a) := −
µx2

2
+
µ(1− q(x ,µ, a))2

4
+E log cosh

�

z
Æ

µq(x ,µ, a) +µξx
�

, (16)

where q(x ,µ, a) is uniquely defined, thanks to the Latala-Guerra lemma [28], by the consis-
tency equation

q(x ,µ, a) = E tanh2
�

z
Æ

µq(x ,µ, a) +µξx
�

, (17)

for any x > 0 and we extend it to x = 0 by continuity. The properties of ϕRS are hereby
collected:

Proposition 4. The following properties hold:

1. ϕRS(−x;µ, a) = ϕRS(x;µ, a);

2. lim|x |→∞ϕRS(x;µ, a) = −∞;

3. there exists a unique maximum point, up to reflection, x = x̄(µ, a)≥ 0 which is either 0 or
satisfies

q( x̄(µ, a),µ, a) = 1−
1
µa

; (18)

4. the solution of (18) exists and is unique if and only if

a ≥
1

µ(1− q(0,µ, 0))
. (19)

The previous is always fulfilled if a ≥ 1/µ and a ≥ 1;

5. under the hypothesis (19) the solution to (18) is stable:

d2ϕRS(x;µ, a)
d x2

�

�

�

�

x=± x̄(µ,a)
< 0 . (20)
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Finally, we give a sharp criterion to establish when the replica symmetric potential can be
used to obtain the solution to the variational problem.

Proposition 5. Define the function

AT (µ, a) := µE cosh−4
�

z
Æ

µq( x̄(µ, a),µ, a) +µξ x̄(µ, a)
�

. (21)

Then

lim
N→∞

p̄N (µ, a) = sup
x∈R
ϕRS(x;µ, a) iff AT (µ, a)≤ 1 . (22)

The proofs of Propositions 4 and 5 can be found in Section 4.3. The previous results for
Gaussian ξi ’s and their consequences can be gathered together in the phase diagram in Figure 1
which will be studied in detail in the dedicated Section 5.

Figure 1: Model phase diagram when ξi
iid∼ N (0, a). Green region: fully param-

agnetic phase, where the Parisi overlap distribution is a Dirac delta centered at 0 as
well as the Mattis magnetization. White region: ferromagnetic, replica symmetric
phase. Here, the Parisi overlap distribution is still a Dirac located according to (17)
and (18). The distribution of the Mattis magnetization is instead a sum of two deltas
centered at x̄ and − x̄ with 1/2 coefficients, namely the solutions of (18). The model
therefore turns out to be replica symmetric in the green and white areas. The blue
region is delimited by µ = 1 and the blue curve drawn (here only qualitatively) by
(19), which is above the green dashed hyperbola µ = 1/a. In this region the model
is in a replica symmetry breaking phase, i.e. the Parisi distribution is no longer con-
centrated at a single point and x̄ solves the more general variational principle (10).
With reference to Proposition 5, the dash-dotted red line AT (µ, a) = 1, here drawn
qualitatively, must contain the entire RSB phase, hence it must lie above (or at most
touch) the blue curve. The analogy with the SK model (see Remark 6 below) would
suggest the presence of a mixed phase in the red region where x̄ 6= 0 and the overlap
fluctuates.
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3 Mismatched Setting in High Dimensional Statistical Inference

The Hamiltonian (1) with ν = µ (which is not restrictive, one can reabsorb ν in the ξi ’s) and
λ = 0 can be derived also from a high dimensional inference problem, called Wigner spiked
model in literature [19,29,30] (see also [31–34]), in a mismatched setting. In this problem the
task is to recover a non negligible fraction of components of a high dimensional signal called
ground truth ξ. The signal, in order to ease reconstruction, is sent in couples [1] through a
channel which corrupts it with Gaussian noise Z. The receiver will then get the message y, i.e.
the N2 quantities

yi j :=
s

µ

2N
ξiξ j + zi j , zi j

iid∼N (0, 1) . (23)

He also knows how the observations are generated, namely he is aware of the law (23) and
consequently of the conditional distribution

pY|ξ=x(y) =
exp

h

−1
2

∑N
i, j=1

�

yi j −
q

µ
2N x i x j

�2i

(2π)N2/2
, (24)

for some value x. However, he does not know the distribution of the ξi ’s and assumes them
to be binary ±1 as the σi ’s with equal prior probability. Thus, according to Bayes’ rule, the
posterior distribution used by the receiver is

Pξ|Y=y(σ) =
exp

h

−1
2

∑N
i, j=1

�

yi j −
q

µ
2Nσiσ j

�2i

2N (2π)N2/2pY(y)
, (25)

where

pY(y) =
1

2N

∑

σ∈ΣN

exp
h

−1
2

∑N
i, j=1

�

yi j −
q

µ
2Nσiσ j

�2i

(2π)N2/2
. (26)

A straightforward computation shows that the posterior distribution (25) can be rewritten as a
random Boltzmann-Gibbs measure whose Hamiltonian is precisely HN (σ;µ,µ, 0). To see this
it is sufficient to compute the square at the exponent in (25) and reabsorb all the constants
not depending on σ in the normalization.

It is important to stress that nor the posterior (25) neither the so called evidence (26) are
correct, in the sense that there is a mismatch between the receiver’s prior and Pξ. The true
distribution of the yi j ’s is instead

p∗Y(y) =

∫

dPξ(x)
exp

h

−1
2

∑N
i, j=1

�

yi j −
q

µ
2N x i x j

�2i

(2π)N2/2
, (27)

with dPξ(x) =
∏N

i=1 dPξ(x i). With these notations one can proceed with the computation of
the cross entropy density

1
N
H(p∗Y, pY) = −

1
N

∫

dy p∗Y(y) log pY(y) , (28)
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a quantity that can be evaluated only by a third party observer aware of both Pξ and the
mismatched prior. By inserting pY and the (23) in the (28) one obtains

1
N
H(p∗Y, pY) = −

1
N
EZEξ log

∑

σ∈ΣN

exp
h

−1
2

∑N
i, j=1

�

zi j +
q

µ
2N (ξiξ j −σiσ j)

�2i

2N (2π)N2/2

=
N
2

log 2πe+
µ

4
E2
ξ[ξ

2
1] +

µ

4
+O

�

1
N

�

+ log2−
1
N
EZEξ log

∑

σ∈ΣN

e−HN (σ;µ,µ,0) .

(29)

The first term is the Shannon entropy of the noise, whereas the last one is, up to a sign, the
quenched pressure p̄N (µ,µ, 0). In the optimal setting, namely when Pξ = (δ1 + δ−1)/2, (28)
is just the entropy of the observations and the quantity µ

4 +
µ
4 + log2− p̄N (µ,µ, 0) is the mutual

information 1
N I(Y,ξ) between the ground truth signal and the observations up to O

� 1
N

�

.
Using integration by parts it is straightforward to show that

d
dµ

H(p∗Y, pY)

N
=
E2
ξ
[ξ2

1]− 2E〈m2
N (σ|ξ)〉N +E〈q

2
N (σ,τ)〉N

4
=

1
4N2
E‖ξ⊗ ξ− 〈σ ⊗σ〉N‖2F ,

(30)

where by 〈 f (σ,τ)〉N we mean the expectation w.r.t. the replicated Boltzmann-Gibbs measure
〈·〉⊗2

N , that averages over σ and τ independently but with the same quenched disorder. The
previous equation relates the cross entropy (28) to the theoretical expected Mean Square Er-
ror (MSE) in Frobenius’ norm that the receiver would make using the Bayesian a posteriori
estimator 〈σ ⊗σ〉 = (〈σiσ j〉)Ni, j=1 for the ground truth diad ξ⊗ ξ = (ξiξ j)Ni, j=1. As intuition
suggests, the estimation performed in the matched setting produces a MSE which is the small-
est possible, therefore called Minimum Mean Square Error (MMSE). Namely there is no better
estimator than the mean w.r.t the true posterior which in particular entails that the MSE in
(30) is sub-optimal [9]. It is worth stressing again that the MSE (30) can be evaluated only
by the aforementioned third party observer, since it derives directly from H(p∗Y, pY).

The MSE in the high dimensional limit can be evaluated using Theorem 1 and the following

Lemma 6. Let I be an open real interval, {gn}n∈N a sequence of differentiable functions defined
on I converging pointwise to a differentiabile function g. Suppose there exists a differentiable
function f on I such that {gn + f }n∈N is a sequence of convex differentiable functions on I. Then
limN→∞ g ′n(x) = g ′(x).

Proof. The statement follows immediately from an application of Griffith’s Lemma (see for
instance [35], Lemma IV.6.3) to the sequence g̃n = gn + f .

For our cross entropy density sequence, which is not convex due to the lack of Nishimori
identities, one can prove that

H̃(p∗Y, pY)

N
=

H(p∗Y, pY)

N
−µ logµ (31)

is concave by a direct computation of its second derivative w.r.t. µ. We leave the details of the
computation to the interested reader. Hence the previous Lemma, under the hypothesis for
µ(ν)-differentiability of p(µ,ν,λ= 0) in Corollary 2, implies that

lim
N→∞

1
4N2
E‖ξ⊗ ξ− 〈σ ⊗σ〉‖2F =

d
dµ

hµ

4
E2
ξ[ξ

2
1] +

µ

4
− p(µ,µ, 0)

i

=
1
4
E2
ξ[ξ

2
1] +

1
4
−

x̄2

2
−

1
2
p
µ
∂β P(β ,µ x̄)|β=pµ

=
1
4
E2
ξ[ξ

2
1] +

1
4
−

x̄2

2
−

1
4

�

1−
∫

q2dχ∗(
p
µ,µ x̄; q)

�

,

(32)
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where we have replaced the derivative of the Parisi functional w.r.t. β as prescribed by Corol-
lary 2. We finally come up with

lim
N→∞

1
4N2
E‖ξ⊗ ξ− 〈σ ⊗σ〉‖2F =

1
4
E2
ξ[ξ

2
1]−

x̄2

2
+

1
4

∫

q2dχ∗(
p
µ,µ x̄; q) . (33)

4 Proofs

The proofs of the results are presented by first introducing the necessary tools like the adaptive
interpolation and the differentiability properties of the Parisi pressure.

4.1 Tools

In this section we show how to interpolate our model with a simple SK model with random
iid magnetic fields [18] following an adaptive path [19]. The advantage of this approach
is the possibility to confine the replica symmetry breaking phenomena in the SK part of the
model which is exhaustively studied in the literature [15–17,28,36–42]. The ultimate purpose
of the interpolation hereby illustrated is then to linearize the squared magnetization in the
Hamiltonian.

The interpolating model is defined by means of the Hamiltonian

HN (t;σ) := HN (σ;µ, (1− t)ν,λ+ Rε(t))

=
p
µHSK

N (σ)− (1− t)
Nν
2

m2
N (σ|ξ)− (λ+ Rε(t))NmN (σ|ξ) ,

(34)

where

Rε(t) = ε+ ν

∫ t

0

ds rε(s) , ε ∈ [sN , 2sN ] , sN =
N−α

2
, (35)

with α ∈ (0, 1/2) and where the interpolating function rε will be suitably chosen (see Remark
3 below for instance). The related interpolating pressure is:

p̄N (t) := p̄N (µ, (1− t)ν,λ+ Rε(t)) =
1
N
EξEZ log

∑

σ∈ΣN

exp [−HN (t;σ)] . (36)

As done in Proposition 3, the Boltzmann-Gibbs averages relative to (34) will be denoted by
〈·〉N ,Rε(t).

Remark 1. The interpolation strategy that we use in this work is profoundly different from the
typical one of the statistical inference literature within the Bayes optimal setting [19, 20]. In
that case one interpolates directly at the level of the channel, namely of (23), to compare it
with a one body channel of the type yi =

p

Rε(t)ξi + zi with zi
iid∼ N (0, 1). Traveling along a

trajectory that keeps an inferential interpretation ensures that the model is on the Nishimori
line at any t where all the precious properties of that line, identities and correlation inequali-
ties, provide a crucial analytical tool to obtain a finite dimensional variational principle.

In the present case instead the structural complexity of the mismatched setting implies that
we cannot count in the very first place on the Nishimori line properties nor on a global absence
of fluctuations for the order parameters. The strategy to achieve the solution and overcome this
difficulty is to build an interpolation scheme that, albeit not coming from a Gaussian channel
of type (23), is able to isolate a pure SK part, described by the Parisi solution, plus a classical
one dimensional variational principle.
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Remark 2. In what follows, we will exploit the fact that the quenched pressure has bounded
derivative in the external biases λ. Indeed, thanks to Cauchy-Schwartz inequality and to
E[ξ4

1]<∞ we have

�

�

�

�

d
dλ

p̄N (µ,ν,λ)

�

�

�

�

= |E〈mN 〉N | ≤
1
N

N
∑

i=1

|E〈σiξi〉N | ≤
1
N

N
∑

i=1

q

E[ξ2
i ] =

q

E[ξ2
1] =:

p
a . (37)

The previous bound holds for all µ,ν ≥ 0 and λ ∈ R. In particular, it holds for ν = 0, namely
for the SK model where this implies that p̄SK

N (·, h) is Lipschitz in h and so will be its limit P(·, h).
Furthermore, since the interpolating model (34) is of the type (1) it inherits these Lipschitz
properties on its quenched pressure (36).

Proposition 7. The following sum rule holds:

p̄N (µ,ν,λ) = p̄SK
N (
p
µ,λ+ Rε(1))−

ν

2

∫ 1

0

d t[r2
ε (t)−∆ε(t)] +O(sN ) , (38)

where

∆ε(t) := E
¬

�

mN (σ|ξ)− rε(t)
�2 ¶

N ,Rε(t)
. (39)

Proof. Let us begin by computing the first derivative

˙̄pN (t) = E
¬

−
ν

2
m2

N (σ|ξ) + νrε(t)mN (σ|ξ)
¶

N ,Rε(t)
=
ν

2
r2
ε (t)−

ν

2
∆ε(t) . (40)

Remark 2 implies that

p̄N (0) = p̄N (µ,ν,λ) +O(sN ) ; (41)

p̄N (1) =
1
N
E log

∑

σ∈ΣN

exp

�

−pµHSK
N (σ) + (Rε(1) +λ)

N
∑

i=1

ξiσi

�

= p̄SK
N (
p
µ, Rε(1) +λ) .

(42)

An application of the fundamental theorem of calculus yields the result.

Remark 3. By looking at the remainder ∆ε(t) in the sum rule one may be led to choose the
interpolating function as

rε(t) = E〈mN (σ|ξ)〉N ,Rε(t) , (43)

in order to apply Proposition 3 in some suitable form and make ∆ε(t) vanish in the thermo-
dynamic limit. However, this can cause two issues. First, the extra bias Rε(t) here introduced
is not simply ε as required by Proposition 3 but a function of it, so one has to make sure that
this does not interfere with the concentration. Second, in (43) rε(·) appears implicitly on both
sides of the equation. Nevertheless, the choice (43) can be formalized by means of the ODE

Ṙε(t) = νE〈mN (σ|ξ)〉N ,Rε(t) =: GN (t, Rε(t)) , Rε(0) = ε , (44)

which has always a solution by Cauchy-Lipschitz theorem because the velocity field GN is
Lipschitz for fixed N in the spatial coordinate Rε

∂

∂ Rε
GN (t, Rε(t)) = νNE

¬

(mN (σ|ξ)− 〈mN (σ|ξ)〉N ,Rε(t))
2
¶

N ,Rε(t)
≥ 0 . (45)
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Furthermore, by Liouville’s formula and the previous equation we know that the Jacobian ∂εRε
satisfies

∂ Rε(t)
∂ ε

= exp

�∫ t

0

ds
∂ GN (s, Rε(s))

∂ Rε

�

≥ 1 . (46)

Equations (44), (45) and (46) together provide a rigorous justification to the choice (43) and
solve the aforementioned issues as it will be clear from the proof of Theorem 1 below.

Let us now turn to Corollary 2. For its proof we need to give more details on P(β , h).
Consider the space of atomic probability measures on [0,1], denoted by Md

[0,1], and define
the Parisi functional

χ ∈Md
[0,1] 7−→ P(χ;β , h) = log 2+ Φ̄χ(0, h;β)−

β2

2

∫ 1

0

dq qχ([0, q]) . (47)

Φ̄χ is here introduced as an expectation: Φ̄χ(s, h;β) = EΦχ(s, hξ;β) , s ∈ [0, 1] where Φχ
solves the final value problem

∂sΦχ(s, y;β) = −
β2

2

�

∂ 2
y Φχ(s, y;β) +χ([0, s])(∂yΦχ(s, y;β))2

�

,

Φχ(1, y;β) = log cosh y .
(48)

It is well known [15,16] that for any χ1,χ2 ∈Md
[0,1]

|Φχ1
(s, y;β)−Φχ2

(s, y;β)| ≤
β2

2

∫ 1

s
dq |χ1([0, q])−χ2([0, q])| , (49)

namely χ 7→ Φχ is Lipschitz in the L1([s, 1], dq) norm. This allows us to extend the functional
Φχ to all the probability measures M[0,1] with the prescription

Φχ := lim
n→∞

Φχn
, (50)

for any sequence (χn)n≥1 in Md
[0,1] such that χn −→ χ ∈M[0,1] weakly.

We hereby collect the continuity and differentiability properties of Φ̄χ and P(χ; ·, ·).

Proposition 8. Let a := Eξ2. The following hold:

i) Φ̄χ (and P(χ; ·, ·)) can be continuously extended to M[0,1] w.r.t. the weak convergence and

Φ̄χ(s, h;β) := lim
n→∞

Φ̄χn
(s, h;β) = EΦχ(s, hξ;β) (51)

for any sequence (χn)n≥1 in Md
[0,1] such that χn −→ χ ∈M[0,1] weakly.

ii) χ 7→ Φ̄χ is convex in M[0,1].

iii) Φ̄χ is twice h-differentible for any χ ∈M[0,1] and

|∂hΦ̄χ(s, h;β)| ≤
p

a , 0< ∂ 2
h Φ̄χ(s, h;β)≤ a . (52)

In particular it is convex in h.

iv) Consider a sequence (χn)n≥1in M[0,1] such that χn −→ χ ∈M[0,1] weakly. Then

∂hΦ̄χn
−→ ∂hΦ̄χ . (53)
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v) The function P(β , h) = infχ∈M[0,1]
P(χ;β , h) is h-differentiable at any h ∈ R and

∂hP(β , h) = ∂hP(χ∗(β , h);β , h) = ∂hΦ̄χ∗(β ,h)(0, h;β) , (54)

where χ∗(β , h) is the unique distribution at which the infimum is attained and only the
explicit dependence on h is taken into account.

Proof. i). Consider χ1,χ2 ∈Md
[0,1]. By (49)

|Φ̄χ1
(s, h;β)− Φ̄χ2

(s, h;β)| ≤
β2

2

∫ 1

s
dq |χ1([0, q])−χ2([0, q])| , (55)

namely χ 7→ Φ̄χ is Lipschitz too on Md
[0,1]. Therefore we perform a continuous extension to

M[0,1] obtaining a continuous functional with respect to the weak convergence. Furthermore,
given a sequence (χn)n≥1 converging to χ ∈M[0,1] weakly we have

|Φ̄χn
(s, h;β)−EΦχ(s, hξ;β)| ≤

β2

2

∫ 1

s
dq |χn([0, q])−χ([0, q])| −→ 0 , (56)

by dominated convergence.

ii). The thesis immediately follows from i) and the main result in [42] that asserts the convexity
of Φχ .

iii). By Proposition 2 in [42] the first two y-derivatives of Φχ exist and are continuous, with
|∂yΦχ(s, y;β)| ≤ 1, C/ cosh2 y ≤ ∂ 2

y Φχ(s, y;β) ≤ 1 for some C > 0. Then, using Lagrange’s
mean value theorem and dominated convergence one can show that

∂hΦ̄χ(s, h;β) = E
�

ξ∂yΦχ(s, hξ;β)
�

, ∂ 2
h Φ̄χ(s, h;β) = E

�

ξ2∂ 2
y Φχ(s, hξ;β)

�

, (57)

which implies (52) and in turn the convexity of Φ̄χ in h.

iv). Since Φ̄η is convex in h for any η ∈M[0,1], Φ̄χn
is a sequence of convex functions. There-

fore, thanks to points and i), ii) and iii)

lim
n→∞

∂hΦ̄χn
= ∂h( lim

n→∞
Φ̄χn
) = ∂hΦ̄χ . (58)

v). P(β , h) is convex in h because it is the limit of a sequence of convex functions. Hence it is
sufficient to prove that at any h ∈ R the sub-differential is single valued (as done for instance
in [43]). For any fixed δ > 0 and b in the sub-differential the following holds

P(β , h)−P(β , h−δ)
δ

≤ b ≤
P(β , h+δ)−P(β , h)

δ
. (59)

Now, thanks to point i) and ii), P(χ;β , h) is also χ-convex, thus it has a unique minimizer χ∗,
and it is continuous w.r.t. the weak convergence. Hence we can find a sequence of measures
such that χn −→ χ∗ weakly and

P(χn;β , h)≤ P(χ∗;β , h) +
1
n
= P(β , h) +

1
n

(60)

whilst it is obvious that P(χn;β , h)≥ P(β , h). Inserting these inequalities in (59) produces

−
1

nδ
+
P(χn;β , h)−P(χn;β , h−δ)

δ
≤ b ≤

1
nδ
+
P(χn;β , h+δ)−P(χn;β , h)

δ
. (61)
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Notice that ∂ 1,2
h P(χn;β , h) = ∂ 1,2

h Φ̄χn
(0, h;β) hence we can expand the Parisi functional up to

the second order obtaining

−
1

nδ
+ ∂hP(χn;β , h)−

aδ
2
≤ b ≤

1
nδ
+ ∂hP(χn;β , h) +

aδ
2

, (62)

where we have used (52). Choose now δ = n−1/2 and then send n →∞. Finally, applying
point iv) we conclude that the unique possible value for b is ∂hΦ̄χ∗(0, h;β).

It was proved in [15,16,37] that the function P introduced in point v) of the above propo-
sition is indeed the limit of (8).

4.2 Proofs of Theorem 1, Corollary 2 and Proposition 3

Both results need the L2 convergence of the random pressure towards the limit of its expec-
tations and a preliminary control on the fluctuations of the Mattis magnetization which are
respectively contained in the two following lemmas.

Lemma 9 (Self-averaging of the pressure). If E[ξ4
1]<∞ then

E
�

(pN (µ,ν,λ)− p̄N (µ,ν,λ))2
�

≤
K(µ,ν,λ)

N
, K(µ,ν,λ) = C1µ+ C2ν

2 + C3λ
2 , (63)

with C1, C2, C3 > 0.

Proof. The random pressure pN is a function of the random variables (Z,ξ). For this proof
we stress this dependency by writing pN (Z,ξ). Define Z(i j) = (z12, z13, . . . , z′i j , . . . , zN ,N−1) and

ξ(i) = (ξ1,ξ2, . . . ,ξ′i , . . . ,ξN ) where z′i j ∼ N (0, 1) and ξ′i ∼ Pξ are independent of anything
else. Then, by Efron-Stein inequality

E
�

(pN (µ,ν,λ)− p̄N (µ,ν,λ))2
�

≡ V[pN (Z,ξ)]≤
1
2

N
∑

i, j=1

E
�

�

pN (Z
(i j),ξ)− pN (Z,ξ)

�2�

+
1
2

N
∑

i=1

E
�

�

pN (Z,ξ(i))− pN (Z,ξ)
�2�

.

(64)

Let us focus on the terms in the first sum. By Lagrange’s mean value theorem we have that
there exists a z̃i j ∈ (min(zi j , z′i j), max(zi j , z′i j)) such that

�

pN (Z
(i j),ξ)− pN (Z,ξ)

�2
=

 

∂ pN

∂ zi j

�

�

�

�

z̃i j

!2

(zi j − z′i j)
2

=
�

1
N

s

µ

2N
〈σiσ j〉N ,z̃i j

�2

(zi j − z′i j)
2 ≤

µ

2N3
(zi j − z′i j)

2 ,

(65)

where by 〈·〉N ,z̃i j
we mean the Boltzmann-Gibbs measure where zi j has been replaced with z̃i j

in the Hamiltonian (1). In a really similar fashion we estimate the second set of terms. Again,
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let ξ̃i ∈ (min(ξi ,ξ
′
i),max(ξi ,ξ

′
i))

�

pN (Z,ξ(i))− pN (Z,ξ)
�2
=

�

∂ pN

∂ ξi

�

�

�

�

ξ̃i

�2

(ξi − ξ′i)
2

=





ν

N2

 

N
∑

j 6=i,1

ξ j〈σiσ j〉N ,ξ̃i
+ ξ̃i

!

+
λ

N
〈σi〉N ,ξ̃i





2

(ξi − ξ′i)
2 (66)

=





ν

N2

 

N
∑

j 6=i,1

ξ j〈σiσ j〉N ,ξ̃i
+ ξ̃i

!

+
λ

N2

N
∑

j=1

〈σi〉N ,ξ̃i





2

(ξi − ξ′i)
2 .

Notice that in the square bracket we have an overall sum of 2N terms. We can use Jensen’s
inequality to bring the square inside the sums. The last line of the previous is bounded by

2N





ν2

N4

 

N
∑

j 6=i,1

ξ2
j 〈σiσ j〉2N ,ξ̃i

+ ξ̃2
i

!

+
λ2

N4

N
∑

i=1

〈σi〉2N ,ξ̃i



 (ξi − ξ′i)
2 , (67)

whence, exploiting the fact that ξ̃2
i ≤max(ξ2

i ,ξ′2i )≤ ξ
2
i + ξ

′2
i

�

pN (Z,ξ(i))− pN (Z,ξ)
�2
≤

2
N3



ν2

 

N
∑

j=1

ξ2
j + ξ

′2
i

!

+ Nλ2



 (ξi − ξ′i)
2 . (68)

From the previous equation one can clearly see that ξ appears at most at the 4th power on the
r.h.s. Hence, thanks to the hypothesis, inserting the estimates (65) and (68) into (64) we get
the claimed inequality.

Lemma 10. Let y ∈ [y1, y2], δ ∈ (0,1) and denote by 〈·〉N ,y the Boltzmann-Gibbs expectation
associated to the Hamiltonian HN (σ;µ,ν,λ+ y). Then

E
¬

�

mN (σ|ξ)− 〈mN (σ|ξ)〉N ,y

�2 ¶

N ,y
=

1
N

d2

d y2
p̄N (µ,ν,λ+ y) , (69)

E
�

�

〈mN (σ|ξ)〉N ,y −E〈mN (σ|ξ)〉N ,y

�2�≤
12K(µ,ν, |λ|+ |y|+ 1)

δ2N

+8
p

a
d

d y
[p̄N (µ,ν,λ+ y +δ)− p̄N (µ,ν,λ+ y −δ)] ,

(70)

with a := Eξ2
1.

Proof. The concentration property (70) can be obtained from the self-averaging and the con-
vexity properties of the pressure density, proved in Lemma 9, using a well-know argument in
spin glass theory [44,45]. The version of that argument applied here is analogous to the one
appearing in [46]. In order to lighten the notation we neglect subscripts in the brackets for
this proof. (69) follows from a simple computation of the second derivative on the r.h.s. Let
us skip directly to (70). It is easy to see that both pN and p̄N are convex in the external biases
λ. We first evaluate the difference

�

�

�

�

d
d y
[pN (µ,ν,λ+ y)− p̄N (µ,ν,λ+ y)]

�

�

�

�

= |〈mN 〉 −E〈mN 〉| . (71)
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The difference between two convex differentiable functions can be bounded (see Lemma 3.2
in [17]) from above as follows

�

�

�

�

d
d y
[pN (µ,ν,λ+ y)− p̄N (µ,ν,λ+ y)]

�

�

�

�

≤
1
δ

∑

u=y±δ, y

|pN (µ,ν,λ+ u)− p̄N (µ,ν,λ+ u)|

+
d

d y
(p̄N (µ,λ+ y +δ)− p̄N (µ,λ+ y −δ)) , (72)

for any δ > 0. For our purposes, it is sufficient to restrict ourselves to δ ∈ (0, 1). By squaring
both sides, averaging w.r.t. the disorder and using Jensen’s inequality we get

E
�

(〈mN 〉 −E〈mN 〉)
2�≤

4
δ2

∑

u=y±δ, y

E
�

(pN (µ,ν,λ+ u)− p̄N (µ,ν,λ+ u)2
�

+ 4
�

d
d y
(p̄N (µ,ν,λ+ y +δ)− p̄N (µ,ν,λ+ y −δ))

�2

. (73)

By Lemma 9, each of the three terms in the first sum of the previous equation can be bounded
by K(µ,ν, |λ| + |y| + 1)/N and this explains the first term in (70). Concerning the second,
notice that the derivative in the square brackets is positive thanks to the convexity of p̄N and
bounded as seen in Remark 2. The previous considerations imply that

�

d
d y
(p̄N (µ,ν,λ+ y +δ)− p̄N (µ,ν,λ+ y −δ))

�2

≤

2
p

a
�

d
d y
(p̄N (µ,ν,λ+ y +δ)− p̄N (µ,ν,λ+ y −δ))

�

, (74)

which concludes the proof.

We start with Proposition 3 that is a direct consequence the previous Lemma.

Proof of Proposition 3. For future convenience we introduce the notation Eε[·] =
1
sN

∫ 2sN

sN
(·).

We first decompose the quenched variance

E
¬

�

mN (σ|ξ)−E〈mN (σ|ξ)〉N ,ε

�2 ¶

N ,ε
= E

¬

�

mN (σ|ξ)− 〈mN (σ|ξ)〉N ,ε

�2 ¶

N ,ε

+E
�

�

〈mN (σ|ξ)〉N ,ε −E〈mN (σ|ξ)〉N ,ε

�2�
. (75)

The first term in the r.h.s. of the previous equation is the contribution due to the thermal
fluctuations in the model, whilst the second one is due to the disorder.

Thermal fluctuations: Consider (69) with y ≡ ε ∈ [sN , 2sN ] and take the expectation Eε of
both sides:

∆T := EεE
¬

�

mN (σ|ξ)− 〈mN (σ|ξ)〉N ,ε

�2 ¶

N ,ε
=

1
NsN

∫ 2sN

sN

dε
d2

dε2
p̄N (µ,ν,λ+ ε) . (76)

Now, recalling that the derivatives of the pressure are bounded (see (37)) we immediately
conclude that

∆T =O
�

1
NsN

�

. (77)
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Disorder fluctuations: Analogously take (70) with y ≡ ε ∈ [sN , 2sN ] and average w.r.t. ε on
both sides. Considering that ε≤ 1 we have

∆D := EεE
�

�

〈mN (σ|ξ)〉N ,ε −E〈mN (σ|ξ)〉N ,ε

�2�

≤
12K(µ,ν, |λ|+ 2)

δ2N
+

8
p

a
sN

∫ 2sN

sN

dε
d
dε
[p̄N (µ,ν,λ+ ε+δ)− p̄N (µ,ν,λ+ ε−δ)] .

(78)

The last integral can be explicitly computed and then bounded by 4δ
p

a thanks to Lagrange’s
mean value theorem and (37). Hence

∆D =O
�

1
δ2N

+
δ

sN

�

, (79)

which is optimized when δ = (sN/N)1/3 (consistently with δ ∈ (0,1)). This choice leads to

∆D =O
�

1

s2/3
N N1/3

�

=O
�

N
2α−1

3

�

. (80)

The latter and (77) both vanish in the N →∞ limit for α ∈ (0,1/2).

We are finally ready for the proof of Theorem 1.

Proof of Theorem 1. The variational principle is proven by means of two bounds that match
in the thermodynamic limit. The lower bound follows from the classical sum rule combined
with the positivity of the square. The upper bound is obtained with the adaptive interpolation
method (see [20] for a nice introduction to this method). For the sake of clarity we consider
each of them separately and then we prove (12).

Lower bound: Let us consider the sum rule (38) with the choice rε(t) = x constant in t. Fur-
thermore observe that the remainder ∆ε(t) is always positive, so we discard it at the expense
of an inequality:

p̄N (µ,ν,λ)≥ p̄SK
N (
p
µ,λ+ ε+ νx)−

νx2

2
+O(sN ) . (81)

As explained in Remark 2 p̄SK
N is Lipschitz in its second entry. This allows us to reabsorb the

perturbation ε into O(sN ). By sending N →∞ one obtains the bound

lim inf
N→∞

p̄N (µ,ν,λ)≥ −
νx2

2
+P(pµ,νx +λ) , (82)

which is uniform in x . We can optimize it by taking the supx∈R on the r.h.s.

Upper bound: From (69) we see that any quenched pressure of the type (7) is convex in its
third entry. Then, starting from the sum rule (38) we can use Jensen’s inequality on the SK
quenched pressure to obtain an upper bound

p̄N (µ,ν,λ)≤O(sN ) +

∫ 1

0

d t

�

−
νr2
ε (t)

2
+ p̄SK

N (
p
µ,λ+ ε+ νrε(t))

�

+
ν

2

∫ 1

0

d t∆ε(t) . (83)

As done in the lower bound, we throw the dependence on ε in p̄SK
N into O(sN ) and use Guerra’s

uniform bound p̄SK
N ≤ P [15]:

p̄N (µ,ν,λ)≤O(sN ) +

∫ 1

0

d t

�

−
νr2
ε (t)

2
+P(pµ,λ+ νrε(t))

�

+
ν

2

∫ 1

0

d t∆ε(t)

≤O(sN ) + sup
x∈R
ϕ(x;µ,ν,λ) +

ν

2

∫ 1

0

d t∆ε(t) . (84)
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The only remaining dependency on the interpolation path is in∆ε(t). To make the two bounds
match we have to make sure the remainder vanishes in the limit. Hence, as suggested in
Remark 3, we choose rε(·) as in (43). At this point we can decompose ∆ε(t) as done in the
proof of Proposition 3

∆ε(t) =E
¬

�

mN (σ|ξ)− 〈mN (σ|ξ)〉N ,Rε(t)
�2 ¶

N ,Rε(t)

+E
�

�

〈mN (σ|ξ)〉N ,Rε(t) −E〈mN (σ|ξ)〉N ,Rε(t)
�2�

. (85)

Let us first bound the ε-average of the first term on the r.h.s. Using (69) and the inequality
(46) on the Jacobian we get

1
sN

∫ 2sN

sN

dεE
¬

�

mN (σ|ξ)− 〈mN (σ|ξ)〉N ,Rε(t)
�2 ¶

N ,Rε(t)

=
1

NsN

∫ 2sN

sN

dε
d2

d y2
p̄N (µ, (1− t)ν,λ+ y)

�

�

�

�

y=Rε(t)

≤
1

NsN

∫ R2sN (t)

RsN (t)
d y

d2

d y2
p̄N (µ, (1− t)ν,λ+ y) =O

�

1
NsN

�

,

(86)

where the last equality follows from the bound on derivatives (37).
For the second term in the r.h.s. of (85) we use (70) and take its ε-average:

1
sN

∫ 2sN

sN

dεE
�

�

〈mN (σ|ξ)〉N ,Rε(t) −E〈mN (σ|ξ)〉N ,Rε(t)
�2�

(87)

≤O
�

1
Nδ2

�

+
8
p

a
sN

∫ 2sN

sN

dε
d

d y
[p̄N (µ, (1− t)ν,λ+ y +δ)− p̄N (µ, (1− t)ν,λ+ y −δ)]

�

�

�

�

y=Rε(t)
.

Now, thanks again to inequality (46) and to the fact that the derivative of the square bracket
is positive the integral in the previous equation can be bounded by

∫ R2sN (t)

RsN (t)
d y

d
d y
[p̄N (µ, (1− t)ν,λ+ y +δ)− p̄N (µ, (1− t)ν,λ+ y −δ)]≤ 4

p
aδ . (88)

The last inequality follows from an application of the mean value theorem and (37). Equations
(86), (87) and (88) together imply that

Eε[∆ε(t)] =O
�

1
NsN

+
1

Nδ2
+
δ

sN

�

, (89)

that vanishes in the thermodynamic limit forδ = (sN/N)1/3 and sN = 1/2N−α withα ∈ (0,1/2)
as seen for Proposition 3. With this information, we take the ε-average on both sides of (84)
and by Fubini’s Theorem and dominated convergence we have

lim sup
N→∞

p̄N (µ,ν,λ)≤ sup
x∈R
ϕ(x;µ,ν,λ) . (90)

The two bounds, together with Lemma 9, conclude the proof of the variational principle (10).

Remark 4. The upper bound in the proof of (10) can also be obtained by adapting the elegant
technique used in [26]. We opted instead for a proof that explicitly identifies the physical
meaning of the vanishing distance between the upper and lower bounds in terms of the fluc-
tuation of the order parameter. Such crucial thermodynamic property (Proposition 3) holds
independently of the solution and it is at the origin of the (ordinary) variational principle in
(10).
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Remark 5. Since for ν > 0 P(β , h) is h-Lipschitz we have

lim
|x |→∞

ϕ(x;µ,ν,λ) = −∞, (91)

therefore the supremum of ϕ( · ;µ,ν,λ) will be attained at a finite x̄ ∈ R. Furthermore the
necessary condition for x̄ to be a maximum point is

x̄ = ∂hP(
p
µ, h)|h=ν x̄+λ , (92)

that in turn implies x̄ ∈ [−
p

a,
p

a] by (52). Hence one can take the supremum only over
[−
p

a,
p

a].

Proof of Corollary 2.

λ-differentiability: Set Ω(µ,ν,λ) := argmax[−pa,
p

a]ϕ( · ;µ,ν,λ). Then, since p(µ,ν,λ) is con-
vex inλ, by Danskin’s theorem (see [26] for instance) we have that the left and right derivatives
satisfy respectively

d
dλ−

p(µ,ν,λ) = min
x∈Ω(µ,ν,λ)

∂

∂ λ
ϕ(x;µ,ν,λ) = min

x∈Ω(µ,ν,λ)

∂

∂ h
P(pµ, h)|h=νx+λ , (93)

d
dλ+

p(µ,ν,λ) = max
x∈Ω(µ,ν,λ)

∂

∂ λ
ϕ(x;µ,ν,λ) = max

x∈Ω(µ,ν,λ)

∂

∂ h
P(pµ, h)|h=νx+λ . (94)

If Ω(µ,ν,λ) is a singleton then p(µ,ν,λ) is differentiable. Conversely, suppose that p(µ,ν,λ)
is differentiable and that there are at least two distinct values x1, x2 ∈ Ω(µ,ν,λ), x1 < x2.
Then we have

d
dλ−

p(µ,ν,λ)≤
∂

∂ h
P(pµ, h)|h=νx1+λ = x1 < x2

=
∂

∂ h
P(pµ, h)|h=νx2+λ ≤

d
dλ+

p(µ,ν,λ) , (95)

that is a contradiction.
Assume now that there is a unique maximum point x̄ . Thanks to the convexity of the

sequence p̄N in λ and Danskin’s theorem we can write

lim
N→∞
E〈mN (σ|ξ)〉N = lim

N→∞

d
dλ

p̄N (µ,ν,λ) =
d

dλ
p(µ,ν,λ) =

∂

∂ λ
ϕ( x̄;µ,ν,λ)

=
∂

∂ λ
P(pµ,ν x̄ +λ) =

∂

∂ h
P(pµ, h)|h=ν x̄+λ = x̄ ,

(96)

where it is understood that only explicit dependence on λ is taken into account when the
partial derivative is taken.

ν-differentiability: The proof relies on Danskin’s theorem and is a straightforward consequence
of that of Proposition 2 in [26].

µ-differentiability at λ = 0: Notice that when ξ is centered then ϕ(x;µ,ν, 0) is symmetric in
x . The result then follows easily again from Danskin’s Theorem (as in Theorem 2 in [26]) and
from the differentiability properties w.r.t. β = pµ of the Parisi pressure in Theorem 14.11.6
of [16] and [43].
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4.3 Proof of Proposition 4 and Proposition 5

Proof of Proposition 4. The fact that ϕRS is an even function of x follows directly from the
symmetry of the random variable ξ. By Remark 5, when |x | → ∞, the term −µx2/2 is
dominant in (16) bringing ϕRS to −∞. As a consequence the maximum point(s) of ϕRS are
critical point(s). The vanishing derivative condition yields

dϕRS

d x
= −µx +µEξ tanh

�

z
Æ

µq(x ,µ, a) +µξx
�

= −µx +µ2ax (1− q(x ,µ, a)) = 0 , (97)

that is

x = 0 or q(x ,µ, a) = 1−
1
µa

. (98)

Since the function is q(x ,µ, a) increasing for x ≥ 0, the positive solution x̄(µ, a) of (18) exists
and is unique up to reflection if and only if

lim
x→0+

q(x ,µ, a)≤ 1−
1
µa

, (99)

which is equivalent to (19).
Consider now a ≥ 1. If 1/a ≤ µ ≤ 1 we have q(0,µ, 0) = 0, thus (19) is clearly satified.

Furthermore, it turns out that

µ > 1 ⇒ AT (µ, 0)> 1 . (100)

In fact for a = 0 (1) reduces to an SK model with zero external magnetic field at temperature
p
µ. Fix µ > 1 and assume that AT (µ, 0) ≤ 1. Then for any ε > 0 by the monotonicity of

q(x ,µ, a)

µE cosh−4
�

z
Æ

µq(ε,µ, 1) + ε2µ2
�

< AT (µ, 0)≤ 1 . (101)

[27] implies that the Parisi measure is χ∗(pµ,εµ) = δq(ε,µ,1) and χ∗(pµ,εµ) −→ δq(0,µ,0)
weakly. Since P(β , h) is continuous in h and the Parisi functional P(χ;β , h) is weakly contin-
uous we have that

P(pµ, 0) = lim
ε→0

P(pµ,εµ) = P(δq(0,µ,0);
p
µ, 0) . (102)

However for µ > 1 we have P(pµ, 0) < P(δq(0,µ,0);
p
µ, 0) thus the latter is a contradiction

coming from the assumption AT (µ, 0)≤ 1. This proves (100). Hence

1< µE cosh−4(z
Æ

µq(0,µ, 0))≤ µE cosh−2(z
Æ

µq(0,µ, 0)) = µ(1− q(0,µ, 0)) , (103)

from which, when a ≥ 1,

q(0,µ, 0)< 1−
1
µ
≤ 1−

1
µa

. (104)

Finally, the solution to (18) is stable w.r.t. the optimization, indeed

d2ϕRS(x;µ, a)
d x2

�

�

�

�

x= x̄(µ,a)
= −µ+µ2a (1− q(x ,µ, a))−µ2ax̄(µ, a)

dq
d x
( x̄(µ, a),µ)

= −µ2ax̄(µ, a)
dq
d x
( x̄(µ, a),µ)< 0 (105)

thanks to the monotonicity of q(x ,µ, a). The result for x = − x̄(µ, a) follows by symmetry.
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Proof of Proposition 5. By proposition 4 there exists a unique (non negative) maximum point
x̄(µ, a) of ϕRS(x;µ, a). Given (µ, a) ∈ R≥0×R≥0 we introduce the following subset of the real
line:

RS(µ, a) =
¦

x ∈ R |µE cosh−4
�

z
Æ

µq(x ,µ, a) +µ2 x2a
�

≤ 1
©

. (106)

Clearly by definition AT (µ, a) ≤ 1 ⇐⇒ x̄(µ, a) ∈ RS(µ, a). We start assuming that
x̄(µ, a) ∈ RS(µ, a). Let us denote by ϕ(x;µ, a) the variational potential (11) specialized in the
current setting, namely with ν= µ, λ= 0 and ξ∼N (0, a). From (82) we already know that

lim inf
N→∞

p̄N (µ, a)≥ ϕ(x;µ, a) (107)

uniformly on x . Hence we can optimize (107) only over the region RS(µ, a) obtaining the
lower bound:

lim inf
N→∞

p̄N (µ, a)≥ sup
x∈RS(µ,a)

ϕ(x;µ, a) . (108)

The choice of restricting the supremum to the region RS(µ, a) allows us to replace in (108)
the functionϕ with its its replica symmetric versionϕRS . Indeed again by [27] the AT condition
is sufficient for the validity of the the replica symmetric solution of the SK model. Then from
(108) one gets the lower bound

lim inf
N→∞

p̄N (µ, a)≥ sup
x∈RS(µ,a)

ϕRS(x;µ, a) . (109)

For the upper bound we can exploit the fact that the pressure of the SK model is always
bounded from above by the replica symmetric one [15]. Hence from the upper bound (90)
we get

limsup
N→∞

p̄N (µ, a)≤ sup
x
ϕRS(x;µ, a) = sup

x∈RS(µ,a)
ϕRS(x;µ, a) , (110)

where the last equality follows from the assumption x̄(µ, a) ∈ RS(µ, a). Summarising we just
proved that

AT (µ, a)≤ 1 =⇒ lim
N→∞

p̄N (µ, a) = sup
x∈RS(µ,a)

ϕRS(x;µ, a) . (111)

Notice that in the previous equality the supremum can be taken on the whole real line since
we are assuming that x̄(µ, a) ∈ RS(µ, a).

Conversely, suppose that x̄(µ, a) ∈ (RS(µ, a))c . We are going to prove the replica symmet-
ric solution cannot hold. By Theorem 1 we know that

lim
N→∞

p̄N (µ, a) = sup
x∈R
ϕ(x;µ, a) = ϕ( x̃(µ, a);µ, a) , (112)

where x̃(µ, a) denotes a point where the supremum is attained. By Remark 5 one can say
that x̃(µ, a) ∈ [−

p
a,
p

a]. Let’s consider two cases, first suppose that x̃(µ, a) ∈ RS(µ, a), then
using the result in [27] we have that

ϕ( x̃(µ, a);µ, a) = ϕRS( x̃(µ, a);µ, a)< sup
x∈R
ϕRS(x;µ, a) , (113)

where the last inequality follows from the assumption x̄(µ, a) ∈ (RS(µ, a))c . On the other
hand if x̃(µ, a) ∈ (RS(µ, a))c it is known [47] that the pressure of the SK model is strictly
smaller that its replica symmetric version, therefore

ϕ( x̃(µ, a);µ, a)< ϕRS( x̃(µ, a);µ, a)≤ sup
x∈R
ϕRS(x;µ, a) . (114)
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In conclusion, we have just proved that

AT (µ, a)> 1 ⇒ lim
N→∞

p̄N (µ, a) < sup
x∈R
ϕRS(x;µ, a) . (115)

5 Phase Diagram

This section collects the consequences of Propositions 4 and 5 and resumes how the phase
diagram in Figure 1 is drawn.

When a ≤ 1 the condition (19) is not trivial and identifies a curve that lies above µ= 1/a.
Below this curve, for µ > 1, the unique stable maximizer of ϕRS is x̄(µ, a) = 0. The resulting
q(0,µ, a)≡ q(0,µ, 0) has to be intended as the stable solution to the consistency equation for
the overlap of an SK model at temperature

p
µ in absence of external magnetic field, which is

known to be RSB for µ > 1. Hence by (100)

AT (µ, a) = AT (µ, 0) = µE cosh−4(z
Æ

µq(0,µ, 0))> 1 . (116)

This in turn implies the replica symmetry breaking in our model. The de Almeida-Thouless
red line in the diagram represents the condition AT (µ, a) = 1 and must lie above, or at most
coincide with, the curve (19) since it must contain the entire RSB phase. The red region could
contain a mixed phase in analogy with the SK model as explained in Remark 6.

From (116) it is also clear that in an RS phase we must have x̄(µ, a) 6= 0 for µ > 1 otherwise
AT (µ, a)> 1. Similarly, for a ≥ 1 and 1/a < µ≤ 1, x̄(µ, a) = 0 cannot be the solution to (18)
either since

q(0,µ, a) = q(0,µ, 0) = 0< 1−
1
µa

. (117)

Contrarily, in the green region, that is replica symmetric by Proposition 5, the unique possible
maximizer is x̄(µ, a) = 0 because µ≤ 1/a. Moreover, we have the following

Corollary 11 (of Proposition 5). The model is always replica symmetric for any a ≥ 1.

Proof. Recall that for µ ≤ 1 one has trivially AT (µ, a) ≤ 1. In addition to that, thanks to
Proposition 4 for a ≥ 1 and µ≥ 1≥ 1/a we can always assume (18). Hence

AT (µ, a)≤ µE cosh−2
�

z
Æ

µq( x̄(µ, a),µ, a) +µ2 x̄(µ, a)2a
�

= µ [1− q( x̄(µ, a),µ, a)] = µ−µ+
1
a
=

1
a
≤ 1 .

(118)

The thesis follows from Proposition 5.

Remark 6. Let us consider Pξ = (δpa + δ−pa)/2, or equivalently ξi =
p

aτi with τi = ±1. In
this case, one can gauge away the signs of the variables ξi ’s in (1) by means of the Z2 gauge
transformation

zi j 7→ zi jτiτ j , σi 7→ σiτi , (119)

obtaining the Hamiltonian

H̃N (σ) = −
N
∑

i, j=1

�

zi j

s

µ

2N
σiσ j +

µa
2N
σiσ j

�

D
= −

N
∑

i, j=1

Ji jσiσ j , Ji j
iid∼N

�µa
2N

,
µ

2N

�

. (120)
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The latter describes an SK model with a peculiar parameterization. To see this it suffices to
consider the parameterization [1], namely

βHSK
N (σ) = −

N
∑

i, j=1

Ji jσiσ j , Ji j
iid∼N

�

βJ0

2N
,
β2J2

2N

�

(121)

and to identify 1/βJ = T/J = 1/
p
µ and J0/J =

p
µa. This means that if we draw the phase

diagram of the model (120) with
p
µa and 1/

p
µ on the x and y axes respectively we re-obtain

the well known phase diagram of the SK model. In this diagram for instance the curves for
fixed a are a family of hyperbolas, and among them a = 1 corresponds to the Nishimori line.
It is then a simple exercise to show that the phase diagram of the SK model redrawn in the
parameterization (120) is qualitatively similar to the one in Figure 1, meaning that the same
phases are disposed in the same positions. In particular the Nishimori line is the vertical line
a = 1.

We finally notice that the model studied in [26] can be seen as a special inference problem
in a non-optimal setting where the receiver uses his own Rademacher guess to retrieve a binary
signal of which he does not know the amplitude.

We conclude the analysis with the study of the behavior of the solution x̄(µ, a) of the
variational problem (22) around the critical point (µ, a) = (1,1). By Proposition 4 we have
that lim(µ,a)→(1,1) x̄(µ, a) = 0. Notice that the replica symmetric solution x̄(µ, a) represents
the limiting behaviour of the Mattis magnetization when AT (µ, a)≤ 1 and it is not identically
vanishing iff condition (19) is satisfied. By Proposition 4 and Corollary 11 the above conditions
are always satisfied if µa ≥ 1 and a ≥ 1. Then it holds

Proposition 12. Assuming that µa ≥ 1 and a ≥ 1 then x̄(µ, a) is the unique (up to reflection)
solution of

E tanh2 (Y (x ,µ, a)) = 1−
1
µa

, Y (x ,µ, a) = z

√

√

µ−
1
a
+µxξ , (122)

where z ∼N (0,1), ξ∼N (0, a) are independent Gaussian. Moreover for (µ, a)→ (1, 1) we have

( x̄(µ, a))2 =
(µ− 1

a )
�

1
µ − 1+ 2(µ− 1

a )(1+ o(1))
�

t(µ, a)(1+ o( x̄(µ, a)))
, (123)

where t(µ, a) = µ2aE
�

2− cosh
�

2z
q

µ− 1
a

��

cosh−4
�

z
q

µ− 1
a

�

.

Proof. Clearly (122) holds by Proposition 4. Using a Taylor expansion of tanh2(b+ y) around
y = 0 up to order 3 one obtains

E tanh2 (Y (x ,µ, a)) = E tanh2 (Y (0,µ, a)) + t(µ, a)x2 + g(x ,µ, a) ,

where g(x ,µ, a) = (µx)4

4! E
∂ 4

∂ y4 tanh2(y)
�

�

y=y(z,ξ,x ,µ,a)ξ
4. Since | ∂

4

∂ y4 tanh2(y)| ≤ costant uni-

formly on y , we have that g(x ,µ, a) = o(x3). Then one can write

E tanh2 (Y (x ,µ, a)) = E tanh2

�

z

√

√

µ−
1
a

�

+ t(µ, a)x2(1+ o(x)) . (124)

The term E tanh2
�

z
q

µ− 1
a

�

can be represented using Taylor expansion of tanh2(y) around
y = 0 up to order 4 obtaining

E tanh2

�

z

√

√

µ−
1
a

�

= (µ−
1
a
)− 2(µ−

1
a
)2(1+ o(1)) . (125)
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Combining (124) and (125) one obtains (123).

The previous Proposition and in particular the expansion (123) can be used to obtain the
critical behavior of x̄(µ, a) as (µ, a) → (1,1) with the constraint µa ≥ 1 and a ≥ 1. As an
example fixing a = 1 one gets

lim
µ→1+

x̄(µ, 1)
µ− 1

= 1 . (126)

Analogously if µ= 1 and a→ 1+

lim
a→1+

x̄(1, a)
p

2(1− 1
a )
= 1 . (127)

More generally one can consider a family of hyperbolas

µα(a) =
α

a
+ 1−α, α≤ 1 (128)

and define xα(a) = x̄(µα(a), a). Then expansion (123) leads to

lim
a→1+

�

xα(a)
1
a − 1

�2

= (α− 1)(α− 2) . (129)

The critical behavior around (1, 1) of the magnetization along the above directions is therefore
the same of the optimal setting [24].

6 Conclusions and Outlooks

In this paper we have shown how to solve, in the finite temperature approach, a matrix rank-
one estimation problem in a mismatched setting with a Rademacher prior and studied the
paradigmatic case when the signal distribution is Gaussian and factorized. For such case, a
complete characterization of the phase space has been given in terms of the two order pa-
rameters: the Parisi overlap and Mattis magnetization. Our central result, a nested variational
principle over a distribution and a real number, can be extended beyond the Rademacher prior
assumption, leading to an SK model with soft spins [48] with a Mattis interaction.

We emphasize that our variational principle pinpoints the presence of the replica symmetry
breaking phase in a mismatched inference problem. This is expected to have implications
on the algorithms usually implemented to retrieve signal components, such as Approximate
Message Passing (AMP). Indeed we have observed, with preliminary numerical tests, that in
the RSB phase of the model with Gaussian signal distribution ten thousand iterations of AMP
are not sufficient to reach convergence: the values of the local magnetizations keep oscillating.
On the contrary less than a hundred were enough in the RS phase, thus confirming the picture
in Figure 1. As predicted by the state evolution analysis [49] in the RS phases the algorithm
is in agreement with the magnetization and overlap given by the consistency equation (18).
The rigorous characterization of the AMP convergence, that seems to be related to the de
Almeida-Thouless line, is left for future work.

It is interesting to notice that the model studied here is equivalent, through a Hubbard-
Stratonovič transformation as done in [50, 51], to a Boltzmann Machine with one hidden
analogic neuron linked to a visible layer of neurons in mean field disordered interaction, i.e.
a non-restricted Boltzmann Machine. Our result extends also to a finite number of hidden
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analogic neurons and leads to a model that includes SK and Hopfield terms. In this regard we
mention that the SK term can indeed be generated starting from the Hopfield model adding
a form of synaptic noise [52,53] (see eq. (8) in [53] in particular) that blurs the interactions,
built from the patterns, precisely as in (23).

Finally, we point out that the result presented in this work could be re-framed within the
Hamilton-Jacobi approach [54,55] obtaining an initial value problem with a concave Hamilto-
nian and the Parisi pressure as initial condition. Our variational principle would then emerge
from the Hopf-Lax formula for the solution to such problem.
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