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Abstract

Numerical evaluations of Feynman integrals often proceed via a deformation of the
integration contour into the complex plane. While valid contours are easy to construct,
the numerical precision for a multi-loop integral can depend critically on the chosen
contour. We present methods to optimize this contour using a combination of optimized,
global complex shifts and a normalizing flow. They can lead to a significant gain in
precision.
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1 Introduction

High-precision predictions based on quantum field theory are the cornerstone in the LHC re-
search program probing fundamental physics and the way towards identifying physics be-
yond the Standard Model. Improved analysis techniques, better controlled systematics and
the planned 25-fold luminosity increase during the LHC Runs 3 and 4 translate into a major
challenge for the corresponding theory calculations and simulations [1]. Furthermore, the
prospect of a future lepton collider will require the calculation of electroweak corrections with
many different mass scales, where the underlying multi-loop integrals are out of reach for
analytical approaches so far, while numerical methods are promising [2].

For all aspects of LHC simulations, including numerical approaches to loop integrals and
amplitudes, computing time and algorithmic efficiency are essential. Therefore, it is crucial
that we investigate new methods which have the potential to improve the numerical efficiency,
in particular machine learning (ML) methods. Along the established LHC simulation chain,
machine learning has already shown great promise when it comes to faster and more precise
predictions [3]. This includes phase space integration [4, 5], phase space sampling [6-9],
amplitude evaluation [10-13], event subtraction [14], event unweighting [15, 16], parton
showering [17-20], parton densities [21,22] or particle flow descriptions [23,24]. Full neural
network-based event generators [25-30] can be used to invert the simulation chain and unfold
detector effects as well as QCD jet radiation [31-33]. An important issue in applying machine
learning to LHC predictions is uncertainty control and quantification, which is being addressed
with increasing success [9, 11,30, 34-36].

Essentially all of these ML-applications are driven by three properties of neural networks:
they are very flexible in what they describe and how they are trained, they provide an excellent
interpolation, and they are extremely fast once trained. These numerical advantages naturally
lead us to investigate where ML could be useful in multi-loop calculations.

We present a first application of modern neural networks in loop integrals. Our start-
ing points are Feynman integrals in a parametric representation, where the loop momenta
have been integrated out analytically by the standard procedure, leading to the two Symanzik
polynomials ¢/ and F, see e.g. [1] for a description. Such integrals often have poles which
manifest themselves as powers of 1/¢ in dimensional regularization and can be factorized effi-
ciently with sector decomposition [37,38]. After factorizing the poles, integrable singularities,
related for example to thresholds, remain. They can be dealt with by a deformation of the in-
tegration contour into the complex plane [39-42]. An automated procedure to do so has been
implemented for the first time in SECDEC [43] and has been refined in SECDEC-3 [44] and
PYSECDEC [45-47].

The deformation of the integration contour can be performed in many ways, the only
requirement is that no pole is crossed by the deformation. Applications to multi-loop integrals
with a certain complexity show that the numerical precision can vary by orders of magnitude
depending on the choice of a particular contour. In this work we present methods to optimize
the choice of the contour based on neural networks.

In Section 2 we briefly review the construction of the Feynman parametric representation of
multi-loop integrals, which forms the starting point of our investigations, as well as the contour
deformation procedure employed in pySECDEC. In Section 3 we describe our new approach to
contour deformation based on neural networks and show results for several examples, before
we give an Outlook.
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2 Multi-loop Feynman integrals

For our study of ML-methods we focus on the numerical evaluation of integrals in the Feynman-
parameter representation. Before we show how neural networks can improve the numerical
evaluation of such integrals, we briefly review their definition and the way they are evaluated
in pySECDEC.

Feynman parametrization

A generic scalar Feynman integral in D space-time dimensions with L loops and N propagators
of arbitrary powers v: can be represented by

]
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G= 5 > , 1)
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where the propagators P; are of the form P;({k}, {p}, m]2.) = q]? —m}z. +i0, with g; being a linear
combination of loop momenta k and external momenta p. Introducing Feynman parameters
x; through
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Further details can be found e.g. in [1,37]. Integration over the momenta gives us an expres-
sion in terms of the Symanzik polynomials ¢/ and F,
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The first Symanzik polynomial, I/, is a positive semi-definite function of the Feynman pa-
rameters. The second Symanzik polynomial, F, contains kinematic invariants and Feynman
parameters. A vanishing F is a necessary, but not sufficient condition for infrared or kinematic
singularities to arise.
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Contour deformation in pySECDEC

After mapping all integration variables onto the unit-hypercube and integrating out the delta
distribution we can absorb any additional factors by redefining and renaming &/ — U and
F — F. Then, eq. (4) can be written in the compact form

LU (L+1)D/2 N—1 .
J NT=T N l_[ dx; Z(X) , (5)
=1

where, again, F(X) can vanish inside the integration region. If we deform the integration over
a Feynman parameter away from the real line segment x € [0,1] into the complex z-plane,
Cauchy’s theorem ensures that the integral does not change as long as no singularities are
enclosed by the contour,

1
jgl_[dzjz(z) = f lﬂ[dle(a'c')+f | [4z2)
c j=1

j=1 v j=1

(6)

1
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j=1

In the complex plane the —id prescription in eq. (1) and eq. (4) ensures that we stay on the
physical and causal Riemann sheet.

To construct an appropriate deformation into the complex plane we write Z = X —i7 and
expand F (%) around X,

2 3
FE)=F@ -1y 7, 00 Z g ka g O O
j .

The second term gives the leading term for the imaginary part of F(X¥). We can guarantee
that it is always negative by choosing 7; o< dF(X)/dx;. We also ensure that the integration
endpoints are invariant under the contour deformation by requiring 7; o< x;(1—x;), defining
the contour deformation as

JF(X)

>
an

T; = A;x;(1—x;) with A;>0. (8)
The deformation parameters A; can be chosen arbitrarily, provided they are small enough for
the leading order in 7 to dominate the imaginary part of F(Z). If the A; are too large the
tri-linear term in eq. (7) can flip the sign of the imaginary part.

In SECDEC 3.0 [44], the A; are chosen by first determining their maximal values at which
the tri-linear terms in eq. (7) have the same magnitude as the linear ones; then, some fractions
of these maximal values are selected via several heuristics depending on the sampled values of
OF(X)/9x;; a detailed description is provided in Section 6.2.3 of Ref. [48]. In pySECDEC [45]

A; are selected as the smallest of sampled values of

AF(®) |
Jdx

9)

X](].—X])

j
In both cases the initial selection is followed by iterative refinement steps: if during the inte-
gration a sign check error occurs (i.e. either Im F(X) is found to be positive or Re U(X) is found
to be negative) for one of the sampling points, then all A; are multiplied by a factor of 0.9 and
the integration is repeated. As a consequence, pySECDEC often selects the largest allowed A
vector along the initially chosen direction.
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Figure 1: Feynman diagrams for our four example integrals, which we call pen-
tagon1L, ladder2L (first line) and triangle2L, elliptic2L (second line). The blue lines
denote massive lines, green lines denote massive or off-shell external legs (with a
mass different from m).

Example diagrams

The Feynman diagrams we use to develop and benchmark our approaches are shown in Fig-
ure 1.

The top left diagram is a one-loop pentagon integral as it occurs in the production of a
top quark pair in association with another massive particle and depends on four independent
Mandelstam invariants as well as the top quark mass and the invariant mass of ps. Analyti-
cally it depends on logarithms and dilogarithms of ratios of kinematic invariants, leading to a
complicated branch-cut structure. After Feynman parametrization the corresponding integral
is described by 4 independent Feynman parameters.

The top right diagram is a two-loop box diagram with one massive on-shell leg and one
off-shell leg. This diagram is a topology occurring for example in ttV production at two loops,
where the boson V is radiated off an external top quark. It is close to the configuration of a
2-loop gluon ladder diagram where the exchange of gluons between two top quark lines gives
rise to a Coulomb singularity. The analytic expression for this type of diagram is not known,
but it is anticipated that it will contain elliptic functions. This integral depends on 6 Feynman
parameters and is the most complicated example we consider in terms of dimensionality.

The diagram on the lower left of Figure 1 is a two-loop three-point function with a massive
sub-triangle occurring, for instance, in NLO corrections to Higgs production in gluon fusion.
It is the easiest 2-loop diagram we consider and serves as a stepping stone towards more
complicated 2-loop diagrams. Analytic results for this diagram can be found in Refs. [49-51].
Depending on 5 Feynman parameters this integral is in between the previous two examples in
terms of dimensionality of the integration.

The diagram on the lower right is a topology occurring in Higgs+jet production in gluon
fusion at two loops. Its analytic expression contains elliptic functions and therefore is cut-
ting edge for integrals that are currently accessible analytically. It has been calculated (semi-
)analytically in Refs. [52, 53] and also served as a benchmark for the development of the
program pySECDEC [45], where it is contained in the list of examples. This integral is 5-
dimensional, so it has the same number of Feynman parameters as the triangle diagram, but
it depends on four kinematic invariants rather than two.
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3 Machine learning contour deformations

Numerically solving the contour integral introduced in eq. (6),

I—fl_[dx de t( ))I(*( ), (10)

with the contour deformation defined in eq. (8) still leaves the question how to choose optimal
values for A, and the functional form is not necessarily optimal. The Monte Carlo estimate of
the integral is

:_Z ( ((1)))1(2( %)) an

Its statistical error is minimized if the integrand approaches a constant,

det (az(x))z( (¥)) ~ const . (12)

Correspondingly, to construct an optimal contour through a neural network we use the vari-
ance of the Monte Carlo integration for large n as the loss function,

Z(X@) . .
det( ax(l) )I( ( (l))) I

All terms inside the absolute value squared are complex numbers. Note that the loss function
has to be real valued.

n 2

=)

i=1

(13)

3.1 Global complex shift

The standard pySECDEC approach of choosing the deformation parameters works fast because
it only requires to evaluate F(%) and its derivatives on a set of e.g. 10* points, and often
produces A; that are good enough in practice. For challenging integrals, however, it is useful
to invest time into improving the A;. For this purpose, we search for deformation parameters
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Figure 2: Absolute Monte Carlo integration errors for the first sector of the ladder2L
(left) and the first sector of the elliptic2L. (right) example as a function of a global
A = A;. For each case three different samples of 100 X(;) are shown. The plots end
at the largest values of A that still give valid contours.
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Figure 3: Absolute Monte Carlo integration error for the first sector
of the ladder2l. example, depending on A, and A;, centered around
A= (2.71,1.91,2.73,0.46,5.91,1.59) (marked with a cross), which is the op-
timum point selected by A-glob. Note that integration error only varies between
0.32 and 0.56 over 3 orders of magnitude in A, and A;. We find this to be a common
feature.

A; which minimize the Monte Carlo integration error or the loss function L on a reduced set
of points.

The beneficial effect of tuning the A; values is illustrated in Figure 2 and Figure 3. Two as-
pects complicate this minimization problem. First, the Monte Carlo integration error depends
on the reference sample and can be noisy, as shown for the ladder2l. example in Figure 2:
different choices of the 10® sampling points lead to a variation of the integration error by up
to an order of magnitude. Minimizing the loss on a frozen set will overfit to the selected points
and lead to an non-optimal choice for the actual integration. Second, the allowed region in the
A-space has a non-trivial shape and is currently only determined by searching for sign check
errors. This noisy determination of the allowed region becomes a problem in practice, because
the optimal A; often lie close to this boundary, as can be seen from Figure 2. As a side remark,
this is why the A-construction in standard pySECDEC can simply choose the largest possible
Aj-vector in some predetermined direction and still work well in practice.

To circumvent these problems in optimizing the A; we introduce the A-glob algorithm,
a modified version of the Rprop algorithm [54, 55] with the added explicit handling of the
allowed region for A;. A detailed description is given in Algorithm 1. We start with a point
AS.O) and a step size 35.0). To converge faster to a potentially far-away minimum we work with
a logarithmic scale £; = log ;. In the first step, called backtracking, the algorithm decreases
¢; by some increment f3 if a sign check error £,,(£;) occurs. After backtracking, we choose

a proposal point 0 ; employing gradient decent. If the loss for the proposal point is smaller
than for the previous point it is kept and the step size s; is decreased (increased) depending
on whether the gradient of the loss has changed (not changed) its sign. If the loss is larger,
the proposal point is rejected and the step size s; is decreased by a factor of n . All these steps
are repeated a predetermined number of times. To avoid overfitting, we draw a new sample
of points X(;y for each iteration.

The A-glob algorithm benefits from a large initial step size that allows to efficiently step
over local minima of L. Because the step size is adjusted automatically we do not have to
define a learning schedule, unlike for standard gradient descent optimization.

In Figure 3 we show the landscape of the loss function and observe that our algorithm
has found the global minimum and that this minimum is very broad. While it is very flat
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Figure 4. Monte Carlo (left) and Quasi Monte Carlo (right) integration errors for the

first sector of the ladder2L example (upper) and the elliptic2L example (lower). For

the ladder2L. diagram we show the 1-dimensional and n-dimensional A-selections

using A-glob; for the elliptic2L. diagram these two turn out to be the same, so only

one is shown.

in Ay and A; individually, a correlated shift increases the loss function more steeply. Results
of this algorithm for different Feynman integrals are presented in Figure 4. In addition to a
standard Monte Carlo algorithm we also show the result for the Quasi Monte Carlo algorithm
in pySECDEC [46]. Depending on the integral and the kinematic configuration A-glob gives
comparable or improved results compared to the standard pySECDEC construction.

3.2 Generalized local transformation

Moving beyond the optimization of a global deformation parameter, we can exploit the full
freedom of the reparametrization with a local transformation of A to further minimize the
Monte Carlo error. In principle any reparametrization in eq. (8) would serve our purpose as
long as the defined contour does not cross or enclose any singularities. However, a good
contour should also obey the following criteria:

1. The Monte Carlo error should be minimized, i.e. the product of the Jacobian of the
transformation and the integrand should be nearly constant, see eq. (12);

2. The endpoints have to be fixed for Cauchy’s theorem to be applicable as in eq. (6);

3. The parametrization should be numerically stable and, if possible, have tractable Jaco-
bians. A tractable Jacobian is not only more stable numerically, it also helps to make
sure that the procedure gives meaningful results.
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Let us consider again the integral along a contour v,

N
1= | [ ]dzz). 14

Y j=1
We parametrize this contour in terms of the real parameters y; € [0, 1],

9F(y)

zi=y;—it;(y) and T;=4;(¥)y;(1—y;) » (15)
where the form of the imaginary part guarantees the correct boundary conditions. In contrast
to eq. (8), the deformation A; is now a local parameter, depending on y.

To minimize the variance in the numerical integration, ¥ needs to be sampled according
to some non-trivial probability distribution. In practice, this probability distribution is nei-
ther known nor is it possible to easily sample from it. Therefore, we introduce an additional
mapping

¥i= £, (16)

Algorithm 1 The A-glob algorithm for the global lambda optimization. Good default settings
for the tested examples were )\S.O) =0.1, 350) =2,n7" =0.5,7" =1.125, f = 0.1, and n = 100.

Require: L(X,{;): The loss function (given by e.g. eq. (13)) with parameters A; = eli
Require: Eg,,(X,{;): Sign check error boolean function with parameters A; = eli
Require: S;O): The initial step size vector
Require: 0 <7~ <1< n*: Step size decrease and increase factors
Require: f > 0: The size of the backtracking step
Require: A9: Initial parameter vector
Require: n: The number of the optimization iterations
65,0) «— log AEO) (Initialize log parameter)
fort=1,...,ndo
Draw a sample ¥() from a unit hypercube
@ P Z(t—l)
j j R
while £, (¥©), () do
end while( )
7 N t—1 AL (2(t) 7
bj—t—s; sgn(a—[j(x(t),ﬂj))
if L(0,7;) > L(%©,¢{") then
egt) P EEt—l)
(t) - (t=1)
50N
elseE )
N -
1) P l;
O (o). [ _or + —). (-1
$; < (lf(aij) (‘”5[71)) > 0 then ™ else n )sj
end if
end for -
n
Aj exp(E ; )
return A;
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with uniformly distributed x; € [0, 1]. With all these transformations the integral becomes

fl_[dz I(z)—Jl_[d det( (y))z(( )
Y j=1
fl_[dx e 2 e T2 )27

Except for the boundaries, the functions A and f can be chosen freely. A flexible and promis-
ing way to parametrize these functions is with neural networks. A critical aspect of the
reparametrization are the Jacobians

(7)

(J ) = = = —]—
Mk 3y ¥ K oy

oy, 2f®)
3xk_ axk

and (Jf )].k = ) (18)
the first of which is complex. For these Jacobians to be non-singular, we require our mappings
to be bijective. While the complex Jacobian is always non-singular by construction, we have to
ensure explicitly that the function f is bijective. The function A does not have to be bijective.
However, one needs to ensure that the sub-Jacobian

ﬂ :3)\]'(5”) JF(y)

3F(y)
(1—
¥k Oy Yid=y) = dy;

0°F (y)

+A; (y)5]k(1 2}’1)

+24;(¥)y;(1— yj) , (19)

is numerically stable.

3.3 Normalizing flow setup

The reasons to split the full mapping X — Z into the real mapping ¥ — y and the complex
mapping y — Z as in eq. (15) and eq. (16) are the following: First, it will allow us to use a
normalizing flow [56-59] for the real mapping, giving us a tractable Jacobian. The Jacobian
of the complex mapping needs to be evaluated numerically and is computationally more ex-
pensive than the Jacobian of the normalizing flow. Second, when we evaluate a kinematic
phase-space point which does not require any contour deformation, as there are no integrable
singularities, we just turn off the complex mapping. The real mapping then becomes a version
of neural importance sampling [4-9].

To train our network we will use the variance loss defined in eq. (13). From the discussion
of the A-glob algorithm and Figure 2 we know that the integration error is fairly insensitive to
small changes in A. Furthermore, for the parametrization in eq. (15), we found that making
A local (i.e. dependent on X) also hardly affects the loss. Because the introduction of a neural
network comes with a computational cost, we keep A global in our NN-approach. This means
we rely on the A-glob algorithm to first find optimized A; and then use a normalizing-flow
network to optimize the sampling of the real parameters and minimize the variance. In our
experiments we perform the numerical loop integration for various Feynman diagrams given
in Figure 1, which are represented in the N-dimensional Feynman parameter space.

Network architecture

Normalizing flows encode a bijective mapping between a physics and a latent space. The
model can be evaluated in either direction with comparable efficiencies, at least in the invert-
ible network (INN) variant [60-62]. Even if we are not interested in this symmetric evaluation,

10


https://scipost.org
https://scipost.org/SciPostPhys.12.4.129

Scil SciPost Phys. 12, 129 (2022)

1. Contour deformation: o 2 A-glob:
used if multi-scale integral optimization of /1]- parameters
Analytic h=
continuation J " Topt
1y 1N
[Tawz@ [Tz » /] [ et Z20) )
=1 Y =1 =1
0’ oy ! =2yl — )a_F 0’
yer =~ GTUTH gec TGy yER

4=0
3. Normalizing flow: P 7 o
remapping of reals ’ 7=0

/lﬁd det( g(x)) I(§(@)) /ﬂdm] de t(az(y)) de t(ag(;))z(g(g(f)))
J =

Jj=1

5 ER 5 ER

Figure 5: Schematic illustration of our workflow.

normalizing flows have the considerable advantage of a tractable Jacobian. A simple realiza-
tion are stacked coupling layers [61,63], where we split the input vector x in x; and x, and
use an element-wise multiplication ® and sum to define the mapping

y1=x1 0102 4+t (xy), x1 = — t1(xp)) @ e102) |
Y2 =x30e200 +1,(y,), Xy = (y2— t2(y1)) @ e 200, (20)

where 5,54, t; and t, are parametrized by neural networks. The Jacobian of such a coupling

block is [61]
1 0 diag(en () 1
J= : ax; | 21
(g—ﬁ dlag(GSZ(yl)))( 0 1 (@)

While J is not triangular, we will only be interested in the log-determinant, which can be
calculated efficiently as

dim x, dim y, dim x, dim y,
log(detJ)=log( l_[ esl(xz)f) +log( ]_[ esz(yl)f) = Z s1(x2); + Z s5(y1)i. (22)

i=1 i=1 i=1 i=1

For all examples we employ a normalizing flow consisting of these affine coupling blocks,
where each coupling block describes a bijective mapping RY <« RN. To map the Feynman
parameters x € [0, 1]V from the unit-hypercube to RV bijectively we apply the logit function

o x : Ojk
= logit(x) = log(m) , with (Jlogit)jk = 5 —x]? , (23)
which is the inverse of the sigmoid function
. _ 1 . _ . .
y = Slg(X) = m , with (JSig)jk = 5]k Slg(XJ)(]. — Slg(Xj)) . (24)

11
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As both Jacobians are diagonal these functions can be easily combined with the coupling
blocks. For convenience, we use the sigmoid as the final network layer, such that the out-
put domain is again the unit-hypercube. We sandwich 14 coupling blocks between the logit
and sigmoid functions. In each coupling block we use a simple fully connected neural network
consisting of 3 layers with 128 units and Leaky ReLU as activation function. To regularize the
exponentials of the affine coupling block we use soft clamping [63], s¢jamp = ¢ - tanh(s), with
¢ = 0.5, and activation normalization [62]. Furthermore, we use random orthogonal matri-
ces [64] to allow for more interaction between the two parts y;, ¥, in the coupling blocks. Our
network is implemented using TENSORFLOW [65].

Training

Before introducing the neural network, we employ the A-glob algorithm to find optimal values
of A;, which minimize the variance loss in eq. (13) and define a valid contour on the physical
Riemann sheet. Next, we train the normalizing flow to re-sample the real parameters in the
spirit of neural importance sampling. This gives us a complex mapping y — Z parametrized
as in eq. (8) with optimized 2;, and a real mapping X — y = f(X) where f is represented by
a normalizing flow.

For kinematic phase-space regions below threshold, no contour deformation is needed.
Here the A-glob algorithm will find A; = 0, the complex mapping eq. (8) will be omitted, and
the real mapping alone will improve the calculation. The complete workflow is summarized
in Figure 5.

In contrast, for kinematic phase-space points above threshold the contour is vital and we
need to make sure to have the correct sign for the imaginary part of F as well as for the real
part of U. For the A-glob algorithm we use a simple backtracking method to discard a proposal
state and step back, i.e. reduce the value of A js if a sign check-error occurs. For the network
we add a term to the loss function. As we employ the ADAM optimizer [66], this sign loss has
to be differentiable, so we add

. (ImF . ReU
Lign = Y sig = + ReLU(ImF) + Y sig X + ReLU(—ReU), (25)
F U

with ReLU(x) = max{0, x} to the variance loss of eq. (13). Using a validation set X,,, the
relative scales Y, Xy, X, are estimated in the beginning of the training and updated every K

—— Sign Loss 15 —— Sign Loss
141 -~ Derivative === Derivative

12
10

10

Lsign.F
Lsign,l/'

Figure 6: Tllustration of the sign loss and its derivative for the F (left) and U (right)
part for Y =10 and X5y = 1/2.
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Figure 7: Average training times (left) and average memory consumption (right) for
a single phase-space point as a function of the batch size b.

iteration according to

- 1S - 1S -
Y=10- Lvar(xval) s XF = 5 Z ImF(xvaL(i)) B XU = 5 Z Re U(xval,(i)) . (26)
i

i

In practice, we find that K = 10 works well in our experiments. An illustration of the sign
loss and its derivative of the F and U part is shown in the left and right panels of Figure 6,
respectively.

Moreover, a numerical bottleneck in our contour optimization is the calculation of the
complex-valued determinant and its derivative. As the TENSORFLOW implementation of
complex-valued determinants yields wrong gradients', we implement our own version of the
determinant. It relies on the recursive Laplace expansion and becomes computationally ex-
pensive for higher dimensional cases. This can be seen in the GPU-memory usage in Figure 7,
which is significantly higher for processes involving more Feynman parameters, such as the
ladder2L. example. This is one of the reasons why the timings are not competitive with the
timings for the standard contour deformation in pySECDEC. The largest benefit from the ML-
approach is expected for high-dimensional multi-scale cases, where the contour avoiding all
poles and branch cuts is a highly non-trivial hypersurface in the complex integration space.
In such cases the gain in numerical precision can be so large that it outweighs the time spent
to train the network. Indeed, the true advantage would show up in calculations of complete
amplitudes, rather than individual integrals, containing a few integrals that would barely con-
verge at all in pySECDEC but would converge well with an optimized contour.

Performance

Finally, we illustrate the performance gain achieved by applying both, the A-glob algorithm
only and its combination with the normalizing flow.

In Figure 8 we show results for the triangle2L (left) and the elliptic2L (right) integral. For
both integrals we consider the first sector integral after sector decomposition. We sample 100
phase space points varying over 4-5 orders of magnitude in the squared center-of-mass energy
s = (p;+p,)?. For both processes, we intentionally consider points below and above threshold,

See the issue raised at GITHUB: https://github.com/tensorflow/tensorflow/issues/49946.
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Figure 8: Relative integration error for sector one of the triangle2l. (left) and el-
liptic2L (right) integrals using the standard pySECDEC algorithm (green), the A-glob
algorithm (blue) and A-glob with additional normalizing flow (red). The lower panel
shows the ratios to the standard method.

to compare the performance when no contour deformation is needed. We normalized the
kinematic invariants using m?> = 1. For the triangle2L integral, shown in the left panel of
Figure 8, the average integration error over all phase-space points is reduced by a factor two
for the A-glob algorithm and by a factor of 5 for our ML-approach. In the low-energy regime
the error reduction stays around the average value. For increasing energies towards threshold
at s/m? = 1, the absolute integration error of the standard pySECDEC method and the pure A-
glob algorithm increase, while absolute integration error of our ML-approach keeps decreasing.
This results in a relative performance gain by a factor of up to 30 close to the threshold.
The threshold being located at s/m? = 1 is a consequence of considering sector one, which
effectively corresponds to a topology where one of the massive triangle propagators connecting
to ps is pinched. In contrast, in the elliptic2L sector 1 integral, shown in the right panel of
Figure 8, the importance sampling through the normalizing flow reduces the integration error
by a factor of 20 and does not show the rising profile towards the threshold. The average
integration error is reduced by a factor of 7 or 2 depending on whether the additional mapping
of the normalizing flow is used or not. The kinematic points for this diagram are chosen to
have varying values of t = (p; + p3)? and pfr.

In general, for energies close but above threshold the performance gain is less pronounced,
as the contour deformation in this regime has less freedom for optimization and the effect of
modifying the real parts is diminished.

For increasing energies, the absolute integration error also increases and eventually starts
fluctuating. This is driven by the singularities moving toward the endpoints. A possible way to
control this behavior has been proposed in Ref. [47]. Together with the absolute integration
error, the improvement factors also start to fluctuate strongly for large energies.

Finally, in Figure 9 we show the results for the more complicated pentagonlL (left) inte-
gral and the ladder2L (right) integral. Again, for both integrals we consider the first sector
integral after sector decomposition. The increasing complexity originates from both a higher-
dimensional integration space, i.e. more Feynman parameters, and from having more kine-
matic scales involved. In order to cover possible dependencies on other kinematic variables
than s and m?, we decided to sample different kinematic phase-space for the same values of
s/m?. For both integrals we find that the average integration error reduces by a factor two for
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Figure 9: Relative integration error for sector one of the pentagonlL (left) and lad-
der2L (right) integrals using the standard pySECDEC algorithm (green), the A-glob
algorithm (blue) and A-glob with additional normalizing flow (red). The lower panel
shows the ratios to the standard method.

the A-glob algorithm. By employing the ML-method we achieve an average error reduction
factor of 6 and 8 for the ladder2L and pentagonlL, respectively. For individual phase-space
points we achieve an improvement factor of up to 30. However, there are also phase-space
points for which both the A-glob and the flow supplemented algorithm show inferior per-
formance. This clearly indicates the shortcomings of the optimization procedures which are
related to the strict sign requirement on the imaginary part.

4 Outlook

We have shown, for the first time, that the application of modern machine learning methods
to numerical multi-loop calculations can lead to a considerable reduction of the numerical un-
certainties and hence speed. This has been achieved in a two-step procedure, first applying
an algorithm to globally optimize the contour deformation parameters A, and subsequently
employing a normalizing flow to optimize the complex integration contour, after splitting the
full contour deformation into a real and an imaginary part. We have demonstrated the per-
formance with several one- and two-loop examples. All of these examples contain massive
propagators and several kinematic scales, leading to a complicated threshold structure of the
integrand, such that the contour deformation is a highly non-trivial task, which was dealt with
successfully by the neural networks. While the results presented in this paper can only be a
first step, they very much motivate further investigations.
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