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Abstract

Recently in Ref. [1], one of the authors introduced the balanced partial entanglement
(BPE), which has been proposed to be dual to the entanglement wedge cross-section
(EWCS). In this paper, we explicitly demonstrate that the BPE could be considered as
a proper measure of the total intrinsic correlation between two subsystems in a mixed
state. The total correlation includes certain crossing correlations, which are minimized
by particular balance conditions. By constructing a class of purifications from Euclidean
path-integrals, we find that the balanced crossing correlations show universality and can
be considered as the generalization of the Markov gap for the canonical purification. We
also test the relation between the BPE and the EWCS in three-dimensional asymptotically
flat holography. We find that the balanced crossing correlation vanishes for the field the-
ory invariant under BMS3 symmetry (BMSFT) and dual to the Einstein gravity, indicating
the possibility of a perfect Markov recovery. We further elucidate these crossing corre-
lations as a signature of tripartite entanglement and explain their interpretation in both
AdS and non-AdS holography.
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1 Introduction

The structure of quantum entanglement in quantum systems plays a fundamental role in un-
derstanding the quantum information-theoretic nature of quantum gravity. The quantum na-
ture of entanglement is captured by the entanglement entropy, which has been extensively
studied in quantum field theories and many-body systems [2]. In the context of AdS/CFT cor-
respondence [3–5], the entanglement entropy in the field theory of a region A in the boundary
has a dual description in terms of the area of a minimal surface EA in the dual gravity side and
goes by the name of Ryu-Takayanagi formula [6–8]

SA =
Area (EA)

4GN
. (1)

The entanglement entropy is a good measure of quantum entanglement between a sub-
system and its complement when the boundary state is pure. However, for mixed states, the
entanglement entropy is not a proper measure to capture the intrinsic correlation between
the subsystems [9, 10]. Recently, the study of said correlation in mixed states has attracted
considerable attention. Several quantities have been defined to measure the mixed state corre-
lations, like the mutual information, the (logarithmic) entanglement negativity [11–18], and
the entanglement of purification (EoP) [19–21]. From the dual gravity side, this correlation is
supposed to be captured by a special geometric quantity, known as the entanglement wedge
cross-section (EWCS). It is a natural candidate to measure the intrinsic correlation between
the two subsystems in a mixed state with a gravity dual. Moreover, in order to understand
the EWCS better, new information-theoretic quantities have been proposed by the high-energy
physics community, such as the reflected entropy [22], the “odd entropy” [23], the “differential
purification” [24], entanglement distillation [25, 26] and the balanced partial entanglement
(BPE) [1, 27, 28]. See [29–43] for some recent explorations on the study of the purification
and the EWCS.

In Ref. [1], based on the concept of the partial entanglement entropy (PEE) and its holo-
graphic picture, it was observed that the PEE satisfying certain balance conditions could be
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considered as the area of the EWCS in the dual gravity picture. This specific PEE is called
the balanced partial entanglement entropy (BPE). In principle, the definition of BPE is more
general, and it can be defined for any purification, including the non-holographic ones. For
the specific case of the canonical purification, the BPE reduces to half of the reflected entropy,
suggesting BPE as a more generic measure than the reflected entropy. It has been observed
BPE obeys the entropy relations that are satisfied by the EoP and the EWCS.

In this paper, we take a step towards understanding why the BPE could be a proper mea-
surement of the total intrinsic correlation between the subsystems A, and B is a mixed state
ρAB. For such a mixed state, it is useful to consider an auxiliary system A′B′, which together
with AB, forms a pure state. This pure state is called the purification of the mixed state and is
highly non-unique. A meaningful way to explore the correlation structure in a mixed state is
to study the entanglement entropy SAA′ in the purifications. It is important to note that some
of the correlations, for example, the correlation inside A′B′, contribute to SAA′ but not to the
intrinsic correlation inside AB. We need to either minimize those correlations or try to exclude
them from SAA′ in a proper way. This is how the EoP and the reflected entropy are defined. In
the following, we briefly introduce the EWCS, the EoP, and the reflected entropy.

Entanglement wedge cross section (EWCS): Let us consider a region in the boundary field
theory with a partition AB ≡ A∪B, described by a reduced density matrix ρAB. Its holographic
dual is a bulk region known as the entanglement wedge [44–46]. For a static time slice, the
entanglement wedge is the region enclosed by the boundary subregion and the corresponding
minimal surface. This allows us to define the EWCS ΣAB as the minimal area cross-section
separating the regions A and B.

Entanglement of purification (EoP): Let |Ψ〉 ∈HAA′ ⊗HBB′ be any purification of ρAB. One
defines the EoP Ep(A : B) [19] as

Ep(A : B) = min
|Ψ〉,A′

SAA′ , (2)

where we take the minimization over all purifications of AB and over all the possible partitions
of A′B′. The EoP is then given by the minimal value of SAA′ . The minimization procedure in
some sense excludes the contribution from the intrinsic correlation between A′ and B′ to SAA′ ,
hence could be a valid measure of correlation between A and B.

Reflected entropy: Consider a bipartite system AB associated with the Hilbert space HAB
and an orthonormal basis {|Ψi〉} of HAB. In general, any mixed state can be written as

ρAB =
∑

i

pi |Ψi〉 〈Ψi| . (3)

To define the reflected entropy, we need to introduce an auxiliary system A′B′, whose Hilbert
space is the identical copy of the original Hilbert space. One then defines the canonical purifi-
cation as

|pρAB〉=
∑

i

p

pi |Ψi〉AB |Ψi〉
∗
A′B′ . (4)

Here {|Ψi〉
∗} is an orthonormal basis of the Hilbert space HA′B′ = HAB. The definition of

reflected entropy is invoked through the definition the entanglement entropy for AA′ as

SR(A : B) = SAA′ = −TrρAA′ logρAA′ , (5)

where the mixed state ρAA′ = TrBB′
�

�

p
ρAB

� 
p
ρAB

�

� is obtained by tracing out the degrees of
freedom in BB′. Since the complement A′B′ is just a copy of AB, the entanglement between
AA′ and BB′ could be the double of the intrinsic total correlation in AB. Thus the total intrinsic
correlation between A and B is captured by half of the reflected entropy.
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Both the EoP and the reflected entropy are lower bounded by half of the mutual informa-
tion I(A : B)/2, which we consider as a direct correlation between A and B. They also get
contributions from the “crossing correlations", including the correlations between A and B′

and between B and A′, which have not been explicitly studied before. We will study all these
correlations in the context of the PEE. Hence the crossing correlations are also called the cross-
ing PEEs, which we argue to be a generalized version of the Markov gap. We show that the
crossing PEEs are minimized under some balance conditions, and they are independent of any
purification. More interestingly, in (1 + 1)-dimensional CFTs, the crossing PEE is universal.
The way BPE captures the total intrinsic correlation is similar to the reflected entropy, and,
in fact, the partition of A′B′ in the canonical purification automatically satisfies the balance
conditions, as we will see later sections.

The definition of the BPE can be applied to generic theories. Its correspondence to the
EWCS should also go beyond AdS/CFT. The Markov gap or the crossing PEEs computed in
AdS gravity is non-vanishing, and the non-vanishing Markov gap demands the existence of an
approximate Markov recovery process. To understand the BPE and the Markov gap in general,
we consider the duality between BPE and EWCS in flat holography. We explicitly compute
the crossing PEEs for the field theory invariant under the BMS3 symmetries (BMSFT), which
is dual to the 3-dimensional flat space. The crossing PEE in the field theory dual to Einstein
gravity identically vanishes; thus, it reflects the existence of a perfect Markov recovery process
in BMSFT.

The structure of the paper is organized as follows. In section 2, we will briefly review the
concept of PEE and the balanced PEE. Then in section 3 we construct a class of purifications
for ρAB from path-integral optimization and calculate the BPE. This calculation shows that the
BPE is independent of this class of purifications. In section 4, we focus on the details of the
balance conditions. We show that when the balance conditions are satisfied, the crossing PEEs
reach their minimal value; hence, the BPE reasonably measures the total correlation in the
mixed state. We also show that the crossing PEEs can be considered as a generalized version
of the so-called Markov gap. In section 5, we discuss the details of the Markov recovery process
and calculate the BPE for BMSFT. We show that the BPE coincides with the EWCS, and as a
result, the crossing PEE vanishes for the BMSFT dual to the Einstein gravity. We summarize
our results and give possible future directions in section 6.

2 The balanced partial entanglement

2.1 The partial entanglement entropy

We first introduce the concept of the entanglement contour [47]. It is a local measure of en-
tanglement capturing the contribution coming from each degree of freedom inside a region A
to the entanglement entropy SA. It is a function denoted by sA(x), where x ∈ A. Note that the
function is non-local since it depends on the region A. This paper focuses on two-dimensional
systems; hence, x characterizes the spatial direction. We recover the entanglement entropy
by collecting the contributions from all the sites inside A, hence SA =

∫

A sA(x)dx . It is some-
times more useful to study a quasi-local measure of entanglement, i.e., the so called partial
entanglement entropy (PEE) sA(Ai). Instead of capturing the contribution from each degree of
freedom, one is interested to consider the contribution from a subset of region Ai ⊂ A. One
defines

sA(Ai) =

∫

Ai

sA(x)dx . (6)
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The PEE sA(Ai) captures certain type of the correlation between the subregion Ai and the system
Ā that purifies A. Since the correlation is mutual, similar to the mutual information (MI), one
can also denote the PEE as

sA(Ai)≡ I(Ai , Ā)≡ IAi Ā . (7)

One should be careful not to confuse the PEE I with the MI, I(A : B) = SA + SB − SAB. We
interchangeably use the notation between sA(Ai) and I(Ai , Ā).

The PEE should respect certain physical requirements [28,47]. For self consistency, we list
them in the following:

1. Additivity: For any two spacelike-separated regions B and C such that B ∩ C = ;, the
additivity says I(A, B ∪ C) = I(A, B) + I(A, C).

2. Unitary invariance: I(A, B) should be invariant under any local unitary transformation
inside the regions A and B.

3. Symmetry transformation: For any symmetry transformation T such that T A = A′ and
T B = B′, the PEEs should remain invariant i.e., I(A, B) = I(A′, B′).

4. Normalization: I(A, B)|B→Ā→ SA .

5. Positivity: I(A, B)≥ 0.

6. Upper bound: I(A, B)≤min{SA, SB} .

7. The permutation symmetry between A and B: I(A, B) = I(B, A).

So far, there are several proposals1 for the PEE that satisfy the above 7 requirements. In
this paper, we will mainly use the additive linear combination (ALC) proposal [27,61] in two-
dimensional field theories. It was shown in [27, 28, 58, 61] that the ALC proposal satisfies all
the above-mentioned properties.

• The ALC proposal:

Consider a boundary region A. Suppose that it can be partitioned into three non-
overlapping subregions A = αL ∪ α ∪ αR, where α is some subregion inside A and αL
(αR) denotes the regions left (right) to it. On this configuration, the claim of the ALC
proposal is the following:

sA(α) = I(α, Ā) =
1
2

�

SαL∪α + Sα∪αR
− SαL

− SαR

�

. (8)

The ALC proposal is supposed to be general and applicable for any theories. However, as we
have stated before, a specific configuration and order between the subsets are required inside
A. This order is essential for the PEE to satisfy the additivity and is naturally possessed by one-
dimensional (spatial) systems. The calculation of PEE using ALC proposal in higher dimensions
is ambiguous. This is because there is no natural ordering of the configuration of the subsets
inside a given region. Still, in those cases, the ALC proposal only applies for configurations
with high symmetry such that the contour function only depends on one specific coordinate,

1The entanglement contour has been largely explored in free theories [47–54]. In the purview of holography,
one can consider the finer description offered by the Ryu-Takanayagi prescription to relate points on the minimal
surface to the corresponding boundary points [27,55]. Explicit constructions of the entanglement contour and the
PEE in terms of bit threads [56] are provided in [57–60] (also see [27,28,54,55]).
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Figure 1: The purification of a region AB is given by ABB′A′ for adjacent (left) and
non-adjacent (right) intervals. When the intervals are adjacent the auxiliary system
A′B′ consists of A′B′ = A′ ∪ B′. One the other hand, for the non-adjacent case, the
auxiliary system A′B′ consists of A′B′ = A′1 ∪ B′1 ∪ A′2 ∪ B′2.

which can be used as a direction to define a natural ordering. See [62] for more discussion in
higher dimensions.

The entanglement contour has been studied extensively in the context of the evolution
of entanglement [47, 53, 58, 63, 64]. PEE is rather a quasi-local measure of entanglement
and gained significant importance in the context of holography [27, 55] as it provides a finer
description between quantum entanglement of the boundary theory and the geometry of the
bulk [55]. PEE can also be extended to define the dual to the entanglement wedge cross-
section. This is achieved by imposing some balance conditions [1], which will be our primary
focus on this paper. This balanced PEE can be shown to be applicable for generic purification
and naturally incorporates the reflected entropy [22] as a specific case. More details on PEE,
especially a first law-like version of the entanglement contour and its role in recently proposed
island proposal can be found in [63,65,66].

2.2 The balanced partial entanglement entropy

Based on previous discussions, we introduce the so-called balanced partial entanglement en-
tropy (BPE) [1].

• Consider a bipartite system HA ⊗ HB, equipped with the density matrix ρAB. Let us
further consider a purified system ABA′B′ with a pure state |ψ〉 which is purified by an
auxiliary system A′B′, so that TrA′B′ |ψ〉〈ψ|= ρAB. Then we consider the special partition
of the auxiliary system A′B′ = A′ ∪ B′ that satisfies the following balance requirements

balance requirements : sAA′(A) = sBB′(B) , sAA′(A
′) = sBB′(B

′) . (9)

With the balance requirements satisfied, the BPE (A : B) is just given by the PEE sAA′(A),
i.e.,

BPE (A : B) = sAA′(A)|balance . (10)

However, in general, the partition that satisfies the balance requirements is not unique.
To emphasize this point and to remove the ambiguity, we further impose the condition of
minimality. This ensures that among all the possible partitions, we need to pick the partitions
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such that sAA′(A) is minimized. The partition has been done so that A′ is settled to be as far
from B as possible while B′ is settled to be as far from A as possible. Also, there should be no
embedding between B′ and A′. See Fig.1 for an explanation and refer to [1] for more details.

Since SAA′ = SBB′ , we can consider one of the conditions in (9) as independent. Further-
more, we can write the entanglement entropies as2

sAA′(A) = IAB + IAB′ , sBB′(B) = IBA+ IBA′ . (11)

Since IAB is independent from the purifications, and IAB = IBA, the balance conditions (9) can
also be rephrased as

balance requirement : IAB′ = IBA′ . (12)

Later we will also refer to the PEE IAB′ or IBA′ as the crossing PEE of |ψ〉.
In the case where A and B are not adjacent, the complement A′B′ becomes disconnected.

In such a case, one can separate out the disconnected regions into further subregions as
A′ = A′1 ∪ A′2 and B′ = B′1 ∪ B′2. As a result, they can be considered in pairs (see Fig.1 (right)),
and the balance conditions should be imposed on both of the pairs, leading to the generalized
balance conditions for the disconnected regions as [1]

sAA′(A) = sBB′(B) , sAA′(A
′
1) = sBB′(B

′
1) , sAA′(A

′
2) = sBB′(B

′
2) . (13)

Similar to the adjacent case, here, two conditions are independent, which is enough to deter-
mine the exact partitions.

We conclude this section by stating some inequalities satisfied by the BPE [1]

1. BPE (A : B)≤min (SA, SB) . (14)

2. BPE (A : B)≥
1
2

I(A : B) . (15)

3. BPE (A : B) + BPE (A : C)≥ BPE (A : BC) . (16)

4. BPE (A : BC)≥ BPE (A : B) . (17)

The inequality 1 holds for both of the holographic and non-holographic cases. The property 2
holds in holographic theories [1], for both adjacent and non-adjacent cases. The proof relies
on the monogamy of the mutual information [67]. For non-holographic theories, the validity
of property 2 is not clear in the case of non-adjacent intervals. Inequality 3 follows from
inequality 2. Finally, inequality 4 holds for generic theories.

3 The BPE for purifications from Euclidean path-integral

In this section, we construct a class of purifications for the mixed state ρAB using the Euclidean
path-integral [68,69]. Then we study the BPE for these purifications and find that the BPE is
independent of this class of purifications.

3.1 The Euclidean path-integral and its optimization

Here we follow the steps in [68,69] to prepare pure states from the optimization of Euclidean
path-integrals. As shown in Fig. 2, we first consider the adjacent-interval case where AB is

2Form now onwards we use the shorthand notation IAB for I(A, B).
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connected and embedded in a pure state |Ψ〉 of a CFT. The mixed state we consider is just the
reduced density matrix ρAB of the region AB

ρAB = TrA′B′ |Ψ〉〈Ψ| . (18)

Consider the CFT on a Euclidean flat space R2

ds2 = dz2 + dx2 , (19)

where −z ≡ τ is the Euclidean time.
One prepares the ground-state wave functional for CFTs on this metric i.e., on two-

dimensional flat space by computing the Euclidean path integral

ΨCFT (ϕ̃(x)) =

∫ �

∏

x

∏

ε<z<∞
Dϕ(z, x)

�

e−SCFT(ϕ)
∏

x

δ (ϕ(ε, x)− ϕ̃(x)) . (20)

The path-integral optimization aims to prepare a ground state wavefunctional by integrating
over a different geometry such that the ground state prepared over the new geometry is propor-
tional to the ground state prepared over the flat geometry. The procedure works in any general
dimension. However, in two dimensions, the procedure enjoys significant simplification as in
this case, any metric can be written in a diagonal form via a coordinate transformation

ds2 = e2φ(z,x)
�

dz2 + dx2
�

, e2φ(z=ε,x) = 1 . (21)

The second condition is the boundary condition imposed on z = ε, where the state is being
prepared and where the metric of both geometries coincide.

After the Weyl transformation, the metric is now described by the scalar field φ(z, x). With
the universal ultraviolet (UV) cutoff ε, the measure of quantum fields ϕ in the CFT changes
under the Weyl transformation [68]

[Dϕ]gab=e2φδab
= eSL(φ)−SL(0)[Dϕ]gab=δab

, (22)

where SL(φ) is the Liouville action [69]

SL[φ] =
c

4π

∫ ∞

−∞
dx

∫ ∞

ε

dz
�

(∂xφ)
2 + (∂zφ)

2 +µe2φ
�

. (23)

Here µ is the potential and c is the central charge. Furthermore, since the action SL(ϕ) is
invariant under the Weyl transformation and the boundary condition for the scalar field at
z = ε agrees with the original one, the ground-state wave function Ψgab=e2φδab

computed from
path-integral with the Weyl transformed metric (21) is proportional to the original one with
the flat metric. In other words

Ψgab
(ϕ̃(x)) = eSL(φ)−SL(0)Ψδab

(ϕ̃(x)) , (24)

which implies that the state Ψgab
is still the same CFT vacuum state (up to the proportionality

constant).
Thus, our task is to consider the special configuration of φ(z, x) that minimizes the Li-

ouville action SL(φ) using the path-integral optimization. The optimization is equivalent to
minimizing the normalization eSL(φ) of the wavefunctional. This can be achieved by solving
the equations of motion for the Liouville action (23), whose general solution is given by

e2φ =
4A′(w)B′(w̄)
(1− A(w)B(w̄))2

, (25)
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where w = z + i x and w̄ = z − i x . For the boundary condition in (21), the explicit solution is
given by A(w) = w, B(w̄) = −1/w̄, hence

e2φ =
ε2

z2
, (26)

which exactly gives the metric of the Poincaré patch of AdS3. It is worth mentioning that
the authors of [68] interpret this as a continuous limit of the conjectured relation between
tensor networks and AdS/CFT correspondence. They also suggest that the optimization is
analogous to the estimation of the computational complexity (see also [69]). The reader can
refer to [68,69] for further details about path-integral optimization.

When setting boundary conditions for φ on the whole time slice, the optimization will not
change the state we compute. However, when we consider the reduced density matrix of a
sub-region and whole time slice as a purification for this region, we will only set boundary
conditions on the region. In this case, performing the path-integral optimization will give us
a specific configuration for the scalar field on the complement at z = ε, which corresponds to
a special purification for the region [70].

3.2 Purifications for adjacent intervals

3.2.1 Purifications from path-integrals without optimization

Here we follow the method outlined in [70]. We consider an interval [a, b] on an infinitely
long line. The interval is decomposed into two sub-intervals

A= [a, p] , B = [p, b] , where −∞< a < p < b <∞ . (27)

Here A and B are adjacents. Originally we introduced a uniform cutoff ε on the line and
considered a discretization of the Euclidean path-integral for preparing the vacuum state of the
system. The mixed state ρAB is defined from this CFT vacuum by tracing out the complement
of AB. The point Q with coordinate q divides the complement into two subsystems A′ and B′.

We cut the interval AB open, then the path-integral representation of the density matrix
ρAB is given by the path-integral on this cut manifold with the imposed boundary condition

e2φ(z=ε,x) = 1, a ≤ x ≤ b (28)

on the upper and lower edge of the slit AB. Here we want to generate pure states as purifica-
tions for ρAB from path-integral. A class of the purifications can be achieved from path-integral
by setting different boundary conditions for φ(z, x) at z = ε on A′B′. These classes of purifica-
tions are still the vacuum state of the CFT but settled on different manifolds. The difference is
that the lattice cutoff on A′B′ is no longer a uniform constant ε. Instead it has spatial depen-
dence controlled by the boundary condition for φ(z, x) on A′B′.

It was shown in [70] that the entanglement entropy for an arbitrary interval covering the
region (x1, x2) in the purifications ΨφCFT is given by performing a scale transformation of the
standard formula for entanglement entropy

SEE =
c
3

log
� x2 − x1

ε

�

+
c
6
φ(x2) +

c
6
φ(x1) . (29)

Then the entanglement entropy for the intervals in Fig. 2 are, for example, given by,

SA =
c
3

log
� p− a
ε

�

+
c
6
φ(a) +

c
6
φ(p) , SA′ =

c
3

log
�q− a
ε

�

+
c
6
φ(a) +

c
6
φ(q) ,

SB =
c
3

log
�

b− p
ε

�

+
c
6
φ(p) +

c
6
φ(b) , SB′ =

c
3

log
�

q− b
ε

�

+
c
6
φ(b) +

c
6
φ(q) . (30)
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Figure 2: Single interval optimization. (a) The full interval AB = [a, b] is denoted
by the red line. The coordinate for the partition point of AB is p and the one for A′B′

is q.

For the mixed state ρAB we choose, the scalar fields should vanish inside AB due to the bound-
ary conditions, hence

φ(a) = φ(b) = φ(p) = 0 . (31)

Now we consider an arbitrary purification from the path-integral, which means we will not
specify the boundary condition for φ on A′B′ at the beginning. Then we impose the balance
condition [1]

SA− SB = SA′ − SB′ . (32)

Substituting the entanglement entropies (30) into the above balance condition, we get the
partition for A′B′ with the position of Q settled at

q =
2ab− (a+ b)p

a+ b− 2p
. (33)

When the balance condition is satisfied, we substitute the above q in to the PEE sAA′(A) to find
the BPE (A : B), which is given by

BPE (A : B) = sAA′(A)|balance =
1
2
(SAA′ + SA− SA′) |balance

=
c
6

log
�

2(p− a)(b− p)
ε(b− a)

�

. (34)

Note that the above BPE (A : B) is independent from the scalar field on A′B′, which implies that
the BPE is independent from the class of purifications determined by the boundary conditions
of φ(z, x) on A′B′. For the case where the purification is just the vacuum state dual to the
global or Poincaré AdS3 (i.e., φ(z = ε, x) = 0 on the whole time slice), the above BPE is just
the area of the EWCS (see Fig.3 and [70] for more details). In all these purifications the BPE
captures exactly the same class of correlation between A and B as the EWCS.

Then we calculate the crossing PEE for this class of purifications with the balance condition
satisfied. It can be easily computed as

IAB′ |balance = sAA′B(A)|balance =
1
2
(SAA′ + SAB − SA′ − SB) |balance

=
c
6

log2 , (35)

which is also independent from the scalar field. Furthermore, it is given by a constant inde-
pendent from the partition of AB as well as the details of the CFT. This constant was previously
found in [1] for the vacuum state duals to pure AdS3.

We stress that in the previous discussion, the partition (33) of A′B′ determined by the
balance conditions is exactly the partition that minimizes SAA′ when path-integral is optimized
[70]. This implies that the balanced condition could also be a procedure to minimize certain
kinds of correlations, as in the case of the purification from optimized path-integral. We will
confirm this expectation in the next section.
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Figure 3: The x coordinates for points K1, P, K2 and Q are a, p, b, q. The PEE is given
by sAA′(A) = sBB′(B) which is dual to the EWCS ΣAB (shown by the blue line).

3.2.2 Purification from the optimized path-integral

We now consider the special purification determined by path-integral optimization. Following
[70], we first perform the following conformal transformation that maps the interval [a, b] to
an infinitely long line

u=
s

x − a
b− x

. (36)

Then the boundary condition and the optimization in the u space is exactly the same as the
simple case for the vacuum state. The optimized metric is then written as [70]

ds2 =
ε2

τ2
du dū=

ε2

τ2

(b− a)2

4|b− y|3|y − a|
dy d ȳ = e2φ dy d ȳ . (37)

Here we have regularized the coordinate τ as −∞ < τ < −ε with ε > 0. The scalar field
φ(z, x) at the time slice τ= −ε after the optimization is then given by

φ(x) =

�

0 for a ≤ x ≤ b ,

log
�

ε(b−a)
2(x−a)(x−b)

�

for x > b or x < a .
(38)

These are obtained from the optimized metric (37). Note the fact that the points P and Q get
mapped into the coordinates uP = −

p

(p− a)/(b− p) and uQ = i
p

(q− a)/(q− b) respec-
tively [70]. We call the pure state with boundary conditions (38) the optimized purification.

It is worth mentioning that path-integral optimization provides a useful tool to evaluate
the EoP [70]. In the optimized purification, all the entanglement entropies can be calculated
via (29). If we minimize SAA′ by choosing a suitable q that partitions A′B′, the minimized SAA′

coincides with the EWCS of ρAB (3.2.2). If the correspondence between the EoP and EWCS is
valid, then the optimized purification is exactly the one that minimizes SAA′ under a suitable
partition, and the Ep(A, B) is just the minimized SAA′ .

Interestingly, the suitable partition that minimizes SAA′ is given by (33), which is exactly
the solution to the balance condition (32). Furthermore, as we have shown that the BPE (A : B)
also yields the area of the EWCS and is independent of the boundary conditions for the scalar
field in the optimized purification with q given by (33), we have

SAA′ = BPE (A : B) = sAA′(A) =
Area (ΣAB)

4GN
. (39)
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Figure 4: Double interval optimization.

This implies that the contribution to SAA′ from A′ is zero, i.e.,

sAA′(A
′) = IA′B + IA′B′ = 0 . (40)

Since the balanced condition is satisfied, according to (35) we have IA′B = c/6 log2, which
implies

IA′B′ =
1
2

I(A′ : B′) = −
c
6

log 2 . (41)

One can further check the above result with a direct calculation in the optimized purification

IA′B′ = sA′AB(A
′) =

1
2
(SA′AB + SA′ − SAB)

=
c
6

�

log
�

(q− a)(q− b)
(b− a)ε

�

+φ(q)
�

= −
c
6

log 2 , (42)

where in the last line we substituted in the partition (33) and the scalar field after optimization
(38). This is puzzling because the negative PEE and mutual information in the optimized
purification breaks the Araki-Lieb inequality.

3.3 Purifications for non-adjacent intervals

Next, we consider the case when A and B are not adjacent. More explicitly, we will consider
the case shown in Fig. 4, where

A= [a, b] , B = [c, b] , where −∞< a < b < c < d <∞ . (43)

Also in this case the complement region A′B′ consists of two disconnected regions. We use q1
and q2 to partition them into A′1 ∪ B′1 and A′2 ∪ B′2.

As in the adjacent case, the path-integral under different boundary conditions for
φ(z = ε, x) on A′B′ define a class of purifications, which are the vacuum state of the same
CFT but on different manifolds. For any configurations of φ on A′B′, we can calculate the
entanglement entropies for intervals via (29). Using the ALC proposal to calculate the PEEs,
the balance conditions (13) equate the following to equations [1]

SA′1
− SB′1

= SAA′2
− SBB′2

, SA′2
− SB′2

= SAA′1
− SBB′1

. (44)

Using (29) to calculate the entanglement entropies, we find that all the scalar fields cancel
with each other, and the balance conditions are solved by

q1 =

p

(a− b)(a− c)(b− d)(c − d) + ad − bc
a− b− c + d

,

q2 =−
p

(a− b)(a− c)(b− d)(c − d)− ad + bc
a− b− c + d

. (45)
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We then calculate the BPE under the above balance condition, which is again independent
from the scalar fields and given by

BPE (A : B) = sAA′(A)|balance

=
1
2
(SAA′1

+ SAA′2
− SA′1

− SA′2
)|balance

=
c
6

log

�

a(b+ c − 2d) + 2
p

(a− b)(a− c)(d − b)(d − c) + d(b+ c)− 2bc
(a− d)(b− c)

�

.

(46)

Though the above result looks a bit complicated, in the context of AdS/CFT, it gives the EWCS
when the entanglement wedge of AB is connected.

Let us consider the following symmetric case where

A= [1,1/x] , B = [−1/x ,−1] , where 0< x < 1 . (47)

Substituting the above parameters into the BPE (46), we find that the partition respects the
reflection symmetry and is given by q1 = 0, q2 →∞, and the BPE is given by the following
simple formula

BPE (A : B) = −
c
6

log x , (48)

which exactly matches with the leading term of EoP obtained through the minimization of SAA′

in the optimized purification in [70]. It is worth noting, however, that the calculation in [70]
is only valid when x is small.

4 Balance conditions as extremal conditions

In this section, we demonstrate that the BPE could be a proper measure of the total intrinsic
correlation between A and B in the mixed state ρAB. In the following, we characterize all the
correlations in terms of the PEE and denote this total intrinsic correlation between A and B
as C(A, B). Let us forget for a moment about the BPE and start from the unknown measure
C(A, B) with the following expectations:

• C(A, B) is intrinsic to A and B, and hence should be independent of the purifications.

• C(A, B) should give the reflected entropy when we consider the canonical purification.

• For a purification with holographic dual, C(A, B) should be given by the EWCS.

Later we will show how to determine the expression of C(A, B) in terms of PEE.

4.1 Minimizing the crossing correlation for adjacent cases

Let us first consider the simple example where A and B are adjacents. When a purification
is given, it is not clear why the balance condition for the PEE sAA′(A) = sBB′(B) can help us
identify the total intrinsic correlation C(A, B). We perform a decomposition of the complement
A′B′ = A′ ∪ B′ so that the purification consists of four different regions whose correlation
structure can be characterized by the following six different PEEs:

IAB, IAB′ , IAA′ , IBB′ , IA′B, IA′B′ . (49)
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Some of the PEE and entanglement entropies are determined by the density matrix ρAB, hence
are independent of the purifications. These include the entanglement entropies SAB, SA and
SB, which can be written as a collection of PEEs

SA = IAB + IAB′ + IAA′ ,

SB = IAB + IBB′ + IBA′ ,

SAB = IAB′ + IAA′ + IBA′ + IBB′ . (50)

The above identities can be derived using the ALC proposal of PEE in (8). The main implication
is that the PEE sums up to give the exact entropies in the left-hand sides (LHSs). For example,
the first one computes the contribution from B, B′, and A′ to the region A.

The independence from purifications for IAB can be derived from the purification indepen-
dence of the above entanglement entropies. Also, we find the purification independence of
the following two linear combinations of the PEE, which we denote as P1 and P2

1) IAB′ + IAA′ = P1 , 2) IBB′ + IBA′ = P2 . (51)

In the following, we analyze which part of the six PEEs may contribute or relate to the
intrinsic correlation C(A, B):

• The PEE IAB is a direct and intrinsic measure of certain correlations between A and B,
hence should be included in C(A, B). Furthermore, in the special case where A and B are
adjacent, IAB = I(A : B)/2.

• The crossing PEEs IAB′ and IBA′ that cross the four regions contribute partially to C(A, B).
They also contribute to the correlation between AB and A′B′.

• The PEEs IAA′ and IBB′ mainly sustain the entanglement between AB and A′B′. They
may also partially contribute to C(A, B).

• The PEE IA′B′ definitely has no contribution to C(A, B). It is possible to eliminate this
correlation part via unitary transformations inside A′B′.

How can we extract the correlation C(A, B) from the PEEs with a given purification? Unlike
the EoP, we are not going to minimize over all the possible purifications to find the minimal
SAA′ . Also, unlike the reflected entropy SR(A, B), we will not restrict ourselves to the canonical
purification, which needs the explicit density matrix of ρAB. When the purification is fixed, the
only parameter we can adjust is the partition of the complement region A′B′, i.e., the position
of the partition point Q in this case and all the PEEs except IAB will be affected by the position
of Q. Suppose that we start at some point near A, then move Q towards B by a small distance
dq. This operation expands A′ and shrinks B′, hence increases IBA′ and decreases IAB′ . At
the same time, we keep in mind that the combinations (51) do not depend on Q. Due to the
additivity of the PEE, the changing of the PEEs can be explicitly described in the following
way:

IBA′ → IBA′ + IB(dq) , IBB′ → P2 − IBA′ − IB(dq) ,

IAB′ → IAB′ − IA(dq) , IAA′ → P1 − IBA′ + IA(dq) . (52)

We do not need to discuss the change of IA′B′ since it will be excluded from C(A, B).
When we say Q is close to A, we mean IA(dq) > IB(dq). If we move Q towards B, we will

first arrive at a balance point where

IA(dq) = IB(dq) , (53)
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Figure 5: Here we set c = 1, a = 0, b = 2, and p = 3/2. The curve shows how the
sum of the crossing PEEs IAB′ + IBA′ varies with respect to q. The sum reaches its
minimal value of (log2)/3= 0.231049 at q = 3, which is the balance point.

then we enter the region close to B where IA(dq) < IB(dq). Then it is natural to consider the
combination IAB′+IBA′ which decreases at first, reaches its minimal value at the balance point,
then increase as Q moves further towards B. One can check this with an explicit calculation
of this combination

IAB′ + IBA′ =
1
2
(SAA′ + SAB − SA′ − SB) +

1
2
(SAB + SBB′ − SA− SB′)

=
c
6

log

�

(a− b)2(p− q)2

(a− p)(a− q)(p− b)(b− q)

�

, (54)

where the PEEs are calculated by the ALC proposal (8). The above expression reaches its mini-
mal value c/3 log 2 at the saddle point (33), where the balance condition is satisfied (see Fig.5).
Since the minimization and the balance condition coincide with each other, we conclude

(IAB′ + IBA′) |minimized = 2IAB′ |balance = 2IA′B|balance =
c
3

log2 . (55)

The above analysis shows that if we exclude the contribution from IA′B′ , then the sum of
the crossing correlations between AB′ and BA′ is minimized at the balance point. This looks
similar to the definition of EoP. However, for an arbitrary purification, SAA′ −IA′B′ still captures
more correlations than C(A, B). If the crossing PEEs contribute to C(A, B), they also contribute
to the correlation C(A′, B′) in a similar sense. This implies that the crossing PEE can only
contribute partially to C(A, B). Before we determine the C(A, B) in terms of the PEE, we still
need to answer the following two questions:

• How are the minimized crossing PEEs assigned to the correlations C(A, B) and C(A′, B′)
respectively?

• When the crossing PEEs are minimized, do the PEEs IAA′ and IBB′ contribute to C(A, B)?

4.2 The universality of the crossing PEE and the Markov gap

The answers for the above two questions can be found from our expectation that C(A, B) should
give the reflected entropy for the canonical purification and be independent from any particular
purification. This means that the different value between C(A, B) and the intrinsic IAB should
be purification-independent and given by

C(A, B)− IAB =
1
2

SR(A : B)− IAB . (56)
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In the adjacent case where IAB = I(A : B)/2, the above difference is just given by the so
called Markov gap [71–73], which is defined as the difference between the half of the reflected
entropy and the mutual information3

h(A, B) =
1
2
(SR(A : B)− I(A : B)) . (57)

Remarkably, explicit calculations in 2d CFTs show that the Markov gap is given by a uni-
versal constant c/6 log 2 for the adjacent case. However, the equation (56) suggests a general-
ization of the Markov gap from the canonical purification to more generic purifications, where
it is generalized to be the difference between the correlation C(A, B) and IAB.

We argue that the proper interpretation for C(A, B)−IAB is just the minimized (or balanced)
crossing PEE

C(A, B)− IAB =
1
2
(IAB′ + IA′B) |minimized = IAB′ |balance = IA′B|balance , (58)

which directly suggest that the correlation C(A, B) is exactly given by the BPE (A : B)

C(A, B) = IAB + IAB′ |balance = BPE (A : B) . (59)

The reason we propose (58) is the following: firstly, it was shown in [1] that for the canon-
ical purification, the Markov gap coincides with the balanced crossing PEE. In this case, the
partition of A′B′ automatically satisfies the balance condition and the reflected entropy can
be naturally interpreted as the PEE sAA′(A) = SAA′/2 due to the symmetry between A′ and A.
Also the reflection symmetry between AB and A′B′ implies that the minimized crossing PEEs
contribute equally to C(A, B) and C(A′, B′). Hence, at the balance point, only half of the cross-
ing PEEs contribute to C(A, B). Secondly, for all the purifications we explored, the balanced
crossing PEEs are all given by the same constant c/6 log 2, which is the same as the Markov
gap. These purifications include:

• The vacuum state of the holographic CFT2 [1].

• The canonical purification in holographic [1, 71] and several generic 2d CFTs [71] in-
cluding the Ising CFT, the tricritical Ising CFT, the compactified free boson CFT with dif-
ferent compactification radius. The universality of this constant even extends to (2+1)-
dimensional topological phases [72,74].

• The class of purifications we obtained from path-integral optimization with different
boundary conditions for the metric on the compliment (see section 3).

Like the Markov gap, the balanced crossing PEEs in all the above purifications are inde-
pendent of both the partition of AB and the length of AB. It is then natural to propose that
the generalization of the Markov gap for general purifications is just the balanced crossing
PEE, which is a universal constant that only depends on the central charge of the CFT. It is
independent of not only the purifications but also the details of the mixed state. One can give
a naive argument for this universality when the pure state is defined on a circle. In CFT2, the
entanglement entropy of a single interval is given by a universal formula. Since the crossing
PEE can be written as a special linear combination of the entanglement entropy for single in-
tervals and all the lengths, cancel with each other when the balance condition is satisfied, and
the crossing PEE for CFTs should be given by the same constant. At the balance point, since
the PEE IAB plus the balanced crossing PEE exactly give the reflected entropy and the EWCS,
C(A, B) does not receive any contribution from IAA′ and IBB′ .

3Our notation differs from [71,72] by a factor of 1/2.
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4.3 Minimizing the crossing correlation for non-adjacent cases

Now we consider two non-adjacent intervals in the vacuum of the CFT2 which correspond to
the global AdS3. We set the length of the boundary to be 2π, thus the entanglement entropy
for a single interval with length ` is given by S = c

3 log
�2
ε sin `

2

�

. In this case, the setup for
non-adjacent system AB is shown in Fig. 1 (right). The intervals have the following lengths:

lA = 2a, lB = 2b , lA′1 = 2a1, lB′1 = 2b1 lA′2 = 2a2, lB′2 = 2b2 . (60)

We also define the length of the boundary circle to be 2π and a1 + b1 = α, thus we have
a2 + b2 = 2π − 2a − 2b − 2α. As soon as the length and coordinates of A and B are given,
the parameter α is also determined, thus only two parameters remain undetermined. We take
them as a1 and a2. Hence, we have

b1 = α− a1 , b2 = π−α− a− b− a2 . (61)

The balance requirements (13) are equivalent to the following equations [1]

SA′1
− SB′1

= SAA′2
− SBB′2

, SA′2
− SB′2

= SAA′1
− SBB′1

, (62)

which gives the following equations

sin [a1]
sin [α− a1]

=
sin [a+ a2]

sin [α+ a+ a2]
,

sin [a2]
sin [α+ a+ b+ a2]

=
sin [a+ a1]
sin [a+ a2]

, (63)

and determine the position of the partition points P1 and P2. The solution is given by [1]

a1 = cos−1

�

sin (a−α+ a2) + 3 sin (a+α+ a2)p
2
p

−2cos (2 (a+α+ a2))− 2cos (2 (a+ a2)) + cos(2α) + 3

�

,

a+ 2a2 = tan−1[sin(a− b)(sin(a) cos(η)− sin(b))− 2ξ sin(a) sin(η)

− sin(a) sin(η) sin(a− b)− 2ξ sin(a) cos(η) + 2ξ sin(b)] ,

(64)

where

ξ=
Æ

sin(a) sin(b) sin(a+α) sin(α+ b) , (65)

η= a+ b+ 2α . (66)

Now we define three combinations of the crossing PEEs:

C1 ≡ IAB′1
+ IBA′1

+ IAB′2
+ IBA′2

,

C2 ≡ IA′1B′2
+ IB′1A′2

,

C3 ≡ C1 + C2 . (67)

All the above PEEs can be easily calculated by the ALC proposal. The direct generalization
of the crossing PEE is C1. It was also verified in [1] that the BPE (A : B) has the following
decomposition as in (58)

BPE (A : B) = sAA′(A)|balance = IAB +
1
2

C1|balance , (68)

where C1 plays exactly the role of the balanced crossing PEE. The above BPE furthermore gives
the area of the EWCS [1]. The combination C2 is new compared with the adjacent case, which
is correlation crossing the subregions but inside A′B′.
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Figure 6: Left: C1 = C1(a1, a2), middle: C2 = C2(a1, a2), right: C3 = C3(a1, a2) in
the case of a = π/2, b = π/4 and α= π/8. We find that C1, C3 has a minimum point
and C2 has a saddle point. Note that we have introduced a cutoff as a1, a2 starts from
0.1 rather than 0.

Then we take the first derivatives of Ci with respect to a1, a2 and solve the equations

∂ai
C j = 0 , i = 1,2 ; j = 1, 2,3 . (69)

Generally, in the following regions

0< a1 < α ,

0< a2 < π− a− b−α .
(70)

C1 = C1(a1, a2) and C3 = C3(a1, a2) have a minimum value while C2 = C2(a1, a2) has a saddle
point. See Fig. 6 for a typical example. One can further check that the solutions (64) to the
balance conditions also solve the saddle conditions (69) for all the three combinations Ci . So,
as in the adjacent case, the crossing PEEs are minimized at the balance point.

However, we note that the balanced crossing PEEs, in this case, are no longer a universal
constant but depend on the interval sizes of A and B. This can be traced back to the fact that
the correlation IAB does not reduce to I(A : B)/2 for the non-adjacent intervals. Hence, one
needs to be more careful about defining a generalized version of the Markov gap, which is
expected to be universal. However, like the Markov gap [73], the above crossing PEES might
satisfy certain bounds. When the balanced conditions are satisfied, one can verify that

IA′2(BB′1)
= IB′2(AA′1)

= IA′1(BB′2)
= IB′1(AA′2)

=
c
6

log2 , (71)

which is because the adjacent configuration is recovered when we consider, for example
ρ(AA′2)(BB′2)

as a new bipartite system with the two subsystems being AA′2 and BB′2. We will
make some brief comments about this in later sections.

5 BPE in flat holography and Markov recovery

5.1 Holographic entanglement and EWCS in 3d flat holography

Our claim that the BPE captures the total intrinsic correlations in the mixed state should apply
to generic theories. In holographic theories beyond AdS/CFT, the BPE should also correspond
to the EWCS. Here we conduct an explicit test for our claim in 3d flat holography. In this
case, the asymptotic symmetry group is the three-dimensional Bondi-Metzner-Sachs (BMS3)
group, which is infinite-dimensional. The correspondence between 3d asymptotic flat space-
time and the field theory invariant under the BMS3 group (BMSFT)4 settled on the null in-
finity was proposed in [76, 77]. Cardy-like formulas [78–80] are proposed to reproduce the

4Since the algebra of BMS3 group and the Galilean conformal algebra (GCA) [75] are isomorphic, the duality
is also denoted as the GCFT/flat-space correspondence.
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Bekenstein-Hawking entropy for the cosmological horizons. More importantly, the geometry
for the holographic entanglement entropy is constructed in [80] (see also [55,81,82]), which
furthermore inspires the construction of the EWCS in flat spacetime [83]. See also [84,85] for
other discussions of entanglement in BMSFTs and [81, 86] for further development in 3d flat
holography.

For an asymptotically flat 3d spacetime, we characterize the null infinity where the dual
BMSFT lives with the coordinates (u,φ), where the u direction is null, and the φ direction is
spacelike. The generators of the asymptotic symmetries, which forms the BMS3 group, are the
following

Ln = un+1∂u + (n+ 1)unφ∂φ , Mn = un+1∂φ . n= 0,±1,±2 · · · . (72)

The conserved charges satisfy a centrally extended version of the algebra given by

[Lm, Ln] = (m− n)Lm+n +
cL

12
(m3 −m)δm+n,0 ,

[Lm, Mn] = (m− n)Mm+n +
cM

12
(m3 −m)δm+n,0 ,

[Mm, Mn] = 0 . (73)

Note the two types of central charges cL and cM depend on the specific gravity dual. Here we
only focus on the BMSFT that duals to the Einstein gravity, which corresponds to the following
choice for the central charges [87]

cL = 0 , cM =
3

GN
. (74)

Here we focus on some classical background among the general classical solutions of Ein-
stein gravity without cosmological constant, which take the following form in Bondi gauge [88]

ds2 = 8GN M du2 − 2 du dr + 8GN J du dφ + r2dφ2 . (75)

We only discuss the case of the null-orbifold with the parameters M = J = 0. This is dual
to the zero temperature BMSFT on a plane (an analog of the zero temperature BTZ black
hole). One can take a boundary interval A : {(u1,φ1), (u2,φ2)} and proceed to calculate the
entanglement entropy in this theory. The entanglement entropy of such an interval takes the
following simple formula [80,84,85]

SA =
cL

6
ln
�

u12

ε

�

+
cM

6

�

φ12

u12

�

, (76)

where φ12 = φ2−φ1 and u12 = u2−u1 and ε is the (lattice) cutoff. Note that the first term is
logarithmic with central charge cL , whereas the second term does not involve any logarithm.
Equipped with this result, we will calculate the BPE in BMSFT on some purification.

Another essential ingredient for our discussion is the geometric picture for holographic
entanglement entropy [80], which can be used to construct the analogue of the EWCS in 3d
flat space. The construction of the EWCS was explicitly studied in [83], with the motivation
to establish the duality between the EWCS and the entanglement negativity5 [91] in 3d flat
holography.

The geometric picture for entanglement entropy in flat holography [80] not only contains
a bulk spacelike geodesic, but also contains additional null geodesics, which are novel com-
pared with the RT formula in AdS/CFT. This novel geometric picture with null geodesics for

5See also [89,90] for relevant discussions.
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Figure 7: In the left figure, we consider an interval A on the future null infinity I+.
The red lines are the null geodesics γ1,2 along the r direction emanating from the
endpoints x1,2. The solid blue line EA is the RT surface which is the saddle geodesic
with minimal length among all the bulk geodesics connecting γ1,2. The right figure
shows the same geometric picture in Cartesian coordinate coordinates where all the
geodesics are straight lines. The two planes are the two normal null hypersurfaces
N± emanating from EA.

holographic entanglement is argued [55] to be valid for spacetimes with non-Lorentz invari-
ant duals based on a modified version of the Lewkowycz-Maldacena prescription [92]. Let
us consider a boundary interval A on the null infinity with endpoints x1,2. To each endpoint
x i , we associate a null geodesic γi emanating from it and extending into the bulk. The null
geodesic is determined by the requirement that it should follow the bulk modular flow. In the
Bondi gauge, they are just null lines along the r direction. The spacelike geodesic EA whose
length gives the holographic entanglement entropy is just the geodesic that gives the minimal
length among all the geodesics whose endpoints are respectively anchored on γ1 and γ2. For
simplicity, we also denote EA as the RT surface. See Fig. 7 for the geometric picture in both
the Bondi gauge and the Cartesian coordinates. The boundary together with the two normal
null hypersurfaces N± emanating from EA enclose a bulk region, which is the analog of the
entanglement wedge in flat space.

The EWCS in 3d flat space [83] is defined in a similar way as the EWCS on a time slice
of the AdS background. Let us consider the configurations shown in Fig. 8. For the adjacent
case where x2 is the endpoint shared by A and B, the EWCS is the saddle geodesic whose
endpoints yb, and y ′b are anchored on EAB and γ2 respectively. For the non-adjacent case, the
entanglement wedge of AB also undergoes a phase transition from the disconnected phase to
the connected phase when A and B are close enough. In the connected phase, the EWCS is
then given by the saddle geodesic whose endpoints are anchored on E23 and E14. Here, for
example, E23 is the RT surface of the interval with endpoints being x2 and x3. The EWCSs are
drawn by the solid green lines in Fig. 8, and their lengths are explicitly calculated in [83]. In
the following, we will reproduce the EWCS via the BPE in BMSFT.

5.2 BPE for adjacent cases and the Markov recovery

First, we consider two adjacent intervals A : {(u1,φ1), (u2,φ2)} and B : {(u2,φ2), (u3,φ3)}.
The system is purified with an auxiliary system A′B′ partitioned by the point Q : (uq,φq)}. The
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Figure 8: Boundary intervals (left: adjacent, right: non-adjacent) and their entan-
glement wedge. The red lines emanating from the boundary points x i are the null
lines γi . Here yi (= 1, 2,3,4) are the endpoints of relevant RT surfaces connecting
γi . yb and y ′b are the endpoints of the EWCS (green), which is the saddle geodesic
connecting those RT surfaces. In the left figure, yb is just a point on γ2. The figures
are inspired by [83].

entanglement entropy for each interval is given by

SA =
cL

6
ln
�

u12

ε

�

+
cM

6

�

φ12

u12

�

, SB =
cL

6
ln
�

u23

ε

�

+
cM

6

�

φ23

u23

�

,

SA′ =
cL

6
ln
�uq1

ε

�

+
cM

6

�φq1

uq1

�

, SB′ =
cL

6
ln
�u3q

ε

�

+
cM

6

�φ3q

u3q

�

, (77)

where φq1 = φq −φ1 and uq1 = uq − u1 and similarly for φ3q and u3q. As we are considering
BMSFT dual to the Einstein gravity, we set cL = 0. The balance condition (32) implies

φ12

u12
−
φ23

u23
=
φq1

uq1
−
φ3q

u3q
. (78)

Previously for the CFT2 case, we defined the pure state on a time slice, and hence only one
parameter is needed to be determined. In BMSFT, the entanglement entropy for an interval
diverges when the end points are settled on a u slice. Here we consider the covariant config-
uration where the partition point is characterized by two parameters. However, note that the
balance condition is only one equation. Imposing the balance condition, we obtain a line for
the partition point Q : (uq,φq) as

φq =
�

1
uq1
+

1
u3q

�−1�φ12

u12
+
φ1

uq1
−
φ23

u23
+
φ3

u3q

�

. (79)

One can verify that all the points on the above line give the same BPE. We first calculate the
PEE sAA′(A) with Q undetermined

sAA′(A) =
1
2
(SA+ SAA′ − SA′) =

cM

12

�

φ12

u12
+
φq2

uq2
−
φq1

uq1

�

. (80)

Then we substitute the solution (79) of the balance condition into (80) to obtain the BPE

BPE (A : B) =
cM

12

�

φ12

u12
+
φ23

u23
−
φ13

u13

�

, (81)
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which is independent of uq. Upon the substitution cM = 3/GN , this result exactly matches the
EWCS obtained in [83] for adjacent intervals.

Furthermore, we can calculate the crossing PEE at the balance point, which is given by

IAB′ =
1
2
(SA′A+ SAB − SA′ − SB) =

cM

12
log

�

φq2

uq2
+
φ13

u13
−
φq1

uq1
−
φ23

u23

�

. (82)

On the solution (79), Eq. (82) becomes

IAB′ = 0 , (83)

i.e., the balanced crossing PEE vanishes6. This is in contrast to the AdS3 case, where the
crossing PEE is a non-zero constant.

The vanishing of the crossing PEE may have a special physical meaning related to the
Markov recovery process. This follows from the observation that the PEE, hence also the
BPE and the crossing PEE, can be expressed in terms of the conditional mutual information
(CMI) [63]. The CMI for a three-party system is defined as [73]

I(A : B|C) = SAC + SBC − SABC − SC = I(A : BC)− I(A : C) . (84)

Here we are interested in the crossing PEE. One can check that the crossing PEE IAB′ can be
written as a CMI

IAB′ =
1
2
(SAA′ + SAB − SA′ − SB)

=
1
2
(SBB′ + SAB − SABB′ − SB)

=
1
2

I(B′ : A|B) , (85)

where in the second line we used the fact that ABA′B′ is in a pure state. More explicitly, the
above equation (85) states that given a purification ABA′B′, the crossing PEE captures the
correlation between B′ and A from the point of view of B′. The CMI is also symmetric in A and
B′, and it can also be expressed as I(B′ : A|A′)/2.

Expressing the crossing PEE in terms of the CMI allows us to express it in terms of a specific
Markov recovery process. To give a general overview of Markov recovery, consider a three-
party system comprised of A, B and C . Define the reduced density matrix of A and B as ρAB,
which is generally a mixed state. We define a map MB→BC : B→ BC , such that it acts on ρAB
and produces a tripartite state ρ̃ABC , such that [73]

ρ̃ABC =MB→BC(ρAB) . (86)

The question we want to address is whether it is possible to perfectly recover a tripartite
state ρABC under a mapping (86), provided the recovery mapping MB→BC exists. In fact,
the recovery could be perfect or approximate (imperfect) [93]. The degree of imperfectness
is given by the fidelity7

max
MB→BC

F
�

ρABC ,MB→BC(ρAB)
�

≥ e−I(A:C |B) , (87)

6Similarly, the difference between the entanglement negativity and half of the mutual information was found
to be vanishing [83]. This is consistent with our results, since the entanglement negativity is also claimed to be
the dual to the EWCS.

7The fidelity between two density matrices ρ1 and ρ2 is given by F(ρ1,ρ2) =
�

Tr
rp

ρ1ρ2
p
ρ1

�

.
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Figure 9: The non-adjacent intervals A : {(u1,φ1), (u2,φ2)} and
B : {(u3,φ3), (u4,φ4)}.

i.e., it is lower bounded by the exponential of the (negative) CMI and ranges between [0, 1],
i.e., 0≤ F(ρ1,ρ2)≤ 1. If the two states are equal, then the fidelity is 1. On the other hand, the
fidelity vanishes if the states are infinitely far away from each other in the Hilbert space, i.e., if
they are orthogonal to each other. The recovery is exact when the CMI vanishes, whereas for
other cases, the recovery is approximate. In both cases, on of the goals is to find an explicit
expression of the recovery map. Authors in [94,95] have, in fact, considered such maps, which
is known as the Petz map [96,97].

When the partition of A′B′ satisfies the balance condition, the crossing PEE, as we have
argued, is a generalization for the Markov gap. More interestingly, in 3d flat holography, the
crossing PEE vanishes i.e.,

IAB′ |balance = IBA′ |balance = 0 , (88)

and hence, the following CMI vanish

I(A : B|B′)|balance = I(B : B′|A′)|balance = 0 . (89)

According to Eq.(87), we can write

0≥ −
1
2

max
MA→AA′

logF
�

ρAA′B,MA→AA′(ρAB)
�

�

�

�

balance
, (90)

0≥ −
1
2

max
MB→BB′

logF
�

ρABB′ ,MB→BB′(ρAB)
�

�

�

�

balance
. (91)

Since the fidelity ranges from 0 to 1, the above inequalities can only be satisfied when the
fidelity is 1. This implies that the vanishing crossing PEE (or Markov gap) implies a perfect
Markov recovery from ρAB to ρABB′ or ρAA′B where A′ and B′ are determined by the balance
conditions.

5.3 BPE and EWCS for non-adjacent cases

Then we turn to the non-adjacent case where A and B are given by

A : {(u1,φ1), (u2,φ2)} , B : {(u3,φ3), (u4,φ4)} . (92)

Here we set u4 > u3 > u2 > u1, hence keeping the degrees of freedom in AB in some order.
The complement A′B′ is then partitioned by two points

Q i : (uqi
,φqi
) , i = 1, 2 . (93)
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See Fig. 9. The EWCS for this case was also given in [83], which is given by

EW (A : B) =
1

4GN

�

�

�

�

X
p

T (1− T )

�

�

�

�

, (94)

where T and X are defined by

T =
u12u34

u13u24
, X = T

�

φ12

u12
+
φ34

u34
−
φ13

u13
−
φ24

u24

�

. (95)

Then let us calculate the BPE (A : B). Again we consider the covariant configuration, and
hence we need four parameters to determine the two partition points. However, the balance
conditions (44) only give two equations

φ2q1

u2q1

−
φq13

uq13
=
φq22

uq22
−
φq23

uq23
,

φq21

uq21
−
φq24

uq24
=
φq11

uq11
−
φq14

uq14
, (96)

which are not enough to determine the two partition points. For simplicity we can set

(u1,φ1) = (0,0) , (97)

due to the translation symmetries along u and φ. Solving the above equations we get φq1
and

φq2
in terms ofφi , ui , uq1

and uq2
, where i = 1,2, 3,4. Then we are left with two undetermined

parameters uq1
and uq2

.
One may boldly expect that, as in the adjacent case, when we substitute the solutions for

φq1
and φq2

into the PEE sA′1AA′2
(A), we will get a result exactly equals to the EWCS (94), which

is independent of uq1
and uq2

. However in this case we obtain

BPE (A : B) =
cM uq1q2

�

u3

�

u4u34φ2 + u2u23φ4

�

− u2u4u24φ3

�

12u4u23

�

u2u3

�

u4 − uq1

�

+
��

u2 + u3 − u4

�

uq1
− u2u3

�

uq2

� , (98)

which indeed depends on uq1
and uq2

. If we take the limit φ3 → φ2 first, and then take the
limit u3→ u2, we will find (φq1, uq1) = (φ2, u2) and the BPE (98) will reproduce the result for
the adjacent case.

We then compute the difference between BPE (A : B) (98) and EW (A : B) (94) and find
that, as long as one of the following two conditions is satisfied 8

uq1
=

u2u4

(1−
p

T )u2 +
p

Tu4
, (99)

uq2
=

u2u4

(1+
p

T )u2 −
p

Tu4
, (100)

then we will have

BPE (A : B) = EW (A : B) . (101)

Note that the right-hand side of (99) (or (100)) only depends on the u coordinates of the
four endpoints of AB. This makes (99) and (100) quite a simple requirement as an additional
constraint. In summary, when the two balance conditions together with one additional simple
requirement ((99) or (100)) are satisfied, we will get a BPE that equals to the EWCS and
is independent of the rest of one free parameter. This observation indicates that the BPE we

8We thank Debarshi Basu for pointing out a typo in the equations (99) and (100) in the first version of the
paper.
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defined with only two balance conditions is closely related to the EWCS. If they are not related,
we will need more than one requirement to equate the BPE and EWCS since there are still two
free parameters. Secondly, for covariant configurations, where we need twice the number of
parameters to determine the partition points for A′B′, the definition of the BPE needs further
constraints along with the balance conditions.

We may also regard the additional condition (99) (or (100)) as the balance requirement,
a fact which we did not understand until recently. In a recent work [98], authors studied the
BPE for the BMSFTs dual to topologically massive gravity in asymptotically flat spacetimes. In
these configurations, we have cL 6= 0, and hence the entanglement entropies for single intervals
contain a contribution from the logarithmic term in (76). It turns out that the logarithmic term
should also satisfy an independent balance requirement that coincides with (99) (or (100)).
Thus, our claim that the BPE gives the EWCS for non-adjacent cases in 3-dimensional flat
holography is perfectly justified.

5.4 Balanced crossing PEEs and tripartite entanglement

It is interesting to visualize the interpretation of the crossing PEE or the generalized Markov
gap from the gravity side. For the adjacent intervals, we have explicitly shown that the bal-
anced crossing PEEs can be regarded as the generalized Markov gap. The Markov gap is
supposed to be lower bounded by the ratio of the AdS radius and Newton’s constant multi-
plied by the EWCS endpoints as shown in [73]. Indeed, this is true for canonical purification,
but it is unclear what happens for generic purifications. The universal nature of the balanced
crossing PEE is expected to show some bound from the gravity side as well. Thus, for a generic
purification, we propose the following9

∑

crossing PEE
�

�

balance ≥
log 2
4 GN

|∂ΣAB| . (102)

Here in the sum, one needs to include the contribution from all the crossing PEEs on the
balanced condition, and |∂ΣAB| accounts for the number of EWCS endpoints. From Eq.(55),
we can evidently see that the purification from path-integral optimization actually saturates
the above bound. The non-vanishing crossing PEEs suggest that the states might have large
tripartite entanglement [36]. On the other hand, we see the crossing PEE vanishes for the
BMSFT dual to Einstein gravity, which violates the above inequality (102). This could imply
the following two different cases: either the BMSFT states have the bipartite or GHZ state-type
entanglement (sometimes they are referred to as the sum of triangle states (SOTS)) [71,72], or
the bound depends only on cL , but not on cM . In any case, Eq.(102) needs more investigation
for both AdS and non-AdS gravity as well as for generic CFTs, and we hope to address them
in the future.

6 Summary and outlook

The primary objective of this paper is to demonstrate BPE as a proper measure for the total
intrinsic correlations in a mixed state. First, we argued that the BPE is purification-independent
by showing that, given a mixed state the BPE is the same for different purifications, including
the class we constructed from the Euclidean path-integral, the canonical purification and pure
states with a gravity dual. Secondly, in all the configurations where the BPE can be evaluated,

9We have not explicitly found a similar statement for the non-adjacent case. This is because, the way we have
defined, the crossing PEEs do not reduce to the Markov gap. However, it would be interesting to see whether, for
the non-adjacent case, some modified version of the crossing PEE respects a similar bound.
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the reflected entropy for the canonical purification turns out to be a specific case of the BPE.
This implies that BPE holds for any purifications and generalizes the reflected entropy. Finally,
we find that the correspondence between the BPE and the EWCS goes beyond AdS/CFT. We
conducted a detailed evaluation of the BPE in 3d flat holography, coinciding with the EWCS
result.

The purification independence for BPE was not addressed in [1] because of the two spe-
cial cases of purifications which give different BPE and balanced crossing PEEs from other
purifications. The first one is the pure state constructed using the so-called state-surface cor-
respondence [99] where the pure state is settled at the union of the boundary interval AB and
its minimal surface EAB. In this case the BPE (A : B) differs from the EWCS and the balanced
crossing PEE IAB′ = c/12 log 2 (see section 3.3 in [1] for details). The second case is the pure
state calculated by the optimized path-integral, which is claimed to be the minimal purification
where SAA′ gives the EoP, as well as the EWCS [70]. However, both of the two cases are not
robust enough to exclude the purification independence of the BPE. Especially, the support for
the surface-state correspondence is far from enough; hence the pure states constructed under
this context may not exist. Also, the existence of negative mutual information in the optimized
purification is subtle.

We also find that the minimized crossing PEE is a natural generalization for the Markov
gap. On the other hand, our crossing PEE construction covers more general cases and goes
beyond the canonical purification. We decompose the BPE into two parts, the intrinsic PEE
IAB and the crossing PEEs. More interestingly, the crossing PEE (or their sum) at the balance
point is shown to be minimal. For the adjacent cases, the minimized (or balanced) crossing
PEE is the generalized version of the Markov gap, and it is observed to be universal, which is
determined by the central charge alone. The minimized crossing PEE may capture a universal
aspect for the entanglement structure in quantum systems. It may play an essential role in
quantum information. One example we discussed is that, since the balanced crossing PEE
can be expressed as a CMI, it can be used to characterize how precisely the Markov recovery
process can be conducted. Remarkably, in the BMSFT that duals to 3d flat space in Einstein
gravity, the balanced crossing PEE vanishes, suggesting the possibility of a perfect Markov
recovery process. Furthermore, we interpret the crossing PEEs as a signature of tripartite
entanglement.

Entanglement of purification revisited

If the minimized crossing PEE is purification-independent, then the EoP may be explicitly cal-
culated in the context of PEEs. As we showed that the crossing PEE at the balance point is
minimized, the minimized SAA′ among all the purifications and partitions should be

SAA′ |min = IAB + (IAB′ + IA′B) |minimized + IA′B′ |minimized . (103)

In the adjacent case, on the right-hand side, the first term is independent of the purifications.
The second term is evaluated at the balanced point and is given by a universal constant. The
third term is purification dependent and could be turned off for some special purifications.
Hence we conclude that

Ep(A : B) = SAA′ |min =
1
2

I(A : B) +
c
3

log 2 , (104)

which is greater than the EWCS by a constant c/6 log2. This result apparently contradicts the
claim of [70] that the EoP gives the EWCS. The contradiction lies within the exclusion of the
negative PEE IA′B′ = −c/6 log2. After including this term, the conjecture perfectly holds. The
negative PEE can be fixed by a constant shift for the scalar field; hence the negative PEE in
(42) can be shifted to zero. However, under this shift, the SAA′ also changes to be (104).
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Future directions

Though the concept of BPE and the crossing PEEs are inspired by our study for holographic
systems, they can be defined on generic quantum systems. Testing the purification indepen-
dence for the BPE and universality of the balanced crossing PEE in more generic configurations
will be some important future directions.

• One can consider more generic purifications in condensed matter systems. In our paper,
we mainly focus on the vacuum states, and it will be crucial to test the purification
independence for the BPE in other pure states which are excited. For example, it would
be interesting to compute BPE in 2d free CFTs explicitly and compare it with existing
techniques [100] to see the numerical advantages.

• Both the EWCS and reflected entropy can be defined in higher dimensions, and it will
be interesting to test the correspondence between the EWCS and the BPE in higher
dimensions. In some highly symmetric configurations, the ALC proposal can still be valid.
One can also use the formula for the so-called extensive mutual information [28, 101]
to compute the PEE in higher dimensional CFTs.

• One workable case is the (warped) AdS3/warped CFT correspondence [102,103], where
the geometric picture for entanglement entropy was also worked out in [55,82,104]. In
this case, EWCS can be constructed in a similar way as in the flat case; hence it is also
possible to test the correspondence between the EWCS and the BPE.

• Our calculations of BPE can also be generalized to the finite temperature cases and for
other gravity duals like topological massive gravity (TMG) with non-zero cL . The cross-
ing PEE is supposed to be non-zero and should depend on the topological term as ob-
tained in the context of the entanglement negativity [83]. The generalization of the EoP
and EWCS from bipartite states to multipartite states was explored in [105,106], it will
also be interesting to explore the similar generalization for the BPE.

• It will be interesting to explore the dynamics of the BPE and, more generally, the crossing
PEEs by inserting heavy operators, which can be understood as the shock-wave pertur-
bation from the dual geometry [107,108].

• Both the BPE and the entanglement negativity are measures of mixed state correlations,
which in holographic CFTs are captured by the same dual, i.e., the EWCS [17]. How-
ever, the entanglement negativity is computed directly via the density matrix, while a
definition for the PEE or BPE based on the density matrix is still not clear. Hence a direct
comparison between them is quite tricky. Nevertheless, exploring the relation between
the BPE and entanglement negativity is an interesting avenue of research.

• The entanglement negativity contour was previously examined in [54], where a version
similar to the ALC proposal for negativity was introduced. It will be possible to impose
balance conditions on the negativity, which might also provide a version of BPE for the
negativity.

So far, quantities like the reflected entropy, EWCS, and EoP in covariant configurations
are rarely studied (see [109, 110] for examples). The BPE we have defined can be naturally
extended to covariant configurations. Our calculation in 3-dimensional flat holography shows
a perfect match between the BPE and the EWCS in totally covariant configurations. It will be
very interesting to explore the covariant configurations in AdS/CFT. In the static configurations
where the subsystems and the complement A′B′ are confined on a time slice, the position for
any partition point in A′B′ is determined by a single parameter and the number of the balance
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conditions equals the number the partition points. This helps us determine all the positions
of the partition points using the balance requirements. However, for covariant configurations,
one needs two parameters to determine the position of one partition point, while the number
of balance conditions is the same as the static case, which is not enough to determine the
positions of all the partition points in A′B′. Similar to [98], we expect additional balance
requirements to appear if we consider the more generic CFTs with different left and right
moving central charges. We hope to come back to this point in the near future.
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