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Abstract

A common feature of tree-level holography is that a correlator in one theory can serve as
a generating function for correlators in another theory with less continuous symmetry.
This is the case for a family of 4d CFTs with eight supercharges which have protected
operators dual to gluons in the bulk. The most recent additions to this family were
defined using S-folds which combine a spatial identification with an action of the S-
duality group in type IIB string theory. Differences between these CFTs which have a
dynamical origin first become manifest at one loop. To explore this phenomenon at the
level of anomalous dimensions, we use the AdS unitarity method to bootstrap a one-
loop double discontinuity. Compared to previous studies, the subsequent analysis is
performed without any assumption about which special functions are allowed. Instead,
the Casimir singular and Casimir regular terms are extracted iteratively in order to move
from one Regge trajectory to the next. Our results show that anomalous dimensions in
the presence of an S-fold are no longer rational functions of the spin.
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1 Introduction

The AdS/CFT correspondence is a deep connection between two classification programs [1–3].
It allows one to explore the space of conformal field theories in d dimensions by searching
for low energy string backgrounds asymptotic to AdSd+1. For any CFT constructed in this
manner, it is possible in principle to go a step further and access the OPE data by computing
correlation functions perturbatively. This expansion is organized by inverse powers of the
central charge. Comparing early work such as [4–8] to the modern reformulation in [9–11]
shows that a brute force application of this algorithm is extremely inefficient. A systematic
analysis of holographic CFTs, made possible by bootstrap techniques [12–18], is therefore a
recent endeavour. To complement the extensive results which are now available for AdS7×S4,
AdS5 × S5 and AdS4 × S7 [19, 20], a growing body of work has focused on finding tree-level
four-point functions for less supersymmetric backgrounds [21–24]. This paper will show that,
without computing any new tree-level correlators, we can also gain a richer understanding of
theory space beyond maximal supersymmetry by going to one loop.

Consider the stress tensor multiplet four-point function in 4d N = 4 Super Yang Mills at
tree-level. In the Mellin formalism [25–27], which we will review shortly, it takes the form

M(s, t;σ,τ) =Ms(s, t;σ,τ) +τ2Ms

�

t, s; στ , 1
τ

�

+σ2Ms

�

u, t; 1
σ , τσ

�

,

Ms(s, t;σ,τ) = −
60
cT

(t − 4)(u− 4) + (t − 4)(s+ 2)σ+ (u− 4)(s+ 2)τ
s− 2

, (1.1)

where σ and τ are invariant combinations of four polarization vectors t i associated with the
SO(6) R-symmetry. Importantly, the result (1.1) is the same for all three classical gauge groups
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— all that changes between SU(N), SO(N) and USp(2N) is the formula for cT in terms of N .1

Indeed, the orientifold construction in [29] shows that one needs to do a loop calculation to
be able to tell these theories apart. The flexibility of (1.1), however, does not stop there. After
writing out the σ and τ dependence, it is a simple exercise to make the replacement

t i · t j 7→
1
2

�

yi · ȳ j + y j · ȳi

�

, (1.2)

where the yi and ȳi are in the fundamental and anti-fundamental of SU(3). Discarding the
terms where any of these polarizations appear more than once yields another physical corre-
lator at tree-level: the stress tensor multiplet four-point function of the holographic 4d N = 3
SCFTs [30, 31].2 Along the same lines, one can also split (1.1) into components which trans-
form irreducibly under flavour and R-symmetry groups of SU(2). Among these is the stress
tensor multiplet four-point function of two different N = 2 SCFTs studied in [33, 34] which
are known to be planar equivalent to N = 4 SYM.

The following sections will detail a loop calculation which “lifts the degeneracy” between
a different collection of planar equivalent theories. These will be the 4d N = 2 theories whose
holographic correlators at order 1/cJ were computed in [24]. From this starting point, we will
be able to propose general techniques while avoiding the technical complications which occur
when some theories in the collection preserve more supercharges than others. In every other
respect, the treatment will be able to serve as a blueprint for the N = 3 example mentioned
above which is based on an S-fold. Developed in [30, 31], S-folds generalize the concept of
an orientifold in type IIB string theory to include an action of the SL(2,Z) duality group on
the axio-dilaton. The S-folds we will use were introduced in [35] which showed that they can
be made to preserve the same supercharges as the simple F-theory backgrounds of [36, 37].
This leads to a 4d N = 2 classification which complements the approach in [38–40].3 These
theories all contain a flavour current multiplet which can be regarded as a boundary mode for
gluons in the bulk. Its four-point function at tree-level is given by

MI1 I2 I3 I4(s, t;α) =MI1 I2 I3 I4
s (s, t;α) + (α− 1)2MI3 I2 I1 I4

s
�

t, s; α
α−1

�

+α2MI4 I2 I3 I1
s

�

u, t; 1
α

�

,

MI1 I2 I3 I4
s (s, t;α) = f I1 I2J f J I3 I4

6
cJ

4− u+α(t + u− 8)
s− 2

, (1.3)

where α is a cross ratio for the SU(2) R-symmetry and f I J
K are the structure constants of the

flavour group. The one-loop correction to (1.3) was recently computed in [44] yielding an
expression from which one may extract double-trace operator dimensions. Our results will
regard these anomalous dimensions as fundamental and show how they differ between three
types of S-folds.

To actually compute these data, we will use the AdS unitarity method developed in [45].4

This has a close connection to S-matrix theory which was made precise in [18]. Both in AdS and
flat space, the absorptive part of a loop amplitude is determined by tree amplitudes which put
the intermediate states on-shell. In reasonable holographic CFTs, these can be chosen from
an infinite set of Kaluza-Klein modes. To deal with this mixing problem, [63–65] proposed
a general algorithm and used it to analyze N = 4 SYM. After further loop-level studies of
N = 4 SYM [66–70], the AdS unitarity method was first applied to other full-fledged theories

1For USp(2N), one can make a choice between two gauge theories which have different line operators in the
sense of [28].

2Keeping the quadratic terms instead would give us a four-point function of “extra supercurrent” multiplets
meaning that the supersymmetry is automatically enhanced to N = 4 [32].

3Further refinements, including a consideration of nonlocal operators, were made in [41–43].
4There is now a unifying picture [46] relating this to the split representation used in [47–51]. Alternative

approaches to computing Witten diagrams with loops may be found in [52–62].
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in [44, 71, 72].5 Before extending this list, it is important to mention [75] which represents
the current state of the art for N = 4 SYM with gauge groups other than SU(N). In this case,
one-loop anomalous dimensions cease to be rational functions of the spin — a property which
appears to be shared by S-folds.

This paper is organized as follows. Section 2 discusses the theories of [35] and sets up
standard tools for their analysis such as the superconformal block expansion, superconformal
Ward identity and Lorentzian inversion formula. Section 3 then reviews what is known at the
disconnected and tree levels [24] where the effects of an S-fold are purely kinematical. Some
examples of OPE inversion provide preparation for the longer calculations at one loop. We
begin working at one loop in section 4 which includes the debut of our method for isolating
operator content in a model independent way. The main results are a handful of mixed and
unmixed anomalous dimensions. A few of these have fixed spin and the rest are given as
asymptotic expansions around large spin. After the conclusion in section 5, some technical
points are developed further in the appendices.

2 Setup

In this section, we describe the prerequisites for writing down specific four-point functions.
Section 2.1 discusses the AdS5 geometries which give rise to our theories of interest. The
Kaluza-Klein modes found in [36, 37] turn out to transform differently in the presence of
an S-fold and we give a simple rule for determining which states are projected out. Sec-
tion 2.2 establishes our conventions for superconformal correlators, while section 2.3 reviews
the Lorentzian inversion formula [18]. In both cases we focus on external operators with
equal scaling dimensions but otherwise give general results. In section 2.4, we derive a group
theoretic prescription which shows how OPE coefficients with an S-fold are related to those
without.

2.1 S-fold backgrounds

One way to construct various rank N CFTs, including those of Argyres-Douglas and Minahan-
Nemeschansky type, is to consider the system

D3
︷︸︸︷

R1,3 ×C1 ×C2
︸ ︷︷ ︸

7

×C3 (2.1)

of N D3 branes coincident with a 7-brane of F-theory.6 The 7-brane must be chosen so that its
worldvolume harbors one of the gauge groups in table 1. These all give rise to a deficit angle
in the transverse C3 and all but one of them lead to a fixed (strongly coupled) value for the
axio-dilaton τ.

2.1.1 Isometries and gauge symmetry

When N is large, the near-horizon metric is given by

ds2 = ds2
AdS5
+ dφ2 +

�

2− ν
2

�2

cos2φ dθ2 + sin2φ ds2
S3 , (2.2)

5Line defects of CFTs have provided another interesting application [73,74].
6These are bound states of D7 branes (on which strings can end) along with certain images of D7 branes under

SL(2,Z) transformations which make them non-perturbative objects.
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Table 1: Basic data for the 4d SCFTs probing F-theory singularities. The 7-brane
tension creates a deficit angle of νπ and their monodromies fix the value of the axio-
dilaton τ. These possibilities are also commonly labelled by Kodaira singular fibers
but that will not play a role here.

G A0 A1 A2 D4 E6 E7 E8

ν 1/3 1/2 2/3 1 4/3 3/2 5/3

τ e
πi
3 e

πi
2 e

πi
3 — e

πi
3 e

πi
2 e

πi
3

which makes it clear that the 7-branes, wrapping an S3 ⊂ S5, have broken the isometries
according to

SO(6)→ SU(2)L × SU(2)R × U(1)R . (2.3)

The single particle spectrum for this background is composed of two types of Kaluza-Klein
modes: those of 10d IIB SUGRA reduced on the internal manifold of (2.2) and those of 8d G
SYM reduced on S3. As in [24], we will only consider correlators where all external operators
are of the second type.7 These transform in the adjoint representation of the gauge group with
generators denoted by TI . In this holographic setup, the 7-brane gauge group is a flavour group
of the CFT which we write as GF = G. Following [37], let us focus on the internal components
of a generic gauge field Aµ(x , y) = AI

µ(x , y)TI . Reducing it on Sn−1 means writing the spherical
harmonic expansion

AI
a(x , y) =

∑

M

AI
M(x)Y

M
a (y) , (2.4)

where M is a Gelfand-Tsetlin pattern of the SO(n) representation given by the simplest hook
diagram. This is because each basis element for the space of tensors having this index symme-
try yields a vector spherical harmonic obtained by pulling back

-
c

b1...bp−1
a xb1

. . . xbp−1
, x ∈ Rn (2.5)

to Sn−1. When n = 4, these representations are of course reducible. In terms of the SU(2)
spins ( jL , jR), they can be written

�

p
2 , p−2

2

�

⊕
�

p−2
2 , p

2

�

for p ≥ 2. Although these states are on
equal footing at the level of bosonic symmetries, only one of them can be a superconformal
primary. This will be the one with a spin of p

2 under the SU(2) that rotates the supercharges
and a spin of p−2

2 under the SU(2) that commutes with the supercharges [37]. As suggested by
the notation, we choose these to be SU(2)R and SU(2)L respectively. Several naming schemes
have been used for these theories, most recently S(N)G,1 .

2.1.2 Enter S-folds

The idea of [35] was to have the z1 = z2 = z3 = 0 locus within the 7-branes coincide with the
fixed plane of an S-fold which preserves N = 3. Its action is

(z1, z2, z3) 7→
�

e
2πi

k z1, e−
2πi

k z2, e
2πi

k z3

�

, τ 7→ g τ , (2.6)

where g ∈ SL(2,Z) has order k. This immediately implies that there are only four non-trivial
values of k. Determining the allowed 7-branes is not as simple as comparing tables 1 and 2.

Due to the deficit angle, it is really z
2−ν

2
3 which forms a good co-ordinate on the transverse

space. One should therefore consider S-folds with the subgroups Z 2k
2−ν

and check that they

7With this choice, the effects of the deficit angle on operator dimensions will not be visible until higher orders.
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Table 2: S-folds are labelled by k such that Zk is a subgroup of SL(2,Z). In each
case, we give a possible generator and the value of τ that it fixes.

k 2 3 4 6
g −I (ST )2 S ST

τ — e
πi
3 e

πi
2 e

πi
3

Table 3: Flavour symmetries and central charges for the twelve known classes of
4d N = 2 S-folds. See [41, 43] for more information including Coulomb branch
scaling dimensions (which differ between the S(N)G,k and T (N)G,k theories) and a specific
breakdown of how many units of central charge are due to each factor of GF .

GF cJ cT

S(N)A2,2 C1 × A0
3
2(3N + 1) 10(9N2 + 9N + 1)

S(N)D4,2 C2 × A1
3
2(12N + 1) 10(12N2 + 15N + 2)

S(N)E6,2 C4
3
2(6N + 1) 10(18N2 + 27N + 4)

T (N)A2,2 A2
9N
2 90N2

T (N)D4,2 B3 6N 30N(4N + 1)

T (N)E6,2 F4 9N 90N(2N + 1)

S(N)A1,3 A0 0 10(12N2 + 11N + 1)

S(N)D4,3 A2 3(6N + 1) 30(6N2 + 7N + 1)

T (N)A1,3 A1 4N 10N(12N − 5)

T (N)D4,3 G2 6N 30N(6N − 1)

S(N)A2,4 A1 3(6N + 1) 20(9N2 + 9N + 1)

T (N)A2,4 A1
9N
2 90N(2N − 1)

lead to compatible values of τ [35]. This yields six possible backgrounds S(N)G,k for D3 branes to

probe which are S(N)A2,2, S(N)D4,2, S(N)E6,2, S(N)A1,3, S(N)D4,3 and S(N)A2,4. As found by [41], there is a related

S-fold theory T (N)G,k which may be obtained from S(N)G,k by a partial Higgsing. In both cases,
central charges as a function of N were obtained by the method of [76]. Table 3 lists them in
conventions such that




Tµν(x)Tρσ(0)
�

=
cT

6π4

�

Iµσ Iνρ + Iµρ Iνσ −
1
2
δµνδρσ

�

1
x8

¬

J I
µ(x)J

J
ν (0)

¶

=
cJ

2π2

Iµνδ
I J

x6
, (2.7)

where Iµν ≡ δµν − 2
xµxν

x2 .
Taking the near-horizon limit again, (2.2) becomes

ds2 = ds2
AdS5
+ dφ2 +

�

2− ν
2k

�2

cos2φ dθ2 + sin2φ ds2
S3/Zk

. (2.8)

Using Hopf co-ordinates, we can parametrize the equatorial S3 at φ = π
2 by

z1 ≡ x3 + i x4 = cosβeiω , z2 ≡ x1 + i x2 = sinβeiω̃ , (2.9)

where (ω, ω̃) ∼
�

ω+ 2π
k , ω̃− 2π

k

�

by (2.6). Now consider what happens to the spherical har-
monics for superconformal primaries. Defining σµ = (~σ, i I), (2.5) may be written in the

6
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convenient form

( jL , jR) =
�

p− 2
2

,
p
2

�

cα1...αp−2;ᾱ1...ᾱp xα1ᾱ1
. . . xαp−2ᾱp−2

, xαᾱ = xµσ
µ
αᾱ . (2.10)

To complete the Gelfand-Tsetlin pattern we need mL which is half the difference between the
number of unbarred ± indices and mR which is half the difference between the number of
barred ± indices. These are of course the Cartans of U(1) satisfying |mL| ≤ jL and |mR| ≤ jR.
Plugging (2.9) into (2.10), we therefore see that the associated spherical harmonics have mR
powers of ei(ω+ω̃) and mL powers of ei(ω−ω̃). Demanding that the latter be invariant under
the S-fold action leads to the main result of this subsection. A state is part of the Kaluza-Klein
spectrum if and only if 2mL is divisible by k. Note that when k = 2, this is simply a restriction
to integer values of mL which we can implement by restricting to integer values of jL . We
therefore find, in agreement with the results of [35], that SU(2)L is preserved for k = 2 and
breaks to U(1)L for all other values of k.8

Before moving on, it is interesting to note that GF 6= G for most of the rows in table 3.
In other words, G and SU(2)L are both broken to an invariant subgroup by the S-fold. For
S(N)G,k theories, [35] indirectly identified the subgroups of G which commute with the asymp-
totic holonomy around the D3 branes. It was later pointed out in [43] that the classification
of automorphisms of G which cannot be undone by a gauge transformation restricts these in-
variant subgroups to a very short list. To derive them microscopically, one should presumably
keep track of how the constituents of a 7-brane in F-theory are transformed into each other by
SL(2,Z). Their electric and magnetic charges are usually taken to be

A : (1, 0) B : (3,1) C : (1,1) , (2.11)

without loss of generality. The branes labelled A are ordinary D7 branes which are magnetic
sources for the zero form in the axio-dilaton. There have been at least two proposals for how
Chan-Paton factors of the individual (p, q) branes serve to build up the gauge group. One uses
open strings which wind around non-perturbative branes in judiciously chosen ways [77] and
another uses multi-pronged open strings [78]. Fortunately, the holographic calculations that
follow can be done without committing to any particular flavour group. We will therefore
refer to GF abstractly where |GF | will be its dimension and G∨F the product of the dual Coxeter
number and the length of the longest root.

2.2 Superconformal kinematics

The superconformal primaries dual to single-particle states on the singular locus belong to 1
2 -

BPS multiplets of the 4d N = 2 superconformal algebra. These were denoted by BB̄[0; 0](p,0)
p

in [79]. Proving this is a simple exercise in representation theory. The SYM fields on the
7-brane have Lorentz spin at most 1 which makes any other multiplet too long to fit.9 The
quantum numbers of these operators are

∆= p , `= 0 , jL =
p− 2

2
, jR =

p
2

, (2.12)

along with the adjoint representation of GF . Knowing this, it is convenient to use the notation

OI
j (x; v, v̄)≡OI

α1...α2 j ;ᾱ1...ᾱ2 j+2
(x)vα1 . . . vα2 j v̄ᾱ1 . . . v̄ᾱ2 j+2 (2.13)

8This compares nicely to the AdS5 × S5 story because the k = 2 S-fold of N = 4 SYM reduces to the standard
orientifold [29].

9This is entirely analogous to how SURGRA fields of spin at most 2 limit us to 1
2 -BPS multiplets of 4d N = 4.

The only way out would be to imagine that higher-spin descendants of single-trace operators are double-trace —
an equation of motion which would lead to contradictions.
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for the k = 2 S-folds.10 For the k = 3 and k = 4 S-folds, we will instead refer to individual
components OI

j,m(x; v̄) where m is the U(1)L charge. A four-point function of the operators
(2.13) will involve the cross ratios

U ≡ zz̄ =
x2

12 x2
34

x2
13 x2

24

, V ≡ (1− z)(1− z̄) =
x2

14 x2
23

x2
13 x2

24

, α=
v̄13 v̄24

v̄12 v̄34
, β =

v13v24

v12v34
, (2.14)

where
x i j = x i − x j , vi j = vαi vβj εαβ , v̄i j v̄

ᾱ
i v̄β̄j εᾱβ̄ . (2.15)

It is possible to make the dynamical part a degree E polynomial in α and a degree E − 2
polynomial in β where

E =
¨

2 jmin + 2 , 2( jmin + jmax)≤
∑4

i=1 ji ,
∑4

i=1 ji − 2 jmax + 2 , 2( jmin + jmax)>
∑4

i=1 ji ,
(2.16)

is the extremality. This is done by extracting a kinematic prefactor of the form
¬

OI1
j1
(x1; v1, v̄1)O

I2
j1
(x2; v2, v̄2)O

I3
j3
(x3; v3, v̄3)O

I4
j4
(x4; v4, v̄4)

¶

= G I1 I2 I3 I4(U , V ;α,β)

×
∏

i< j

�

vi j v̄i j

x2
i j

�γi j � v̄12 v̄34

x2
12 x2

34

�E

(v12v34)
E−2.

(2.17)

The exponents are given by

γ12 = 0 , γ14 = 2 j1 + 2− E , γ13 = 0 ,

γ24 = j2 + j4 − j1 − j3, γ23 = j1 + j2 + j3 − j4 − E + 2, γ34 = j4 + j3 − j2 − j1
(2.18)

when j1 ≤ j2 ≤ j3 ≤ j4 and they are determined by a straightforward permutation otherwise.11

Expanding a generic four-point function into superconformal blocks is often a difficult task.
With 1

2 -BPS four-point functions, one is able to take an alternative route: using a solution of
the superconformal Ward identity to write (2.17) in terms of two auxiliary functions which
are easier to expand.12 The relevant superconformal Ward identity, first studied in [81, 82],
takes the simple form

�

z
∂

∂ z
−α

∂

∂ α

�

G(z, z̄;α,β)

�

�

�

�

α=z−1

= 0 , (2.19)

where we have suppressed the four adjoint indices. Its solution is given by

G(z, z̄;α,β) =
z(1−αz̄) f (z̄;β)− z̄(1−αz) f (z;β)

z − z̄
+ (1−αz)(1−αz̄)H(z, z̄;α,β) , (2.20)

where
f (z;β) = G(z, z̄; z̄−1,β) , f (z̄;β) = G(z, z̄; z−1,β) (2.21)

and H(z, z̄;α,β) (now of degree E − 2 in both α and β) is defined by subtraction. Similar
decompositions exist in 6d theories as well [81].13 Contributions to (2.20) come in three

10We have reversed the bars with respect to [24] since we will be focusing on SU(2)L more than SU(2)R.
11This notation might be a little too compact. When handling j2 ≤ j1 ≤ j3 ≤ j4 for instance, γ14 becomes

2 j2 + 2− E which is not γ24.
12This is what [80] referred to as the expansion in atomic blocks.
13Auxiliary correlators are probably responsible for the biggest difference in look and feel between the even and

odd dimensional superconformal bootstrap literature. See e.g. the need to remove redundant crossing equations
in [83].
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Table 4: Expressions for the superconformal blocks in a form which shows that they
manifestly satisfy the superconformal Ward identity. One can see that the j = 0,1
elements of the first row (identity and moment map) only contribute to the chiral
correlator. The j = 0 multiplets in the second row would as well but these are ruled
out since they contain higher-spin currents.

Multiplet f (z) part H(U , V ;α) part

BB̄[0;0](2 j,0)
2 j k j(z)

∑ j−2
k=0 U−1 g j+k+2, j−k−2(U , V )Yk(α)

AĀ[`;`](2 j,0)
2 j+`+2 k j+`+2(z) −

∑ j−1
k=0 U−1 g j+`+k+4, j+`−k(U , V )Yk(α)

L L̄[`;`](2 j,0)
∆ 0 U−1 g∆+2,`(U , V )Y j(α)

types according to the selection rule

BB̄[0;0](2 j1,0)
2 j1

⊗ BB̄[0; 0](2 j2,0)
2 j2

=
j1+ j2
⊕

j=| j12|
BB̄[0;0](2 j,0)

2 j (2.22)

⊕
∞
⊕

`=0





j1+ j2−1
⊕

j=| j12|
AĀ[`;`](2 j,0)

2 j+`+2 ⊕
j1+ j2−2
⊕

j=| j12|
L L̄[`;`](2 j,0)

∆



 .

They can be expressed in terms of the 1d bosonic blocks

kh(z) = zh
2F1(h, h; 2h; z) , (2.23)

4d bosonic blocks

g∆,`(z, z̄) =
zz̄

z − z̄

�

k∆+`
2
(z)k∆−`−2

2
(z̄)− (z↔ z̄)

�

(2.24)

and SU(2) polynomials

Y j(α) = k− j(α
−1) =

j!2

(2 j)!
Pj(2α− 1) . (2.25)

The procedure for working them out, first explained in [84], leads to table 4. We have checked
that these results agree with the 4d case of the dimensionally continued blocks in [85]. In gen-
eral one can examine the structure of a superconformal multiplet most easily using G(z, z̄;α,β)
while certain mysterious features of holographic correlators (e.g. hidden conformal symme-
try [86] and a double copy relation [87]) are most transparently encoded in H(z, z̄;α,β). We
have chosen to use the latter in order to simplify the process of inverting the OPE.

2.3 The Lorentzian inversion formula

We now turn to the result of [18] which captures a remarkable fact about Regge bounded
four-point functions — all of their OPE data for sufficiently large spin can be extracted from a
simpler piece called the double discontinuity. The double discontinuity, which can also be seen
as a double commutator, is given by

dDisc[G(z, z̄)] = G(z, z̄)−
1
2

G�(z, z̄)−
1
2

G�(z, z̄) (2.26)

in the case of external operators (which could all be different) having pairwise equal scal-
ing dimensions. The arrows are shorthand for clockwise and counter-clockwise continuations
around a branch point in z̄. As usual, we will take z̄ = 1 so that dDisc refers to the t-channel
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double discontinuity everywhere in this paper.14 To start, we will write the Lorentzian inver-
sion formula for the spectral density as

c(∆,`) =
1
4
κ∆+`

2

∫ 1

0

dz
z2

dz̄
z̄2

�

z − z̄
zz̄

�2

g`+3,∆−3(z, z̄)dDisc[G(z, z̄) + (−1)` bG(z, z̄)] , (2.27)

where κh =
Γ (h)4

2π2Γ (2h)Γ (2h−1) . In the present context, G(z, z̄) should be viewed as the dynamical

part of
¬

OI1
j O

I2
j O

I3
j O

I4
j

¶

projected onto a given index structure, with bG(z, z̄) being the dynam-

ical part of
¬

OI2
j O

I1
j O

I3
j O

I4
j

¶

projected onto the same structure. The two will differ by a sign

which sometimes enhances (−1)` and sometimes cancels it.
As written, (2.27) is only a partial solution to the problem of decomposing a superconfor-

mal four-point function. After using it to read off the coefficients of conformal blocks, they
would need to be reassembled to account for superconformal blocks through a series of re-
currence relations. It is therefore desirable to use the auxiliary correlator of an N = 2 theory
where the coefficient of an ordinary conformal block already captures the contribution of an
entire long multiplet. For external operators that transform under SU(2)L , the projections
mentioned above are

Ha(z, z̄; jL , jR) =

∮

dα
2πi

k jR+1(α
−1)

∮

dβ
2πi

k jL+1(β
−1)P I1 I2|I3 I4

a H I1 I2 I3 I4(z, z̄;α,β) ,

ÒHa(z, z̄; jL , jR) = (−1) jL+ jR+|Ra|Ha(z, z̄; jL , jR) . (2.28)

The last line assumes that the first two and last two operators are respectively in the same
representation of SU(2)L × SU(2)R × GF .15 In the GF projectors used to write (2.28), a runs
over all representations that can appear in the tensor product of two adjoints. Their properties
have been discussed in [21,24] and we recall

P I1 I2|I3 I4
a = P I3 I4|I1 I2 , P I1 I2|I3 I4

a P I1 I2|I3 I4
b = δabdim(Ra) ,

P I1 I2|I3 I4
a = (−1)|Ra|P I2 I1|I3 I4

a , P I1 I2|I3 I4
a P I4 I3|I5 I6

b = δabP I1 I2|I5 I6 .
(2.29)

Following [66,86], it is convenient to switch to the variables

h=
∆− `

2
, h̄=

∆+ `+ 2
2

, (2.30)

so that the inversion formula factorizes upon plugging in the explicit form of (2.24). In terms

of (2.30) and the quantity rh =
Γ (h)2

Γ (2h−1) ,

ca(h, h̄; jL , jR) = −
r2
h̄

4π2

∫ 1

0

dz
z2

k1−h(z)

∫ 1

0

dz̄
z̄2

kh̄(z̄)

h̄− 1
2

dDisc[(z − z̄)Ha(z, z̄; jL , jR)] , (2.31)

is the spectral density which gives the coefficients of g∆+2,`(U , V ) blocks in UHa(U , V ; jL , jR).16

A full trajectory’s worth may be computed by isolating a single pole in h. When this is done, all
operators with this twist have their OPE coefficients determined by the residue with h̄ giving
the spin dependence.

14The s-channel OPE data comes from separate inversion integrals for the other two channels, i.e. one for z̄ = 1
and the other for z̄ =∞. The usual step is to rewrite the u-channel double discontinuity in terms of the t-channel
by permuting the first two operators. This requires the four-point function in question to satisfy crossing.

15Note that only integer values of jL and jR can be exchanged in an OPE of (2.13) operators that have the same
scaling dimensions.

16Clearly, we have assumed that `+ jL + jR + |Ra| is even. If it were odd, (2.31) would be zero.
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To see that anomalous dimensions arise from higher poles in h, it is easy to expand

c(∆,`)∼ −

∑∞
l=0 c−l

J a(l)

∆−∆(0) −
∑∞

l=1 c−l
J γ

(l)
. (2.32)

Keeping only the terms applicable to a one-loop calculation leads to

−c(0)(∆,`)∼
a(0)

∆−∆(0)
,

−c(1)(∆,`)∼
a(1)

∆−∆(0)
+

a(0)γ(1)

(∆−∆(0))2
, (2.33)

−c(2)(∆,`)∼
a(2)

∆−∆(0)
+

a(0)γ(2) + a(1)γ(1)

(∆−∆(0))2
+

a(0)γ(1)2

(∆−∆(0))3
.

For our purposes, these are all averaged quantities since the double-trace operators which
receive anomalous dimensions are highly degenerate. Starting from the double-trace value
h= 2 j + n+ 2+δ, we can consider the poles as δ→ 0. Comparing to (2.33) yields

ca(2 j + n+ 2+δ, h̄; jL , jR)∼ −
∞
∑

l=0

1

c l
J

l
∑

m=0

S(l,m)a (n, h̄; jL , jR)

(2δ)m+1
, (2.34)




a(0)
�

= S(0,0) ,



a(1)
�

= S(1,0) +
1
2
∂

∂ h̄
S(1,1) ,




a(0)γ(2) + a(1)γ(1)
�

= S(2,1) +
1
2
∂

∂ h̄
S(2,2) ,




a(0)γ(1)
�

= S(1,1) ,



a(0)γ(1)2
�

= S(2,2) ,



a(2)
�

= S(2,0) +
1
2
∂

∂ h̄
S(2,1) +

1
8
∂ 2

∂ h̄2
S(2,2) .

The derivatives appear because h̄ differs from h by an integer and therefore depends on δ as
well. More information on the specific integrals we will use to determine (2.34) is given in
Appendix A.

2.4 Projected OPE coefficients

The above advocates for an abstract definition of a 4d N = 2 S-fold as a restriction to single-
trace operators with 2mL|k. Although this changes the global symmetry of the theory, the
couplings at leading order are still fixed by kinematics. Kaluza-Klein modes interact just as they
would inside SU(2)L multiplets in analogy with how low energy scattering cannot tell which
other parts of the spectrum have been made heavy. To see what this means for correlation
functions, consider a two-point function with only the SU(2)L dependence written out.




O j(v1)O j(v2)
�

= v2 j
12 =

j
∑

m=− j

�

2 j
j +m

�

(v+1 v−2 )
j+m(−v−1 v+2 )

j−m . (2.35)

Each term in the sum corresponds to a different U(1)L two-point function.17 We can make
them have the unit normalization




O j,mO j,−m

�

= (−1) j−m , (2.36)

by forcing the polarization components to take the values

v±i 7→
�

2 ji
ji +mi

�− 1
4 ji

. (2.37)

17Suppressing other quantum numbers might make it look like these operators are fermionic. If jL is a half-
integer then jR is as well which cancels the anti-symmetry of (2.35). The apparent factor of (−1)2m upon switching
the two operators in (2.36) is innocuous for the same reason.
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In a similar way,




O j1(v1)O j2(v2)O j3(v3)
�

= C j1, j2, j3 v j1+ j2− j3
12 v j2+ j3− j1

23 v j3+ j1− j2
31 (2.38)

can be projected onto a set of U(1)L charges that sum to zero. According to the Wigner-Eckart
theorem, the answer will be related to a Clebsch-Gordan coefficient by a factor which only
depends on j1, j2 and j3. We will verify this (and determine the overall factor) by an explicit
calculation.

The first step is to write each vi j power law as a sum with the form of (2.35). Each summa-
tion index, which we call mi j , gives v±i a charge of mi j and v±j a charge of−mi j . The coefficient
adorning them is

� j1 + j2 − j3
j1+ j2− j3

2 +m12

�� j2 + j3 − j1
j2+ j3− j1

2 +m23

�� j3 + j1 − j2
j3+ j1− j2

2 +m31

�

(−1)
j1+ j2+ j3

2 −m12−m23−m31 . (2.39)

To fix the charge in each position, the sum must be restricted to the terms which satisfy

m12 −m31 = m1 , m23 −m12 = m2 , m31 −m23 = m3 . (2.40)

If m1+m2+m3 = 0 (which is required for consistency of (2.40)) then there is a one parameter
family of solutions. Summing (2.39) over this family leads to

� j2+ j3− j1
j2− j1−m3

�� j1+ j2− j3
j2− j3+m1

�

(−1)m1−m3−2 j3−2 j1+ j2 3F2

�

j2 − j1 − j3, − j3 −m3, − j1 +m1

1+ j2 − j3 +m1, 1+ j2 − j1 −m3

�

. (2.41)

The last step is to restore the binomial coefficients from (2.37). This allows the result to be
neatly packaged as a 3j-symbol.




O j1,m1
O j2,m2

O j3,m3

�

= C j1, j2, j3

�

j1 j2 j3
m1 m2 m3

�

√

√

√( j1 + j2 − j3)!( j2 + j3 − j1)!( j3 + j1 − j2)!
(2 j1)!(2 j2)!(2 j3)!( j1 + j2 + j3 + 1)!−1

. (2.42)

It is now straightforward to project higher-point functions onto U(1)L charges by virtue of the
OPE.

Considering tree-level four-point functions from [24], our prescription is to find all of the
places where vi j factors appear with C j1, j2, j0 C j3, j4, j0 coefficients and replace them with (2.42).
The fact that this yields a product of 3j-symbols is completely obscured if one takes the expres-
sions in (2.25) and repeats the calculation above for all of their terms. It is better to work with
each harmonic polynomial as a whole by taking




O j1(v1)O j2(v2)O j3(v3)O j4(v4)
�

and inserting
an SU(2)L covariant projector.




O j1(v1)O j2(v2)O j3(v3)O j4(v4)
�

�

�

�

�

j0

=
∏

i< j

v
γi j

i j (v12v34)
E−2Y j0(β) (2.43)

=
(∂5 · ∂6)2 j0

(2 j0)!




O j1(v1)O j2(v2)O j0(v5)
� 


O j0(v6)O j3(v3)O j4(v4)
�

.

This allows the main result of this subsection to be derived from four-point functions as well.
Note that (2.43) is a special case of the “shadow integral” where this time the measure is
discrete because we are working with a compact group [88].
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3 Lower order input

Our main goal is to compute the spectral density numerators in (2.34). If we had access
to the exact double discontinuity of a four-point function with extended supersymmetry, the
Lorentzian inversion formula would allow this to be done for all spins. Indeed, the critical spin
for a generic CFT was found to be `∗ = 2 in [18]. If (2.31) failed to extract the OPE data for a
scalar superconformal primary, this would imply a similar failure for `= 2 descendants which
would be a contradiction. Unfortunately, these are strictly non-perturbative arguments. In
perturbation theory, one must analyze the Regge limit to determine `∗ for each order separately.
The present case is similar to [66] in that `∗ first becomes positive at one loop. It is therefore
completely safe at lower orders to use Lorentzian inversion to study all spins.

Section 3.1 begins the process by analyzing the double discontinuity at zeroth order. At
first order, there is an opportunity to use the projection formula (2.42) as well. This is pursued
in sections 3.2 and 3.3 which explore two different methods for bootstrapping holographic
correlators. These are based on the SCFT/chiral algebra correspondence [89] and the Mellin
representation [25–27] respectively. The ensuing calculations will make frequent use of the
variables

x =
z

1− z
, y =

1− z̄
z̄

(3.1)

and results will be most conveniently expressed in terms of

Rb(h) = rh
Γ (h− b− 1)
Γ (h+ b+ 1)

, (3.2)

where rh appeared in (2.31).

3.1 Generalized free theory

The most natural starting point is the limit of strictly infinite central charge so that only the
disconnected parts of holographic correlators survive. For the Higgs branch 1

2 -BPS operators
we have been discussing, it is clear that the dynamical parts of the equal weight four-point
function

¬

OI1
j O

I2
j O

I3
j O

I4
j

¶

are

G I1 I2 I3 I4(U , V ;α,β) = δI1 I2δI3 I4 + (αU)2 j+2β2 jδI1 I3δI2 I4 +
�

(α− 1)
U
V

�2 j+2

(β − 1)2 jδI1 I4δI2 I3 ,

H I1 I2 I3 I4(z, z̄;α,β) = β2 j
2 j
∑

l=0

αl
2 j−l
∑

m=0

z l+m+1z̄2 j−m+1δI1 I3δI2 I4 (3.3)

+
(1− β)2 j

(z − 1)(z̄ − 1)

2 j
∑

l=0

(1−α)l
2 j−l
∑

m=0

� z
z − 1

�l+m+1� z̄
z̄ − 1

�2 j−m+1

δI1 I4δI2 I3 ,

f I1 I2 I3 I4(z;β) = δI1 I2δI3 I4 + z2 j+2β2 jδI1 I3δI2 I4 +
� z

1− z

�2 j+2
(β − 1)2 jδI1 I4δI2 I3 .

The singlet is the only SU(2)L × SU(2)R representation that all of the auxiliary correlators
above contain. We can zoom in on this part with (2.28) or by using the identities in [90].

Ha(z, z̄; 0, 0) =
|GF |(Fu)0a

2 j + 1
zz̄

z − z̄

2 j
∑

l=0

z2 j+1z̄ l − z̄2 j+1z l

l + 1
(3.4)

−
|GF |(Ft)0a

2 j + 1
zz̄

z − z̄

2 j
∑

l=0

1
l + 1

�

z2 j+1z̄ l

(z − 1)2 j+2(z̄ − 1)l+1
−

z̄2 j+1z l

(z̄ − 1)2 j+2(z − 1)l+1

�

.
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To handle the flavour part of (3.4), we have recognized that δI1 I2δI3 I4 = |GF |P
I1 I2|I3 I4
0 . Con-

tracting with a projector in another channel produces an element of the corresponding crossing
matrix. These crossing matrices are defined in Appendix B where explicit expressions for the
groups in table 1 are given. Only the second term of (3.4) has a double discontinuity as this
requires there to be a singularity as z̄ → 1. Performing the substitution (3.1) and using the
Lorentzian inversion formula, we find

c(0)a (h, h̄; 0, 0) =
|GF |(Ft)0a

2 j + 1

r2
h̄

4π2

∫ 1

0

dz
z2

k1−h(z)

∫ 1

0

dz̄
z̄2

kh̄(z̄)

h̄− 1
2

2 j
∑

l=0

dDisc

�

x l+1 y−2 j−2 − x2 j+2 y−l−1

(−1)2 j+l(l + 1)

�

=
|GF |(Ft)0a(−1)2 j+1

(2 j + 1)(2 j + 1)!2

2 j
∑

l=0

π(−1)l

l!(l + 1)!
(3.5)

�

cot[π(2 j + 2− h)]R−2 j−2(h)R−l−1(h̄)− cot[π(l + 1− h)]R−l−1(h)R−2 j−2(h̄)
�

,

after referring to (3.2) and Appendix A. Using both terms, which are needed to examine poles
above the double-trace threshold, the residue of h= 2 j + 2+ n is

S(0,0)
a (n, h̄; 0, 0) =2|GF |(Ft)

0
a r2 j+2+nrh̄ (n+ 1)4 j+2(h̄− 2 j − 1)4 j+2(2 j + 1)!−4

�

1
(2 j + n+ 1)(2 j + n+ 2)

−
1

h̄(h̄− 1)

�

. (3.6)

This proves a formula presented in [44].
We will also need an analogue of (3.6) for




O j,mO j,−mO j,mO j,−m

�

. It is important here that
the a double-trace of components is not the same as one component of a double-trace. The
double-trace operator O j,mO j,−m, while U(1)L neutral of course, receives contributions from
the mL = 0 components of O jO j operators with all values of jL . Due to this complication,
we will repeat the steps above instead of applying (2.42). This is simple because projecting
a disconnected four-point function like this is equivalent to setting β = 0. The u-channel
becomes charged and drops out leaving only

G I1 I2 I3 I4(U , V ;α) = δI1 I2δI3 I4 +
�

(1−α)
U
V

�2 j+2

δI1 I4δI2 I3 . (3.7)

The double discontinuity of the auxiliary correlator therefore has the same form as before. It
is just larger by a factor of 2 j + 1 due to there being no SU(2)L inner product to take. Due to
the lack of a u-channel in (3.7) it is also clear that the second term in the Lorentzian inversion
formula must vanish. In other words, (2.28) no longer holds because the first two operators
transform differently under U(1)L . This leads to OPE coefficients that are larger by a factor of
j + 1

2 . The exception occurs when m= 0. All in all,

S(0,0)
a (n, h̄; 0) = (1+δm,0)

�

j +
1
2

�

S(0,0)
a (n, h̄; 0, 0) . (3.8)

This relation also could have been guessed from the three-point function




O j1(v1)O j2(v2)[O j1O j2] j3(v3)
�

=

√

√

√
(2 j1)!(2 j2)!(2 j3 + 1)(1+ (−1) j1+ j2− j3δ j1, j2)

( j1 + j2 − j3)!( j1 + j2 + j3 + 1)!

v j1+ j2− j3
12 v j2+ j3− j1

23 v j3+ j1− j2
31 , (3.9)

which holds for pure SU(2)L representations.18

18The derivation of (3.9) in [90] refers to the R-symmetry as SO(8) because the generalized free theory discussed
here also appears in the topological subsector of 3d N = 8 SCFTs [83].
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3.2 Tree-level data from the chiral algebra

We have previously referred to the last line of (3.3) as “the chiral correlator” for good reason.
It is a four-point function of conserved currents in a 2d CFT whose OPEs descend from four
dimensions as discovered in [89]. These currents come from so called Schur operators which
live in short multiplets and exist in any 4d N = 2 SCFT. Under a particular nilpotent super-
charge, their cohomology classes cease to depend on z̄ as they are translated away from the
origin along the locus suggested by (2.19). A distinguishing feature of the holographic theo-
ries studied here is that they admit a subsector of single-trace operators which are all 1

2 -BPS.
As shown in [24], this is enough to guarantee that the chiral algebra they generate is unique at
order 1/cJ . Moreover, higher powers of 1/cJ that modify a given correlator truncate at a finite
order which is linear in the external weights [90]. The simplest case is that of 〈O0O0O0O0〉
which yields the exact function

f I1 I2 I3 I4(z) = δI1 I2δI3 I4 + z2δI1 I3δI2 I4 +
� z

1− z

�2
δI1 I4δI2 I3 (3.10)

+
6
cJ

h

z f I1 I3J f J I2 I4 +
z

z − 1
f I1 I4J f J I2 I3

i

.

The loop-level data to be calculated later will therefore only affect H I1 I2 I3 I4(z, z̄). For now, we
will demonstrate an interesting technique which uses interplay between these two correlators
to compute anomalous dimensions at tree-level. The point is that the crossing equation

H I1 I2 I3 I4(z, z̄) =
�

z
z − 1

z̄
z̄ − 1

�2

H I3 I2 I1 I4(1− z, 1− z̄) (3.11)

−
z(1− z)−1 f I1 I2 I3 I4(z̄)− z̄(1− z̄)−1 f I1 I2 I3 I4(z)

z − z̄

is inherited from (3.10). One can therefore find a simple characterization of all poles as z̄→ 1,
i.e. all tree-level contributions to the double discontinuity. They are given by the terms in
H I3 I2 I1 I4(V, U) with at most one power of V . The functions of U which accompany them are
known as lightcone blocks [91]. The associated operators are necessarily in short multiplets
since operators above the double-trace threshold start at V 2. As a result, their OPE coefficients
are protected and contained in (3.10). Consider the expansion

f I3 I2 I1 I4(z) = δI2 I3δI1 I4 +
∞
∑

l=0

(l + 1)(l + 1)!
(l + 3)l

�

δI3 I4δI1 I2 + (−1)lδI1 I3δI2 I4
�

kl+2(z) (3.12)

+
6
cJ

∞
∑

l=0

l!2

(2l)!

�

f I3 I4J f J I1 I2 − (−1)l f I1 I3J f J I2 I4
�

kl+1(z) .

Table 4 shows that the sum of 4d conformal blocks corresponding to this is

∞
∑

`=0

(`+ 1)(`+ 1)!
(`+ 3)`

�

δI3 I4δI1 I2 + (−1)`δI1 I3δI2 I4
�

V−1 g`+4,`(V, U) (3.13)

+
6
cJ

∞
∑

`=0

(`+ 1)!2

(2`+ 2)!

�

f I3 I4J f J I1 I2 + (−1)` f I1 I3J f J I2 I4
�

V−1 g`+4,`(V, U) .
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Taking the leading lightcone limit everywhere, [91] instructs us to write (3.13) as

V
(1− U)2

∞
∑

`=0

(`+ 1)(`+ 1)!
(`+ 3)`

�

δI3 I4δI1 I2 + (−1)`δI1 I3δI2 I4
�

k`+2(1− U) (3.14)

+
6
cJ

V
(1− U)2

∞
∑

`=0

(`+ 1)!2

(2`+ 2)!

�

f I3 I4J f J I1 I2 + (−1)` f I1 I3J f J I2 I4
�

k`+2(1− U)

= VδI1 I3δI2 I4 +
V
U2
δI3 I4δI1 I2 −

6
cJ

�

V
1− U

f I1 I3J f J I2 I4 −
V

U(1− U)
f I3 I4J f J I1 I2

�

+
6
cJ

V
(1− U)2

�

f I1 I3J f J I2 I4 − f I3 I4J f J I1 I2
�

k1(1− U) .

The first line has been resummed into power laws since it retains the exact same form that it
had in (3.12). The second line has become more interesting due to the single-trace k1(z) block
in the chiral correlator which does not have a 4d counterpart. After using the Jacobi identity

f I1 I2J f J I3 I4 + f I1 I4J f J I2 I3 + f I1 I3J f J I4 I2 = 0 , (3.15)

it turns out to be proportional to a single flavour structure. Since (3.14) now isolates the
desired factor of V , it is ready to be plugged into (3.11). In the disconnected part, all of
the terms with δI1 I2δI3 I4 and δI1 I4δI2 I3 either cancel or become regular so that the double
discontinuity is precisely the one we saw in (3.5). The 1/cJ calculation reveals a similar pattern
and produces

dDisc
�

(z − z̄)H I1 I2 I3 I4(z, z̄)
�

= dDisc

��

x2

y
−

x
y2

�

δI1 I4δI2 I3 +
6
cJ

x
y

f I1 I4J f J I2 I3

�

(3.16)

+ dDisc

�

6
cJ

x2

y
log

� x
x + 1

�

f I1 I4J f J I2 I3

�

.

This exhibits the telltale sign of anomalous dimensions.

3.3 Tree-level data from Mellin space

The lesson above is that the superconformal Ward identity is enough to determine the tree-
level four-point function as long as all long multiplets are double-trace. We only established
this for 〈O0O0O0O0〉 but the steps needed to extend the derivation to mixed correlators are
purely technical [86]. Thanks to an algorithm developed in [11], it is also possible to impose
the superconformal Ward identity in Mellin space where the ansatz can be organized in a
more intuitive way. This Mellin space approach is what [24] used to solve for all higher weight
cousins of the 4d correlator (1.3) (along with analogous amplitudes in other dimensions where
there is no alternative).

3.3.1 Full and auxiliary Mellin amplitudes

To explain the key features, conformal cross ratios in (2.14) are traded for Mandelstam vari-
ables which satisfy

s+ t + u=
4
∑

i=1

∆i ≡
4
∑

i=1

(2 ji + 2) . (3.17)

To each single-trace supermultiplet we associate an object

S j(s, t;α) =
∑

(∆,`, jR)∈BB̄[0;0](2 j+2,0)
2 j+2

λ∆,`, jRY jR(α)M∆,`(s, t) , (3.18)
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whose coefficients are exactly those which appear in the corresponding superconformal block.
Each function of s and t is the polar part of an ordinary conformal block which is the same
as the polar part of an exchange Witten diagram [92]. A proper holographic ansatz includes
(3.18) summed over I12|34 ≡ {min(| j12|, | j34|) + 1, . . . ,max( j! + j2, j3 + j4) − 1} in all three
channels.19 It should also involve a contact term in the form of a crossing symmetric (including
Bose symmetric) polynomial whose degree is one less than the maximal spin that appears in
(3.18). Explicitly,

MI1 I2 I3 I4(s, t;α,β) = f I1 I3J f J I2 I4

∑

j∈I13|24

C j1, j3, jC j2, j4, jα
EβE−2Y j(

1
β )S j(u, t; 1

α) (3.19)

+ f I1 I4J f J I3 I2

∑

j∈I14|32

C j1, j4, jC j3, j2, j(α− 1)E(β − 1)E−2Y j

�

β
β−1

�

S j

�

t, s; α
α−1

�

+ f I1 I2J f J I3 I4

∑

j∈I12|34

C j1, j2, jC j3, j4, jY j(β)S j(s, t;α) + C I1 I2 I3 I4(α,β) .

The superconformal Ward identity can then be used to solve for C j1, j2, j3 and C I1 I2 I3 I4(α,β) at
low-lying weights until a pattern becomes apparent.20 This is greatly facilitated by exploiting
the freedom to have the residue of a pole in one Mandelstam variable formally depend on
both of the others. In particular, the contact term comes out to zero if we use a remarkable
prescription in [19,20] for symmetrizing at the level of supermultiplets.21

The relation between a (flavour projected) position space four-point function and its Mellin
amplitude is

Ga(U , V ;α,β) =

∫ i∞

−i∞

dsdt
(4πi)2

U
s
2− j1− j2−2+EV

t
2+ j1− j4−EMa(s, t;α,β)Γ{∆i}(s, t) (3.20)

Γ{∆i}(s, t)≡ Γ
�

∆1+∆2−s
2

�

Γ
�

∆3+∆4−s
2

�

Γ
�

∆1+∆4−t
2

�

Γ
�

∆2+∆3−t
2

�

Γ
�

∆1+∆3−u
2

�

Γ
�

∆2+∆4−u
2

�

,

with the contour chosen to encircle poles in s and t but not u. Powers of U and V which
multiply the correlator can therefore be translated into difference operators.

ØUmV n ◦M(s, t) =
Γ{∆i}(s− 2m, t − 2n)

Γ{∆i}(s, t)
M(s− 2m, t − 2n) . (3.21)

The Mellin superconformal Ward identity is formulated by using (3.21) in the sum and differ-
ence of the z and z̄ versions of (2.19) [11]. There is also an auxiliary Mellin amplitude for 4d
N = 2 theories defined by

Ha(U , V ;α,β) =

∫ i∞

−i∞

dsdt
(4πi)2

U
s
2− j1− j2−2+EV

t
2+ j1− j4−EÝMa(s, t;α,β)eΓ{∆i}(s, t) (3.22)

eΓ{∆i}(s, t)≡ Γ
�

∆1+∆2−s
2

�

Γ
�

∆3+∆4−s
2

�

Γ
�

∆1+∆4−t
2

�

Γ
�

∆2+∆3−t
2

�

Γ
�

∆1+∆3−ũ
2

�

Γ
�

∆2+∆4−ũ
2

�

,

where ũ ≡ u − 2 so that crossing still acts by a permutation.22 In terms of a new difference

19The upper and lower limits are moved in by one compared to selection rules since extremal correlators vanish
in AdS/CFT. This is a consequence of single-particle and double-particle states being orthogonal [69,70].

20As explained in [24], this pattern can also be obtained by studying the flat space limit of (3.19). Actually
proving that it holds for all weights is difficult in general but a method that works in four dimensions was discussed
in [90].

21Another technique proposed in [19,20] is helpful for determining the coefficients in (3.18) when they are not
already known.

22Another common name for (3.22) is the reduced amplitude. This should not be confused with the reduced
amplitude of [25] which is M(s, t)Γ{∆i}(s, t).
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operator defined by

Ø

âUmV n ◦M(s, t) =
eΓ{∆i}(s− 2m, t − 2n)

Γ{∆i}(s, t)
ÝM(s− 2m, t − 2n) , (3.23)

the translation of (2.20) into Mellin space is

Ma(s, t;α,β) =
h

1−α(1+ÒeU − beV ) +α2Ò
eU
i

◦ÝMa(s, t;α,β) . (3.24)

The chiral correlator, which appears to be missing, is in fact part of the auxiliary Mellin ampli-
tude due to the contour pinching mechanism described in [10].

3.3.2 Spectral density at tree-level

With this formalism in place, we can return to the goal of setting up a loop calculation. For



O0O0O jO j

�

, the auxiliary Mellin amplitude is

ÝMI1 I2 I3 I4(s, t) = −
24

cJ (2 j)!

�

f I1 I2J f J I3 I4

(s− 2)(ũ− 2 j − 2)
−

f I1 I4J f J I2 I3

(t − 2 j − 2)(ũ− 2 j − 2)

�

. (3.25)

For



O0,0O0,0O j,mO j,−m

�

, it is the same because these weights yield the simplest possible 3j-
symbol in (2.42). While there are various methods for decomposing (3.25) in a given channel
[93], the double-trace data should be extracted in a form which is manifestly analytic in spin.
This can be done by isolating the pole at t = 2 j+2 in order to solve for the double discontinuity.
Using (3.22),

H I1 I2 I3 I4(U , V ) = −
6
cJ

V−1

(2 j)!
f I1 I4J f J I2 I3

∫ i∞

−i∞

ds
2πi

U
s
2

2− s
Γ
�

2−
s
2

�

Γ
�

2 j + 2−
s
2

�

Γ
� s

2

�2
+ . . .

= −
3
cJ

V−1

(2 j)!
f I1 I4J f J I2 I3

∫ i∞

−i∞

ds
2πi

U
s
2 Γ
�

1−
s
2

�

Γ
�

2 j + 2−
s
2

�

Γ
� s

2

�2
+ . . .

= −
6
cJ

2 j + 1
2 j + 2

V−1
2F1

�

1,2 j + 2; 2 j + 3; 1− U−1
�

f I1 I4J f J I2 I3 + . . . , (3.26)

where the missing terms are higher order in V .23 The j = 0 case precisely reproduces (3.16).
It is now possible to compute the spectral density with Lorentzian inversion. Making the
replacement f I1 I2J f J I3 I4 = G∨F P I1 I2|I3 I4

1 , the integral evaluates to

c(1)a (h, h̄) =6G∨F (Ft)
1
a(2 j + 1)

r2
h̄

4π2

∫ 1

0

dz
z2

k1−h(z)

∫ 1

0

dz̄
z̄2

kh̄(z̄)

h̄− 1
2

(3.27)

dDisc





(−x)2 j+2

y
log

� x
x + 1

�

+
2 j
∑

l=0

(−1)l

l − 2 j − 1
x l+1

y





=− 6G∨F (Ft)
1
a(2 j + 1)

�

(−1)2 j
�

π2 csc2[π(2 j + 2− h)]−π cot[π(2 j + 2− h)]
∂

∂ q

�

R1(h̄)R−q(h)

Γ (q)2

�

�

�

�

q=2 j+2
−
∑

l 6=2 j+1

(−1)l

l − 2 j − 1
π cot[π(l + 1− h)]

l!2
R1(h̄)R−l−1(h)



 .

23Since it comes from the difference operator (3.23), the single-trace ũ pole lies to the right of the contour in
contrast to the original u poles which lie to the left. This is what allowed us to absorb 1

2−s into the gamma function
on the second line.
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The behaviour near h= n+ 2 is governed by

S(1,1)
a (n, h̄) = 24(−1)2 j G∨F (Ft)

1
a rh̄rn+2 (n− 2 j + 1)4 j+2(2 j)!−1(2 j + 1)!−1 , (3.28)

S(1,0)
a (n, h̄) = 12(−1)2 j G∨F (Ft)

1
a
∂

∂ h
R−1(h̄)R−2 j−2(h)

�

�

�

�

h=n+2
(2 j)!−1(2 j + 1)!−1 ,

where the first line is immediate and the second requires the identities of [66].

4 Going to one loop

Our results thus far can be summarized by the following averaged quantities where the sub-
scripts denote flavour representation, twist family and spin respectively. At zeroth order,




a(0)
�

a,n,` =
2|GF |(Ft)0a(n+ 1)4 j+2(n+ `+ 2)4 j+2 r2 j+2+nr2 j+3+n+`

(2 j + 1)!4
�

1
(2 j + n+ 1)(2 j + n+ 2)

−
1

(2 j + n+ `+ 2)(2 j + n+ `+ 3)

�

, (4.1)

for SU(2)L × SU(2)R singlets in



O jO jO jO j

�

and




a(0)
�

a,n,` =
�

1+δm,0

�

�

j +
1
2

� 2|GF |(Ft)0a(n+ 1)4 j+2(n+ `+ 2)4 j+2 r2 j+2+nr2 j+3+n+`

(2 j + 1)!4
�

1
(2 j + n+ 1)(2 j + n+ 2)

−
1

(2 j + n+ `+ 2)(2 j + n+ `+ 3)

�

, (4.2)

for U(1)L × SU(2)R singlets in



O j,mO j,−mO j,mO j,−m

�

. At first order,




a(0)γ(1)
�

a,n,` =(−1)2 j 24G∨F (Ft)1a

(2 j)!(2 j + 1)!
R−1(h̄)R−2 j−2(h)

�

�

�

� h=n+2
h̄=n+3+`




a(1)
�

a,n,` =(−1)2 j 12G∨F (Ft)1a

(2 j)!(2 j + 1)!

�

∂

∂ h
+
∂

∂ h̄

�

R−1(h̄)R−2 j−2(h)

�

�

�

� h=n+2
h̄=n+3+`

(4.3)

describe both



O0O0O jO j

�

and



O0,0O0,0O j,mO j,−m

�

which necessarily exchange only singlets
in the auxiliary correlator.

We will mostly not need the second line of (4.3) but the other data will be fed into the
machinery of a loop calculation. This will introduce the first non-trivial dependence on the S-
fold parameter k. The details are explained in section 4.1 where a new average




a(0)γ(1)2
�

a,n,`
is computed. Various manipulations are required before it can be used to extract anomalous
dimensions at one-loop. Section 4.2 discusses these and uses insights from [17] to develop a
method which works for the CFTs of [35] and would also work for many others. This equips
us to solve for all




a(0)γ(2)
�

a,n,` to arbitrarily many orders in 1/`. Section 4.3 presents the
results and also (less rigorously) solves for a subset of anomalous dimensions at finite `. Since
there are two central charges in theories with flavour, loop diagrams at order 1/c2

J need to
be combined with tree diagrams at order 1/cT , a computation which is done in section 4.4.
Finally, section 4.5 verifies many of our results using Mellin space. This culminates in the
solution for the k = 2 one-loop Mellin amplitude which may be of independent interest.
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4.1 The AdS unitarity method

Much of the progress in AdS loop calculations rests on the fact that a key one-loop term in
the spectral density (2.33) depends only on tree-level data. We can see this more explicitly
by perturbing scaling dimensions and OPE coefficients away from their cJ →∞ double-trace
values in the conformal block expansion.
�

a(0)n,` + c−1
J a(1)n,` + c−2

J a(2)n,` + . . .
�

g
∆n,`+c−1

J γ
(1)
n,`+c−2

J γ
(2)
n,`+...,`(U , V ) = a(0)n,` g∆n,`,`(U , V ) (4.4)

+ c−1
J

�

a(1)n,` + a(0)n,`γ
(1)
n,`

∂

∂∆

�

g∆n,`,`(U , V ) + c−2
J

�

a(2)n,` +
�

a(1)n,`γ
(1)
n,` + a(0)n,`γ

(2)
n,`

� ∂

∂∆

�

g∆n,`,`(U , V )

+
1
2

c−2
J a(0)n,`γ

(1)2
n,`

∂ 2

∂∆2
g∆n,`,`(U , V ) .

The middle line of (4.4) generates log U terms which are ubiquitous. Single logarithms have a
vanishing double discontinuity and they are produced every time one expands a direct channel
block in the lightcone limit of a crossed channel [14,15]. The log2 U from the last line however
is much more rigid. Knowing that

dDisc
�

log2(1− z̄)
�

= 4π2 , (4.5)

such a term plays an essential role in the crossing equation (3.11). It is the contribution to
the double discontinuity which is intrinsic to infinite sums and cannot be seen by looking
for individual exchanges below the double-trace threshold. After applying (2.31), it becomes
clear that CFTs without degeneracy have their loop-level data determined by a(0)n,`γ

(1)2
n,` at tree-

level in the same correlator. This was first shown in [45], slightly before the discovery of
the Lorentzian inversion formula, and phrased in terms of an equivalent formulation of the
analytic bootstrap [16].

Our present task is to apply this AdS unitarity method in the presence of degeneracy which
requires multiple correlators. A single one would not be enough since




a(0)γ(1)2
�

n,` 6=



a(0)γ(1)
�2

n,` /



a(0)
�

n,` . (4.6)

Consider the O0×O0 OPE in the (0, 0,Ra) representation of SU(2)L×SU(2)R×GF with some
spin ` of the appropriate parity. By definition, only [O0O0]n double-traces contribute at lead-
ing order. It is also true, at least generically, that each one is a non-trivial linear combination
of some (Φ1,Φ2, . . . ) which diagonalize dilations on the ∆ = 4+ 2n+ ` subspace at the next
order. We can invert this to say that operators which have definite scaling dimensions, and
can therefore help us learn about 〈O0O0O0O0〉, contain information about double-traces in
other four-point functions. The bulk interpretation of this statement is that there are many
intermediate states which can run in the loop. Proceeding as in [63, 64], double-traces that
mix for a given n are

[O0O0]n, [O1O1]n−2, . . . , [Obn/2cObn/2c]n mod 2 . (4.7)

In the original 7-brane backgrounds of [37], n would be lowered by both even and odd inte-
gers. We have restricted to even integers here because only these survive a k = 2 S-fold. A
total of

� n
2

�

+1 operators from the new basis therefore enter into (4.1) and (4.3) according to




a(0)
�

n−2 j = λ
2
j, j,1 + · · ·+λ

2
j, j,bn/2c+1 , (4.8)




a(0)γ(1)
�

n = λ0,0,1λ j, j,1γ1 + · · ·+λ0,0,bn/2c+1λ j, j,bn/2c+1γbn/2c+1 .
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Adding a ( j1, j2) superscript to indicate a correlator of



O j1O j1O j2O j2

�

, the first line of (4.8)
shows that the change of basis matrix is given by





[O0O0]n
...

[Obn/2cObn/2c]n mod 2



=Q







Φ1
...

Φbn/2c+1






(4.9)

≡













λ0,0,1
r

〈a(0)〉(0,0)
n

. . .
λ0,0,bn/2c+1
r

〈a(0)〉(0,0)
n

...
. . .

...
λbn/2c,bn/2c,1

r

〈a(0)〉(bn/2c,bn/2c)n mod2

. . .
λbn/2c,bn/2c,bn/2c+1
r

〈a(0)〉(bn/2c,bn/2c)n mod2



















Φ1
...

Φbn/2c+1






.

The fact that no double-traces are shared between O j1 ×O j1 and O j2 ×O j2 ensures that Q is
orthogonal. This means that the symmetric matrix M ≡Q diag(γ1, . . . ,γbn/2c+1)Qᵀ satisfies

M l =















〈a(0)γ(1)l〉(0,0)
n

〈a(0)〉(0,0)
n

. . .
〈a(0)γ(1)l〉(0,bn/2c)

n
r

〈a(0)〉(0,0)
n 〈a(0)〉

(bn/2c,bn/2c)
n mod 2

...
. . .

...
〈a(0)γ(1)l〉(bn/2c,0)n

r

〈a(0)〉(0,0)
n 〈a(0)〉

(bn/2c,bn/2c)
n mod2

. . .
〈a(0)γ(1)l〉(bn/2c,bn/2c)n mod2

〈a(0)〉(bn/2c,bn/2c)n mod 2















. (4.10)

Clearly, (4.1) and (4.3) are the averages which appear in the first row and first column of M .

The upper left corner of M2, which must be the desired



a(0)γ(1)2
�(0,0)

n /



a(0)
�(0,0)

n , is therefore
a square of the known tree-level data. Reverting to the previous notation (where j is implicit),




a(0)γ(1)2
�

a,n,` =

� n
2

�

∑

j=0




a(0)γ(1)
�2

a,n,`



a(0)
�

a,n−2 j,`

(k = 2) (4.11)

holds for k = 2 S-folds.
In all other cases, basis elements of (4.7) must be replaced by double-traces of U(1)L

components. The resulting increase in the dimensionality of Q (where we recall that
[O j,mO j,−m]n,` = [O j,−mO j,m]n,`) depends on the value of k. Before implementing the k|2mL
condition, it is helpful to consider k = 2 or even k = 1 (no S-fold) and check that they can
be handled in U(1)L language where SU(2)L symmetry is ignored. Describing k = 1, the
analogue of (4.11) is found by letting j run over Z/2.




a(0)γ(1)2
�

a,n,` =
n
∑

2 j=0




a(0)γ(1)
�2

a,n,`



a(0)
�

a,n−2 j,`

(k = 1) . (4.12)

The relation between (4.1) and (4.2) makes the check succeed. When j is a half-integer, each
numerator splits into j + 1

2 identical copies and each denominator correspondingly grows by
a factor of j + 1

2 . When j is an integer, the numerator splits into j copies with m > 0 and one
with m = 0. Recalling the factor of 1+ δm,0 in (3.8), the latter comes with a denominator of
2 j+1 while all the rest come with j+ 1

2 . We can therefore be confident that the combinatorial
factors proposed below for genuine S-folds will be correct. Starting with k = 4, it is necessary
for j to be an integer. The m= 0 term yields 1

2 j+1 once again but the remaining terms are half
as many in number since m is required to be even.




a(0)γ(1)2
�

a,n,` =

� n
2

�

∑

j=0

2
�

j
2

�

+ 1

2 j + 1




a(0)γ(1)
�2

a,n,`



a(0)
�

a,n−2 j,`

(k = 4) . (4.13)

21

https://scipost.org
https://scipost.org/SciPostPhys.12.5.149


SciPost Phys. 12, 149 (2022)

Finishing with k = 3, half-integer values of j require us to count multiples of 3
2 . Integer values

of j require us to treat m = 0 separately and then count multiples of 3. Putting the pieces
together,




a(0)γ(1)2
�

a,n,` =







� n
2

�

∑

j=0

2
�

j
3

�

+ 1

2 j + 1
+

j n+1
2

k

−1
2

∑

j=
1
2

2
�

2 j
3

�

2 j + 1










a(0)γ(1)
�2

a,n,`



a(0)
�

a,n−2 j,`

(k = 3) . (4.14)

One point worth making is that the information we extracted from the mixing problem was
far from a full solution to it. If one wanted to know the true anomalous dimensions for instance,
the matrix M would have to be diagonalized. For N = 4 SYM, this was undertaken in [64,
65] with remarkable results. The eigenvalues turned out to always be rational functions and
therefore suggestive of a hidden symmetry. This was found to be a mysterious 10d conformal
symmetry in [86]. As shown in [24], there is also an 8d hidden conformal symmetry applicable
to the N = 2 theories here which would be interesting to study further.24

4.2 Resumming the double discontinuity

The coefficients of conformal blocks with log2 U in the s-channel are now known. Switching
to the t-channel and using the dimension shift in table 4, the double discontinuity at one loop
is given by the following sum.

GJ
a(z, z̄) =

∞
∑

n=0

∑

`

1
8




a(0)γ(1)2
�

a,n,`

(z − z̄)z2z̄2

(1− z)3(1− z̄)3
g6+2n+`,`(1− z, 1− z̄) log(1− z̄)2

≡
[6G∨F (Ft)1a]

2

|GF |(Ft)0a

∞
∑

n=0

(n+ 1)(n+ 2)HJ
n(z, z̄) log(1− z̄)2 . (4.15)

To iteratively compute OPE data with (2.31), one needs to be able to expand in the variables
(3.1). At this point, works such as [65–67] have suggested using transcendentality meth-
ods to narrow down the special functions appearing in GJ

a(z, z̄) until a suitable ansatz can be
made. This might well be possible for all four values of k but we will present a more con-
crete algorithm based on a key observation. Each HJ

n(z, z̄) is proportional to yn and therefore
its contribution compared to HJ

n−1(z, z̄) is suppressed by inverse powers of the spin. In the most
optimistic scenario, the powers of y which can appear in a given double-twist trajectory will
truncate entirely leading to a maximal value of n that needs to be considered in (4.15). As
such, the most important infinite sum to analyze is the one over spins. This can be understood
in great generality by making use of [17].

Using the variables x and y (where we expand in x first), the expression with explicit
conformal blocks is

HJ
n(x , y) =

x2

y2
kn+2

�

1
x + 1

�

∑

`

B(n,`)(−1)n+`+1kn+`+3(−y)

−
x2

y2
(−1)nkn+2(−y)

∑

`

B(n,`)kn+`+3

�

1
x + 1

�

, (4.16)

where we have used a Pfaff transformation with respect to y . If we use a standard expansion

24The other backgrounds known to exhibit this symmetry are AdS3 × S3 and AdS2 × S2 [94–97]. In the former
case, an analysis of unmixing was recently performed in [98].
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on the easy part of (4.16), the term with log x collapses to a Legendre polynomial.25

kn+2

�

1
x + 1

�

=
Γ (2n+ 4)
Γ (n+ 2)2

∞
∑

l=0

(n+ 2)2l
l!2

x l

(x + 1)l+n+2

h

2Hl − 2Hn+1 − log
� x

x + 1

�i

= −
Γ (2n+ 4)
Γ (n+ 2)2

Pn+1(2x + 1) log x + . . . . (4.17)

It is now time to deal with the hard part of (4.16) where the sum over ` does not commute
with the expansion used above. Progress will be possible because of another essential fact. The
coefficients B(n,`) have poles at integer h̄ and can be written as rational functions of the Casimir
eigenvalue h̄(h̄− 1). Recalling that h̄= n+ `+ 3, this can be demonstrated with the following
manipulation.

B(n,`) =
∑

j

b(n, j)
h̄(h̄− 1)

h̄(h̄− 1)− (n+ 1)(n+ 2)
R2 j(h̄)

=
∑

j

b(n, j)h̄(h̄− 1)
n
∏

l=2 j+1

[h̄(h̄− 1)− l(l + 1)]Rn+1(h̄) . (4.18)

Since (4.18) always appears beside a block, every factor of h̄(h̄− 1)− l(l + 1) can be traded
for D− l(l + 1) in terms of the crossed channel Casimir

D = (1− z)2z
∂ 2

∂ z2
+ (1− z)2

∂

∂ z
= x(x + 1)

∂ 2

∂ x2
+ (2x + 1)

∂

∂ x
. (4.19)

Up to the action of differential operators, the hard sum can therefore be done with the remark-
able identities of [17]. In our notation they read

∞
∑

`=0

Rη(h0 + `)

Γ (−η)2
kh0+`

�

1
x + 1

�

= xη +
∞
∑

m=0

∂

∂m

�

A+η,−m−1(h0)x
m
�

,

∞
∑

`=0

(−1)`
Rη(h0 + `)

Γ (−η)2
kh0+`

�

1
x + 1

�

=
∞
∑

m=0

∂

∂m

�

A−η,−m−1(h0)x
m
�

, (4.20)

where one of the coefficients is

A+η,ζ(h0) = −
(η+ h0)(ζ+ h0)
η+ ζ+ 1

Rη(h0)Rζ(h0)

Γ (−η)2Γ (−ζ)2r2
h0

. (4.21)

The other one can be evaluated as a finite sum when one of its parameters is a negative integer.

A−η,−1(h0) = −(η+ h0)
Rη(h0)

Γ (−η)2rh0

, (4.22)

A−η,−m−1(h0) =
Γ (m−η)2

Γ (−η)2Γ (m+ 1)2

m
∑

l=0

(η+ 1)l(−m)l
(η−m+ 1)l

(−1)l

l!
A−η−m+l,−1(h0) .

Letting h0 = n+3, there are now two limits to take associated with the sum and difference

25That the discontinuity of a single block has such a simple form has been used to great effect in [99].
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Table 5: S-fold values of the coefficients b(n, j)/R−2 j−2(n+2) that enter in the double
discontinuity. They follow from (4.11), (4.12), (4.13) and (4.14) after stripping off
the factors which this subsection has absorbed into the sum over spins. Note that
0≤ 2 j ≤ n.

j ∈ Z j ∈ Z+ 1
2

k = 1 (2 j + 1)2 (2 j + 1)2

k = 2 (2 j + 1)2 0

k = 3
�

2
�

j
3

�

+ 1
�

(2 j + 1) 2
�

2 j
3

�

(2 j + 1)

k = 4
�

2
�

j
2

�

+ 1
�

(2 j + 1) 0

of (4.20). For the flavour representations that select even spins,

∑

`+

Rn+1(h0 + `)kh0+`

�

1
x + 1

�

= lim
η→n+1

Γ (−η)2
�

1
2

xη +
∞
∑

m=0

∂

∂m

A+η,−m−1(h0) +A−η,−m−1(h0)

2 x−m

�

=
xn+1

4(n+ 1)!2

�

log2 x +
2(n+ 2)(H2n+4 − 2Hn+1)− 1

n+ 2
log x

�

−
n+ 2

2(2n+ 3)!

n
∑

m=0

(n+ 3)m(−n− 1)m
n+ 1−m

(−x)m

m!2
log x

−
1
2

∞
∑

m=0

m
∑

l=0

(n+ 2)l(n+ 2−m)l
Γ (2n+ 4−m+ l)

xm

l!m!
log x + . . . , (4.23)

up to terms with neither log x nor log2 x . Repeating the above for odd spins, the only difference
is that this sum on the last line of (4.23) changes sign. All of the ingredients are now in place
for writing the final sum over spins. Dropping non-logarithmic terms again,

HJ
n(x , y) =

x2

y2

(2n+ 3)!
(n+ 1)!2

Pn+1(2x + 1) log x
∑

`±

B(n,`)(−1)n+`kn+`+3(−y) (4.24)

−
x2

y2
(−1)nkn+2(−y)B̂(n, x)

�

xn+1 log x(log x + 2H2n+3 − 4Hn+1)
4(n+ 1)!2

−
1
2

∞
∑

m=0

xm log x
m!

�

(n+ 2)m+1(−n− 1)m
(−1)mm!(2n+ 3)!

1−δm,n+1

n+ 1−m
±

m
∑

l=0

(n+ 2)l(n+ 2−m)l
l!Γ (2n+ 4−m+ l)

��

+ . . . ,

where B(n,`) was given in (4.18) and

B̂(n, x) =
∑

j

b(n, j)D
n
∏

l=2 j+1

[D− l(l + 1)] . (4.25)

The coefficients b(n, j) themselves were found with the AdS unitarity method and are sum-
marized in table 5. It will be interesting to look for further refinements to the raw formula
(4.24). Some which are already apparent have been postponed to Appendix C.

4.3 Main results

As shown above, the resummation based on [17] is useful because it leads to an expression of
the form

dDisc
�

GJ
a(x , y)

�

4π2
=
[6G∨F (Ft)1a]

2

|GF |(Ft)0a

�

p(x , y)x2 log2 x + q(x , y)x2 log x + . . .
�

. (4.26)
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Table 6: Expressions for S(2,2)
a (n, h̄)/

[24G∨F (Ft )1a]
2

2|GF |(Ft )0a
which is the coefficient of the triple

pole in (2.31). The prefactors are (n+ 1)2(n+ 2)2rn+2.

k n Normalized S(2,2)
a (n, h̄)

1 0 2[R0(h̄) + 2R1(h̄)]
1 6[R0(h̄) + 22R1(h̄) + 120R2(h̄)]
2 36

5 [R0(h̄) + 52R1(h̄) + 1140R2(h̄) + 10080R3(h̄)]
3 40

7 [R0(h̄) + 92R1(h̄) + 4068R2(h̄) + 102816R3(h̄) + 1209600R4(h̄)]
2 0 2[R0(h̄) + 2R1(h̄)]

1 6[R0(h̄) + 6R1(h̄) + 24R2(h̄)]
2 36

5 [R0(h̄) + 12R1(h̄) + 660R2(h̄) + 7200R3(h̄)]
3 40

7 [R0(h̄) + 20R1(h̄) + 2628R2(h̄) + 50400R3(h̄) + 403200R4(h̄)]
3 0 2[R0(h̄) + 2R1(h̄)]

1 6[R0(h̄) + 6R1(h̄) + 24R2(h̄)]
2 36

5 [R0(h̄) + 12R1(h̄) + 300R2(h̄) + 2880R3(h̄)]
3 40

7 [R0(h̄) + 20R1(h̄) + 1116R2(h̄) + 36288R3(h̄) + 483840R4(h̄)]
4 0 2[R0(h̄) + 2R1(h̄)]

1 6[R0(h̄) + 6R1(h̄) + 24R2(h̄)]
2 36

5 [R0(h̄) + 12R1(h̄) + 300R2(h̄) + 2880R3(h̄)]
3 40

7 [R0(h̄) + 20R1(h̄) + 1116R2(h̄) + 20160R3(h̄) + 161280R4(h̄)]

Due to the structure of (4.24), the polynomials p(x , y) will be the easiest ones to evaluate.
Labelling them by values of k, we have found

p1(x , y) = −
1
2
− y − x(1+ 32y + 45y2)−

9
2

x2 y(10+ 99y + 112y2)

− 24x3 y2(21+ 128y + 125y2) +O(x4) ,

p2(x , y) = −
1
2
− y − x(1+ 8y + 9y2)−

9
2

x2 y(2+ 63y + 80y2)

− 40x3 y2(9+ 32y + 25y2) +O(x4) ,

p3(x , y) = −
1
2
− y − x(1+ 8y + 9y2)−

9
2

x2 y(2+ 27y + 32y2)

− 48x3 y2(3+ 24y + 25y2) +O(x4) ,

p4(x , y) = −
1
2
− y − x(1+ 8y + 9y2)−

9
2

x2 y(2+ 27y + 32y2)

− 16x3 y2(9+ 32y + 25y2) +O(x4) . (4.27)

As expected, the polynomial in y beside a given power of x is always finite. Further reassurance
can be gained by solving for S(2,2)

a (n, h̄) and checking that it agrees with the known value of



a(0)γ(1)2
�

a,n,` in accordance with (2.34). The results of this calculation are shown in table 6.

4.3.1 Anomalous dimension averages

Continuing to use (4.24) as a master formula inside (4.15), it is possible to solve for q(x , y) as
well. Together with p(x , y), these polynomials permit the extraction of S(2,1)

a (n, h̄) numerators
from the spectral density which contain new information. Before tabulating them, it is impor-
tant to note that they will involve a discrete choice between two expressions depending on the
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parity of the representation Ra. This can be seen in the result for S(N)G,1 from (4.12) which is

q1(x , y) =
1
6
(−11+ 26y + 72y2) +

8
3

x(−1− 8y + 72y2 + 108y3) (4.28)

+
3
2

x2 y(−22+ 153y + 1528y2 + 1600y3) +
8
3

x3 y2(9+ 1312y + 5375y2 + 4500y3)

±
1
6

�

5+ 34y + 36y2 + 2x(11+ 196y + 585y2 + 432y3)

+ 9x2(1+ 88y + 657y2 + 1344y3 + 800y4)

−4x3(1− 64y − 2079y2 − 10560y3 − 17400y4 − 9000y5)
�

+O(x4) .

When Ra is in the symmetric (anti-symmetric) product of two adjoints, Bose symmetry requires
the exchanged spin to be even (odd) which nicely comes out of the Lorentzian inversion for-
mula. This in turn forces us to take the upper (lower) sign of (4.28) which reflects the spins
that were present in the sum defining the double discontinuity.26 After repeating the steps
above for higher S(N)G,1 and T (N)G,1 theories, a new complication (which is familiar with maximal
supersymmetry) rears its head. The analogues of (4.28) are

q2(x , y) =
1
6
(−11± 5) +

y
15
(−79± 19) +

3y2

35
(122± 81)−

8y3

315
(365± 304) +

40y4

693
(268± 227)

+O(y5) + x

�

1
3
(−8± 11) +

4y
15
(−101± 71) +

3y2

35
(3018± 1735)−

16y3

315
(329± 1123)

+
40y4

693
(5873± 4621) +O(y5)

�

+ x2

�

±
3
2
+

3y
5
(−41± 66) +

27y2

70
(1245± 1709)

+
4y3

35
(−2587± 3790) +

40y4

77
(6202± 4061) +O(y5)

�

+ x3
�

±
2
3
(16y − 1) (4.29)

+
6y2

35
(1276± 5129) +

64y3

315
(−4727± 12242) +

40y4

693
(265085± 165103) +O(y5)

�

+O(x4)

from (4.11),

q3(x , y) =
1
6
(−11± 5) +

y
15
(−79± 19) +

24y2

35
(4± 3) +

4y3

35
(20± 11)−

65y4

308
(19± 14)

+O(y5) + x

�

1
3
(−8± 11) +

4y
15
(−101± 71) +

3y2

35
(678± 673) +

16y3

35
(349± 185)

−
5y4

154
(3199± 2334) +O(y5)

�

+ x2

�

±
3
2
+

3y
5
(−41± 66) +

27y2

70
(183± 755)

+
144y3

35
(319± 212)−

15y4

154
(−2344± 287) +O(y5)

�

+ x3
�

±
2
3
(16y − 1) (4.30)

+
6y2

7
(8± 475) +

32y3

21
(1429± 1806) +

10y4

231
(61232± 67875) +O(y5)

�

+O(x4)

26At the previous orders in 1/cJ , all data depended on (−1)` only by virtue of whether it was zero or not. In
this sense, the non-trivial effect of Bose symmetry seen here is analogous to the refined view of S-fold theory space
that a one-loop calculation affords.
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from (4.14) and

q4(x , y) =
1
6
(−11± 5) +

y
15
(−79± 19) +

24y2

35
(4± 3)−

4y3

315
(220± 191) +

5y4

693
(953± 796)

+O(y5) + x

�

1
3
(−8± 11) +

4y
15
(−101± 71) +

3y2

35
(678± 673)−

16y3

315
(209± 415)

+
10y4

693
(13811± 10411) +O(y5)

�

+ x2

�

±
3
2
+

3y
5
(−41± 66) +

27y2

70
(183± 755)

+
32y3

35
(−227± 194) +

10y4

77
(15368± 9811) +O(y5)

�

+ x3
�

±
2
3
(16y − 1) (4.31)

+
6y2

7
(8± 475) +

64y3

63
(−592± 1051) +

40y4

693
(165083± 94495) +O(y5)

�

+O(x4)

from (4.13). Evidently, the spin dependence for a given twist no longer truncates which means
the basic term-by-term integration advocated in Appendix A will only produce an asymptotic
series valid for large spin. Iteratively finding terms up to O(y4) as in (4.29), (4.30) and (4.31)
leads to the results in table 7. At the end of this subsection, we will also give results which
account for all powers of y and therefore go beyond asymptotics. Currently, it is only known
how to do this when the value of the spin is fixed.

4.3.2 Non-degenerate anomalous dimensions

The entries of table 7 describe families of many dilation eigenstates which become degenerate
as cJ →∞. This is of course the situation already seen at tree-level which required the infinite
collection of




O0O0O j,mO j,−m

�

data summarized in (4.3). The single loop-level correlator
studied here is similarly not enough to isolate a generic anomalous dimension but [O0O0]0,`
is special because it is too light to mix with anything else. Gathering the O(1), O(c−1

J ) and
O(c−2

J ) results specific to this operator, (2.34) makes it straightforward to compute

γa,0,` =
G∨F (Ft)1a

cJ |GF |(Ft)0a

24
(`+ 1)(`+ 4)

+

�

G∨F (Ft)1a

cJ |GF |(Ft)0a

�2
96

`(`+ 1)2(`+ 4)2(`+ 5)
(4.32)

�

4`4 + 34`3 + 47`2 − 115`− 96
(`+ 1)(`+ 4)

−
5`2 + 25`+ 24

2(−1)`

�

+O(c−1
T ) (k = 1)

for S(N)G,1 . As discussed above (3.1), observables of this type generically have poles which in-
dicate a breakdown of analyticity in spin. Going back to the contour deformation in [18],
sufficiently large spins were required for the arcs to drop out of the Lorentzian inversion for-
mula. The precise condition visible in (4.32) is ` ≥ 1. From the perspective of the bulk, this
represents a freedom to shift the amplitude by a function which satisfies three conditions.

1. Crossing symmetry

2. No double discontinuity

3. A degree compatible with gluon scattering in flat space

To enumerate such functions, it is convenient to use Mellin space and take the flat space limit of
(3.24). This shows that the ambiguity is simply a constant or a Mack polynomial of spin zero.27

As further confirmation, the Mellin amplitude found in [44] is a formal expression which

27See [72,75] for an explanation of how such terms may be fixed with localization.
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Table 7: Expressions for S(2,1)
a (n, h̄)/

[24G∨F (Ft )1a]
2

2|GF |(Ft )0a
which is the coefficient of the double

pole in (2.31). For k = 1 they have been found exactly while for k > 1 we give the
first five terms in the asymptotic series which is valid for large h̄(h̄−1). This time, the
appropriate formula depends on whether it is being used to compute an even-spin or
odd-spin trajectory.

k ` n Normalized S(2,1)
a (n, h̄)

1 + 0 R0(h̄)− 10R1(h̄)− 72R2(h̄)
1 1

2[R0(h̄)− 106R1(h̄)− 3240R2(h̄)− 31104R3(h̄)]
2 − 3

25[7R0(h̄) + 1149R1(h̄) + 58710R2(h̄) + 1486800R3(h̄) + 17280000R4(h̄)]
1 − 0 4

3[2R0(h̄) + R1(h̄)− 18R2(h̄)]
1 1

2[19R0(h̄) + 178R1(h̄)− 24R2(h̄)− 10368R3(h̄)]
2 3

25[118R0(h̄) + 2741R1(h̄) + 26730R2(h̄)− 147600R3(h̄)− 5760000R4(h̄)]
2 + 0 1

35[35R0(h̄) + 140R1(h̄)− 2436R2(h̄)− 21408R3(h̄)− 576000R4(h̄)] + . . .
1 1

70[35R0(h̄) + 910R1(h̄)− 118944R2(h̄) + 143040R3(h̄)− 25574400R4(h̄)] + . . .
2 − 3

175[49R0(h̄)− 497R1(h̄) + 408786R2(h̄) + 77808R3(h̄) + 210240000R4(h̄)] + . . .
2 − 0 2

1155[1540R0(h̄) + 3773R1(h̄)− 8118R2(h̄)− 32208R3(h̄)− 787200R4(h̄)] + . . .
1 1

770[7315R0(h̄) + 41118R1(h̄)− 349536R2(h̄)− 1160896R3(h̄)− 33100800R4(h̄)] + . . .
2 3

1925[9086R0(h̄) + 93709R1(h̄) + 53658R2(h̄) + 15416368R3(h̄)− 451660800R4(h̄)] + . . .
3 + 0 1

35[35R0(h̄) + 140R1(h̄)− 672R2(h̄)− 4464R3(h̄) + 140400R4(h̄)] + . . .
1 1

70[35R0(h̄) + 910R1(h̄)− 33768R2(h̄) + 606240R3(h̄) + 7524000R4(h̄)] + . . .
2 − 3

175[49R0(h̄)− 497R1(h̄) + 123522R2(h̄) + 3823344R3(h̄)− 2462400R4(h̄)] + . . .
3 − 0 2

1155[1540R0(h̄) + 3773R1(h̄)− 1584R2(h̄)− 21384R3(h̄) + 351000R4(h̄)] + . . .
1 1

770[7315R0(h̄) + 41118R1(h̄)− 3432R2(h̄) + 2049696R3(h̄) + 12924000R4(h̄)] + . . .
2 3

1925[9086R0(h̄) + 93709R1(h̄) + 586674R2(h̄)− 7585776R3(h̄)− 78912000R4(h̄)] + . . .
4 + 0 1

35[35R0(h̄) + 140R1(h̄)− 672R2(h̄) + 6576R3(h̄)− 254400R4(h̄)] + . . .
1 1

70[35R0(h̄) + 910R1(h̄)− 33768R2(h̄) + 93024R3(h̄)− 14601600R4(h̄)] + . . .
2 − 3

175[49R0(h̄)− 497R1(h̄) + 123522R2(h̄)− 169776R3(h̄) + 127742400R4(h̄)] + . . .
4 − 0 2

1155[1540R0(h̄) + 3773R1(h̄)− 1584R2(h̄) + 7656R3(h̄)− 376800R4(h̄)] + . . .
1 1

770[7315R0(h̄) + 41118R1(h̄)− 3432R2(h̄)− 279840R3(h̄)− 22262400R4(h̄)] + . . .
2 3

1925[9086R0(h̄) + 93709R1(h̄) + 586674R2(h̄) + 8534064R3(h̄)− 294187200R4(h̄)] + . . .

does not converge until one chooses a regularization scheme which leaves the same contact
term unfixed. Finally, the double discontinuity in (2.31) also appears in a newer dispersion
relation [100] which directly reconstructs a four-point function (either in position or Mellin
space) instead of the spectral density. In this language, the ambiguities at low spin manifest
themselves as subtractions.

Proceeding to higher values of k reveals a piece of good fortune. Since the double-trace
�

O 1
2
O 1

2

�

0,`
does not exist in any of the genuine S-folds, we can actually go up to n = 1.

Defining c̃J ,a = cJ/
G∨F (Ft )1a
|GF |(Ft )0a

for convenience, the same analysis leads to

γa,0,` =
24

c̃J ,a(`+ 1)(`+ 4)
+

96

35c̃2
J ,a(`)6(`+ 1)(`+ 4)

(4.33)

�

140`6 + 1890`5 + 9443`4 + 21420`3 + 16265`2 − 17550`− 17568
(`+ 1)(`+ 4)

−
(−1)`

2
(175`4 + 1750`3 + 5341`2 + 4830`+ 5832)−

96(365+ 304(−1)`)
(`− 1)(`+ 6)

+ . . .

�
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γa,1,` =
72

c̃J ,a(`+ 1)(`+ 6)
+

216

35c̃2
J ,a(`+ 1)6(`+ 1)(`+ 6)

(k = 2)

�

945`6 + 19005`5 + 150493`4 + 591227`3 + 1015438`2 − 92148`− 699192
(`+ 1)(`+ 6)

−(−1)`(525`4 + 7350`3 + 36953`2 + 78596`+ 135636) +
128(293+ 1942(−1)`)

`(`+ 7)
+ . . .

�

for S(N)G,2 or T (N)G,2 ,

γa,0,` =
24

c̃J ,a(`+ 1)(`+ 4)
+

96

35c̃2
J ,a(`)6(`+ 1)(`+ 4)

(4.34)

�

140`6 + 1890`5 + 9443`4 + 21420`3 + 19505`2 − 1350`− 4608
(`+ 1)(`+ 4)

−
(−1)`

2
(175`4 + 1750`3 + 5341`2 + 4830`+ 1728)−

432(20+ 11(−1)`)
(`− 1)(`+ 6)

+ . . .

�

γa,1,` =
72

c̃J ,a(`+ 1)(`+ 6)
+

864

35c̃2
J ,a(`+ 1)6(`+ 1)(`+ 6)

(k = 3)

�

210`6 + 4200`5 + 33187`4 + 130718`3 + 250627`2 + 152418`− 9288
(`+ 1)(`+ 6)

−
(−1)`

2
(315`4 + 4410`3 + 21889`2 + 45178`+ 44112) +

144(1376+ 729(−1)`)
`(`+ 7)

+ . . .

�

for S(N)G,3 or T (N)G,3 and

γa,0,` =
24

c̃J ,a(`+ 1)(`+ 4)
+

96

35c̃2
J ,a(`)6(`+ 1)(`+ 4)

(4.35)

�

140`6 + 1890`5 + 9443`4 + 21420`3 + 19505`2 − 1350`− 4608
(`+ 1)(`+ 4)

−
(−1)`

2
(175`4 + 1750`3 + 5341`2 + 4830`+ 1728) +

48(220+ 191(−1)`)
(`− 1)(`+ 6)

+ . . .

�

γa,1,` =
72

c̃J ,a(`+ 1)(`+ 6)
+

864

35c̃2
J ,a(`+ 1)6(`+ 1)(`+ 6)

(k = 4)

�

210`6 + 4200`5 + 33187`4 + 130718`3 + 250627`2 + 152418`− 9288
(`+ 1)(`+ 6)

−
(−1)`

2
(315`4 + 4410`3 + 21889`2 + 45178`+ 44112) +

48(352+ 617(−1)`)
`(`+ 7)

+ . . .

�

for S(N)G,4 or T (N)G,4 . Less fortunately, the finite spin regime is not controlled so the poles at pos-
itive values of the spin are not meaningful. Indeed, they would disappear if one re-expanded
the anomalous dimensions in 1/` and regarded the suppressed terms as O(`−12) corrections.
Nevertheless, we will soon see that the Lorentzian inversion formula without the arcs still con-
verges for ` ≥ 1. This is inevitable because the value of k cannot affect the growth of the
〈O0O0O0O0〉 correlator in the flat space limit.

4.3.3 Some finite spin completions

To find symbolic expressions for S-fold anomalous dimensions at finite spin, one needs the
double discontinuity to be exact in y at a given order in x . Below we present this even more
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resummed version of the double discontinuity for the case of k = 2. This formula, which is
conjectural, came from computing terms up to O(y50) in (4.29) and then using Mathematica
to discern a pattern in the coefficients.28 For even spins, the result is

q2(z, z̄) =
225z̄5 − 30z̄4 + 16z̄3 + 1392z̄2 − 4160z̄ + 2304

256z̄2
(4.36)

+
225z̄5 − 180z̄4 + 16z̄3 − 64z̄2 + 512z̄ − 512

256z̄
atanh(

p
1− z̄)

p
1− z̄

+
z

1− z

�

11025z̄7 − 4800z̄6 − 276z̄5 + 704z̄4 − 25344z̄3 + 233984z̄2 − 435456z̄ + 221184
1024z̄3

+
11025z̄7 − 12150z̄6 + 1944z̄5 + 848z̄4 − 3968z̄3 + 52480z̄2 − 105472z̄ + 55296

1024z̄2

atanh(
p

1− z̄)
p

1− z̄

�

+O(z2)

and for odd spins, it is

q2(z, z̄) =
135z̄5 − 90z̄4 + 3136z̄3 − 10800z̄2 + 9920z̄ − 2304

−768z̄2(1− z̄)
(4.37)

+
45z̄5 − 60z̄4 − 48z̄3 + 576z̄2 − 1024z̄ + 512

−768z̄(1− z̄)
3atanh(

p
1− z̄)

p
1− z̄

+
z

1− z

�

6075z̄7 − 3780z̄6 − 180z̄5 − 43456z̄4 + 410496z̄3 − 947456z̄2 + 799488z̄ − 221184
−3072z̄3(1− z̄)

+
2025z̄7 − 2610z̄6 + 600z̄5 − 3984z̄4 + 56448z̄3 − 157952z̄2 + 160768z̄ − 55296

−3072z̄2(1− z̄)
3atanh(

p
1− z̄)

p
1− z̄

�

+O(z2) .

Although it would be nice to treat k = 3 and k = 4 in the same way, these apparently lead to
coefficient sequences which are not known to Mathematica.

We can now attempt to integrate conformal blocks against (4.36) and (4.37) for any value
of the twist. It will be most interesting to do this for the two non-degenerate families thereby
improving (4.33). As discussed in [75], one also needs to set the spin to a certain integer
for the result to have a closed form. Picking one even example and one odd example (and
recalling that `= 0 is ambiguous due to the aforementioned contact term), it follows that

γa,0,1 =
12

5c̃J ,a
+

3

c̃2
J ,a

−101126+ 353280 log(2)− 127575ζ(3)
4000

, (4.38)

γa,0,2 =
4

3c̃J ,a
+

1

c̃2
J ,a

−9586834+ 35868672 log(2)− 12720645ζ(3)
14112

,

γa,1,1 =
36

7c̃J ,a
+

3

c̃2
J ,a

−56280862+ 209950720 log(2)− 74473875ζ(3)
137200

,

γa,1,2 =
3

c̃J ,a
+

1

c̃2
J ,a

−9784676042+ 36663459848 log(2)− 13001749425ζ(3)
702464

. (k = 2)

The anomalous dimensions in this section, whether resummed or asymptotic, can be made
fully explicit by plugging in a central charge from table 3 and a crossing matrix from Appendix
B. There is also the important matter of supergravity at order 1/cT to which we now turn.

28More precisely, we replaced y with 1−z̄
z̄ again and then expanded around z̄ = 1. Before doing so, it was also

necessary to introduce an overall prefactor of 1/z̄. We thank Tobias Hansen for suggesting this way of doing the
calculation.
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4.4 The supergravity contribution

Going back to the data from the brane construction, c2
J and cT are both proportional to N2.

The double discontinuity GJ (z, z̄) should therefore be considered alongside a similar function
GT (z, z̄) from tree-level supergravity. The Mellin formalism is once again a convenient tool
for computing it. In addition to agreeing with the position space calculation of [44], this will
allow us to formalize the open problem of repeating it for heavier external operators.

4.4.1 Lightest external operator

The first step is to take the N = 4 multiplets for AdS5 × S5 and check which ones contain
N = 2 multiplets that are allowed by the O0 ×O0 OPE. As expected, only the lowest Kaluza-
Klein mode does. Its decomposition was first found in [101] and reads

BB̄[0;0](0,2,0)
2 = BB̄[0;0](2,2,0)

2 ⊕ AĀ[0;0](0,0,0)
2 (4.39)

⊕ AB̄[0;0](1,1,2)
2 ⊕ BĀ[0;0](1,1,−2)

2 ⊕ LB̄[0; 0](0,0,4)
2 ⊕ BL̄[0;0](0,0,−4)

2 ,

where we have switched to the notation of [79]. The extra Dynkin label on the right-hand side
is for keeping track of SU(2)L which is the commutant of SU(2)R × U(1)R in SO(6)R. Notice
that only one of the six multiplets in (4.39) is exchanged because the others have too much
charge under either U(1)R or SU(2)L . Based on this, the appropriate Mellin space ansatz is

MI1 I2 I3 I4(s, t;α) = δI1 I2δI3 I4
�

λAĀ
0 SAĀ

0 (s, t;α) + C(s, t;α)
�

+ . . . , (4.40)

where only the s-channel has been written explicitly. Our goal is to apply the superconformal
Ward identity to this piece alone and then write down the orbit of the resulting solution under
crossing.29 This means using {δI1 I2δI3 I4 ,δI1 I4δI2 I3 ,δI1 I3δI2 I4} (which are linearly independent
for almost all groups) as basis elements instead of projections onto irreducible representations
in a fixed channel. The calculation can be setup by looking up the explicit superconformal
block for the stress tensor multiplet [85] which gives

SAĀ
0 (s, t;α) = Y0(α)M2,0(s, t)−Y1(α)M3,1(s, t) +

1
15

Y0(α)M4,2(s, t) (4.41)

=
∞
∑

m=0

−3[α(t − u)(t + u− 10)− (u− 4)(t − u+ 2)]
m!Γ [1−m]2Γ [m+ 3](s− 2− 2m)

.

In the second line, we have made contact with [19, 20] by solving for the s = 2+ 2m residue
and setting 2m= 6− t−u in the polynomial part. This shows the expected zero in the limit of
maximal R-symmetry violation (MRV). Another useful check of (4.41) can be performed with
the superconformal twist (which does not see contact terms). The only s-channel singularity
which could potentially contribute to the chiral correlator for (4.40) comes from the pole at
s = 2. The integral

f (z, z̄; z̄−1)∝
∫ o∞

−i∞

dt
2πi

UV
t
2−2

�

(t − 2)2 − 4z̄−1(t − 3)
�

Γ

�

4− t
2

�2

Γ

�

t − 2
2

�2

(4.42)

can then be evaluated along the lines of [90]. With ∂ f
∂ z̄ = 0 guaranteed, there is no loss of

generality in setting z̄ = 1 which localizes the integral to the neighbourhood of t = 4. Seeing

29Strictly speaking, this adds one assumption to our previous approach. If the single-trace spectrum were the
only dynamical input, this would not say anything about the 1/cT and 1/c2

J contributions to a four-point function
posessing superconformal symmetry individually.
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that there is no pole here, we confirm the fact that (3.10) is an exact four-point function of
affine currents.30

Returning to the evaluation of 〈O0O0O0O0〉, it is clear that the contact term C(s, t;α) has
degree 2 in α and degree 1 in the Mandelstam variables. Letting the coefficients of these
powers be arbitrary, we can apply the superconformal Ward identity to (4.40) and arrive at

C(s, t;α) =
3λAĀ

0

8

�

−8+ 2(2α− 1)(t − u) + 2(2α− 1)2(t + u− 4)
�

, (4.43)

which is manifestly Bose symmetric. By checking how the stress tensor appears, the overall
normalization is λAĀ

0 = − 80
3cT

. To obtain an auxiliary Mellin amplitude by inverting (3.24),
one can employ the “triangle method” of [10] which becomes trivial when there is only one
R-symmetry cross ratio. As in [44],

ÝMI1 I2 I3 I4(s, t) = −
320
cT

�

δI1 I2δI3 I4

s− 2
+
δI1 I4δI2 I3

t − 2
+
δI1 I3δI2 I4

ũ− 2

�

, (4.44)

which makes it easy to extract the double discontinuity. Following (4.64),

GT
a (U , V ) = −

|GF |(Ft)0a

cT

80
V

∫ i∞

−i∞

ds
2πi

U
s
2 Γ
�

2−
s
2

�2
Γ
� s

2

�2

= −
|GF |(Ft)0a

3cT

80
V 2F1

�

2, 2;4; 1− U−1
�

(4.45)

and the spectral density goes as 1
2 csc2[π(3− h)]R−3(h)R−1(h̄) + csc2[π(2− h)]R−2(h)R−1(h̄).

This function serves to bring about the additional term



a(0)γ(2)
�

a,n,` 7→



a(0)γ(2)
�

a,n,` (4.46)

+
160|GF |(Ft)0a

cT

�

1
2

R−3(n+ 2) + R−2(n+ 2)
�

R−1(n+ `+ 3) ,

for every one-loop anomalous dimension that was computed from GJ
a(U , V ) in the previous

subsection. As with (3.28), this correction is insensitive to the S-fold construction because it
comes from tree-level dynamics.

4.4.2 Comments on higher weights

Encouraged by this result, a logical next step is to try fixing the 1/cT part of
¬

O 1
2
O 1

2
O 1

2
O 1

2

¶

consisting of dimension 3 primaries. These are allowed to couple to various components of
the 1

2 -BPS N = 4 multiplet of dimension 4.

BB̄[0;0](0,4,0)
4 = BB̄[0; 0](4,4,0)

4 ⊕ AĀ[0; 0](2,2,0)
4 ⊕ L L̄[0;0](0,0,0)

4 (4.47)

⊕ AB̄[0;0](3,3,2)
4 ⊕ BĀ[0;0](3,3,−2)

4 ⊕ LB̄[0; 0](0,0,8)
4 ⊕ BL̄[0;0](0,0,−8)

4 ⊕
2
⊕

r=1

�

LB̄[0;0](r,r,8−2r)
4 ⊕ BL̄[0;0](r,r,2r−8)

4

�

⊕
1
⊕

r=0

�

LĀ[0;0](r,r,4−2r)
4 ⊕ AL̄[0;0](r,r,2r−4)

4

�

.

30This does not contradict the fact that the stress tensor multiplet contains a Schur operator. The double-trace
multiplet BB̄[0; 0](4,0)

4 also does and the two become degenerate in the chiral algebra. The cancellation between
them underlies a 4d unitarity bound derived in [89].
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Due to the long N = 2 multiplet on the right-hand side, we should no longer expect the
superconformal Ward identity to fix everything. This can be verified by using the ansatz

MI1 I2 I3 I4(s, t;α,β) = δI1 I2δI3 I4
�

λAĀ
0 SAĀ

0 (s, t;α) +λL L̄
0 S L L̄

0 (s, t;α) + C0(s, t;α)
�

(4.48)

+δI1 I2δI3 I4Y1(β)
�

λBB̄
1 SBB̄

1 (s, t;α) +λAĀ
1 SAĀ

1 (s, t;α) + C1(s, t;α)
�

and again writing down explicit blocks in the s-channel. The new ones are

SAĀ
1 (s, t;α) = Y1(α)M4,0(s, t)−

�

Y2(α) +
1
12

Y0(α)
�

M5,1(s, t)

+
9

140
Y1(α)M6,2(s, t) +

1
12

Y1(α)M6,0(s, t)−
3

560
Y0(α)M7,1(s, t) ,

S L L̄
0 (s, t;α) = Y0(α)M4,0(s, t)−Y1(α)M5,1(s, t) +

�

Y2(α) +
1
60

Y0(α)
�

M6,0(s, t)

+
9

140
Y0(α)M6,2(s, t)−

9
140

Y1(α)M7,1(s, t) +
3

700
Y0(α)M8,0(s, t) , (4.49)

which show that the R-symmetry representation for a given Witten diagram need not be
unique. These multiplets also contain twists of 6 and 8 which have vanishing residues because
they overlap with double-trace values. The corresponding Witten diagrams are therefore pure
contact terms which allow the contributions with lower twists to be symmetrized. This leads
to the residues

SAĀ
0 (s, t;α) =

∞
∑

m=0

−3[α(t − u)(t + u− 14)− (u− 6)(t − u+ 2)]
m!Γ [2−m]2Γ [m+ 3](s− 2− 2m)

, (4.50)

SAĀ
1 (s, t;α) =

∞
∑

m=0

−60
4m!Γ [1−m]2Γ [m+ 5](s− 4− 2m)

�

3α2(t − u)(t + u− 16)−α(t2 + 2tu− 32t − 5u2 + 64u− 120)− (u− 6)(t − 2u+ 10)
�

,

S L L̄
0 (s, t;α) =

∞
∑

m=0

−90
m!Γ [1−m]2Γ [m+ 5](s− 4− 2m)

�

α2(t + u− 16)(t + u− 8)− 2α(tu− 6t + u2 − 18u+ 64) + (u− 6)2
�

,

where we have restated SAĀ
0 since the external weights are now different.31 One should simi-

larly analyze SBB̄
1 (which was called S0 in (3.18)) but this was already done in [24]. Using the

superconformal Ward identity once again, there are indeed more free parameters than before.
Nevertheless, the solution

λBB̄
1 = 0 , λAĀ

0 = 0 , C0(s, t;α) =
75λL L̄

0

8
[(2α− 1)2 − 1] (4.51)

C1(s, t;α) =
5λAĀ

1

64

�

u− t − (2α− 1)(t + u+ 6) + 3(2α− 1)2(t − u) + 3(2α− 1)3(t + u− 6)
�

reveals a surprising absence of the 1/cT term λAĀ
0 . Understanding this issue will be important

for improving the status of massive loop calculations with eight supercharges.

31We do not have an explanation for why the long block has a double zero instead of a single zero in the MRV
limit. While this pattern continues to hold for higher weights, it appears to be unique to four dimensions.
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4.5 Matching onto a Mellin amplitude

Although we have gone this far by only using Mellin space for tree-level calculations, there is
also an algorithm [68] for building a one-loop Mellin amplitude once its double discontinuity
is known. For reasons that are not yet understood, it is often the case that this amplitude can
be chosen to have only simultaneous poles and no simple poles. This allows its structure to be
determined solely from the simplest part of the double discontinuity which was called p(x , y)
in (4.26). To see how this works, let us quote

pk(x , y) =
∞
∑

m=0

xm ym−1
�

m+ 1
2

�2

[Tk(m)(m+ 2)y(my + 2y +m+ 1) + Tk(m− 1)m(my + y +m)] , (4.52)

where

T1(2 j) =
1
3
( j + 1)(2 j + 1)(4 j + 3) , (4.53)

T2(2 j) =
1
3
(b jc+ 1) (2b jc+ 1) (2b jc+ 3) ,

T3(2 j) =
�

b j
3c+ 1

��

4b j
3c

2 + 6b j
3c+ 1

�

+ 8b2 j−1
6 c

�

b2 j−1
6 c+ 1

�2

+
�

b j−1
3 c+ 1

��

2b j−1
3 c+ 1

��

2b j−1
3 c+ 3

�

+ 2
�

b2 j−3
6 c+ 1

��

4b2 j−3
6 c

2 + 9b2 j−3
6 c+ 4

�

+
�

b j−2
3 c+ 1

��

4b j−2
3 c

2 + 10b j−2
3 c+ 5

�

+ 2
�

b2 j−5
6 c+ 1

��

b2 j−5
6 c+ 2

��

4b2 j−5
6 c+ 3

�

,

T4(2 j) =
1
3

�

b j−1
2 c+ 1

��

8b j−1
2 c

2 + 19b j−1
2 c+ 9

�

+
1
3

�

b j
2c+ 1

��

8b j
2c

2 + 13b j
2c+ 3

�

.

These can be readily derived from the results in Appendix C. There will be no need to perform
the sum here, but for Tk coefficients of the form (4.53), the result is always a rational function
of x and y . Switching back to the cross ratios U and V , (4.52) tells us all terms in the four-
point function which include a factor of log2 U log2 V . These naturally lead to simultaneous
poles when we go to Mellin space. Specifically,

ÝM(s, t) =
1

(s− 2l)(t − 2m)
⇒ H(U , V ) =

Γ (l +m− 1)2U l V m−2

16Γ (l − 1)2Γ (m− 1)2
log2 U log2 V + . . . , (4.54)

where the integers l and m are at least 2. Taking a linear combination of such poles and
making the result crossing symmetric (anti-symmetric) for even (odd) Ra,

ÝMa(s, t) =
[6G∨F (Ft)1a]

2

c2
J |GF |(Ft)0a

∞
∑

l,m=2

clm

�

1
(s− 2l)(t − 2m)

±
1

(s− 2l)(ũ− 2m)

�

(4.55)

is an ansatz which accounts for all log2 U log2 V terms once we compare to pk(x , y)/(z−z̄) and
solve for the coefficients. As an aside, [44] showed that the flavour projection can be undone
in a way which gives the amplitude a remarkably simple form in terms of the “box diagram”

dI1 I2 I3 I4 = f J I1K f KI2 L f LI3M f M I4J . (4.56)

This derivation makes use of the identities

|GF |(Ft)
0
a = 1 , dI1 I2 I3 I4 =

∑

a

[G∨F (Ft)
1
a]

2P I1 I2|I3 I4
a . (4.57)

If k = 1, it is straightforward to iterate the above procedure a few times to notice that

clm =
4
3

�

(l − 1)2

l +m− 2
+

l2 − 3l + 3
l +m− 3

−
2(l − 2)2

l +m− 4

�

, (4.58)
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which agrees with the result of [44]. For all other values of k, we expect physically that

c(k)lm =
1
k

c(1)lm + d(k)lm , (4.59)

where the remainder d(k)lm (also symmetric under l↔ m) becomes negligible in the flat space

limit l ∼ m→∞. We have only been able to find a general formula for d(k)lm when the S-fold
has k = 2. In this case, a workable method is to write

dlm =
l−1
∑

j=0

µl, j

l +m− j − 2
(4.60)

following [75] and guess µl, j as a function of l for the first few values of j. It should come as no
surprise that the result is proportional to (l− j) j−1 which enforces the upper limit of the sum in
(4.60). Once this is done, µl, j becomes a recognizable function up to a polynomial in l which
always has degree 6. Its coefficients can then be determined as functions of j one-by-one.
Explicitly,

µl, j =
(−1) j+l(l − j)2j−1

32(3) j−2

�

l − j − 3
2

�

j+2

�

8( j − 1)l6 − 24( j − 1)( j + 2)l5 + 12(2 j3 + 9 j2 − 10)l4

− 8( j + 2)( j3 + 12 j2 − 10)l3 + 2(18 j4 + 95 j3 + 82 j2 − 59 j − 60)l2

−2( j + 2)(23 j3 + 22 j2 − 11 j − 12)l + 15 j4 + 33 j3 + 10 j2 − 14 j − 8
�

(4.61)

leading to

(−1)l

2
dlm =

(l − 1)4D0(l, m)
(2l − 3)(2l − 1)(l +m− 2)

+
(2l6 − 12l5 + 33l4 − 58l3 + 60l2 − 45l + 11)D1(l, m)

(2l − 5)(2l − 3)(2l − 1)(l +m− 3)

+
(l − 2)2(6l4 − 42l3 + 125l2 − 184l + 107)D2(l, m)

(2l − 7)(2l − 5)(2l − 3)(l +m− 4)
(4.62)

+
(l − 3)2(l − 2)2(6l2 − 28l + 41)D3(l, m)
(2l − 9)(2l − 7)(2l − 5)(l +m− 5)

+
2(l − 4)2(l − 3)2(l − 2)2D4(l, m)
(2l − 11)(2l − 9)(2l − 7)(l +m− 6)

,

where

Dn(l, m)≡ 3F2

�

1+ n− l, 1+ n− l, 2+ n− l −m;
5
2
+ n− l, 3+ n− l −m; 1

�

. (4.63)

Mellin amplitudes of this type are appealing because they automatically match the sublead-
ing part of the double discontinuity referred to as q(x , y) in (4.26). In order to demonstrate
this, we will go to the crossed channel so that triple poles in s produce log2 V and triple poles in
t produce log2 U .32 Within the s = 2l residue however, there are also two sources of log U . The
first is the t = 2m residue where we simply keep terms that were suppressed in (4.54). The
second is an infinite sequence of double poles at even integers other than t = 2m as dictated
by the gamma functions. Keeping track of these leads to

dDisc [Ha(U , V )]
4π2

=
1

c̃2
J ,a

∞
∑

l,m=2

clmΓ (l +m− 1)2UmV l−2

16Γ (l − 1)2Γ (m− 1)2
(4.64)

�

log2 U +
�

±2
3− l − 2m

− 4Hm−2 + 4Hl+m−2

�

log U
�

+
1

c̃2
J ,a

∞
∑

l,m=2

∑

j 6=m

clmΓ (l + j − 1)2U jV l−2

8Γ (l − 1)2Γ ( j − 1)2
j + l +m− 3± (m− j)
( j −m)( j + l +m− 3)

log U ,

32Since both signs of (4.55) have the same dependence on t, even and odd spins will give rise to the same
log2 U log2 V term as expected.
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where the upper (lower) sign is for even (odd) spins. Once the k = 2 coefficients given by
(4.62) are plugged in, the above sum allows us to expand in x and y (after restoring the factor
of z − z̄) and precisely recover the log x terms seen in (4.29). In the last line of (4.64), this
exercise fixes j and l to small integer values corresponding to the powers of x and y being
examined. This causes all of the hypergeometric functions in (4.62) to simplify such that the
remaining sum over m can be done in closed form. Due to the ansatz (4.60) and the symmetry
of dlm, we can even evaluate the sum exactly when only finitely many µl, j residues are known.
This is the case for the k = 3 and k = 4 S-folds. Solving for the subset {µ2, j , . . . ,µ5, j}, the
truncated expressions (4.30) and (4.31) can all be matched confirming the absence of simple
poles once again.

5 Conclusion

This work has been a quantitative exploration of holographic theories which are defined by an
S-fold [30, 31, 35]. Part of it involved clarifying how basic features of the brane construction
can be written as input to the conformal bootstrap. The AdS unitarity method [45] then led to
interesting results, most importantly large-spin anomalous dimensions from table 7 and some
finite-spin counterparts in (4.38) which can distinguish between different S-folds. Moreover,
the algorithm we used in the process combined elements of [16–18] in a non-trivial way and
eliminated the need to propose any sort of “alphabet” for the one-loop double discontinuity
from the outset. Going up in twist three times was arbitrary and could have been done many
more times.

It is natural to ask how much of the landscape of 4d N = 2 holographic CFTs can be ex-
plored with these methods. Due to operator mixing, a single loop-level four-point function will
continue to incorporate data from infinitely many tree-level four-point functions. In our case,
these tree-level S-fold correlators, and the k = 1 correlators to which they were related, both
obeyed a crucial constraint. The single-trace conformal primaries (in a consistent subsector)
all had spins of at most N /2 ensuring that none of them could come from long multiplets. For
theories of class S, whose holographic duals were studied in [102], this will not be the case
since the operators come from compactifying a more supersymmetric theory on a Riemann
surface. Alternatively, SCFTs where the single-trace spins exceed N /2 can still be tractable
if they are related to maximally supersymmetric theories not through compactification but
through a simpler orbifold procedure [103]. For S-folds in particular, we believe the following
open problems should be investigated next.

• Double-trace anomalous dimensions, especially those in (4.38) which are reliable at low
spin, can be helpful for interpreting numerical bootstrap results. In order for this appli-
cation to proceed, it will be important to know the contributions from higher derivative
terms in the effective action in addition to the loops. Noting that S(N)D4,1 has a marginal
coupling, it is likely that these corrections depend more sensitively on the flavour group.

• Future targets include 4d N = 3 SCFTs, for which the analogue of our OPE coefficient
formula (2.42) is much richer. Since the desired correlators involve the SU(3) polariza-
tions mentioned in (1.2), projected tree-level exchanges no longer yield pure numbers
but new harmonic polynomials. Limiting values of them should reduce to isoscalar fac-
tors which have been studied from a CFT perspective in [104].

• In contrast to the case of [35] which had the N = 2 S-fold breaking global symmetries,
SU(4) → SU(3) in N = 3 S-folds is a breaking of R-symmetry. A 1

2 -BPS operator in

BB̄[0;0](0,p,0)
p will therefore decompose into longer (but not long) multiplets. The su-

perconformal blocks for these correlators are not known and indeed they might not even
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be fixed kinematically. There is currently a gap in the literature concerning model de-
pendent blocks which play a role in the mixing problems for model independent blocks.

• A decomposition along the lines of (2.20) exists for 1
2 -BPS operators of 4d N = 3 theo-

ries [32] but the extra correlators that account for mixing will need to be treated without
auxiliary functions. This motivates the need for a Lorentzian inversion formula which
explicitly accounts for supersymmetry. Some initial work has been done in [105] lever-
aging dimension shifting identities for conformal blocks and it will be interesting to see
how far this can be pushed.

We hope to begin addressing these in future work.
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A Standard inversion integrals

The inversion integrals needed to perform (2.31) were derived with elementary methods in
[66]. They can also be seen as special cases of the crossing kernels found in [48]. To start, the
appropriate double discontinuity whenever we have poles as z̄→ 1 is

dDisc
��

1− z̄
z̄

�p�

= 2 sin2(πp)
�

1− z̄
z̄

�p

. (A.1)

Although (A.1) vanishes for p ∈ Z, we can only rely on this for p non-negative. When p is a
negative integer, the zero will be cancelled by a divergence in the z̄ integral. Specifically,

r2
h̄

4π2

∫ 1

0

dz̄
z̄2

kh̄(z̄)

h̄− 1
2

dDisc
��

1− z̄
z̄

�p�

=
rh̄

Γ (−p)2
Γ (h̄− p− 1)
Γ (h̄+ p+ 1)

. (A.2)

In later parts of the calculation, a similar integral appears where the double discontinuity has
already been taken.

r2
h̄

∫ 1

0

dz̄
z̄2

kh̄(z̄)

h̄− 1
2

�

1− z̄
z̄

�p

= 2rh̄Γ (p+ 1)2
Γ (h̄− p− 1)
Γ (h̄+ p+ 1)

. (A.3)

The z integral is also best handled by letting the exponent be generic and analytically contin-
uing. A subtlety here is that the spectral density needs to be modified before its residues will
give the OPE coefficients of operators with integer twists. As explained in [18], this is because
the contour integral that recovers the OPE encircles certain poles of the shadow symmetric
kernel in addition to those of the spectral density. Applying the necessary correction is equiv-
alent to discarding all poles at values of h that are independent of the integrand. This justifies
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the last line of
∫ 1

0

dz
z2

k1−h(z)
� z

1− z

�q
=
Γ (2− 2h)Γ (1− q)2Γ (q− h)
Γ (1− h)2Γ (2− q− h)

≈ π cot[π(q− h)]
rh

Γ (q)2
Γ (h+ q− 1)
Γ (h− q+ 1)

. (A.4)

It is then straightforward to obtain logarithmic versions of (A.4) through differentiation. The
one we need is

∫ 1

0

dz
z2

k1−h(z)
� z

1− z

�q
log

� z
1− z

�

=
∂

∂ q

∫ 1

0

dz
z2

k1−h(z)
� z

1− z

�q

≈ −π2 csc2[π(q− h)]
rh

Γ (q)2
Γ (h+ q− 1)
Γ (h− q+ 1)

(A.5)

up to terms with only simple poles. Mixed correlator generalizations of these results appear
in the appendix of [86].

B Flavour crossing matrices

This appendix collects the explicit crossing matrices referred to in the main text. They are
defined by

(Ft)
a
b =

1
dim(Ra)

P I1 I4|I3 I2
a P I1 I2|I3 I4

b , (Fu)
a
b =

1
dim(Ra)

P I1 I3|I2 I4
a P I1 I2|I3 I4

b , (B.1)

in terms of the flavour projectors in (2.29). For each flavour group in this list, we will state the
S-fold where it appears and give the chosen ordering for the representations in terms of Dynkin
labels. A subscript of + will indicate the symmetric product of two adjoints and a subscript of
− will indicate the anti-symmetric product. This is enough to relate the two matrices as

(Ft)
a
b = (−1)|Ra|+|Rb|(Fu)

a
b (B.2)

so we only give Ft . In all cases, the singlet (+) will have an index of 0 and the adjoint itself (−)
will have an index of 1. The matrix elements were obtained by converting the diagrammatic
projectors in [106] back to index notation and performing the contraction with Cadabra [107–
109].

G2, which can appear with T (N)D4,3, has

Ft =













1
14 1 11

12
27
14

11
2

1
14

1
2 0 45

56 −11
8

1
14 0 1

2 − 9
28 −1

4
1
14

5
12 −11

12 − 29
112

11
16

1
14 −1

4 −1
4

27
112

3
16













(B.3)

for the representations [0, 0]+, [1,0]−, [0, 3]−, [2,0]+, [0, 2]+.
F4, which can appear with T (N)E6,2 , has

Ft =













1
52 1 49

2
81
13

81
4

1
52

1
2 0 45

26 −9
4

1
52 0 1

2 −81
91 − 9

28
1
52

5
18 −7

9 − 7
26

3
4

1
52 −1

9 − 7
18

3
13

1
4













(B.4)
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for the representations [0, 0,0, 0]+, [1, 0,0, 0]−, [0, 1,0, 0]−, [0, 0,0, 2]+, [2, 0,0, 0]+.
SU(2), which can appear with S(N)A2,2, S(N)D4,2, S(N)A2,4, T (N)A1,3 and T (N)A2,4, has

Ft =





1
3 1 5

3
1
3

1
2 −5

6
1
3 −1

2
1
6



 (B.5)

for the representations [0]+, [2]−, [4]+.
SU(n) with n> 2, which can appear with S(N)D4,3 and T (N)A2,2, has

Ft =























1
n2−1 1 n2(n−3)

4(n−1)
n2(n+3)
4(n+1) 1

p
2

4 (n
2 − 4)

1
n2−1

1
2

n(n−3)
4(n−1) − n(n+3)

4(n+1)
1
2 0

1
n2−1

1
n

n2−n+2
4(n−1)(n−2)

1
4

n+3
n+1 − 1

n−2 −
p

2
4

n+2
n

1
n2−1 − 1

n
1
4

n−3
n−1

n2+n+2
4(n+1)(n+2)

1
n+2 −

p
2

4
n−2

n
1

n2−1
1
2 − n2(n−3)

4(n−1)(n−2)
n2(n+3)

4(n+1)(n+2)
1
2

n2−12
n2−4 −

p
2

2p
2

n2−1 0 −
p

2
4

n(n−3)
(n−1)(n−2) −

p
2

4
n(n+3)

(n+1)(n+2) − 2
p

2
n2−4

1
2























(B.6)

for the representations [0, . . . , 0]+, [1, 0, . . . , 0, 1]−, [0, 1,0, . . . , 0, 1, 0]+, [2, 0, . . . , 0, 2]+,
[1,0, . . . , 0, 1]+, [2, 0, . . . , 0, 1, 0]− ⊕ [0,1, 0, . . . , 0, 2]−.

SO(n) with n> 2, which can appear with T (N)D4,2, has

Ft =





















2
n(n−1)

n+2
n

(n−3)(n+2)
6

(n−2)(n−3)
12 1 (n−3)(n+2)

4
2

n(n−1)
n2−8

2n(n−2)
(n−4)(n−3)(n+1)

6(n−1)(n−2) − n−3
6

1
2

n−4
n−2 − n−3

n−2
2

n(n−1)
n−4

n(n−2)
n2−6n+11

3(n−1)(n−2)
1
6 − 1

n−2 −1
2

n−4
n−2

2
n(n−1) −2 n+2

n(n−2)
(n+1)∗(n+2)
3(n−1)(n−2)

1
6

2
n−2 −1

2
n+2
n−2

2
n(n−1)

(n−4)(n+2)
2n(n−2) − (n−3)(n+1)(n+2)

6(n−1)(n−2)
n−3

6
1
2 0

2
n(n−1) − 4

n(n−2) − (n−4)(n+1)
3(n−1)(n−2) −1

6 0 1
2





















(B.7)

for the representations [0, . . . , 0]+, [0,1, 0, . . . , 0]−, [2,0, . . . , 0]+, [0, 2,0, . . . , 0]+,
[0,0, 0,1, 0, . . . , 0]+, [1,0, 1,0, . . . , 0]−.

USp(n) with n > 2, which can appear with S(N)D4,2 and S(N)E6,2, has Ft given by (B.7) with
n 7→ −n [106].

C Improvements to the resummation

C.1 Simpler differential operators

Our main results were encoded in a double expansion for the one-loop integrand of (2.31).
Powers of x and y respectively allowed one to go up in twist and down in spin. While (4.24)
solved the problem of computing arbitrarily many terms in principle, the growing number of
Casimir operators led to a significant computational cost. Fortunately, (4.18) shows that a
single pole in h̄(h̄ − 1) was responsible for almost all of the Casimirs we had to introduce.
Moving it to a more natural place can be done with telescopic identities which were found to
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simplify loop calculations in [66]. The general form they take is

B(n,`) =
n
∑

2 j=0

fk(2 j)(2 j + 1)2h̄(h̄− 1)

h̄(h̄− 1)− (n+ 1)(n+ 2)
R−2 j−2(n+ 2)R2 j(h̄) (C.1)

=
n
∑

2 j=0

Tk(2 j)h̄(h̄− 1)R−2 j−2(n+ 2)R2 j+1(h̄) ,

where fk(2 j) is a kernel implementing 2mL|k and k ∈ {1,2, 3,4}. Solving for

Tk(2 j) =
2 j
∑

l=0

fk(l)(l + 1)2 , (C.2)

it is then straightforward to refer to table 5 and arrive at the explicit expressions which were
given in (4.53). The sums involving Tk(2 j) instead of fk(2 j) are advantageous because they
can be brought into the form assumed by [17] using only a single quadratic Casimir. The
function on which it acts will be one of

1
2

∞
∑

`=0

R2 j+1(h0 + `)kh0+`

�

1
x + 1

�

= lim
η→2 j+1

Γ (−η)2
�

1
2

xη +
∞
∑

m=0

∂

∂m

A+η,−m−1(h0)

2 x−m

�

1
2

∞
∑

`=0

(−1)`R2 j+1(h0 + `)kh0+`

�

1
x + 1

�

= lim
η→2 j+1

Γ (−η)2
∞
∑

m=0

∂

∂m

A−η,−m−1(h0)

2 x−m
. (C.3)

These are no more difficult to evaluate than (4.23). Going through the same steps as before,
it becomes clear that

HJ
n(x , y) =

x2

y2

(2n+ 3)!
(n+ 1)!2

Pn+1(2x + 1) log x
∑

`±

B(n,`)(−1)n+`kn+`+3(−y)−
x2

y2
(−1)nkn+2(−y)

n
∑

2 j=0

Tk(2 j)R−2 j−2(n+ 2)D
�

x2 j+1 log x(log x + 2H2 j+n+3 + 2Hn−2 j − 4H2 j+1)

4(2 j + 1)!2

−
(n− 2 j)!

2

∞
∑

m=0

xm log x
m!2

�

(n+ 2)m+1(−n− 1)m
(−1)m(2 j + n+ 3)!

1−δm,2 j+1

2 j + 1−m

±
m
∑

l=0

(2 j + 2)l(2 j + 2−m)l
l!Γ (2 j + n+ 4−m+ l)

(−m)l(n− 2 j + 1)m
(2 j − n−m)l

��

+ . . . (C.4)

is the desired more efficient version of (4.24).

C.2 One less infinite sum

Paying attention to the Pochhammer symbols in (C.4), there is a single infinite sum associated
with the second line of (C.3). Although it has not been necessary here, one can rewrite it in a
nice way by noticing that

A−η,−m−1(h0) = −
Γ (h0 +m−η− 1)

m!2Γ (−η)2Γ (η−m+ h0)
3F2

�

−m, η+ 1, η+ 1−m
η−m+ h0, η+ 2−m− h0

�

=
(−1)m+1

m!Γ (η+ 1)Γ (−η)2
Γ (h0 +m−η− 1)
(η+ 2−m− h0)h0−1

. (C.5)
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The first line holds generally while the second is a zero-balanced summation formula from
[110] valid for m> h0 − 2= n+ 1. A simple consequence is that

∞
∑

m=n+2

m
∑

l=0

(2 j + 2)l(2 j + 2−m)l(−m)l
(2 j − n−m)l(n− 2 j +m+ 1)4 j+3+l

xm

l!m!2
=

(−x)n+2Γ (2n− 2 j + 3)
(2 j + 1)!(n+ 2)!(2 j − 2n− 2)n+2

2F1(1, 1+ n− 2 j; n+ 3;−x) . (C.6)

To rewrite the original expression (4.24) in the same way, one can just take 2 j 7→ n above.
Although (C.6) represents a certain contribution to the double discontinuity at one loop, it
bears a striking similarity to the tree-level result (4.64). This is perhaps an indication that the
present algorithm will be useful for computing the OPE coefficient corrections




a(2)
�

a,n,`.

C.3 Generalization to arbitrary dimensions

In the case of 4d CFTs, (4.24) and (C.4) have provided a successful starting point for analyzing

GJ
a(U , V ) =

∞
∑

n=0

∑

`

1
8




a(0)γ(1)2
�

a,n,`

(z − z̄)U2

V 3
g2∆φ+2n+`,`(V, U) log2 V . (C.7)

Since this function is very similar to the one expected for the double discontinuity in all dimen-
sions, it will be beneficial to find expansions of it which do not rely on the conformal blocks
having a closed form. To this end, let us consider

eGJ (U , V ) =
∞
∑

n=0

∑

`

B(n,`)g2∆φ+2n+`,`(V, U)≡
∞
∑

n=0

eHJ
n(U , V ) , (C.8)

which is simply the desired function with cross ratios stripped off. The procedure for extracting
OPE data via the inversion formula relies on the log2 U , log U and regular terms in the s-channel
lightcone limit. Once these are known, it is straightforward to re-expand in x and y . A strategy
for finding them without explicit conformal blocks is to first consider the t-channel lightcone
limit which permits

gτ,`(V, U) =
�

V
1− U

�
τ
2 �

k τ
2+`
(1− U) +O(V )

�

(C.9)

to be used. Techniques from [17] then become applicable and lead to

eHJ
n(U , V ) = V∆φ+n

�∞
∑

l=0

U l
�

log2 Uα(n)l,0 + log Uβ (n)l,0 + γ
(n)
l,0

�

+O(V )

�

. (C.10)

The idea is then to regard (C.10) as a boundary condition and study the s-channel with a
differential equation.33 This is possible because the eHJ

n(U , V ) functions are examples of twist
conformal blocks — linear combinations of conformal blocks that differ in spin but have the
same twist. As shown in [16], these all satisfy the same differential equation found by combin-
ing the quadratic and quartic Casimirs such that ` drops out of the eigenvalue. This equation
is

�

D4 −D2
2 + [d

2 − d(2τ+ 3) +τ2 + 2τ+ 2]D2 −λτ
�

eHJ
τ
2−∆φ

(U , V ) = 0

λτ =
τ

4
[d2(5τ+ 6)− 2d(2τ2 + 5τ+ 2) +τ(τ+ 2)2 − 2d3] , (C.11)

33This makes it important to work with the cross ratios U and V . With z and z̄ there would be spurious solutions
which are not symmetric under z↔ z̄. A simple example is the one obtained by replacing all 4d blocks with only
one of the two terms in (2.24).
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where

D2 =D+ D̄+ (d − 2)
zz̄

z − z̄

�

(1− z)
∂

∂ z
− (1− z̄)

∂

∂ z̄

�

D4 =
�

zz̄
z − z̄

�d−2

(D− D̄)
�

zz̄
z − z̄

�2−d

(D− D̄) (C.12)

referring to (4.18). The approach of [16] then consists of applying (C.11) to

eHJ
n(U , V ) = V∆φ+n

∞
∑

l=0

∞
∑

m=0

U l V m
�

log2 Uα(n)l,m + log Uβ (n)l,m + γ
(n)
l,m

�

, (C.13)

in order to solve for
¦

α
(n)
l,m,β (n)l,m,γ(n)l,m

©

in terms of
¦

α
(n)
l,m−1,β (n)l,m−1,γ(n)l,m−1

©

which are eventually
known due to (C.10).
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