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Abstract

We compute the leading term of the tripartite information at long distances for three
spheres in a CFT. This falls as r 4, where r is the typical distance between the spheres,
and A the lowest primary field dimension. The coefficient turns out to be a combination
of terms coming from the two- and three-point functions and depends on the OPE coef-
ficient of the field. We check the result with three-dimensional free scalars in the lattice
finding excellent agreement. When the lowest-dimensional field is a scalar, we find that
the mutual information can be monogamous only for quite large OPE coefficients, far
away from a perturbative regime. When the lowest-dimensional primary is a fermion,
we argue that the scaling must always be faster than r—%2f. In particular, lattice calcu-
lations suggest a leading scaling r—(®2s*1), For free fermions in three dimensions, we
show that mutual information is also non-monogamous in the long-distance regime.
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1 Introduction

In quantum field theory (QFT), entanglement entropy (EE) characterizes the statistical prop-
erties of the vacuum state in the local operator algebras attached to spacetime regions. An
important task in investigations related to EE has been to understand how it is related to more
traditional QFT observables. Several important connections are well established, such as the
realization that renormalization group charges are extractable from the universal parts of the
entropy of spheres [1-4].

Universal, cutoff independent pieces of EE can be systematically extracted by considering
the mutual information for two disjoint regions A, B,

I(A,B) = S(A) + S(B) — S(AB). 1)

This is finite, universal and well defined mathematically. For a conformal field theory (CFT),
the renormalization group charges appear in an expansion of the mutual information between
two spheres in the short distance limit [4, 5].

In the opposite limit, i.e., for far away regions, application of the replica trick and the oper-
ator product expansion (OPE) for twist operators leads to an expansion of mutual information
in inverse powers of the distance. The corresponding exponents are sums of the conformal
dimensions of the theory [6]. In this way, important information about the spectrum can be
recovered from EE. The coefficients in the long-distance expansion can be computed in par-
ticular cases. Notably, the exact form of the coefficient of the leading term for spheres has a
closed universal expression which only depends on the spin and conformal dimension of the
operator [7-10].

In this work we focus on the large separation distances expansion of the tripartite informa-
tion associated to three disjoint spheres in a CFT. This is defined for three entangling regions
A,B,C as

I3(A,B,C) = I(A,B) + I(A,C) — I(A,BC) 2)
=S(A)+S(B)+S(C)—S(AB)—S(AC)—S(BC)+ S(ABC).

By its very definition, I; measures the non-extensivity of mutual information. It is known that
I5(A, B, C) can be used as an order parameter for topological theories [11] and, remarkably,
it is always negative for holographic EE [12] —for a discussion on how much tripartite en-
tanglement is present in holographic states see [13] vs [14]. This inequality, I; < 0, called
“monogamy” of mutual information,® is one of the inequalities defining the so called “holo-
graphic entropy cone” [17] —see also [18]. On the other hand, the case I; = 0 gives place

to the “Extensive Mutual Information model” [19], which corresponds to a free fermion in

For qubit systems, it was argued in [15] that random states also tend to have a monogamous mutual informa-
tion. A simple N-qubit state which has a positive tripartite information is the GHZ state 1/v/2[®Y |0), + & [1),]
—see [16] for a discussion on how to construct generalizations of such state which maximize I.
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d = 2, and has been recently shown not to describe the mutual information of any QFT (or
limit of QFTs) in higher dimensions [20]. The case I5 > 0 is also known to occur e.g., for free
fields [19], so the tripartite does not have a definite sign in general [21,22].

Part of our interest in the long-distance behavior of I5 arises from the fact that this quantity
seems to offer a relatively simple access to the three-point function coefficients —also known
as “structure constants” or “OPE coefficients”— which, alongside the conformal dimensions,
constitute the CFT data. Here we show that these coefficients already show up in the leading
term of the tripartite information. Indeed, when the primary operator with the lowest scaling
dimension present in the theory is a scalar, we obtain for three spherical regions A, B, C of radii
R and with relative separations 145, g¢, "'ac > R,

2651 (A +1)°
2nT (3A+3)

R6A JaT(3A+1)

T 2A 2A 2A T 3 (COOO)Z_
Tag TBc Tac F(BA + i)

I3(AyB) C): ) (3)

a formula which is valid in general dimensions. As compared to the analogous expression for
the mutual information, a new feature of this expression is its dependence on the structure
constant Cnpp. This implies that knowledge of the leading term in the tripartite information
can be used to extract the values of both the smallest scaling dimension in the theory, A, as well
as the dynamical coefficient Cnpnp. Thus, considering other primary operator contributions
one could imagine extracting as well other OPE coefficients and with this completing the task
of getting the full CFT information from the mutual information. When the lowest-dimensional
primary is not a scalar, more work is required in order to generalize eq. (3), but we do argue
here that the analogous result when this field is a fermion has a vanishing coefficient for the
naive leading piece ~ r—04f.

The remainder of the paper goes as follows. In Section 2 we compute the leading term
in the long-distance expansion of the tripartite information for a generic CFT such that its
lowest-dimensional primary is a scalar field. In Section 3 we show with an explicit calculation
that the term responsible for the would-be leading term in the case of a CFT with a fermionic
lowest-dimensional primary identically vanishes. In Section 4 we use lattice calculations in
three-dimensions to verify the scalings obtained in the previous sections for free scalars and
fermions (in particular, we find a scaling ~ r~©2s+1 for the latter). We also verify there
that the free scalar result for the three-disks coefficient computed analytically in Section 2
is reproduced numerically in the lattice and we obtain the analogous one for fermions. In
Section 5 we conclude with a couple of comments regarding: the implications of our results
for the “entropic bootstrap” program; and how difficult is to achieve a monogamous mutual
information at long distances. In appendix A we show how our formula for the long-distance
tripartite information can be enhanced in order to include the full conformal block associated
to the lowest-dimensional primary.

2 Tripartite information at long distances

We wish to compute the tripartite information for three entangling regions bounded by spheres
of equal radii R in the regime in which the distance between any of the two is much larger
than R. In order to do this, it is convenient to split I5(A, B, C) into two contributions, one
which depends on the individual mutual informations of pairs of spheres, and a remanent
piece which depends only on the subtracted entropy of the three regions, this is

I5(A,B,C) =I(A,B) +I(A,C)+I(B,C)—I5(A,B, C), @
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where

I3(A,B,C)=S(A) +S(B) + S(C)—S(ABC). (5)

We are interested in the leading contribution to I3(A, B, C) in the long-distance regime of the
above set up. For such a computation we can exclusively focus on I3(A, B, C), since in [8] the
corresponding behavior of the remaining mutual informations was already understood.

2.1 Warm up: Mutual Information

First, recall that for a given entangling region A, the Rényi entropy S"™(A) can be obtained as
the following path integral:

VA C(n)
SOy = — log[ - )], (6)

where Cf‘") represents the replica manifold for the n copies of the original space-time geometry
after suitably identifying the region A of copy i with the one of i + 1, and n+ 1 =1. Z(X) is
the partition function of the theory defined on the manifold X (for simplicity we use Z when
the manifold is a single copy of the original spacetime). Using this expression, one gets for the
Rényi mutual information

1™(A,B) =

7 C(n) Zn Z(n) zn
1 log[ (Ci5) ]z 1 [AB ] )

n=1 "] zcMzePy] n=1 7[z"zP

where we have simplified the notation for convenience using Zf(‘“) =7 (ng“)). In [6], it was
proposed that at long distances from the conifold of singularities, one can interpret the asso-
ciated twist operator as a semi-local operator that couples the n QFT’s in the corresponding
region. This implies that in the evaluation of the partition function

23 (1) ()
'AB
o = (T4 T e (8)

where M" is the replicated theory, provided A and B are apart from each other, one can expand
Z}IE‘”) as a linear combination of local operators

) Z(n) n—1 )

n) _ “A A j

ZA - 7n E :C{kj} | |(I>kj (rA): (9)
{k;} j=0

where {CI>(kj. )(rA)} is a complete set of operators in the j® copy of the QFT located at a conve-
]

niently chosen point r, in region A. We can further separate the identity contributions from
the product of operators in (9) as

(n) n—1

Z . - .
2= Gr0es), wee 50= S [Taen. 0o
{I;}#1 j=0

and analogously for B. This leads to

(n) (n) ()
VA 2,7
'AB _ “A B =(n)a(n)
zn  72n (1 + <2A Z:B >./Vl") 5 1D
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where we take into account that one-point functions vanish in a CFT

(£ =0, (12)
The expansion of the logarithm reads
(n) on
Z,7 7 1/ ()= 2
AB (Ma(n) 2 () s(n)
log[—z(n)z(n)} [(z 5 v 2((2A 5 a0 )+ } (13)

The leading term in the above expansion goes as (n — 1) when n — 1, while the higher order
terms involve higher powers of (n — 1) and as such they vanish in the same limit. The mutual
information is thus given entirely by

1 -
1(A,B) = lim —— (S5 . (14
n—ln—1

In [6], it was shown that the leading contribution to I(A, B) comes from products of two

operators located at different sheets and, from those, the ones with lowest scaling dimension A

contribute the most.? Making explicit the contributions of products of the lowest dimensional
operator (J; in different copies, and assuming this operator is a scalar,

5 = ZCAO +o > CAOIO + 4+ YT CLOOIO 4 (15)

i<j i<j<k

As flgn) vanish in the n — 0 limit (where 2}1 = 1) the coefficient of the linear term must be
proportional to n — 1 and will not contribute to the mutual information [8]. Then the leading
contribution in the long-distance expansion has the form

— : 1 A ~B 1
I(A,B)—(}ll_)rr%n_lzcucl])ﬂ—A+~--. (16)

i<j

The coefficients Cf}. are given by the two-point functions on the conifold properly normalized
[6], this is

= lim |r[**(O'(rO/(r) o - a7)

Although it might be difficult to have an analytic handle on the above coefficients, the factor
in brackets appearing in (16) can actually be evaluated analytically [8]. The result is

ZCA CB — \/_F(ZA"'l)RzARZA (18)

n>1n—1 VU 4 T(28+3)

Taking R4 = Rz =R for 31mp11c1ty, we can write the leading term in the mutual information as
VAT(2A+1)R*

I(A,B) =
4 r(2a+3)r*

(19)
The next term in the expansion of the twist operator which contributes to I(A, B) (assuming
there are no other operators with dimension Ay <3A /2) is

> 000k, (20)
i<j<k
As we will argue later, such type of terms would give a contribution to I(A,B) of order
~ (R/r)®* . Indeed, this type of contributions were computed in [23], for free scalars in
three dimensions. We show below that this order of contribution appears also in I3(A, B, C)
and that it is in fact the leading one in I3(A, B, C).

2The long-distance expansion of mutual information in two-dimensional CFTs was first considered in [7].
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2.2 Tripartite Information

Let us now move to the tripartite information. We consider three well separated spheres and
compute the leading term, assuming the lowest-dimensional operator is a scalar. For the eval-
uation of both I3(A, B, C) and I5(A, B, C), the new ingredient is the computation of Z,a(ur;)c This
can be expressed as
Zi (1)) 5:(n)

ABC n n n
=55 e 1)

which in terms of correlators of 3’s results in

(n) (n) (n) ,(n)
te _ ZyZy 2 (22)
7n Z3n

x (14 (EPED) v+ (EPED) o+ EPED) e + EPEPED) 00 )

where once again we eliminated terms with a single ¥ as they have zero expectation value.
This expansion implies the following leading contribution to I5(A, B, C),

(Tl) 2n (Tl) on
Ign)(A,B,C) = log|: (?BC;) ():|: 10g|:1+(%_1)i|
n—1 zzVz n—1 Z(M 700z
2
1 ZIEUT;)CZZH 1 Z[g’é)cz2n
- n—1 (n) (n) (n)_]' _5 m—l N (23)
Zy 2y e zMz\"z

The linear term in the expansion of the logarithm goes as ~ (n— 1) in the n — 1 limit, while
the other terms have higher powers. Therefore, for the purpose of computing the tripartite
information only the first term contributes, and we get

) 1 e )
I,(A,B,C) = I{EQUZ(B”)Z(C")) i+ (SIS (24)
HEPED) o+ (EPEPED) v ]

In the above equation we can recognize the leading-order expressions (in powers of (n — 1))
for the Rényi mutual informations of pairs of regions (13). After such identification, we can
rewrite (24) as

- 1 - - ~
I5(4,B,C) = lim —— (B L+ I(A,B)+1(B,C) +I(A,C). (25)

Comparing this equation with (4) we straightforwardly identify an exact expression for the
tripartite information,

1 e e(n)e
I3(A,B,C) = lim 1—(22”)2(3“)2(;)) M- (26)

The lowest order of approximation corresponds to taking the quadratic term in the expan-
sion (15). Thus

:(1) $(n) ()
(S, SR 8 an

n—1
= 200G ChChn 1 @P0el)a)el (e v
{k;} {pi} {am} j,l,m=0

6
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~ TS G (O O (r)OM ) O rR) P (r ) O N - (27)

ij kI Pq

Within the correlators, we need to pair operators of different regions. They will only give
non-zero contributions provided they are in the same sheet. We can describe two different
configurations that contribute in these sums. In order to analyze them, it is convenient to
introduce a matrix representation. Since we have n sheets and 3 regions, we can put the
various operator locations in a 3 x n matrix as follows,

1 ...(Qf(rA) "'OJ:(’"A) 1
First configuration: 1 ---Org) ---Ol(rg) ---1 |, (28)
1 ...Oi(rc) ...Oj(rc) |

1 ---0i(ry) ---0i(ry) .1 i1
Second configuration: 1 ---_1 - O0l(rp) ---Ok(rB) -1 . (29)
1 --0i(re) .1 2 OF(re) -1

Here, each row represents the operators associated to a given region: A, B, C and each column
represents a sheet on the multiple copies of the geometry.
We normalize primary operators so that their two- and three-point functions are given by

(O(r)O(ry)) = rz% and  {(O(r)O(rg)O(re)) = 220 (30)
AB AB'BC' AC

respectively. We use the notation rsz = |r4 —rg|. In the first configuration we get a product of
two three-point functions while in the second we get a product of three two-point functions.
Both of them yield a ~ (ragrgcrac) 2~ behavior.

A configuration of the type (28) for fixed {i, j} is unique while a configuration like (29)
for fixed {i, j, k} —via permutations across the regions A, B and C— gives rise to 3! = 6 non-
equivalent ones but with the same numerical value. Thus, the full answer is given by

1 | (Cooo)?

I3(A, B, C) =~z sz lim | 29055 1(C, ) + —~ Z CiCiuCui |- 3D
Tag 'BcTac " n i<j l<]<k

By looking at the derivation of (18) in [8], we observe that for a power different than two, say

s, we simply need to replace A — sA/2 in that formula. For our case, s = 3, and we obtain

Z( ij 3 = ‘/_MRZARZARZA (32)

li
= 4 r(3a+3) 4

n—»1n—1

This allows us to evaluate the first term of (31), which therefore gives a negative contribution
to the tripartite information.

The second term is more complicated to analyze. We devote section 2.3 to explain how to
compute it using the same techniques introduced in [8]. The final result reads

3
2687 (A + 3
Z CijCjkCri = _(—Z?%sz\ARZBARZCA' (33)
noln—1 24 12nT (34 + 3)
Putting the pieces together, we obtain a closed expression for the leading term in the long-
distance regime of the tripartite information, namely,
RPRPRE | yRTBA+1) , 2%°r(a+3)
oA (Coop) ————< | - (34)

I,(A,B,C) = —
B Q= e x| 4 (304 2) 27T (381 3)
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Figure 1: In the first two plots, we show, respectively, the dependence on the lowest-
scaling dimension A of a given CFT of the two coefficients appearing in our formula
for the tripartite information at long distances. The third plot represents how the
value of (Copp)? determines whether or not the CFT has a monogamous mutual

information (at least in the long-distance regime). When (Cppp)? is larger than
20817 (A4+1/2)°

TV CYNE)) (red curve) the mutual information is monogamous and viceversa.

This is our main result. Observe that both terms inside the square brackets are positive-
definitive except for the relative minus sign. As it happens for the long distance coefficient
of the mutual information, the coefficient of the tripartite information depends on the lowest
scaling dimension but not explicitly on the spacetime dimension. This is due to the univer-
sal form of the modular flow for spherical entangling surfaces. The coefficient in front of
the (Cope)? is a monotonically decreasing function of A and tends to zero for A > 1. On
the other hand, the coefficient with the minus sign takes a minimum value of ~ 0.604 for
Apnin = 0.841 and then becomes monotonically increasing for greater values of A —see left
and middle plots in Fig. 1. We observe then that depending on the value of Cp, the tripartite
information in this regime can be positive, negative or zero. The first two cases correspond
to non-monogamous and monogamous mutual informations, respectively —see right plot in
Fig. 1. We make more comments regarding these possibilities in Section 5.

Note also that when the coefficient Cnnn = 0 —in particular when the lowest dimensional
operator is free or charged under a global symmetry that gives non-zero charge to the product
of three operators (such as a Z, symmetry acting as O — —QO)— the tripartite information
reduces to

6A 1\3 p2ApP2ADR2A
2°4T (A +3)” R2ARZARZ

: (35)
2nT(3A+3) rigricras

I3(A,B,C) =

For all these theories, the mutual information is non monogamous. In particular for a free
scalar in d spacetime dimensions, A = (d —2)/2, and setting the three radii of the spheres
equal for simplicity, one gets,

3d—7)p (d=1)3 _
2(3d-7p (41) R3(d-2)

ar (D) D), (d2)

I3(A,B, C)% = (36)

AB BC AC
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Later, we will verify this expression in the lattice for d = 3. In that case, we have

I5(A,B, C)|8" = ER—B. (37)
T TrABTBCTAC

Another natural example is the Ising model in three dimensions. The lowest scaling dimension
is in that case given by [24] A Ismg = 0.5181489(10), and hence we find for the corresponding
long-distance tripartite mformatlon

Ismg R3-10889
I3 (A B, C)l ~0.632833 1 0362978 1. 0362978 1.0362978 * (38)
"aB "BC Tac

Note that the power is slightly greater than in the scalar case, whereas the coefficient is smaller
(2/m ~0.63662). Similarly, for the O(2) model one finds using results from [25],
R3-11453

I5(A, B,0)|9%) ~ 0.632645 (39)

1.03818r1.03818 r1.03818 '
AB BC

AC
For the O(3) model, the currently known result for Ao(g) [

greater than Agg , which would produce a greater power for R and r, and a slightly smaller

coefficient. For sufficiently large values of N, the result tends to the free scalar values. In
particular, in the large-N limit, we have

2 N 4(4log(2)—3) ] R3+8/(7*N)

T 3N L 14+8/(372N) 1+8/(372N) 1+8/(372N) °
AB BC Tac

24] suggests that it may be slightly

I3(A,B,0)[907 Y o [ (40)

where we used the expression for AlO(N>>1) valid up to O(1/N) —see e.g., [26] for the answer
up to O(1/N3).

In d = 2 there has been significant progress in the computation of N—partite Rényi en-
tropies in conformal field theories. In particular, for the free compactified scalar which de-
scribes the continuum limit of the harmonic chain in the decompactification limit and the Ising
model for a particular compactification radius, explicit results can be found in [27] and [7]
for the Rényi mutual information and in [28] and [29] for the N—partitie Rényi information.
On the light of the results of [28,29], it would be very interesting to derive analytically the
form of the N—partite entropies for the compactified scalar in the long distance regime. The
result of such computation for N = 3 would serve as a strong consistency check of (34) and
it would provide an interesting prediction for arbitrary values of N. The analytic result for
the Rényi entropies computed in these works turns out to be given in terms of Riemann Theta
functions with matrix arguments of sizes (n—1)(N —1) x (n—1)(N —1). Unfortunately, taking
the n — 1 limit of such functions is a highly non-trivial task which has been achieved only
in certain limiting situations and for very special matrix functions [7]. Nevertheless, it would
be an interesting challenge to generalize [7] for N > 2. Alternatively, a rational extrapolation
technique has been used in this context as a numerical method to obtain the entropies from the
Rényis [30], although for the particular case of the compactified scalar the numerical calcula-
tions of the tripartite Rényi entropies lose accuracy precisely in the regime of long distances,
as reported in [28,29] and thus it calls for a more sophisticated numerical method if one is
interested in extracting information about this limit even numerically.

Let us close this subsection by stressing that our formula eq. (34) is completely general, so
it applies to any model with a scalar as its lowest scaling dimension operator. For instance, the
explicit expression for the O(N) model in the large-N expansion for general d can be similarly
obtained using e.g., results from [31]. Our formula can also be generalized to include all
the descending operators associated to the leading term in the OPE expansion of the twist
operator, this is, the quadratic term in (15). The final formula is given in (119). We discussed
this generalization in detail in appendix A.
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___________________ e [m(s) = 27t
O
0%
O

"""""""""" P o-o--=== TIm(s)=0

Figure 2: Integration contour (depicted in solid blue) used to evaluate the complex
integral in (43). Assuming the integrand vanishes for Re(s) — +00, we can then
deform the contour y,, to be the dashed blue lines at Im(s) = € and at Im(s) = 2wn—e
with € > 0. For illustrative purposes, we have picked the value n = 4 to make this
figure.

2.3 Analytic continuation of the sums over coefficients C;;

The first coefficient in our formula eq. (34) can be relatively easily obtained, as we saw in the
previous subsection. On the other hand, computing the second one has required considerably
more work, which we present here. We wish to show that the LHS of eq. (33) can be written
as the expression appearing in the RHS.

As a first step, we recall that in [8], the coefficient C;; was related to the thermal Green
function of the theory on hyperbolic space, evaluated at different points along the thermal
circle

Cjjr = (2R)*2G,(2(j — 1), (41)

where the factor (2R)?*2 comes from the details of the conformal transformation. More explic-
itly, the conformal map introduced in [4] takes a single copy of R into S! x HY~!, where H4 ™!
is the hyperbolic space. Such map can be adapted such that the conifold of singularities CIE‘“) is
mapped to Srll x H9~1, where the thermal circle Srl1 now obeys T = 7 + 27tn and thus allows us

to connect two-point functions on CIE\") with thermal two-point functions on S}1 x HI1 (41).
For n = 1 the thermal two-point function is known to be
1 B 1
28 (1—cost)®  228sin%2(7/2)°

Gi(7)= (42)

where we also known that G;(—is) decays as e ! for real s. The assumed analyticity in n
implies that a similar exponential decay should happen for G, (—is). This property together
with the standard analyticity properties of thermal two-point functions allows us to evaluate

-1 NG . . .
the sum 2?21 G3(21'c j) in [8]. A key step in that computation is to relate the previous sum to
a contour integral

n—

ds G2(—is)
y 2mi es—1

n

1
2 N

j=1

where the exponential decay assumption allows us to deform the integral contour v, to the

horizontal lines at Im(s) = 27tn — € and Im(s) = € as depicted in Figure 2.

Here we are interested in the following sum,

> CyCirCu = (2R > G211 — D))Ga(27(k — ))Gn(2m(i — ), (44)

i<j<k i<j<k
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where we used eq. (41) in the RHS. Notice that one can extend the sum to a disordered one
and pay a symmetry factor for it. Then one can further fix the location of one of the operators
to be zero and multiply by n using the replica symmetry. After that, we can recover an ordered
sum by paying the price of a remaining symmetry factor of 2. The sequence is

1
IEESITE I HEL I N @

i<j<k Ci#j#k " i=0,j#k>0 i=0,k>j>0

Applying the above equivalence we can write

S CyCic =202 L, (46)
i<j<k 3
where
n—2 n—1
Ca= D, Ga2m]) D Gu(2m(k — )Gy (27k), 47)
j=1 k=j+1

and where we also used the fact that Green functions must be reflection symmetric
G,(t) = G,(—7). Now it is convenient to rewrite the double sum as

n—1 k—1
Co= . Ga(27k) > G(21(j — k)G, (27]), (48)
k=2 j=1

where the relevant contour for the j-sum is given in Fig.2 (with the simple n — k replace-
ment). At this point we cannot make a similar replacement for the other sum as the first
contour depends on the integer label k. We deform the integral to the horizontal contours
along Im(s) = € and Im(s) = 2k — €. The vertical parts do not contribute as we assume an
exponential decay along the imaginary axis as discussed around (42). Then, we have

n—1 o] . .
ds [G,(—is+¢€)G,(—is—2mk+ €
k=2 —c0 2T

e(st+ie) — 1

G,(—is—€)G,(—is +2mk —€)
B e(s+i2nk—ie) _ 1 :

Using ™% =1 for integer k one gets
n—1 e e] . .
d G, (—is+¢€)G,(—is—2mk +
Cn = Z Gn(znk)f _3 |: n( = 6)(5-:11&) - - 6) (50)
= oo 2T e —1
G,(—is—€)G,(—is +2mk —€)
o els—ie) _1 ’

The remanent sum can be done via a contour integral by introducing the following function
[10]

1S 1 , ,
f(”’”=z_mkzzzf-ik‘ﬂ(w(””)‘w“””’ (51)

where v (z) = I'"(2)/I'(z) is the digamma function. For positive integer n > 3, the function
f(n,iu) has poles at u = 2,--- ,n — 1 with residue one, thus, one can turn the sum over k in
(50) into a contour integral over T with with k — —it as

oo
G, (—is + €)G,,(—is + 27it +
Ch= ﬁ dtf(n,v)G,(—2mit) n(Tis+€) ”.( is + 2miT + €) (52)
oo 271 els+ie) —1
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G,(—is — €)G,(—is —2miT —€)
o els—ie) — 1

The above contour must encircle the poles along v = iu with u > 2. Fixing the integration
contour one can study the n — 1 limit of the above expression. Before doing so let us study in
some detail the function f(n, 7). First, notice that one can rewrite (51) as

flry )= -

2Wi T —1

+ i (Yn+it)—yYA +it)), (53)
27

where we have added un subtracted a function with a single pole at T = i and used the follow-
ing recursive property 1 (z+1) = ¢ (2)+1/z. Of course, the full function has no poles at T =i,
nevertheless, such separation is convenient since the second term has a simple expression in
the n — 1 limit [10]. Since we want to discard the first term, it is enough to make sure the
integration contour in (52) does not contain the spurious pole at T = i. Indeed, we will chose
the contour integral to be made out of the line Im(7) = 3i/2 plus a semi-circle of infinite
radius closing the contour on the upper half plane. Such contour satisfies all our requirements
and the integral on the semi-circle vanishes due to the exponential damp coming from G,,.
In the n — 1 limit we have

T
2sinh?(77)

1)(%¢’(—ir)+ )+O((n—1)2). (54)

2ni T
The function v)’(—i7) and 1/(7 — i) above has no poles inside the integration contour and
therefore, they do not contribute to the contour integral. The second term inside the paren-
thesis gives a contribution proportional to n — 1, which means we can evaluate the remaining
terms in the integrand at n = 1. Thus, the leading term in the n — 1 expansion of C,, is

:(n_l)Joo d_ffoods/ Gy(—is" + m) [G1(—is+G)Gl(—i(s—s’)-i-n-i-e)

. (55)
4cosh?(s’/2) elstie) —1

Gi(—is—€)G,(—i(s +s )+ m—¢€)
els—ie) — 1 ’

where we have changed the integration variable from 7 to s’ via T = 3i/2 +s’/2m, and used
the 27 periodicity of G,(7). The integral above can be further simplified into

c. —(n—l)f 2ds G1(—is+¢€) Gl(—is—e)} 56)

TL'l e(stie) — 1 (s—ie) — 1

>

J°° ,G1(—is" + )Gy (—i (s—s)+m)
. ds
oo 4cosh2(s’/2)

which we arrive at after changing s’ — —s’ in the second integral, using the reflection symmetry
of G1(7) and the 27 periodicity. We also dropped the ¢ dependence on the G; functions with
real argument 7t as those functions are completely regular inside the integrals. Replacing the
expression for G; in the second integral leads to

1 foog[Gl(—is+e)_G1(—is—e):|

Cn = (Tl 1)24_A e 2mi | elst+ie) — 1 els—ie) —1

(57)

oo
f ds’ !
oo 4cosh®2+D(s7/2) cosh®((s —s7)/2)

So far we have succeeded at obtaining a closed-form expression for the linear piece of C, in
the (n—1) expansion, which is relevant for the computation of the tripartite information. This
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expression is given as a double integral which we will now evaluate via a series of convenient
manipulations. Let us first separate C,, into two contributions as

C,=Cr—c,, (58)

with the obvious identifications. Now, let us factor out the coupling term in the double integral
by introducing a delta function of the form

J dug[__ 5_5 J qf du il 3-(57)] (59)
oo 2 L2 21 ) oo 2

Then, the Cni become

1 0 d_q S Ee_iqs/zGl(—is:I:e) S 4 eiqSI/Z
24A+3 e 27 oo 27 elstie) —1 _ CoshZ(AH)(s’/Z)

oo

o iqu/2
du————. (60)
f_oo cosh®®(u/2)

Now, the s integral in this C: contour can be deformed to the Im(s) = +in surface and after
that we can safely take € — 0. This results in

Cni = (n—1)

(e @) — _ oo ;
= e [ Qggup [T s TP (T e
n 26A+4 e 27'C - 271 cosh?At! (%) oo COShZ(A+1)(S//2)
S iqu/2
du————, (61)
J_Oo cosh?(u/2)
and therefore for C,, we get
B 1 dg qr 0 —s/2 —iqs/2

C, = _(n_1)26A+327-Cl %Slnh(Z)desm

e 4 las’/2 elau/2
s (62)
f_oo coshz(A“)(s’/Z)J coshZA(u/Z)

Now we can use the following integral

o0 efia/2 28T Hr(g-id
™ (3+9)r3-13) o
oo CoOsh (u/2) r(a)
which can be analytically continued to get
00 kiqu/2,—u/2 2Ar(Ai1-—-)r(A:Fzz+ )
du < . (64)
oo cosh®(u/2) rca)
Replacing these integrals in the resulting expression for C,, one gets:
o0 .q .q
-1 d r(a—id)r(a+il+1)'r(Aa—-il+1)r(Aa+id
=) [ da g (amyFam) T s T s r(anid)
2mi |_ . 2¢ 2 T'(2A + DI(2A + 2)T(2A)

This expression is not obviously real. However, we can rewrite it in a manifestly real form
using the relation |T'(z)|? = I'(z)I'(z) and the defining property of the Gamma function as

- (n—1) gr r(a+ig+1) Ir(a+ig)*
Cn = J 2 )(A+ 2) T(2A + DI(2A + 2)T(2A) (65)
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In this integral, only the even part contributes. Since |I'(z)|? is even on the imaginary part of
its argument we conclude that only the imaginary part in (A +iq/2) contributes. This results

2 4
0 r(a D" r(a+id
C, = —(n—1)—— f dq smh(qn)| (a+ig+ )] I —212)| . (67)
8TA or 1 2 T'(2A +2)(I'(2A))

The expression above is real and non-positive for n > 1. Now, we are interested in the coeffi-
cient C defined as

— 1 264 en NCy
C:,Pf%n_ >, CijCyeCrq = lim ——R*4 =1, (68)
i<j<k
where the second equality follows from (46). From (67) one finds
c g food—q o h(qn) Ir(a+id+ )P r(a+id)[* ©9)
R6A ~ 24nA | 271 2 T(2A + 2) (T(24))?
Finally, one can check this reduces to
3
C 20AT (A + 1
= _M (70)

RA 1277 (38 +3)

which leads to (33).

3 Mutual and tripartite information for fermions

In the previous section we derived a formula for the leading long distance contribution to the
tripartite information for disjoint spheres (34). Such result was obtained for a generic CFT
with a scalar as its lowest scaling dimension operator. However, in general, such an operator
can have arbitrary spin. In this section we study how the above analysis gets modified when
the lowest dimension operator is fermionic. This case is of special interest due to the fact that
in two dimensions a free fermion has an identically vanishing tripartite information, I; = 0,
while a naive generalization to the formula (34) suggests a non-zero answer. This seems to be
the case, due to the presence of a universal contribution coming from products of two-point
functions —second term in (34). In this section we will show that such universal contribution
vanishes identically for fermions. This fact will be later supported by a lattice analysis in
Section 4.

Following Cardy [6], the twist operator 33, is dominated at long distance by the product
of two operators with the lowest scaling dimension in the theory. For spin half operators this
implies

Aap o ‘
Sam D CE PP v (), (71)
J#
where i, j labels the sheets on which the spinor fields are located and a, 8 are spinor indices.
The tensor structure for Cf}’aﬁ was deduced in [10] to be

Aaf _ A
Cija - ai o af + bl] A(Yu)a[j ’ (72)

3For a recent analysis of a similar analytic continuation see [32]. There is also an interesting analytic continu-
ation in [33], where the authors continue a sum over three-point functions.
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where n’ ', is the vector normal to the spherical region. The authors of [10] further argued that
= 0. In even dimensions this is the case due to chiral symmetry and in odd dimension this

a;;
avoids parity violation. As in the scalar case, one can read off the undetermined coefficients bf‘].,
by studying the long distance behavior of the appropriate two point function in the presence
of the twist operator. This is, one computes®

AMTE(E45 (F) (v),, W5, (F)] when |7 =1, — oo, (73)

In the above formula 7 is an arbitrary point chosen to be far away from A. Likewise, 7 is
an arbitrary future directed time-like normal vector and thus one can chose it to have any
particular direction as to simplify the above formula.

For the computation of (73) we need the two point function of the spinor fields

(=)
LB () = Hr) ot &

where A is the scaling dimension of the spinor field. We evaluate the quantity (73) by using
(71) and (72) with a‘i“j = 0, which leads to

ZAwl(r) (YH)AP ¢] (r» = Z bkl nA (Yv)a/i ﬁ'u (YU)AP (’Lﬁﬁ(rA)W}j(rA)’Lﬁ}(fﬁ/)L(ﬂ) E] (75)
k£l

where the trace in (73) has been included implicitly. The four-point function factorizes into a
product of two-point functions which can be evaluated using (74). The result is

ﬁ'u<i:A'l/;lx(F)(Y,u)pr'llg(F)> = _% ]lnA(Yv)aﬁn (Y‘u)x (Yn)paf‘p(}’a)[jl

1 .
= _ﬂbﬁ anTr(}/VYO'YMYTE)

A
= —[2(m-A)(@-F)=(ny-1)] % 4A, (76)

where we introduced the variables r = |F —r,| and # = (¥ —r,)/|F —r,4l, and used the identity

d
Tr (YaYuYﬂYv) = 2[ 2] (na,unﬂv + navnu[ﬁ - na[a’ n,u,v) (77)

in the last line. Equation (76) can be inverted to obtain the coefficient b‘?i in terms of the
correlator in (73) when r goes to infinity as

A (S0 (F) (1,0, b (7))
A _ [ 4] an AR Pho TP
= e e e AP — (] 7

3.1 Mutual information

We can write down expressions for the leading term in the mutual information and tripartite
information respectively in terms of the coefficients b;; from the twist operator expansion (71).
We start with the mutual information I(A, B) whose leadmg term, according to (7), (71) and
(72) is given by

I(A,B) = lim —ZZ b b niany (1 (ra) (Vi) g ¥ T E (r8) (1) por Wl (rs)) + .. (79)
J#EL £k

“Notice that the correlator Tr[(ilAwﬁ;(F)ll){r (7))] vanishes identically as it is proportional to the trace of a single
gamma matrix

15


https://scipost.org
https://scipost.org/SciPostPhys.12.5.153

Scil SciPost Phys. 12, 153 (2022)

Following the same steps used to obtain the coefficient b‘]f‘l. in (76), one can reduce the above
expression to

I(A’B)zz[%]+1(2(n,q-f”)(n3-f')_(TlA-nB)) (lim;zb"‘ bB) . (80)

r4a n=12(1—n) &40

where here r = |rg — 4| and # = (rg —r4)/|rg — r4|. With a bit of extra work it can be shown
that the analytic continuation of the sum over b‘l.“]. b% in the n going to 1 limit (the last factor in
(80)), equals the analogous coefficient for the scalar (18). Thus, the final long-distance result
for the mutual information coincides with the one presented in [10] —including the tensor
structure— as well as with the earlier work of [9]. This is

M VET(2A+1) RZARZA

1(4,B) = 2[2 7 m[z( 2 F)(ng - )= (ny - np)] 2

+.... (81)

3.2 Tripartite information

Now, we would like to study the analogous long-distance behavior of the tripartite information
for conformal spinors. We start with the expression for the tripartite information given in
(26). Using (71) and (72) we can write the leading term of (26) in terms of sums of six point
functions as

I3(A,B,C) ~ hn}n_ DD D b G nh (1) g 1 (oo 16 (1) e
j#i l#k m#n

X (LW G (L )P E(re)) . (82)

The above six-point function factorizes into products of two-point functions, there are no three-
point function terms for spinors. Let us write down the factorization in question explicitly

(1/351(’”,4)1/);3(rA)lﬁf)(rB)wé(rB)lﬁg(’”c)wg(’”c))
—5il5jm5k”(1l7;(rA)¢f,(rB)) W’;}(rA)Q/;?(rc)) (@Z("B)wg(rc))
+5i”5jk5lm(%(m)¢”(rc))(wj (ra) s (rp)) (L, (rp ) ()

i I m nat »n A
= ——xa om0 " e tEe (0 aa (n)pa (T ),

TaB Tac "BC
ineik clmat a
+5m5] 5 mrXCr:B C(YT)EG(Yﬂ)ﬁp (YX)O'TL'] (83)
where we used (74) in the second equality, 7,5 = (rg — ra)/|"r — Tal, Tag = |rg — ral, and
similarly for the AC and BC combinations. Plugging (83) into (82), and after a bit of algebra
we find

1 i
. A 1.B 1,C AT Al aX M v A
I3(A,B,C) ~ ,111_>H{n_1 2: bij bji by | A saaa TasTacTBcMATBNG
i£iEk 48 'ac TBC

{Telrurarar v )= Telrersry vararul -
(84)

We expect the analytically continued sum (the first term in brackets) to be related to the
analogous coefficient for the scalar case (33). However, the term in curly brackets is identically

16


https://scipost.org
https://scipost.org/SciPostPhys.12.5.153

Scil SciPost Phys. 12, 153 (2022)

equal to zero, and thus we conclude that the analogue contribution to the tripartite information
obtained for scalars (25) identically vanishes for spinors

I;(A,B,C)=0+.... (85)

Therefore, the tripartite information at long distances must decay faster than (R/r)** when

the lowest scaling dimension in the CFT is a spinor with scaling dimension A. This is indeed
the case for 2d free fermions as I3 = 0.> For free fermions in three dimensions we find via a
lattice computation presented in Section 4, that

I ~ (R/r)®Ar (86)

(where in that case Ap = 1), which is consistent with the above result. We expect eq. (86)
to be the leading-order scaling for theories with a fermion as their lowest-dimensional pri-
mary. An alternative possibility would involve an additional primary with a scaling dimension
Af < A < Af +1/6 which would then give rise to a leading scaling I3 ~ (R/ r)®2 instead.
Observe that the difference in the leading power of the tripartite information between theories
with a scalar or a fermion as their lowest-dimensional operator is somewhat different from the
mutual information situation. In that case, the leading term is ~ r—** regardless of the spin
of the lowest-dimensional primary —the only difference being an overall tensorial structure
which changes as a function of the spin [10].

4 Lattice calculations in (2 + 1) dimensions

In this section we perform some checks of our analytic results in the case of three-dimensional
free fields. In particular, for the free scalar we verify that the long-distance scaling of the
tripartite information is I3 ~ (R/r)® and that the coefficient in the case of disk entangling
regions matches our analytic prediction with reasonable precision. In the case of the fermion,
we verify that the analogous long-distance scaling is I3 ~ (R/r)’, in agreement with our result
that the naive leading scaling I; ~ (R/r)® does not hold due to the vanishing of the involved
tensorial structures. The coefficient of the leading term for disk regions is also evaluated
numerically for the free fermion.

4.1 Long-distance scaling for free scalars and fermions

Let us start with the free scalar. Consider a square lattice of N points and a set of
scalar fields and momenta ¢;, mj, L,j=1,...,N satisfying canonical commutation relations,
(¢, ;] = i6;5, [¢i,¢;] = [7;, ;] = 0. Given a Gaussian state p, consider the two-point
correlators X;; = tr(p¢;¢;), P;; = tr(p ;7). Then, the entanglement entropy corresponding
to a region A can be obtained from the restrictions of X;; and P;; to the sites belonging to such
a region as

S(A) =tr[(Cy+1/2)log(Cy+1/2) = (C4—1/2)1log(Cy—1/2)], 87)
where Cy = 1/X4P, and we denote (X,);; = Xjj, (Pa);j = P;j with 1, j € A.
Here we will work in d = 2+ 1, so each index i corresponds to coordinates in a two-
dimensional lattice. The free-scalar lattice Hamiltonian can be written as
1 oo
H= 5 Z [Tci,m + (¢n+1,m - ¢n,m)2 + (¢n,m+1 - ¢n,m)2] > (88)

n,m=—00

SFor dimensions higher than two, free fermions are known not to be extensive [19]. Nevertheless, it is interest-
ing to notice that free fermions are close to be so, as it can be seen from a comparison between the varios charges
associated to the free fermion theory and the so called “Extensive Mutual Information model” [19,20].
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where we set the lattice spacing to one. Expressions for X(,, ) (x,.y,) @04 P, y,) (x,,y,) fOT the
vacuum state can be found in [34] and read

cos(ix)cos(jy)
i ) ) 89
(0,0),(i,j) — f J \/2(1 —cosx)+2(1—cosy) (89)

Po,0) (i) = 32 J dx J dy cos(ix) cos(jy)\/2(1 —cosx)+2(1—cosy). (90)
—7 -7

Using these expressions, we can evaluate the tripartite information of lattice regions A, B, C
using eq. (87) and the general expression eq. (2).

The story is analogous for the free fermion. We start with fermionic fields ¢;, i =1,...,N
defined at the lattice sites and satisfying canonical anticommutation relations, {1;, wj} =0;;.
For a Gaussian density matrix p, we define the correlators matrix D;; = tr(pi,bil,b}). Then, the
entanglement entropy for some region A can be computed from the restriction of D;; to the

corresponding lattice sites as
S(A) =—tr[DylogDs+ (1 —Dy)log(1 —Dy4)] . (91)

The three-dimensional lattice Hamiltonian we consider for the free fermion reads
i 2
H:_E;[( r'nn}/ Y (wm+1n 'l/)m n)+"~/)m nY Y (¢m,n+1_¢m,n))_h.c.] , 92)

and the vacuum-state correlators read in this case

sin(x L4 sin Op2 . _
Do) (G, l)__5n16kl J de ( )Y Oy elCx(n=)y(k=D) (93)

sin x + sin? y

In all cases, we restrict ourselves to configurations consisting of identical entangling re-
gions which we separate forming approximate the vertices of equilateral triangles — see Fig.
3 for a couple of examples corresponding to square and disk regions.

Our first goal is to determine the power of the scaling of the tripartite information with the
ratio R/r for both theories. In order to do that, we consider square-shaped lattice regions of
various side lengths R and fix the distance r. Then, we plot the resulting data points against
various possible powers of (R/r). The idea is that whenever the right power is chosen, the
points should follow a linear relation.

The results are plotted in Fig. 4. In the case of the scalar, we observe that a linear fit of the
data points with respect to (R/r)? sits on top of the data points, whereas the (R/r)? and (R/r)*
scalings are ruled out. In the case of the fermion, we observe that the naive (R/r)® scaling is
disfavored by our numerical calculations, in agreement with our observation that this putative
leading term is in fact absent. The next candidate leading power, (R/r)’, is on the other
hand the winner of this comparison, strongly suggesting that in the case of the fermion, the
long-distance behavior of the tripartite information is lgerm o< (R/r)’. Observe also that both
the scalar and the fermion have a tripartite information which is positive in the long-distance
regime —namely, their mutual informations are non-monogamous.

4.2 Three-disks coefficient

One of the results that follow from our analysis in the previous section is that the coefficient
corresponding to the leading term in the long-distance expansion of the tripartite information
in the case of three disks is 2/7. Here we verify this prediction from a lattice calculation and
perform the analogous analysis in the case of a free fermion.
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85
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T1r

90 -

07 1 82 89 06 0 104
Figure 3: We show two examples of the equilateral-triangle lattice configurations
considered. In the left, three squares of 152 = 225 points separated a distance of
~ 82 points. In the right, three disks of 317 ~ m10? points separated a distance
of ~ 104 points. The configurations are chosen so that the distances between each
pair of centers are very similar. For instance, the distance between each of the lower

squares and the upper one is y/(82/2)2 + 712 = 81.9878. Similarly, the separation
between each of the lower disks and the upper one is +/(104/2)2 + 902 = 103.942.

In the left plot of Fig.5 we show the results for various configurations of radius-R disks
positioned at the vertices of equilateral triangles of side r as a function of (R/r)3, which is the
leading power in the long-distance regime, as we have learnt. At subleading order, we expect
a contribution proportional to (R/r)*, so in order to extract the coefficient of the leading term,
we fit the data points to a function of the form I3 = azx + a,x*? where x = (R/r)°.

The resulting curve is shown in Fig. 5 and approximates all points rather well. The coeffi-
cients of the fit read, respectively, a, ~ —0.741 and

2
@; ~0.6325=0.9935 —, (94)

which is an excellent agreement with the analytic result.

We repeat the analysis in the case of the free fermion. For that, we fit the data points to
a function of the form I3 = f,x + Bsx®7, which assumes a subleading piece in the tripartite
information scaling with ~ (R/r)8. The fit is again excellent and appears in the right plot of
Fig. 5. For the corresponding coefficients we find 35 ~ —3.089 and

B, ~1.641, (95)

which —just like for the scalar— is a positive number and therefore corresponds to a non-
monogamous mutual information (as anticipated in the case of the square regions). It would
be interesting to compute /3, analytically and compare it with this numerical result.®

We point out that a function of the form I, = f3,x + fB,x*/7 produces an almost identical fit for coefficients
[37 ~ 1.399 and [59 ~ —9.796. Given that the naive O(R/r)® term is actually absent for the fermion, it does not
seem impossible that the O(R/r)® term does not appear either. In that case, the exact coefficient for the leading
piece would be closer to f3, rather than to ..
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Figure 4: (Upper row) For a free scalar field, we plot I5(A, B, C) for three squares
of equal size for several values of (R/r) as a function of possible different powers
of such ratio (data points). The (R/r)? and (R/r)* scalings are clearly off, whereas
the (R/r)® one does a very good job in fitting the data linearly, as expected from our
analytic computations. (Lower row) Same quantity for a free fermion. In this case,
the differences between the possible scalings are not so neat, but it is nonetheless
manifest that the (R/r)” linear fit is the best one.

5 Discussion

In this paper we have shown how to compute the tripartite information in a CFT in an expan-
sion for long distances of the involved regions. A more detailed summary of our main results
can be found at the end of the introduction. We end with two comments. The first discusses
these results as part of the program aiming at bootstrapping CFT data from entropy quantities.
The second discusses what the results teach us about the monogamy condition in a CFT.
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Figure 5: (Left) For a free scalar, we plot the tripartite information for three disks of
radius R positioned at the vertices of an equilateral triangle os side r as a function
of (R/r)3. (Right) Same for a free fermion as a function of (R/r)”. In both plots the
solid lines correspond to fits which include a linear term plus a subleading correction
as explained in the main text.

5.1 CFT data from mutual information

In [35] it was found that the mutual information for disjoint spherical regions in a CFT has an
expansion in terms of conformal blocks of the form

I(A,B) = > b yG (W, v), (96)
AJ

where {A,J} is the set of replica primary operators which contribute to the Rényi mutual
information and survives the n — 1 limit. G, ;(u, V) is the conformal block associated to the
respective replica primary and it is written naturally in terms of the conformal ratios u, v. Also,
b, ;s is a proportionality coefficient. The conformal ratios are constructed from the tips of the
causal cones defining the spheres. For example, for a sphere A, x; denotes the future causal
tip while x,” denotes the past causal tip. The explicit expression is

_ g P —xglt xg =g Pl —x

e = —" . 97)
x5 —x; [2lxg —xi12 x5 — x4 12l — x;0 |2

Equation (96) comes from an OPE block expansion of the twist operator in the replica theory
as reviewed in appendix A. Interestingly, knowledge of the mutual information for disjoint
spheres can be used to “bootstrap” part of the operator content in the replica theory.” Such
procedure was outlined in [20] where we used it to rule out the “Extensive Mutual Information
model” as corresponding to a CFT in d > 3.

The “bootstrapping” procedure is the following. We consider the long-distance limit of
each conformal block, in the usual cross-ratio variables u, v. This corresponds to the u — 0
and v — 1 limits, which in terms of the physical parameters is [10]

2n2
_16R7R
LA

8R4R
LAZ B12(ny-#)(ng - #)—ny - ngl. (98)

u , v~1—

7This formula does not necessarily include all the primary operators that appear in the replica theory as there
might be many operators which do not contribute to the mutual information. However, the replica primaries which
are simply related to the primary operators of the seeding CFT will always appear in the mutual information. For
instance, operators of the form O;0; with i, j replica indices always appear in the mutual information.
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In that case

d 1 [v—1
lim 1GA’J(u,v) ~ chu%CJ2 1[—}

u—0,y—

4AR,Rp\® d_ . X
= cd,J(ﬂ) c; 200 ) (g ) —nymg],  (99)

where the C J% _1[x] are the Gegenbauer polynomials. Therefore, from (96) we see that the
long-distance limit of I(A, B) would be given by the long-distance limit of the leading conformal
block, namely, the RHS of (99) for the smallest possible A. Thus, from this term we can read
off the corresponding scaling dimension A and spin J of the smallest replica primary which
contributes to the mutual information.

Next, we can subtract off the full leading conformal block appearing on the RHS of (96)
from I(A, B), which results in:

1M(A,B)=1(A,B)— ba,s, Gy (W, v) = Z ba,sGay(u,v), (100)
A£ALIAT

where the super-index (1) in IV(4, B) indicates that we removed the first leading conformal
block to the mutual information. After that, we can apply the described algorithm to I M, B),
finding in this way the subleading replica primary operator that contributes to I(A, B). Possible
degeneracies could also be accounted for by identifying the linear combination of Gegenbauer
polynomials contributing to that order (which is possible by the completeness of the Gegen-
bauer polynomials). Some of the coefficients ¢4 ; appearing in (99) can be obtained via an
explicit computation using the framework developed in [10].

In summary, applying the above procedure one could reconstruct the set of primary replica
operators that contributes to the mutual information, including their corresponding scaling
dimensions A’s and spins J’s. Via a detailed analysis of the possible replica operators that
can be constructed from the original or seed CFT, one could invert the above data to obtain
the set of primary operators, their scaling dimensions A’s and associated spins J’s as well as
possibly some of the OPE coefficients® C; jk of the seed CFT. Let us elaborate a bit further on
that possibility.

Schematically, the replica primary operators can be constructed from the seed primaries in
varios different ways. For example, some of them can include products of two seed primaries
in different replicas with arbitrary number of derivatives in between

A 0,8, -8, O;, (101)

where the tensor structures A*1"#» may have different symmetries and O; are scalars. For
fermions there are also tensor structures one can build from two-seed primary fermions, and
which have non zero coefficients,

wi}’;ﬂ,bj, wi,}/ul '“aunwj3 Tt (102)

None of these replica primaries would have information about the structure coefficients Cjjy,
and their coefficients depend only on the two-point function. However, there are replica pri-
maries formed by fields in more than two copies consistent with conservation laws and super-
selection constraints, for example,

OinOk, “Ili\pj\pklijl Oi’lﬁj}/u’lpk. (103)

8In this section we use A’s to represent the conformal dimensions of the seed theory operators while A’s to
represent the conformal dimensions of the replica theory.
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The contributions of these replica primaries would contain information about the OPE coeffi-
cients C;j and thus the above procedure could in principle allow us to extract such CFT data
from I(A, B). Unfortunately, the procedure for these operators as well as replica primaries in-
volving higher number of replica operators is significantly harder to use in practice than the
ones that involve only two replicas. Therefore, one might deem this procedure unpractical for
the purpose of obtaining the OPE coefficients.

Interestingly, our current work presents a complementary avenue for extracting the OPE
coefficients. As opposed to what happens for the mutual information of two disjoint spheres,
the tripartite information for three spheres at long distances receives contributions at the lead-
ing order from the replica primaries involving three replicas. For this reason, even the leading
expression for the tripartite information includes also information about the OPE coefficients
of the seed CFT as is manifest in (34). Thus, the reconstruction procedure derived from (96)
can be complemented with an analogous one from (34) properly generalized to include all
replica primaries, to facilitate the extraction of the full information of the seed CFT.

5.2 Monogamy condition and holography

From the expression of the long-distance tripartite information (34) it is easy to read off a
condition for having monogamy of mutual information, I3 < 0. In this geometric setup and in
this regime the condition reduces to

(104)

Cono’ > 265417 (A 4 1Y 2 (2F(2A))3 |

BRT(3A+1) TGBA+1)\ T(A)
The RHS of (104) is a growing function of A and its limiting value when A — 0 is 2. The

asymptotic behavior for large A can be determined from the Stirling approximation, which
gives

2 2T (24)° 4 (4
F(3A+1)( ra) ) N(gﬂ.A)uz (5) : (105)

This approximation is an strict upper bound on the RHS of (104) and thus it is a good estimate
on how large should (CO@@)2 be for the theory to be monogamous at large separations. This
is a strong condition over (COOO)Z, which suggest that generically in QFT the mutual informa-
tion for separated regions tends to be non-monogamous (if dominated by scalars”). Definitely,
monogamous behavior could only hold far from a perturbative regime. This statement is in
line with the observation that in a perturbative scheme the tripartite information is generically
non-monogamous [36], although note that the latter statement was made in the context of
entanglement in momentum space.

As mentioned in the introduction, for holographic theories the tripartite information is
known to be monogamous at leading order in the large-N parameter. However, the exis-
tence of RT phase transitions for disjoint regions implies that in our regime of interest —large
separation— the RT contribution to the holographic tripartite information vanishes and thus
its behavior is determined by the subleading contribution, which is given by the tripartite in-
formation of the associated dual bulk homology regions. Depending on the dual bulk theory,
then, this tripartite information might be positive or negative, which renders the boundary
mutual information to be generically non-monogamous. However, there is an interesting pos-
sibility, namely, one in which the bulk theory is itself holographic. These situations are known
as double holographic [37,38], and they have been the focus of important recent activity due
to their relevance in the partial resolution to the black hole information paradox [39,40]. In

But possibly also for fermions in view of our results in the rest of the paper.
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this context, one could imagine situations in which the bulk mutual information of the first
dual theory is non vanishing at leading order, thus the RT surface of the second dual theory
would be in the connected phase and therefore it would be necessarily monogamous (by the
properties of the RT formula for the second holographic theory). In other words, in such ge-
ometric configurations the first bulk theory would be monogamous, and likewise would be its
associated boundary theory. Indeed, boundary monogamy has been recently proved to hold at
all orders in the large-N expansion provided the bulk theory is also monogamous [41].1° Un-
fortunately, in the strict large separation regime both first and second bulk RT surfaces would
be in the disconnected phase and thus monogamy would not be guarantee even in double
holography.
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A OPE block expansion of the tripartite information

In this appendix we want to comment on how to improve our result for the leading term
of the tripartite information by including all descendent operators of the leading ones. As
explained earlier, (26) represents the leading Rényi tripartite information as a correlator of
twist operators. In that expression we have the following expansion for the non-local twist
operators (10)

n—1
&(n) _ A ()
s = E Ciy | 120w (106)
Al =0

However, one can improve the above ansatz by taking each primary operator ]_[;:é <I>g‘)(rA) in
J

the replica theory and adding all its descendants, in other words, by considering instead its
associated OPE block.

The OPE block appears in the contribution of a primary operator to the OPE of two pri-
maries in a general CFT. For example, when the primaries in question are scalars, say O;(x)
and Oj(O), with conformal dimensions A;, A js then one can replace its product inside the
expectation value of an arbitrary product of local operators by the following expansion

0;(x)0;(0) = Z Cijk|x|Ak_Ai_Af (1 +byx*9, + byx*x"8,0, + - ) 0, (0), (107)
k
provided all other operator insertions are located sufficiently apart from points x and 0.'! The

coefficients b, become independent of the conformal dimensions A;, A; when A; = A;. In
that case, the total contribution associated to a given k will depend only on the conformal

19See also [42] for a weaker statement proved in the context of quantum bit threads. Namely, holographic
entropy cone inequalities in the bulk imply boundary monogamy.

UThere is a technically precise sense in which the above replacement is accurate for observables with support
outside the radius of convergence of the OPE [43].
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symmetry and the generating operator (J;. Such contribution is known as the OPE block
associated to Oy,

By(x,0) = |x|** (14 byx#3,, + byx*x"8,0, + - --) Ox(0). (108)

There is a useful integral expression for this operator in cases in which the points {x, 0}, here-
after {x;, x,} are time-like separated and therefore define a causal cone D(x, x,) with {x, x5}
as its tips [44],

_ _ Ap—d
dds(w) Ou(&). (109)

|1 — x5

By (x1,x3) = Ckf

D(x1,X3)

There exists an analogous formula for the OPE block of an arbitrary primary operator in a

symmetric spin J representation O, ..., , namely [45],
Ck —d—
By y(x1,x9) = ﬁf die |K|Ad— g KM O ey, (8). (110)
(27—5) D(x1,x5)

Here, K" is the conformal killing vector that keeps the boundary of the causal cone fixed, and
it is given by

21

K"9, = T —x)? [(Xz — &) (o —EM) = (x — E)P(xy — 5“)] Ou> (111)
and
K| ZZHW. (112)
1 — x|

The above is precisely the proposal of Long [35]. In short, the idea is to improve upon the
expansion of (106) developed by Cardy by considering instead a basis of non-local operators
associated to the entangling region. For a sphere S,, such operators are precisely the OPE
blocks (2R,) 2k By (x5, x, ) with {xy, x, } as the tips of the causal development of the asso-
ciated spherical region. The expansion would have the form

&) _ A
5= Cik;y

Ap—d
(k£ j=0 (2m)7Y

1 ij(ZRA)_Akj

f dlg K|S kel (). (113)
D(xy,x;) 7

q,(kj)
jobky Uy
primary operators associated to different sheets with the lowest scaling conformal dimension

A, this is,

The leading contributing primary operator (&) corresponds to the product of two

n—1
A

2. Clin [ 1800, ()= 2 2R 4, 007, (114)
ij

fk}A =0
and therefore, the leading contribution of (113) would be
. con(2R,) 724 . ‘
B =2.¢ o f dig K270 (0(8), (115)

ij 2A—d
ij (2m) Dy

where we simplified our notation by defining Dy = D(x}, x; ). The normalization constant ¢y
satisfies

—2A
CZA(ZRA) J‘ ddg |K|2A—d =1. (116)

(27_[)2A—d D,
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If one replaces (115) into the formula for the mutual information as given in (14) one gets

VAT(2A+1) G, J ' J al K22 |K 22
4 T(28+3) (2m)2209) A ol

I(A,B) =

(117)

The double integral above can be identified with the conformal block associated to an inter-
mediate scalar operator of dimension 2A via Gik,o(u, v) = (Ba (x4, x;)Ba, (x5, x5)) which is
a known relation between the conformal and OPE blocks, consistent with our normalizations.
The above expression reduces to

YT T2A+1)
24A+2F(2A+ ) ZAO

I(A,B) = (u,v), (118)

which is the leading therm in the conformal block expansion of the mutual information [9]. In
the above expressions u and v are the usual conformal ratios defined explicitly in (97). Adding
all other possible replica primaries in the expansion of f]g") leads to the full conformal block
expansion of the mutual information as described in Section 5.1 in the form of (96).

Similarly, we can replace (115) into the formula for the tripartite mutual information as
given in (26), follow through all the analysis of Section 2 until the derivation of the analogous
formula to (34) which in our present case is

2607 (A + 1)
C E R S 119
(Cooo) 2nT(38+2) (119)

VA T(3A+1)
4 1(3a+3)

F3(€A; gB’ 5(}) d d d
d“&,dEpd
XJDAJDB fDa |Ea—EI2A1ER — Ecl?A|Ea— Ec |4 Sadicpdice,

where we have introduced the function

I3(A,B,C)=—

3

c
F3(€4,88,8c) = %WAFA%IKBIZA” |Kc|?A74. (120)
n

This is our final formula for the long-distance tripartite information which includes the contri-
bution of the leading OPE block in the twist operator expansion.

It would be interesting to explore whether the triple integral expression in (119) can be
identified with an interesting object in the CFT as it happens to the analogous formula for the
mutual information (118). Similarly, it would be interesting to study the full expansion of
the tripartite information which includes all replica primaries that can contribute to the twist
operator expansion in (113).
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