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Abstract

We study the effects of strong inter-particle interaction on diffraction of a Bose-Einstein
condensate of 6Li2 molecules from a periodic potential created by pulses of a far de-
tuned optical standing wave. For short pulses we observe the standard Kapitza-Dirac
diffraction, with the contrast of the diffraction pattern strongly reduced for very large
interactions due to interaction-dependent loss processes. For longer pulses diffraction
shows the characteristic for matter waves impinging on an array of tubes and coherent
channeling transport. We observe a slowing down of the time evolution governing the
population of the momentum modes caused by the strong atom interaction. A simple
physical explanation of that slowing down is the phase shift caused by the self-interaction
of the forming matter wave patterns inside the standing light wave. Simple 1D mean
field simulations qualitatively capture the phenomenon, however to quantitatively re-
produce the experimental results the molecular scattering length has to be multiplied
by factor of 4.2. In addition, two contributions to interaction-dependent degradation
of the coherent diffraction patterns were identified: (i) in-trap loss of molecules during
the lattice pulse, which involves dissociation of Feshbach molecules into free atoms, as
confirmed by radio-frequency spectroscopy and (ii) collisions between different momen-
tum modes during separation. This was confirmed by interferometrically recombining
the diffracted momenta into the zero-momentum peak, which consequently removed the
scattering background.
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1 Introduction

Matter-wave diffracting from a standing wave of light demonstrates the fundamental concept
of wave-particle duality. As first predicted by Kaptiza and Dirac [1], when particles move
through a standing wave of light, they undergo two-photon scattering processes and gain
discrete momenta in units of the vector sum of the two photons’ recoil. On the other side one
can see the diffraction as coming from the phase imprinted on the matter wave by the dipole
potential of the standing wave. For a detailed discussion see: [2]. The first experimental
observation of this phenomenon was made with thermal atom beams [3–5] and later with
electron beams [6,7] and Bose-Einstein condensates (BEC) [8–11]. Moreover diffraction from
a standing wave and the associated two photon transitions are an essential building block of
atom interferometry and have enabled numerous fundamental tests, precision measurement
and opened up many practical applications like inertial sensors [12,13], gravimeters [14–16],
measuring the gravitational constant [17, 18], and were proposed to be used for detecting
gravitational waves [19,20].

The effect of inter-particle interaction during the diffraction process was in most cases ne-
glected, mainly for its minor significance during the short time of the diffraction process and
to obtain mathematical simple results. However such simplification may no longer guarantee
accurate results for strong interaction or long timescales [21–23]. In this paper, we report
an experimental study on diffraction of a molecular Bose-Einstein condensate (mBEC) of 6Li2
from a standing light wave in the presence of strong inter-particle interaction. Due to the
fermionic nature of 6Li atoms, inelastic processes are strongly suppressed in a 6Li2 molecular
BEC [24,25], allowing for the preparation of initial equilibrium many-body states with strong
interaction for the experiments. By tuning the s-wave scattering length with a magnetic Fes-
hbach resonance, we are able to study the influence of interaction on the diffraction process
over a wide range. Numerical simulations were performed to provide comparisons with ex-
perimental observations, and to assist in testing and understanding the physical processes.

2 Experimental procedures

The experiments are performed with BECs of 6Li Feshbach molecules. Our experimental setup
and procedure are detailed in Appendix A.1. In brief, in each experimental cycle we pre-
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Figure 1: Schematic of the experimental setup with images taken before and after
focusing.

pare a two-state mixture of lithium atoms in the lowest hyperfine states |F = 1/2, mF = 1/2〉
(state |1〉), |F = 1/2, mF = −1/2〉 (state |2〉), which correspond to |mI = 1, ms = −1/2〉 and
|mI = 0, ms = −1/2〉 at high magnetic field, where the experiments are performed..Then by
evaporative cooling in a single beam dipole trap on the BEC side (780 G) of the 832 G Fes-
hbach resonance [26] the atoms form weakly bound Feshbach molecules each consisting of
two atoms in different hyperfine states. With further evaporation, the molecules subsequently
form a mBEC.

The procedure prepares mBECs of ∼3000 6Li2 Feshbach molecules [27]. The s-wave scat-
tering length between molecules is tuned by setting the magnetic field [28]. For weakly bound
molecules close to the Feshbach resonance, the dimer-dimer s-wave scattering length is given
by add = 0.6a12 [24], where a12 is the scattering length between atoms in states |1〉 and |2〉.

Figure 1 shows a qualitative sketch of the setup. The mBEC is confined in a trapping poten-
tial formed by a focused laser beam (the capture beam) and the magnetic field curvature pro-
duced by the electric coils. The combined potential provides trap frequencies
( fx , f y , fz) = (16, 74,68)Hz, where x denotes the axial direction along the trapping beam,
y the other horizontal direction, and z the vertical direction. The field curvature is confin-
ing horizontally and therefore enhances trapping along the axial direction. Over the range of
magnetic fields used, the trap frequencies are only very weakly affected by changing the field
level. The axial trap frequency is varied by 7%, for magnetic field offset from 650 G to 750 G.
The radial directions are dominated by the optical dipole trap.

To perform diffraction, a lattice potential U(x) = U0 cos2 (πx/D) is formed with two cross-
ing laser beams, where U0 is the lattice potential depth, D = λ/2 sin(θ/2) the spatial period
with wavelength λ= 1064nm and the laser beam crossing angle θ = 15◦, resulting in a lattice
period D = 4µm. The lattice laser beams are focused to beam waists of whorizontal = 600µm
and wver t ical = 140µm. The beams are large compared to the size of the mBEC, and hence the
lattice potential depth is approximately uniform across the cloud. The two lattice laser beams
are derived from the same laser source, intensity controlled by an acousto-optic modulator
(AOM), and subsequently split by a 50:50 beam splitter. The recoil energy of single photon
transition is Er = ħh2k2/2m≈ 250Hz, where k = π/D and m is the mass of a lithium molecule
(6Li2).

The lattice potential is pulsed on for a variable time t while the mBEC is held in the trap,
such that a well-defined geometry and interaction energy is maintained during the scatter-
ing process. Immediately afterwards the cloud is released and allowed to expand. The cloud
expands rapidly along the radial directions, hence quickly reducing interaction, while the mag-
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netic coils are kept on such that the field curvature provides a focusing potential in the hori-
zontal directions during the time-of-flight to measure the momentum distribution [29]. After
a quarter of the oscillation period set by the horizontal trapping frequency of 16Hz, the ini-
tial position distribution has collapsed, and the spatial pattern corresponds to the momentum
distribution in the x and y directions before trap release. Detection is then performed by
absorption imaging.

3 Experimental observations

3.1 Within Raman-Nath regime

For a pulse time t much shorter than the oscillation period of a molecule in the lattice site, or
equivalently t

p

Er U0/ħh < 1, the particles remain approximately stationary during the lattice
pulse. This regime is referred to as thin grating approach, also known as the Raman-Nath
approximation [30]. The lattice potential could be viewed as a spatially periodic phase im-
printing on the condensate wavefunction, resulting in the interference pattern in the far field,
with bright fringes corresponding to momentum modes with a spacing of 2ħhk. The probability
of finding atoms in the nth diffracted state is given by the Fourier transform of the imprinted
phase shift. The occupation of the momentum modes (±2nħhk) is hence given by Bessel func-
tions of the first kind: P±n = J2

n (tU0/2ħh) [31].
The lattice is pulsed with U0 = 500Er and a duration of t = 0 ∼ 20µs. Within this time

range, the condition for Raman-Nath regime is satisfied, tmax
p

Er U0/ħh ∼ 0.7. As shown in
Figure 2, distinct momentum modes can be recognized from the absorption images, while a
strong background appears for high interaction strengths. The enhanced presence of the broad
background with increased interaction suggests an interaction dependent loss of molecules
from the condensate.

In order to determine the populations in each momentum mode, we integrate the images
over the y direction and fit a dual-component function
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Here A andσ denote the amplitude and width of the corresponding peak, where the superscript
c denotes the molecular condensate and g the incoherent background. dsep is the spatial
separation corresponding to the momentum 2ħhk which can be accurately determined. Thus
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Figure 2: (top) Images taken with pulse U0 = 500Er and t = 5µs at different in-
teraction strength and (bottom) the corresponding fitting result. Circles show the
experiment data. Red and yellow solid lines shows the fitting result of the momen-
tum peaks and background respectively.
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Figure 3: (left) Time carpets measured with U0 = 500Er at different interaction
strengths. (middle) the normalized momentum modes with background removed.
(right) Normalized populations of the first three momentum modes (open symbols)
for different dimer-dimer scattering lengths add are plotted, together with the cor-
responding Bessel functions calculated with the calibrated lattice intensity with no
free parameters (solid lines). For the carpet plots we adjusted the color bar range to
optimize the visual contrast. The carpet plot value corresponds to the optical density,
in arbitrary unit.

we can determine the population of condensate peaks and scattered background separately.
The integrated profiles showing the momentum mode occupations are plotted in a time carpet
over the pulse time to provide an overview of the diffraction process in momentum space
(Figure 3(left)). For further analysis, we remove the background from the dual-component
fitting, time carpets can then be presented clearly with the momentum mode populations
normalized to the total condensed population (Figure 3(middle)).

The time evolution of the 0ħhk, ±2ħhk, and ±4ħhk populations are shown together with the
theoretical results given by the Bessel functions (Figure 3(right)). For stronger interactions,
despite significant losses, the normalized populations are found to still agree quite well with
theory.

3.2 Beyond Raman-Nath regime

For longer pulse durations, the displacement of particles during the lattice pulse becomes
non-negligible, thus the stationary approximation is no longer valid. Beyond the Raman-Nath
regime, if the lattice depth satisfies the condition U0 � Er , the situation is referred to as the
channeling regime [32]. The particles oscillate within each lattice site, creating a periodic
pattern in momentum space. An analytical solution is obtained for the weak-pulse limit [33],
but in general the population evolution during the scattering process needs to be calculated
numerically.

Figure 4 shows the results measured with U0 = 50Er , and t = 0 ∼ 1000µs. The weaker
lattice restricts the particles within the first five momentum modes to achieve a decent imaging
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Figure 4: (a) Time carpets measured with U0 = 50Er for different interaction
strengths. (b) The momentum modes with background removed and normalized
to the total condensate number at each time. The vertical dash lines mark the zoom
in range for (c). (d) The corresponding normalized populations of the 0 ħhk mo-
mentum mode (circle), shown in each case with the 1D GPE simulation result (solid
line). The error bars for the population show the standard deviation of the fit results
from 10 measurements. The simulation curves were produced with mean field in-
teraction, including a phenomenological scaling factor η = 4.2 common to all case
to take into account the additional interaction energy, as explained in the text. The
vertical dashed lines in (c) and (d) indicate the time point at which the coherent pop-
ulation is restored to the 0ħhk mode (recurrence of the mBEC). The shift of the peak
clearly shows the slowing down of the scattering process under stronger interactions.
Interaction-dependent loss leads to degradation of contrast of the scattering patterns,
and also results in deviations of population ratios from theoretical results (see text
in Section 4.2). For add = 2526a0 at long pulse times (t >∼ 600µs), the images ac-
quired have poor signal-to-noise ratio and population determination by fitting gives
rather unclear results.

contrast and drives the evolution at a rate such that the effect of interaction, which becomes
apparent at longer times, is clearly demonstrated. Similar to what is observed in the Raman-
Nath regime, we find loss from the condensed component into the background which becomes
more prominent for increased interaction strength. It can be seen that for add > 2500a0, the
scattering pattern becomes barely recognizable from the image. We apply the same procedure
as in the previous section to extract the momentum evolution. Due to loss by collisions between
different momentum modes, the ratios between the populations are changed. As a result, the
normalized populations at high interaction show deviations from numerical simulations of the
scattering processes. We look into the interaction dependent loss in Section 4.2.

The time carpets in Figure 4 show a periodic time evolution of scattering patterns in mo-
mentum space, as expected for the channeling regime. Comparing the population evolution
curves for different interaction strengths reveals a slowing down phenomenon of the diffrac-
tion process. It can be seen that the time point where the coherent population is restored to
the 0ħhk mode (recurrence of the mBEC) occurs at increasingly later time points, showing that
the evolution becomes slower in the presence of stronger interaction.
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4 Effects of interaction

4.1 Interaction induced slowing of scattering processes

To assist in understanding the effect of interaction on the population evolution, we performed
Gross-Pitaevskii equation (GPE) simulations, which include mean field s-wave scattering be-
tween molecules (see details in Appendix A.3). As can be seen from Figure 4 showing the data
for U0 = 50Er , the population evolution obtained by simulation is in good agreement with the
experimental observations.

The slowing down of the scattering process at early times can be qualitatively understood to
be associated with the formation of density grating across the condensate, which arises in the
presence of the lattice potential. Initially, the lattice potential generates a phase modulation
in the condensate, which leads to an emerging density grating. The 0ħhk mode decreases
while the higher momentum modes grow. The density profiles generated by the simulation
demonstrating this process are shown in the inset of Figure 5. For convenient visualization, the
simulation here is carried out with a lattice depth of U0 = 500Er to obtain a rapid population
evolution. An obvious density grating has already formed at approximately 2µs. The effect
of repulsive mean-field interaction, contrary to the optical lattice, tends to smooth out the
density grating. The interaction counters the effect of the lattice, and hence slows down the
population evolution during the scattering process.

Since the formation of density grating in the condensate is associated with the emergence
and evolution of populations diffracted to higher momentum modes, one can also expect the
effect of interaction would reverse the population evolution when the lattice pulse is turned
off, and this is demonstrable with simulation. Figure 5(left) shows the population evolution of
the 0ħhk mode population obtained from the numerical simulation, in which a lattice potential
with 500Er of depth is pulsed onto a BEC under zero interaction. The lattice is then switched
off at 3µs and later at 5µs interaction is turned on. It can be seen that with null interaction,
the mode populations maintain the values from the moment the lattice is switched off. On the
other hand, when the interaction is switched on, we observe the reversal of the population
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Figure 5: The simulated population evolution of 0ħhk momentum modes with quench-
ing interaction and U0 = 500Er . Solid lines show the simulation results and dots
plot the Bessel function prediction. The two vertical dashed line marks the time of
lattice switch-off and interaction switch-on, (left) tlat.off = 3µs and tint.on = 5µs,
(right) tlat.off = 8µs and tint.on = 10µs respectively. The inset shows the formation
of density grating in the condensate wavefunction.
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Figure 6: (a) 1D GPE calculation illustrating the slowing of the time evolution of the
zeroth order diffraction peak with interaction strength. The curves can be aligned by
re-scaling in time to match the first condensate recurrence points to the null inter-
action case (t → t/(1+ r)). (b) The delay parameter r inferred from experimental
measurements (circles) in Figure 4 versus the dimer-dimer scattering length add .
Error bars generate with 10 repeated measurements. Solid line and dash line are
produced by GPE simulation with U0 = 50Er for η = 4.2 and η = 1, where η is
the phenomenological factor we included to account for additional contribution to
interaction, g = ηg1D (section A.3).

evolution due to scattering, consistent with what is predicted based on the physical picture.
It is also evident from comparison that stronger interaction results in a faster reversal of the
evolution.

At later times the density grating soon becomes complicated in structure (see Appendix
A.3). It is then not obvious to draw a simple interpretation for the effect due to interaction,
for instance at a time when the 0ħhk mode population grows and the higher modes diminish.
However, the 1D mean-field simulation demonstrates similarly, that the effect of interaction
reverses the population evolution due to scattering (Figure 5(right)), again leading to faster
reversal for stronger interactions.

In light of the physical picture and the tests with simulations, we expect the slowing of
scattering processes to be dependent on interaction strength, and in addition, that the phe-
nomenon can be captured by a 1D model [34]. Note from Figure 4 that the overall trend
of the evolution, the features such as peaks and troughs of the curve, are maintained to a
good degree, especially prior to the first recurrence of the 0ħhk condensate. This allows us to
further examine the phenomenon quantitatively with respect to the interaction strength, by
identifying the peak locations to characterize the evolution.

In a simplified picture, the slowing effect results in a linear scaling of the population evo-
lution in time by a factor (1+ r). That is, assuming the slowing effect is uniform over time.
As shown in Figure 6(a), we choose the first condensate recurrence point of the 0ħhk conden-
sate population in our measurement as the reference. We then use it to determine the time
scaling factor (1+ r(a)) for a given s-wave scattering length a. The slowing phenomenon due
to interaction countering the lattice potential can also be qualitatively seen as an effective re-
duction of the lattice depth by the factor 1/(1+ r(a)), such as observed for a quasi-periodic
lattice, where the onset of localization is shifted by repulsive interaction to deeper lattice po-
tentials [35]. Figure 6(b) plots the values of r(a) determined for the experimental data with
50Er presented in Figure 4.

Mean-field 1D simulations indeed reproduce the slowing effect (see Appendix A.3 for
details). However, simulations performed with experimental conditions and the scattering
lengths at respective magnetic fields generate evolution with much weaker slowing down than
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that observed experimentally. This indicates the presence of additional interaction energy con-
tributing to the effect. Due to limited experimental knowledge of the in-trap loss mechanisms
and the absence of accurate theoretical models, we consider here a phenomenological ap-
proach. Based on the above discussion, we therefore include a simple factor η > 1 in the
mean-field simulation to account for the additional interaction via add → η add . Using 3000
molecules for all cases in the simulation, in accordance with the initial condition of the ex-
periments, we find that for a single value η = 4.2 the simulation generates results closely
fitting the experimental observations, as shown in Figures 4 and 6. The value of η indepen-
dently determined for each field show slight fluctuations, but no dependence with respect to
the scattering length is found.

The additional interaction energy could partly be accounted for by dissociation of mole-
cules into atoms during the lattice pulse. The molecule to atom s-wave scattering length is
given by 1.2a12 [36], which is double the value for dimer-dimer scattering. In addition, the
dissociation of molecules leads to an increase in particle number, hence increasing the inter-
action strength.

We confirm the presence of free atoms following a 60 µs lattice pulse by driving the
|2〉 −→ |3〉 transition with a radio frequency (RF) pulse [37]. For sufficiently large binding
energy and sufficiently long RF pulses we are able to distinguish between the transition from
molecules and the transition from free atoms. For the corresponding RF frequency, a reduction
of state |2〉 atoms detected by absorption confirms the presence of free atoms. Limited by the
current low Rabi frequency, the RF pulse has to be performed in trap for several ms, leading to
significant 3-body loss [38]. The method is hence at this point insufficient to provide a quan-
titative measurement. Also, due to the constraint on pulse length imposed by the requirement
to resolve the bound-free and free-free transitions, we expect accurate characterization will be
increasingly challenging close to the Feshbach resonance, where the molecule binding energy
is small [39].

4.2 Condensate loss due to incoherent collisions

Both in the Raman-Nath regime and beyond, it is observed that the particle numbers in the
condensed momentum peaks decrease with the increase of interaction strength, while the
presence of background particles becomes enhanced.

In order to investigate at which stages and by what processes the loss occurs, we make use
of a technique implementing a particular lattice pulse sequence [40]. By applying a designed
lattice pulse sequence to a known initial distribution, the populations of the higher momentum
modes can be ‘returned’ to the 0ħhk mode as long as coherence is maintained. Here we choose
the initial lattice pulse to be t0 = 60µs and U0 = 50Er . Figure 7(a) shows a qualitative sketch
of the pulse sequence designed for this test, and the absorption images after the time-of-flight
and focusing, at which point the different momentum modes are already well separated. We
compare the cases where the cloud was released when (1) no pulse is applied, (2) the initial
pulse is applied and only a very low population remains in the zero momentum mode, (3) the
zero momentum mode is restored by the pulse sequence.

We can identify two distinct stages of loss. With the initial pulse (after t0), most molecules
will populate the ±2ħhk and ±4ħhk modes, while the background emerges with stronger inter-
action. The spherical structure and its ‘2ħhk radius’ suggest that one of the major sources of
the background is the collisions between the ±2ħhk modes [41,42]. After being released from
the dipole trap, it takes ∼ 6 ms for different momentum modes to separate in space. The re-
coil momentum 2ħhk is significantly larger than the superfluid critical velocity [43]. Collisions
resulting from relative movements lead to decoherence and redistribution of momenta, which
are enhanced under higher interaction. With the additional pulse sequence applied (after t4),
the coherent population is returned to the zero momentum mode, and the contribution of col-
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lisional loss during mode separation is suppressed. Although the BEC can be mostly restored
with the pulse sequence, an interaction dependent loss can still be observed. We attribute this
to in-trap loss which occurs during the lattice pulse. The presence of unbound atoms con-
firmed by RF spectroscopy is also consistent with loss occurring during the pulse. For case (3)
there may be extra loss due to the additional pulses. However, this would shift the line of (3)
upwards and decrease the difference between cases (2) and (3), leading to an underestimate
of the collisional loss. Therefore the difference between the cases (2) and (3) unambiguously
demonstrates collisional loss between the momentum modes during the course of separation.

Figure 7(b) shows the total loss at different stages and interactions. When determining the
population of condensate peaks and background using the fitting algorithm, the calculation
always gives a non-zero background number even for a pure BEC. This error is influenced by
the imaging noise, since the fitting always includes part of the noise as the fitted distribution.
So we used the result obtained with the BEC as a reference for the error level. We can identify
the difference between measurements “after t0” and “after t4” as the contribution of collision
loss after release from the dipole trap, and the difference between “after t4” and the error level
as the contribution of molecule disassociation after the initial 60µs lattice pulse.

We simulated the collision loss during the course of separation by calculating the colli-
sion events between each two momentum groups with a simple model (for details see Ap-
pendix A.4). The calculation for each scattering length and pulse time is initiated with the
mode occupations obtained from the corresponding GPE simulation, subsequently corrected
for the (early stage) in-trap loss within the first 60 µs as has been experimentally character-
ized (shown in Figure 7). The later loss during the lattice pulse (in-trap) is difficult to model
and is not included in this calculation. Expansion following trap release is then calculated by
the model, giving quantitative estimates of collision loss during the separation between the
momentum modes (Figure 8 and 9). From the simulation we obtain the estimated total re-
maining condensed population in the momentum modes, as well as the remaining population
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Figure 7: (a) Schematic of the pulse sequence and the corresponding absorp-
tion images at different interactions. [t0, t1, t2, t3, t4] = [60,78, 26,36, 36]µs for
U0 = 50Er . (b) Calculated loss plot against scattering length at different stage. The
error level is calculated from the BEC images (1). Difference between line (3) and
error level is the loss during the lattice pulse. Difference between line (2) and (3) is
the collision loss during TOF.
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Figure 8: The population evolution of 0ħhk, ±2ħhk, ±4ħhk modes at different inter-
action strengths (open symbols) with collision simulation results (solid line) for
U0 = 50Er . The initial condition of the simulation is a product of the GPE calcu-
lation multiply by the loss factor calculated from t = 60µs (Figure 7). Different from
Figure 4(right), here we normalize to the initial condensate number.

in the individual modes. The results show reasonable agreement with the experimentally ob-
served 0ħhk mode for short pulse times, and larger deviation for long pulse time, indicating the
increasing contribution from in-trap loss over time. Additionally, the losses from higher modes
(±2ħhk,±4ħhk) are increasingly underestimated (Figure 8), which we attribute to the approx-
imations taken by the scattering model. In particular secondary collisions or corrections to
the scattering cross-section beyond s-wave scattering are not taken into account. Quantifying
secondary collisions is difficult given our experimental scenario. Due to the axial length of
the condensate in our experiment, the momentum modes mutually separate over the course
of several milliseconds. If the collisions occur in a small and well-defined range of space and
time, one can expect to observe clean s-wave collision halos, and deviations from the expected
profile would then indicate additional processes such as secondary collisions [44]. This is not
the case for our experiment. Our situation is further complicated by the presence of loss caused
by the lattice pulse.

The deviations of the normalized populations observed experimentally (Figures 3 and 4)
from the GPE simulation results can be understood with the collision process during the sepa-
ration of momentum modes. Consider the molecules belonging to two velocity groups moving
relative to each other and colliding. Assuming the colliding molecules are immediately re-
moved from the coherent condensates and hence secondary collisions can be neglected, it fol-
lows that the two groups incur the same number of particle losses to each other. When the ini-
tial populations are not equal, the group with higher population will have an increased portion
of the remaining coherent particles after collisions have taken place. Hence the more highly
populated modes tend to increase in ratio. From Figure 3 (2109a0) and Figure 4 such features
can be seen. Under strong interactions, when the 0ħhk mode population is high (peaks), the
normalized population observed experimentally ends up occupying a higher portion of the
total remaining condensed molecules than the simulation result. The features become more
prominent for stronger interactions and hence stronger losses.
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Figure 9: The condensate fraction at different interaction strengths (open symbols)
with collision simulation results (solid line) for U0 = 50Er . The increasing discrepan-
cies between calculated results and experimental data indicate the continuing in-trap
loss over time.

5 Conclusions and outlook

Diffraction of strongly interacting matter waves closely follows the well studied non-interacting
single particle case. The main modifications of the observed diffraction come either from (i)
incoherent processes like final state interactions which leads to a broad scattering background,
and Feshbach molecule dissociation, and (ii) a coherent process initiated by the self interaction
of the evolving matter wave interference patterns inside the standing light wave. Investigations
for the possible physical processes leading to strengthened interaction are currently underway.

We verified the dominance of coherent processes during the diffraction dynamics in the
standing wave grating by applying additional pulses which allowed to recombine the diffracted
orders back into the zero momentum mode by constructive interference.

Going beyond the present work it would be interesting to study (i) the regime where the
emerging diffraction orders are all safely below the critical super-fluid velocity; (ii) the influ-
ence of the switching on and switching off of the standing wave; (iii) Bragg diffraction and the
modification of its intricate wave fields inside the light crystal [45, 46] by the strong interac-
tions and (iv) in addition strong interactions should also lead to squeezing and entanglement
between the diffracted beams. We expect the latter to be relevant for interferometry, where
the squeezing and entangled created by strong interaction may be desired for meteorological
advantage [21, 47]. Further, demonstrating the influence of interactions on the performance
of a full multi-mode interferometer sequence [48] with lithium Feshbach molecules is an in-
teresting avenue for further investigations.
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A Appendix

A.1 Experimental apparatus

The layout of the experimental apparatus is shown in Figure 10. Lithium atoms from an oven
going through a Zeeman slower are laser cooled and collected in a magneto-optical trap (MOT)
at the metal chamber using the D2 optical transition (2S1/2 → 2P3/2). The MOT consists of
the cooling and repump light which excite atoms from the F = 3/2 and the F = 1/2 states,
respectively, and typically collects 2×108 atoms at∼ 1mK. Following compression by ramping
the laser frequency close to resonance and decreasing optical intensity, the temperature is
reduced to 330µK, while keeping 1× 108 atoms.

Zeeman Slower O
ve

n

Science cell
Coil sets

Capture Beam

ODT and 
Transport

Lattice

Figure 10: Experimental apparatus.

The atoms are subsequently transferred to an optical dipole trap (ODT) formed by 1070
nm laser from a high power Ytterbium fiber laser (IPG YLR-200-LP-WC). By extinguishing the
repump light 100µs earlier than the cooling light, the atoms are pumped to the F = 1/2 states,
which are the lowest two magnetic sublevels |1〉 and |2〉.

After transferring to the optical dipole trap, the quadrupole magnetic field of the MOT is
switched off and a uniform offset magnetic field provided by the Feshbach coil pair is switched
on. In the presence of a magnetic field of 540 G, radio frequency (RF) sweeps mix the two
states to ensure balanced populations for efficient evaporative cooling.

Evaporative cooling is then carried out by decreasing the optical power of the dipole trap,
the first evaporative cooling stage performed at the MOT chamber is done under a magnetic
field offset of 780G, giving strong interaction between the spin states and hence rapid ther-
malization.

Evaporation at the MOT chamber is performed without reaching quantum degeneracy.
The atoms are then transferred to the transport beam shaped by a two-lens setup including a
tunable lens (Optotune EL-16-40-TC-NIR-20). The beam focus position of the transport trap
varies with the focal length of the tunable lens. The cloud moves with the trap focus to the
science cell and is then transferred to the capture beam at the cell. Final evaporation is carried
out in the capture beam to prepare the sample for the experiment, producing a degenerate

13

https://scipost.org
https://scipost.org/SciPostPhys.12.5.154


SciPost Phys. 12, 154 (2022)

Fermi gas or mBEC.
The lattice setup is based on an equal-path interferometer design that minimizes the path

length difference to provide high passive phase stability. An optical lattice formed by two
coherent laser beams of wavelength λ = 1064 nm crossing with an angle θ = 15◦ gives lat-
tice spacing D = λ/[2 sin(θ/2)] ≈ 4µm. The lattice depth was determined for the 500 Er
case where the population evolution is fast, and therefore the other effects are insignificant.
By fitting the measured zero momentum population evolution with the Bessel function and
determining the time of the first minimum, the lattice depth is inferred.

A.2 Pulse sequence design

As illustrated in Figure 7(a), the momentum mode populations are accurately controlled with
lattice pulses. A single lattice pulse transfers a BEC initially in the zero momentum mode into
high momentum modes. Subsequently, another two lattice pulses can bring most particles back
to the 0th mode prior to TOF. To characterize the collisional loss effect in different experimental
stages, we compare two cases, (i) the cloud is released from the capture beam with multiple
momentum modes, which separate and penetrate through each other during TOF, (ii) the
cloud is released with high momentum modes being eliminated, hence strongly suppressing
the collisions during expansion.

The pulse sequence is designed with particular pulse durations and intervals for a given
lattice depth U0, aiming at maximizing the overlap between the final wavefunction and the
BEC wavefunction in the 0th mode [40]. Supposing that ψ0 is the state of a BEC, we calculate
the Bloch state after applying a pulse sequence [t0, t1, t2, t3, t4] (see Figure 7a),

|ψ f inal〉=
0
∏

j=4

Û j|ψ0〉 , (1)

where Û j = e−i[p̂2
x/(2m)+U j cos2(kx)]t j/ħh is the evolution operator in the jth step. The interaction

term is neglected because the pulse durations are smaller than the timescale of which the
slowing effect appears significantly. The duration of the initial pulse t0 is fixed at 60µs so that
it covers the strong loss region observed in Figure 9. The potential depth U j is set to U0 and 0
during the pulses and the time intervals, respectively. U0 keeps constant for all three pulses.
The time sequence is determined by maximizing |〈ψ0|ψ f inal〉|2. For the parameters we choose,
[t0, t1, t2, t3, t4] = [60,78, 26,36, 36]µs and U0 = 50Er , leading to |〈ψ0|ψ f inal〉|2= 0.94.

A.3 GPE simulation

We performed mean-field simulations based on the Gross-Pitaevskii equation (GPE),

iħh∂tΨ =

�

−
ħh2

2m
∂ 2

x +
1
2

mω2
x x2 + U(x) + g1D|Ψ|2

�

Ψ , (2)

to investigate the slowing down effect due to interaction. Here m is the mass of a molecule,
g1D ∼ as the effective 1D interaction constant (see below), ωx is the harmonic trapping fre-
quency of the capture beam. The lattice potential U(x) = U0 cos2 (πx/D) has a lattice period
D = 4µm, setting the recoil energy Er = ħh2k2/2m ≈ 250 Hz with k = π/D. We implemented
(i) a homogeneous 1D simulation, and (ii) a 1D simulation with settings corresponding to the
experimental conditions.

To demonstrate the phenomenon and to test the physical picture (see section 4.1), we
simulated a homogeneous 1D system, for which the interaction strength is fully characterized
by the chemical potential µ = g1Dn1D, where n1D is the particle density and g1D the 1D in-
teraction parameter. The simulations were performed for 25 lattice periods with 50 spatial
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Figure 11: 1D GPE simulation demonstrates the slowing down effect due to interac-
tion. The simulation is performed with a lattice potential depth of 50 Er . The slowing
parameter r is found to monotonically increase with in interaction strength and is
approximately proportional to the chemical potential for weak interaction.

points per lattice period (80 nm resolution) and 100 ns time steps. The 1D simulation clearly
demonstrates the slowing effect, as plotted in Figure 11. For each interaction strength the
slowing parameter r is determined by comparing the condensate recurrence time to the null
interaction case. The phenomenon is found to be stronger with increasing chemical potential.

In order to perform the simulations that correspond to the experiment, we measured the
trap frequencies and the in situ size of the mBEC for each interaction strength. Figure 12 shows
an example absorption image of our mBEC, and the comparison of the fitted condensate sizes
to the theoretical Thomas-Fermi radii without free parameters. The experimental conditions
determined are used for the GPE simulation.

To set up a 1D simulation corresponding to the experimental conditions, we integrate out
the radial directions of the 3D Thomas-Fermi profile of the mBEC to obtain the effective 1D in-

𝑅𝑥 = 41𝜇𝑚 𝑅𝑦 = 10𝜇𝑚

𝐑𝐱

𝐑𝐲

Magnetic Field (G)
650                 700                    750                 800

B
E

C
 T

h
o
m

as
-F

er
m

i 
ra

d
iu

s 
(μ
m

)
0

  
  
 1

0
  
  

 2
0

  
  

 3
0

  
  

 4
0

  
  

 5
0

  
  

 6
0

  
  

7
0

(a) (b)

X y

Figure 12: (a)In situ profiles of the mBECs at 700G and (b) the measurement of
Thomas-Fermi radius (open symbols) with calculated result (solid line). Trap fre-
quencies ( fx , f y , fz) = (16, 74,68)Hz and molecule number 3000 are used for the
calculation. The results agree well with theoretical prediction based on the mea-
sured molecule number and trap frequencies.
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teraction parameter, g1D = 16ħh2add/(3mR2
T Fr
). The simulations were carried out with 10 nm

spatial resolution and 100 ns time steps. The spatial resolution is determined by the require-
ment of Fourier space width in the case of Raman-Nath regime, involving higher momenta.
The 1D simulation has been checked against a full 3D simulation, confirming that radial exci-
tations have minor influence on the evolution within the timescales considered in this work.
The 1D simulation is then used to perform the calculation shown in Figure 5 to check our pro-
posed physical picture for the slowing phenomenon. For comparison with experimental data,
we include a fudge factor η > 1 to account for additional contribution to interaction. This
may include, but is not limited to, the effect of unbound atoms from dissociation of Feshbach
molecules (see main text in section 4.1).

A.4 Collision simulation

We simulate the incoherent collision loss by calculating the expected number of collision events
during the separation of the momentum modes during time-of-flight.

The simulation was carried out in a simple setting, taking the molecules of each momentum
mode to be uniformly distributed within a cylinder, with the half-length and radius given by the
axial and radial Thomas-Fermi radii of the mBEC. The expected collision events encountered by
one particle over a distance of travel is given by the number of particles in the other momentum
group contained in the cylinder defined by the displacement of the particle and its scattering
cross-section.

Due to symmetry of this setting, the numerical calculation can be done in 1D, where the
line density of each momentum group in an array is evolved. In each step the groups with mo-
mentum difference 2ħhk shift in relative position by the distance of one cell. For two cells that
move across each other, the estimated number of collisions is given by N = (n1πR2d x)n2Ad x
= n1n2πR2Ad x2, where ni are the (3D) particle density of the cells, R the Thomas-Fermi ra-
dius of the mBEC, A= 8πa2

s the collision cross-section, and d x the width of the cell, which is
also the distance of relative travel between the two cells. The line density of a cell is niπR2,
and decreases by N/d x in this calculation step. We take d x to be sufficiently small so that the
collision event encountered by each molecule in one calculation step is less than unity. The
procedure obtains the expectation value of the number of collision events, and therefore the
decrease in particle number from both cells.

The numerical calculation takes into account the 0ħhk, ±2ħhk, and±4ħhk momentum modes,
which have significant occupations during the scattering process. The molecules to which
collisions occur are considered to be lost from the coherent condensate. Hence in the next
step of the calculation the density is decreased accordingly. The lost molecules are taken to be
immediately removed from the cloud. Secondary or further collisions are supposed to be rare
and not taken into account.
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