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Abstract

We show that complementary state-specific reconstruction of logical (bulk) operators
is equivalent to the existence of a quantum minimal surface prescription for physical
(boundary) entropies. This significantly generalizes both sides of an equivalence previ-
ously shown by Harlow [1]; in particular, we do not require the entanglement wedge to
be the same for all states in the code space. In developing this theorem, we construct an
emergent bulk geometry for general quantum codes, defining “areas” associated to arbi-
trary logical subsystems, and argue that this definition is “functionally unique.” We also
formalize a definition of bulk reconstruction that we call “state-specific product unitary”
reconstruction. This definition captures the quantum error correction (QEC) properties
present in holographic codes and has potential independent interest as a very broad
generalization of QEC; it includes most traditional versions of QEC as special cases. Our
results extend to approximate codes, and even to the “non-isometric codes” that seem
to describe the interior of a black hole at late times.
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1 Introduction

1.1 Background and motivation

In the last decade, the ideas of quantum error correction have revolutionized our understand-
ing of holography [1–11]. Central to this progress is the notion of the entanglement wedge of
a boundary subregion B. Roughly speaking, this is a bulk subregion b that encodes the same
information about the state as the boundary subregion B. An important signature of the re-
lationship between these two regions is a relation between their entropies known as the QES
prescription [12–14],

S(B)V |ψ〉 =
AB(b)

4G
+ S(b)|ψ〉 . (1)

The entropy S(b)|ψ〉 := − tr[ψb logψb] is the von Neumann entropy of bulk state
ψb = trb̄[|ψ〉 〈ψ|] on subregion b, and likewise S(B)V |ψ〉 is the entropy of boundary region
B in the state dual to |ψ〉, obtained by acting with the bulk-to-boundary map V . AB(b) is the
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area of the bulk surface bounding b and homologous to B, and G is Newton’s constant. The
entire right hand side of (1) is known as the generalized entropy of b.

For appropriate holographic states, (1) is true for any boundary region B, so long as one
defines the entanglement wedge b to be bounded by the minimal quantum extremal surface
(QES) homologous to B [14]. This means that the region b is (i) an extremum of the general-
ized entropy under local perturbations of its bounding surface and (ii) among all such extremal
regions, b has minimal generalized entropy.1

For static states (or those at moments of time-reflection symmetry), the above prescription
simplifies considerably; the entanglement wedge is simply the smallest generalized entropy bulk
region contained in the static (or time-reflection symmetric) slice. While this simpler restricted
prescription can’t teach us about the detailed dynamics of information flow in quantum grav-
ity,2 it is sufficient to capture many other aspects of the information-theoretic structure of
AdS/CFT. It will be the sole focus of the present paper. To emphasize this, from now on we
will use the expression quantum minimal surface (QMS), rather than minimal QES.

The QMS prescription is a signature of a broader and deeper relationship between bulk
and boundary information known as “entanglement wedge reconstruction.” Entanglement
wedge reconstruction is easiest to understand (and was first understood) when the entangle-
ment wedge b of the boundary region B is the same for all states of interest. This will be
(approximately) true so long as one restricts interest to small “code spaces” of bulk states with
a fixed geometry in limits where the bulk entropy term can be ignored in (1) when finding
the entanglement wedge. In such situations, (1) implies an approximate equality between the
relative entropy [17,18] between any two boundary states on region B and the corresponding
bulk relative entropy between the dual states on region b. In turn, this implies that every bulk
operator Ob acting on b has a “boundary reconstruction” OB acting only on B that acts faith-
fully on the code space [4–6]. We say that such a reconstruction is state independent because,
in contrast to the more general case discussed below, the same boundary representation of a
bulk operator can be used for the entire code space of allowed bulk states.

In fact, (1) implies something even stronger in these settings: complementary state-
independent recovery. The same equality between relative entropies that ensured B could
reconstruct b also implies that a bulk operator acting on the complementary bulk region b̄
can be state-independently reconstructed on the complementary boundary region B. In other
words, so long as b is the same for all states of interest, the single condition (1) implies recon-
struction of both b in B and b in B.

While this is already a very powerful result, in [1] Harlow proved something perhaps even
more interesting: a converse statement is also true. Complementary state-independent re-
covery is sufficient to show that (1) holds – for some definition of “area” A. That is, for any
complementary quantum error correcting (QEC) code – even one that a priori has nothing
to do with holography – if the physical subsystem HB can state-independently reconstruct a
logical factor Hb and likewise HB can reconstruct Hb̄, then

S(B)V |ψ〉 = A+ S(b)|ψ〉 , (2)

for some constant “area” A that depends on the particular QEC code.3 We can therefore define
an entanglement wedge for B in any complementary QEC code as the reconstructible factor of
the code space and obtain an associated holographic entropy formula. In this picture, rather

1Let us emphasize the proviso: this is only true for appropriate holographic states. As shown in [11] (see
also [15]), there are some semiclassical holographic states – i.e. simple states of bulk quantum matter on fixed
semiclassical geometric backgrounds – for which (1) does not apply for any bulk region b, even as a leading order
semiclassical approximation. In such cases, we say that the entanglement wedge of B is not well-defined.

2For example, it doesn’t know about the scrambling time delay before information escapes an evaporating black
hole after the Page time [9,16].

3In the analogy with area, we are implicitly using units where 4G = 1.
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than the area term in (1) being an external input from quantum gravity, it simply quantifies a
particular source of entanglement that is present in all (complementary) QEC codes.

In this sense, any QEC code has the beginnings of an emergent “bulk geometry” within it,
albeit by “geometry” we so far mean the area of a single surface. In turn, this geometry gives
us a clear justification of, and information-theoretic motivation for, the existence of a formula
like (1), which is a result that has otherwise only been derived using the somewhat mysterious
tool of gravitational path integrals.

That said, the framework of [1] is not yet the full story. It explains only the special case
of a code space with a single, state-independent entanglement wedge.4 In general, different
states within the same large code space may have different entanglement wedges. See Figure
1 for an example. Hence the entanglement wedge cannot generally be defined as the region
that is reconstructible in a state-independent way. That region, called the reconstructible wedge
in [21], depends only on the code space, and not on the state itself, and is in fact equal to the
intersection of the entanglement wedges over all states in the code space, pure and mixed
[4, 6, 21]. State-independent complementary reconstruction is not possible when different
states in the code space have different entanglement wedges; the assumptions of the theorems
in [1] do not apply.

Can Harlow’s arguments be generalized to these settings? Does bulk reconstruction still de-
fine the entanglement wedge? And does geometry still emerge from information? Answering
such questions will be the primary goal of this paper. It turns out that, while state-independent
complementary reconstruction is no longer always possible, a weaker version of complemen-
tary reconstruction is equivalent to (1). The new ingredient is that the reconstruction may
need to be state-specific, with different reconstructions used for different states within the
code space. Remarkably, not only does one still find an emergent bulk geometry – and a holo-
graphic entropy prescription – for any code with state-specific complementary reconstruction,
but the emergent geometries can be much richer than those found before. Rather than a
single surface with a single area, we define areas that bound any set of “bulk” subsystems.5

And rather than (1) holding for a fixed subsystem Hb, the subsystem Hb is determined by
minimizing generalized entropy over all sets of subsystems – a true quantum minimal surface
prescription.

Figure 1: An AdS/CFT setup without complementary state-independent recovery.
Between the two candidate extremal surfaces lies a black hole with horizon area
much greater than the difference in area between the two surfaces, ABH� Aγ2

−Aγ1
.

Neither B nor B can reconstruct operators in b′ in a state-independent way.

4See [7, 8, 19, 20] for generalizations of [1] that nonetheless still use the same assumption of a single, state-
independent entanglement wedge.

5Of course, even this is still a long way from having a smooth bulk metric!
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(a) V as a circuit (b) V as a timeslice of AdS/CFT

Figure 2: Two illustrations of the quantum codes used throughout this paper. (a)
A linear map V : ⊗iHbi

→ HB ⊗HB. (b) This linear map encompasses situations
in holography. Each input leg corresponds to a bulk point or subregion, while the
output legs correspond to boundary subregions. The map V is implicit.

1.2 This paper

To explain our generalization of Harlow’s results we must first define both “areas” and “entan-
glement wedges” for arbitrary quantum codes.

We define a quantum code as an isometry V : ⊗n
i=1Hbi

→ HB ⊗HB, as in figure 2a. In
a holographic context, the input subsystems Hbi

are each associated to different local bulk
regions, as in figure 2b.

Given any subset b := {bi1 , bi2 ...} of input legs, we define an “area” AB(b) as follows. (See
Section 2 for more details.) For every isometry V there is an associated special state, called
the Choi-Jamiolkowski state, defined by acting with V on half of a maximally-entangled state

|CJ〉BBr1...rn
:= V |MAX〉b1...bnr1...rn

, (3)

where Hri
∼= H∗bi

, and |MAX〉b1...bnr1...rn
is the canonical maximally entangled state on

Hb1
⊗ ...Hbn

⊗Hr1
⊗ . . .Hrn

.6 See Figure 3. This state consists of a product of maximally entan-
gled states on each pair Hbi

⊗Hri
. In particular, Hr =Hri1

⊗Hri2
... purifies Hb =Hbi1

⊗Hbi2
....

The area AB(b) is defined by
AB(b) := S(B r)|CJ〉 . (4)

This definition works for any collection of input subsystems b for any QEC code V , and we will
argue in Section 2 that it is “functionally unique” as a definition of area for codes that obey a
QMS prescription.7 The explicit dependence of (4) on HB should be understood as enforcing
the homology constraint on the surface bounding region b.

Next we need to define the entanglement wedge EWB(|ψ〉) of a boundary region B for bulk
state |ψ〉. One approach would simply be to always define EWB(|ψ〉) = b as the collection of
input subsystems b that minimizes AB(b) + S(b)|ψ〉. However this would be naive: for most

6Given an arbitrary orthonormal basis {|i〉} for a Hilbert space H, the canonical maximally entangled state
|MAX〉 ∈H⊗H∗ is defined to be

∑

i |i〉 |i〉
∗ /
p

d. It is easy to verify that this is independent of the choice of basis
{|i〉}.

7By this we mean that any other definition of area – for example the geometric area in holographic codes, and
the log bond dimension in tensor network codes – will agree with (4) on any surface that is quantum minimal for
some state in the code space. As we emphasize in Section 2, the different definitions may not agree for surfaces
that are never quantum minimal; however in that case (4) still gives a lower bound on any other definition of area.
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Figure 3: The Choi-Jamiolkowski state |CJ〉. Angled lines represent maximally en-
tangled states, with one half of the maximally entangled state input into V .

codes V (and even for many states in holographic codes [11]) the quantum minimal surface
defined in this way has no information-theoretic significance.8 Instead we want to define
the entanglement wedge (when it exists) to be the collection of bulk subsystems that are
reconstructible from HB in an appropriate sense. We will then show as a consequence that the
entanglement wedge must always be quantum minimal.

So what is the sense in which the entanglement wedge needs to be reconstructible from
HB? We describe a precise answer to this question in Section 3 where we also explain how
that answer encompasses and generalizes previous definitions of quantum error correction
and bulk reconstruction. The reconstruction needs to state-specific, or else the entanglement
wedge would need to be the same for all states in the code space, as in the theorems in [1].
We say that a bulk unitary Ub can be reconstructed by the boundary unitary UB for the specific
state |ψ〉 if

UBV |ψ〉= V Ub |ψ〉 . (5)

Note that it is important here that the boundary reconstruction UB is unitary – otherwise the
reconstructed operator would be able to change the reduced state on HB despite nominally
only acting on HB. Indeed, so long as the dimension dB of HB is at least as large as the
dimension dB of HB, then a generic state |ψ〉 ∈HB ⊗HB can be mapped to any other state by
a non-unitary operator acting only on HB.9

However, it would be too strong to demand that B can do state-specific reconstruction of all
unitaries Ub that act on its entanglement wedge b. By acting with arbitrary unitaries within b
one can change the entanglement structure of the state |ψ〉, potentially changing the location
of the quantum minimal surface and therefore the entanglement wedge; see Figure 4. This
cannot ever be achieved by acting only with a unitary on HB, since it will change the entropy
S(B)|ψ〉. To avoid this issue, we should only insist that B be able to reconstruct unitaries Ub
that don’t change the entanglement structure of the bulk state. Such operators are product
unitaries – unitaries that can be written as a product of local unitaries Ub = Ubi1

⊗ Ubi2
. . .

8See Appendix B.1 and also [11] for examples.
9The celebrated Reeh-Schlieder Theorem [22] is a similar statement about continuum quantum field theory.
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Figure 4: An AdS/CFT setup in which a unitary acting within an entanglement wedge
changes the location of the quantum minimal surface. On the left, we have two black
holes in an entangled pure state. Because of the large amount of entanglement, γ1 is
quantum minimal and therefore both black holes are inside the entanglement wedge
of B. On the right, we have the situation after acting on both black holes with a
unitary Ubb′ that maps the original state to a factorized pure state. Now γ2 is quantum
minimal. This unitary has changed the entropies S(B) and S(B) and therefore cannot
be represented by a unitary on B.

We therefore define the entanglement wedge of B for a pure state |ψ〉b1...bn
as the bulk re-

gion b for which state-specific complementary reconstruction of product unitaries is possible.
In other words, for any product unitaries Ub and U ′

b̄
, there need to exist boundary reconstruc-

tions UB and U ′
B

respectively such that

UBU ′
B
V |ψ〉= V UbU ′

b̄
|ψ〉 . (6)

What about the entanglement wedge of B for mixed bulk states? A mixed state will gen-
erally not have complementary entanglement wedges for B and B. However, we can use the
standard trick of purifying the mixed state with an auxiliary reference system HR to construct
the pure state |Ψ〉b1...bn R. We have complementary state-specific reconstruction if, for any prod-
uct unitaries Ub and U ′

b
, there exist boundary reconstructions UB and U ′

B R
. In other words, the

reconstruction of Ub̄ is allowed to act not only on the environment HB, but also on the refer-
ence system HR. In the interests of full generality, we can also add a reference system HR to
the HB side:10 in this case, we say that the entanglement wedge of the region BR for the state
|Ψ〉b1...bn R R is b, if, for any product unitaries Ub and U ′

b
, there exist boundary reconstructions

UBR and U ′
B R

such that

UB RU ′
B R

V |Ψ〉= V UbUb̄ |Ψ〉 . (7)

The central result of this paper will be to show that this definition of the entanglement
wedge, based on its reconstruction properties, is equivalent to the QMS prescription being
valid for the state |Ψ〉, together with all states related to |Ψ〉 by a product of local unitaries.
Specifically, it is equivalent to the prescription

S(BR)V UbU ′
b̄
|Ψ〉 = AB(b) + S(bR)UbU ′

b̄
|Ψ〉 , (8)

10Mathematically, this generalization is essentially trivial. However, physically it is very important: studying the
entanglement wedge of auxiliary nonholographic quantum systems is at the heart of recent progress on the black
hole information problem [9,10].
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holding for all product unitaries UbU ′
b̄
.11 This prescription is the obvious generalization of (1)

to the entropy S(BR); it was first introduced in gravity in [6].
The results can be formalized in the following theorem, which we prove in Section 4.

Theorem 4.2. Let V : Hcode
∼= ⊗iHbi

→HB ⊗HB be an isometry, with b= {bi1 , bi2 ...} a subset
of input legs, and b̄ its complement. Finally, let |Ψ〉 ∈Hcode⊗HR⊗HR be a fixed, arbitrary state
with HR,HR reference systems of arbitrary dimension.

Then the following two conditions are equivalent:

1. (Complementary Recovery) For all product unitaries Ub and U ′
b̄
, there exist unitary oper-

ators UBR and U ′
B R

respectively such that

UBRU ′
B R

V |Ψ〉= V UbU ′
b̄
|Ψ〉 . (9)

2. (Holographic Entropy Prescription) For all product unitaries Ub and U ′
b̄
,

S(BR)V UbU ′
b̄
|Ψ〉 = AB(b) + S(bR)UbU ′

b̄
|Ψ〉 . (10)

Moreover, both statements imply:

3. (One-shot Minimality) For all b̄′ ⊆ b̄ and b′ ⊆ b,

Hmin(b̄′|bR)|Ψ〉 ≥AB(b)− AB(b∪ b̄′) , (11)

Hmin(b
′|b̄R)|Ψ〉 ≥AB(b̄)− AB(b

′ ∪ b̄) . (12)

This in turn implies:

4. (Minimality) For all b′ ⊆ b∪ b̄,

AB(b
′) + S(b′R)|Ψ〉 ≥ AB(b) + S(bR)|Ψ〉 . (13)

Since Condition 3 (One-shot minimality) here is probably less familiar or intuitive to read-
ers than the other three conditions, let us take a moment to explain its significance. If the
left hand sides of (11) and (12) were replaced by the conditional von Neumann entropies
S(b̄′|bR)|Ψ〉 and S(b′|b̄R)|Ψ〉, then Conditions 3 and 4 would be equivalent. Instead, however,
Condition 3 features an alternative entropy measure – the conditional min-entropy Hmin(A|B).
As a result, it is a strictly stronger condition. While, for any state |Ψ〉, there is always some set
of subsystems b satisfying Condition 4, there is not always any b satisfying Condition 3.

In [11], we pointed out an important relationship between one-shot quantum information
theory and holography. The upshot is that the generalized entropy of the minimal QES is not
equal to the boundary entropy for all quantum states. In other words, Condition 4 does not
imply Conditions 1 and 2 even in holographic codes. So when is the holographic entropy
prescription valid for holographic states? In [11], we provided the answer: complementary
state-specific reconstruction is possible in AdS/CFT, and the QES prescription is valid, when-
ever Condition 3 holds. The same is true for toy models of AdS/CFT such as random tensor
networks.

11It turns out to be important to demand that the QMS prescription hold for all states related to |Ψ〉 by product
unitaries, rather than just for the state |Ψ〉 itself. In general codes, regions that just satisfy (1) for a single state |Ψ〉
need not have any particular reconstruction relationship to B, see Appendix B.1. To really talk about a holographic
entropy prescription as we know it from gravity, we need (1) to be satisfied not just by a single state, but by all
states with a particular entanglement structure, i.e. related by product unitaries.
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For general quantum codes, Condition 3 of course cannot be sufficient to derive Condition
1 and 2, since it does not depend on the isometry V at all. However, it is always true for any
quantum code V and state |Ψ〉 satisfying the first two conditions, and as a consequence so is
Condition 4.

In Section 5 we generalize Theorem 4.2 in two important ways. (Since the proof of this
more general theorem is somewhat technical, we postpone it to Appendix C.) Firstly, we allow
small errors in reconstruction and in the QMS prescription. This is crucial because the known
nontrivial examples of state-specific product unitary reconstruction (including AdS/CFT itself)
are inherently approximate. Indeed, in particularly simple versions of state-specific codes
known as zero-bit codes, one can prove that exact state-specific reconstruction implies state-
independent reconstruction, even though approximate state-specific reconstruction does not.

Secondly, we generalize Theorem 4.2 to allow linear maps V that are not isometries. This
allows us to understand code spaces in the interior of black holes with entropy larger than the
Bekenstein-Hawking entropy. Such code spaces are completely irreconcilable with the usual
framework of quantum error correction, but seem to arise naturally in semiclassical gravity.
In particular, they play a vital role in recent progress on the black hole information problem
[9,10]. We therefore view state-specific codes as crucial for a QEC-based understanding of the
interior of black holes.

In Section 6 we summarize our results and discuss important consequences and potential
future directions.

Finally, in Appendix A, we provide self-contained proofs of various technical results previ-
ously stated in the main body of the paper. These include a number of results that are well
known in the quantum information community, but are included for the convenience of the
reader because they may be less familiar to people with a background in high-energy physics.
In Appendix B, we consider various seemingly plausible variations on Theorem 4.2, and con-
struct counterexamples to each of them. These include replacing product unitaries by local
unitaries, and extending the minimality statement in Condition 4 to more general sets of sub-
algebras.

1.3 Notation

We use lower-case letters to label bulk Hilbert spaces (Hbi
,Hri

etc.) and capital letters to label
boundary Hilbert spaces. Bold letters denote sets, for example b = {bi1 , bi2 , . . . }, and U(d) is
the group of d×d unitary matrices, while U ∈ U(d) is a single unitary. For any set b of Hilbert
space labels, we define Hb = ⊗bi∈bHbi

. Finally, we use bars to denote the complement of a
subsystem or set of subsystems, e.g. b̄= {bi : 1≤ i ≤ n, bi 6∈ b}.

2 Areas in general quantum codes

Before we can prove a QMS prescription for arbitrary quantum codes, we need to define what
we mean by “area” in such codes. After all, unlike gravity, quantum codes do not in general
come pre-equipped with a notion of geometry! The task of this section will be to motivate such
a definition. Our definition will be valid for any quantum code, by which we mean a quantum
channel in the Stinespring picture. Said precisely, a quantum code is an isometry

V : Hcode
∼= ⊗iHbi

→HB ⊗HB (14)

mapping a code space Hcode, made up of a collection of subsystems Hbi
, to an output Hilbert

space HB together with an environment HB.12 The area AB(b) will depend only on the code

12In conventional applications of quantum error correction, it is helpful to distinguish the encoding map, which
is chosen by the experimenter for its nice properties, from the noisy channel, in which the “errors” occur. Mathe-
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V , the output Hilbert space HB, and the choice of input subsystems b. It does not depend on
any choice of input state |Ψ〉. Unlike previous definitions of area in QEC codes, the code will
not need to have any particular error correcting properties.

However, the definition of “area” we introduce will not be completely unique. Other dis-
tinct definitions can also lead to a QMS prescription, such as the natural ‘areas’ in tensor
networks and gravity. And, for some surfaces, our definition may not necessarily agree with
those other definitions.

That said, the differences are not important; they correspond to essentially trivial redefi-
nitions of the same QMS prescription. Consider, for example, a surface with very large area,
such that it can never be quantum minimal for any input state. We can clearly redefine the
area of this surface, increasing its size, without affecting the validity of the QMS prescription.
Of course, by doing so, we have not meaningfully changed the QMS prescription that we are
using, since the surface was never relevant to that prescription anyway!

Indeed, in Section 2.2, we argue that our definition of area is functionally unique in the
sense hinted at above. We prove that any alternative definition of area consistent with a QMS
prescription must agree with our definition on all surfaces that are ever quantum minimal ac-
cording to that alternative prescription. Moreover, on any surface – including surfaces that are
never quantum minimal – our definition of area is a lower bound on any alternative definition.

2.1 An area definition for arbitrary codes

We begin by stating our definition of the area of a set of subsystems, and then provide some
comments on and motivation for this definition.

Definition 2.1. Let V : Hcode
∼= ⊗iHbi

→HB ⊗HB be an isometry and let

|CJ〉BBr1...rn
= V |MAX〉b1...bnr1...rn

be the associated Choi-Jamiolkowski state, with |MAX〉b1...bnr1...rn
the canonical maximally en-

tangled state for Hri
∼= H∗bi

. Let b = {bi1 , bi2 . . . } be a subset of input legs with
Hb
∼= Hbi1

⊗Hbi2
. . . maximally entangled with Hr

∼= Hri1
⊗Hri2

. . . in |MAX〉b1...bnr1...rn
. We

then define the area AB(b) ∈ R as

AB(b) = S(Br)|CJ〉 , (15)

where S(B r)|CJ〉 is the entanglement entropy of HB ⊗Hr for the state |CJ〉BBr1...rn
.

In other words the function AB : 2{b1...bn} → R maps a subset b of input legs (i.e. an
element of the power set 2{b1...bn}) to a real-valued “area” of the “surface” bounding the subset
b. Note that the function AB depends explicitly not only on the isometry V but also on the
output subsystem HB. The dependence on HB represents the homology constraint present in
the QMS prescription: two surfaces bounding the same bulk region b will have different areas
if they are homologous to two different boundary regions B.13

Remark 2.2. Given any subset b ⊆ {b1 . . . bn}, the area AB(b) = S(B r)|CJ〉 and the comple-
mentary area AB(b̄) = S(B r̄)|CJ〉 are equal.

matically the properties of the code depend only on the composition of these two maps, and in holography there
is no distinction between them. (Holographic codes are often interpreted as erasure codes where V is the encod-
ing map and the noisy channel consists only of the partial trace, but this separation is essentially arbitrary.) We
shall therefore refer only to a single isometry V mapping the logical state to the final physical state of system and
environment.

13One way to see this is to consider the area of the surface bounding the empty set. AB(∅) is not zero, and so
the surface is not trivial; it is better interpreted as the surface homologous to B but excluding the entire bulk.
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Remark 2.3. Definition 2.1 is a generalization of the area defined for codes in [1]. Suppose
that we have an isometry V : Hb1

⊗Hb2
→HB ⊗HB such that

V |ψ〉b1 b2
= V b1c1→B

1 V b2c2→B
2 |ψ〉b1 b2

|χ〉c1c2
, (16)

for any state |ψ〉 where |χ〉 ∈ Hc1
⊗Hc2

is a fixed state and V b1c1→B
1 : Hb1

⊗Hc1
→ HB and

V b2c2→B
2 : Hb2

⊗Hc2
→HB are isometries. In other words, suppose V obeys the structure theo-

rem of [1] for exact QEC codes with complementary recovery. Then it can be seen immediately
that

AB(b1) = S(Br1)|CJ〉 = S(c1)|χ〉 . (17)

The right hand side of (17) is exactly the definition of area used in [1]. Definition 2.1 therefore
agrees with the definition of area from [1] whenever both are defined. As emphasized above,
however, Definition 2.1 is much more general, applicable to arbitrary input subsystems for
arbitrary quantum codes. In contrast, the definition of area used in [1] relies crucially on the
structure theorem (16) for complementary QEC codes, and so cannot be applied outside that
context.

2.2 Comparisons with other definitions of area

While we do not know of any natural alternative definition of area for arbitrary subsystems
in arbitrary quantum channels, there do exist standard notions of area for particular, special
channels, such as tensor networks and of course gravitational systems themselves. If we are
to relate our QMS prescription to the already known prescriptions for these special classes of
channels, it is important to be able to compare the different definitions of area.

To give a sharp example, tensor networks codes are a particular class of quantum code
where the isometry V can be replaced by a network of smaller tensors contracted together.
See Figure 5. For tensor network codes, the “area” of a set of input subsystems is commonly
defined as the logarithm of the dimension of cut in-plane legs for a surface surrounding those
input legs. Generically, random tensor networks (RTNs) [23] satisfy a QMS prescription with
respect to this area. So what is the relationship between that area and the one from Definition
2.1? Can the two QMS prescriptions ever lead to different entanglement wedges for the same
state?

We will give precise answers to these questions below in the form of two theorems and a
corollary. The basic summary is that any alternative prescription will agree with Definition 2.1
on the location of the entanglement wedge and on the value of the area for any surfaces that
are potentially quantum minimal according to the alternative prescription. For other surfaces,
our definition of area lower bounds all possible alternative definitions. The area in Definition
2.1 is therefore “functionally unique.”

In order to make more precise statements, we will need to first introduce some preliminary
definitions.

Definition 2.4. Consider an isometry V : Hcode
∼= ⊗iHbi

→ HB ⊗HB. An “area” function
A′B : 2{b1,...bn} → R is said to lead to a quantum minimal surface (QMS) prescription for a state
|Ψ〉 ∈ Hcode ⊗HR ⊗HR and region BR if there exists a set of input subsystems b ⊆ {b1 . . . bn}
such that for all product unitaries U = Ub1

⊗ Ub2
. . . ,

S(BR)V U |Ψ〉 = A′B(b) + S(bR)U |Ψ〉 , (18)

and moreover that
A′B(b

′) + S(b′R)|Ψ〉 ≥ A′B(b) + S(bR)|Ψ〉 , (19)
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Figure 5: An example tensor network. The blue circles each represent tensors, four-
partite states on the union of the small red circle and three black legs touching that
blue circle. Each tensor can be viewed as a map from a state on the red circle to a
state on the black legs. A solid black line between tensors represents postselection
of the state on one leg from each tensor onto the state |MAX〉. The entire tensor
network forms a map from states on the union of the small red circles to the union
of the boundary legs, which are those legs crossing the outer circle.

for all other sets of subsystems b′ ⊆ {b1 . . . bn}. We then say that b is an entanglement wedge
EW′BR(|Ψ〉) of BR for the state |Ψ〉.

Remark 2.5. As a notational convention, we reserve AB to denote the use of area as defined in
Definition 2.1. Alternative area functions are therefore denoted by A′B. Similarly, we reserve
EW for the entanglement wedge defined by (7), which Theorem 4.2 shows is equivalent to the
entanglement wedge given in Definition 2.4 for AB.

In essence, Definition 2.4 says that an area function A′B leads to a QMS prescription for the
state |Ψ〉 if |Ψ〉 satisfies Conditions 2 and 4 of Theorem 4.2, with the area AB from Definition
2.1 replaced by the alternative area function A′B.

Remark 2.6. For a given area function A′B, quantum code V , and state |Ψ〉, there can exist more
than one entanglement wedge EW ′

BR(|Ψ〉) if there exists more than one subset b ∈ {b1 . . . bn}
with the same generalized entropy A′B(b) + S(bR)|Ψ〉.

For example, consider the area function AB from Definition 2.1, with a quantum code with
V the identity map after identifying Hb1

∼=HB and Hb2
∼=HB, with db1

> db2
, and with a state

|ψ〉 ∈ Hb1
⊗Hb2

that is maximally entangled between the two subsystems. For any product
unitary U = Ub1

⊗ Ub2
, we have

S(B)V |ψ〉 = log db2
= AB(b1 b2) = AB(b1 b2) + S(b1 b2)|ψ〉 . (20)

However we also have

S(B)V |ψ〉 = S(b1)|ψ〉 = AB(b1) + S(b1)|ψ〉 . (21)

It is easy to verify that b2 and ∅ have larger generalized entropy. Hence both b1 and b1 b2 are
entanglement wedges EWB(|ψ〉) of the region B for the state |ψ〉.

We also want to define a notion of an area function A′B leading to a QMS prescription for an
isometry V in general, rather than just doing so for one specific state |Ψ〉. A naive approach to
doing so would be to demand that all states |Ψ〉 obey a QMS prescription. However, this would
be too strong. As shown in [11], even the actual, geometric area of surfaces in AdS/CFT does
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not lead to a QMS prescription that works for all states.14 Instead, we use the area function AB
from Definition 2.1 to define a reasonable set of states for which the QMS prescription ought
to apply.

Definition 2.7. We say that an area function A′B leads to a quantum minimal surface (QMS)
prescription for the isometry V if A′B leads to a QMS prescription for all states |Ψ〉 and regions
BR for which the area function AB from Definition 2.1 leads to a QMS prescription.

With all the needed definitions in hand, we are finally ready to state the main technical
results of this section. We first show that the area AB introduced in Definition 2.1 is a lower
bound on any other definition of area that satisfies a QMS prescription.

Theorem 2.8. If an area function A′B satisfies a QMS prescription for the isometry V , then

A′B(b)≥ AB(b) , (22)

for all collections of inputs b ⊆ {b1 . . . bn}.

Proof. See Appendix A.2.

Finally, we show that any alternative area function A′B that leads to a QMS prescription for
the isometry V must agree with AB for all subsets b that can ever be an entanglement wedge.

Theorem 2.9. Let A′B lead to a QMS prescription for the isometry V . Then, for any subset
b ⊆ {b1 . . . bn}, if there exists a state |Ψ〉 ∈ Hcode ⊗HR ⊗HR such that b = EW′BR(|Ψ〉), then

A′B(b) = AB(b) . (23)

Proof. See Appendix A.2.

Corollary 2.10. For any area function A′B that satisfies a QMS prescription for an isometry V ,

b= EW′BR(|Ψ〉) =⇒ b= EWBR(|Ψ〉) . (24)

Proof. By assumption, for all product unitaries U , S(BR)V U |Ψ〉 = A′B(b) + S(bR)U |Ψ〉. By Theo-
rem 2.9 this implies that also S(BR)V U |Ψ〉 = AB(b) + S(bR)U |Ψ〉, and therefore b = EWBR(|Ψ〉).

3 State-specific reconstruction

The same basic idea – that certain logical quantum information is encoded in a particular
physical system – underlies the many versions of quantum error correction: exact, approxi-
mate, subsystem, algebraic, etc. In this section, we introduce a new kind of quantum error
correction, which we call “state-specific product unitary reconstruction.” It is important to
holography because it naturally defines the entanglement wedge, a fact that we prove in The-
orem 4.2. It is also of independent interest as a type of generalized quantum error correction,
which includes most more conventional definitions as special cases. In order to motivate it,
we first review the usual, “state-independent” version of quantum error correction. We then
gradually generalize the definition until we reach state-specific reconstruction.

14In fact, it fails for highly incompressible states at leading order in G.
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3.1 State-independent quantum error correction

State-independent quantum error correction can be formalized in a number of equivalent ways.
The following theorem reviews some of these ways; see e.g. [1] for others.15

Theorem 3.1 (Formulations of exact state-independent QEC). Let V : Hcode → HB ⊗HB be
an isometry between finite-dimensional Hilbert spaces. Then the following four statements are
equivalent:

1. (Schrödinger picture) There exists a “recovery isometry” WB : HB →Hcode⊗HE such that
for any state ρcode

trBE[WBVρcodeV †W †
B ] = ρcode . (25)

2. (Heisenberg picture) There exists a “recovery isometry” WB : HB →Hcode ⊗HE such that
for any Hermitian operator Ocode, the Hermitian operator OB :=W †

B OcodeWB satisfies

〈ψ|V †OBV |ψ〉= 〈ψ|Ocode|ψ〉 , (26)

for all |ψ〉 ∈Hcode.

3. (Reconstruction of Hermitian operators) For any Hermitian operator Ocode, there exists a
Hermitian operator OB such that for all |ψ〉 ∈Hcode

OBV |ψ〉= VOcode |ψ〉 . (27)

4. (Reconstruction of unitary operators) For any unitary operator Ucode, there exists a unitary
operator UB such that for all |ψ〉 ∈Hcode

UBV |ψ〉= V Ucode |ψ〉 . (28)

Proof. See Appendix A.3.

All four conditions in Theorem 3.1 have natural physical interpretations. Condition 1 says
that there exists a unitary evolution WB that recovers the code space state |ψ〉 from the re-
duced state of V |ψ〉 on HB. Condition 2 is the standard dual Heisenberg picture: for any
measurement Ocode on the code space, we can find a measurement OB := W †

B OcodeWB with
the same expectation values. Condition 3 has a similar physical interpretation to Condition 2
in terms of simulating measurements, but is naively slightly stronger (although equivalent in
reality) since it requires the measurement operator OB to have the correct action on all states
V |ψ〉 rather than merely the correct expectation values.

Finally, Condition 4 says that any unitary evolution of the code space can be simulated by
a unitary evolution of the state on HB. In other words, we can perfectly manipulate the state
|ψ〉 while only having control over HB.

It turns out that Condition 4 of Theorem 3.1 will most naturally generalize to the definition
of state-specific reconstruction that we introduce in this paper. Although less common than
some other definitions of quantum error correction – in particular the Schrödinger picture
(Condition 1) – in the quantum computing literature, it is also a very natural perspective from
the point of view of holography, where we are often interested in finding boundary protocols
for preparing particular bulk states.16 We will return to it when we talk about state-specific
reconstruction.

15To see the equivalence of the conditions in Theorem 3.1 below and those in Theorem 3.1 of [1], note that
Condition 3 below is manifestly equivalent to the Hermitian and anti-Hermitian parts of Condition 2 of Theorem
3.1 of [1].

16See e.g. the discussion of reconstruction complexity in [24–26]. The circuit complexity of reconstruction is
only well defined when reconstructing unitary bulk operators using unitary boundary operators.
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There is a natural generalization of QEC, called subsystem QEC, where only a subsystem
Hb of Hcode needs to be reconstructible. The four conditions for QEC from Theorem 3.1 all
generalize to subsystem codes, as we now review; again, see e.g. [1] for other equivalent
conditions.17

Theorem 3.2 (Subsystem QEC). Let V : Hcode
∼=Hb ⊗Hb̄→HB ⊗HB be an isometry between

finite-dimensional Hilbert spaces. Then the following four statements are equivalent:

1. (Schrödinger picture) There exists a “recovery isometry” WB : HB → Hb ⊗HE such that
for any state ρcode

trBE[WBVρcodeV †W †
B ] = ρb . (29)

2. (Heisenberg picture) There exists a “recovery isometry” WB : HB →Hb⊗HE such that for
any Hermitian operator Ob, the Hermitian operator OB :=W †

B OcodeWB satisfies

〈ψ|V †OBV |ψ〉= 〈ψ|Ob|ψ〉 , (30)

for all |ψ〉 ∈Hcode.

3. (Reconstruction of Hermitian operators) For any Hermitian operator Ob, there exists a
Hermitian operator OB such that for all |ψ〉 ∈Hcode

OBV |ψ〉= VOb |ψ〉 . (31)

4. (Reconstruction of unitary operators) For any unitary operator Ub, there exists a unitary
operator UB such that for all |ψ〉 ∈Hcode

UBV |ψ〉= V Ub |ψ〉 . (32)

Proof. See Appendix A.3.

Remark 3.3. Subsystem QEC can be further generalized to operator algebra QEC, where the
set of reconstructible operators can be a von Neumann subalgebra acting on Hcode, but that
generalization will only play a small part in this paper.

Note that subsystem QEC is a weaker condition than ordinary QEC – only certain unitaries
need to be reconstructible – but it is also a generalization of ordinary QEC (ordinary QEC is
the special case of a subsystem code where the reconstructible subsystem is the entire input
Hilbert space).

Definition 3.4 (Complementary Recovery). We say that state-independent complementary re-
covery is possible for an isometry V : Hb ⊗Hb̄ → HB ⊗HB if system HB forms a subsystem
QEC code for Hb and simultaneously system HB forms a subsystem QEC code for the comple-
mentary subsystem Hb̄.

3.2 Approximate codes and state specificity

Theorem 3.1 and Theorem 3.2 are about ‘exact’ QEC codes, where information can always be
perfectly recovered without any error. This assumption greatly simplifies the analysis, but in
practice it is an assumption that is almost never truly valid, whether in real world experiments
with quantum computers or in theoretical applications such as quantum gravity.

17Theorem 3.2 should be compared to Theorem 4.1 of [1]. Again, the correspondence between Condition 3 of
Theorem 3.2 and Condition 2 of Theorem 4.1 of [1] is immediate.
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To deal with errors, we need to use a more general framework called approximate QEC
[27–30]. Often, doing so merely adds considerable effort, while leading to the same qualitative
conclusions: so, for example, there exist analogous versions of Theorem 3.1 and Theorem 3.2
for approximate QEC codes, with all the various conditions replaced by approximate versions
of the same condition, and with different errors all bounded in terms of one another. For
example, (25) can be replaced by the statement that there exists a WB such that for any state
ρcode,

‖trB E[WBVρcodeV †W †
B ]−ρcode‖1 ≤ ε , (33)

for some small ε > 0, where ‖X‖1 = tr
p

X †X is the Schatten 1-norm.18

However, the relationship between exact and approximate QEC is not always so simple. It
turns out that for large quantum systems approximate QEC can be possible with very small ε,
even when exact QEC is completely impossible. In essence, two limits do not commute: a) the
number of qubits n goes to infinity and b) the error ε goes to zero. A classic example of this
effect is that exact QEC is always impossible in the presence of arbitrary errors of greater than
a quarter of the qubits, whereas approximate QEC is still possible so long as the errors are on
fewer than half of the qubits [32].

To see these qualitative differences in practice, consider yet another definition of quantum
error correction, known as the information-disturbance trade-off. In this definition, rather than
studying the information accessible from HB, we focus on the information that is inaccessible
from the thrown away degrees of freedom in HB. These are equivalent because in quantum
mechanics information can neither be copied (the no-cloning theorem) nor destroyed (the no-
erasure theorem). Hence quantum information can be recovered from system B if and only if
the complementary subsystem B is completely ignorant of it.

In other words, equivalent to the four statements in Theorem 3.1 is the statement that for
all states |ψ〉 ∈Hcode,

ψB = trB[V |ψ〉 〈ψ|V †] =ωB , (34)

whereωB is a fixed state that is independent of |ψ〉. That said, this statement is only equivalent
in the context of exact QEC. In approximate QEC we need to be more careful. Suppose for all
|ψ〉 ∈Hcode we have

‖ψB −ωB‖1 ≤ ε . (35)

It seems like an observer with access only to HB learns nothing about |ψ〉, and so by the
information-disturbance tradeoff, HB should learn everything about |ψ〉. But that conclusion
would be too quick.

Let us consider a new state |Ψ〉 ∈ Hcode ⊗HR where HR is an auxiliary reference system
isomorphic to Hcode. Crucially, suppose that the observer of HB also has access to HR. For
the observer to truly learn nothing about |Ψ〉 from HB (beyond the reduced state ΨR that they
already know), then we need

‖ΨBR −ωB ⊗ΨR‖1 ≤ ε′ , (36)

for some small ε′. But (35) being true for all |ψ〉 ∈Hcode and small ε does not mean that (36)
is true for all |Ψ〉 ∈Hcode⊗HR and small ε′. Instead, the tightest possible bound on (36) from
(35) is that ε′ ≤ O(dcodeε) [33]. Since the code space dimension dcode is exponential in the
number of qubits, this means that we have essentially no control over ε′ at all, given reasonable

18This is only one possible definition of the reconstruction error ε. Other natural possibilities include replacing
the Schatten 1-norm in (33) by the quantum fidelity, or replacing the states ρcode by states in Hcode ⊗HR where
the reference system HR has dimension dR ≥ dcode. However all these definitions are equivalent in the sense that
the different errors uniformly bound one another in the limit ε→ 0. See e.g. Proposition 4.3 of [31]. This is the
same sense in which Conditions 1-4 are equivalent in Theorem 3.5 below.

16

https://scipost.org
https://scipost.org/SciPostPhys.12.5.157


SciPost Phys. 12, 157 (2022)

values of ε. The tiny corrections toψB allowed by (35) can build up in superposition and give
large corrections to ΨBR.

As the intuition from the information disturbance tradeoff suggests, it is (36) that is equiv-
alent to state-independent approximate QEC as in (33) [34]. However, while (35) is too weak
to imply those conditions, it does nonetheless imply something meaningful about the informa-
tion accessible from HB. Specifically, in the language of [6, 35], it says that HB encodes the
zero-bits of Hcode. Other names for this are that B can do universal subspace QEC, or that B
can do quantum identification [33,35].

As with state-independent quantum error correction, there exist various equivalent oper-
ational definitions of a zero-bit code. While we review a number of these below in Theorem
3.5, in many ways the nicest definition is Condition 4, which is analogous to Condition 4 (Re-
construction of unitary operators) from Theorem 3.1. As in that condition, for any unitary
operator Ucode and state |ψ〉 ∈Hcode there needs to exist an (approximate) unitary reconstruc-
tion UB such that

UBV |ψ〉 ≈ V Ucode |ψ〉 . (37)

However, the reconstruction UB is now allowed to depend not only on the unitary Ucode that
it is reconstructing, but also on the state |ψ〉 itself. We can implement an arbitrary evolution
of the state |ψ〉 while acting only on HB, but we have to know the initial state |ψ〉 in order to
do so. The reconstruction is therefore “state specific.”

Theorem 3.5 (Zero-bit codes). Let V : Hcode → HB ⊗ HB be an isometry between finite-
dimensional Hilbert spaces. Then the following four statements are equivalent:

1. (Forgetfulness of the environment) For all states |ψ〉, the reduced density matrix
ψB = trB[V |ψ〉 〈ψ|V †] satisfies

‖ψB −ωB‖1 ≤ ε1 , (38)

for some fixed density matrix ωB.

2. (Universal subspace quantum error correction) For any two-dimensional subspace
eHcode ⊆ Hcode, there exists an isometry fWB : HB → eHcode ⊗HE such that for all den-

sity matrices ρ̃code with support only on eHcode



trBE[fWBV ρ̃codeV †
fW †

B ]− ρ̃code





1 ≤ ε2 . (39)

3. (Distinguishing quantum states) For any pair of orthogonal states |ψ〉 , |φ〉 ∈Hcode, there
exists a projector ΠB such that

〈ψ|V †ΠBV |ψ〉 ≥ 1− ε3 , and 〈φ|V †ΠBV |φ〉 ≤ ε3 . (40)

4. (State-specific reconstruction of unitary operators) For some fixed state |ψ0〉 ∈Hcode and
for any unitary operator Ucode, there exists a unitary UB such that the inner product



V Ucode |ψ0〉 − UBV |ψ0〉


≤ ε4 . (41)

Specifically, Condition 1 implies Condition 2 with ε2 ≤ 4
p

3ε1; Condition 2 implies Condition
3 with ε3 ≤ 2ε2; Condition 3 implies Condition 4 with ε4 ≤ 2

p
ε3; and Condition 4 implies

Condition 1 with ε1 ≤ 2ε4.

Proof. See Appendix A.3.
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It is worth emphasizing that Condition 4 of Theorem 3.5 does not depend on the choice
of fixed state |ψ0〉. Given any alternative choice |ψ′0〉, there exists a unitary U ′code such that
|ψ′0〉= U ′code |ψ0〉. Now let |ψ〉= Ucode |ψ′0〉= U ′′code |ψ0〉. We have

U ′′B U ′†B V |ψ′0〉 ≈ U ′′B V |ψ0〉 ≈ V |ψ〉 . (42)

So U ′′B U ′†B is a state-specific reconstruction of Ucode for the state |ψ′0〉.
It is illuminating to note how this story changes if we instead consider states

|Ψ0〉 ∈ Hcode ⊗ HR for some large reference system HR
∼= Hcode. Suppose we know that,

analogously to Condition 4, for any Ucode, there exists UB such that

UBV |Ψ0〉 ≈ V Ucode |Ψ0〉 . (43)

If |Ψ0〉 factorizes between Hcode and HR, then this is exactly Condition 4 and we only have a
zero-bit code. However, if |Ψ0〉 is highly entangled, then it becomes a much stronger condition:
roughly speaking, rather than only needing to act correctly on a single state, UB needs to act
(approximately) correctly on all states in the Schmidt decomposition of |Ψ0〉. When |Ψ0〉 is
maximally entangled, this is (average case) state-independent approximate quantum error
correction.19

Here we can see the first hints at how phase transitions in the size of an entanglement
wedge work; as the entanglement entropy of |Ψ0〉 grows, it becomes harder to reconstruct
unitaries Ucode using HB.

3.3 State-specific product unitary reconstruction

Entanglement wedge reconstruction in holographic codes involves all of the generalizations
of quantum error correction introduced in Sections 3.1 and 3.2:

• A boundary region B can only reconstruct operators acting on certain subsystems of the
bulk Hilbert space, namely those within its entanglement wedge.

• The reconstructions are state-specific, in a way that generalizes zero-bit codes [6,35].

• The reconstructions are approximate, with errors of at least e−O(1/G) [4,18].

To include all these features within a single formalism, we need to introduce a new type of re-
construction that we call “state-specific product unitary reconstruction,” or just “state-specific
reconstruction” for short. This is of course the type of reconstruction that appears as Condition
1 in Theorem 4.2 (except for the non-zero error ε, which is incorporated in Condition 1 in The-
orem 5.5); we will now introduce it carefully. While the aim here is to formalize the specific
features of entanglement wedge reconstruction in holographic codes, state-specific product
unitary reconstruction is very general and includes as special cases all the types of quantum
error correction discussed above.

Let Hcode be an input Hilbert space factorizing as a product of n “local” Hilbert spaces Hbi
,

with the isometry
V : Hcode

∼=Hb1
⊗Hb2

. . .Hbn
→HB ⊗HB ,

as in Figure 2. Consider some subset of the input subsystems,

b= {bi1 , bi2 , . . . } ⊆ {b1, . . . bn} . (44)

19Technically, (43) is slightly weaker than e.g. (33), because there can exist a few states |ψ〉 ∈Hcode for which
the reconstruction UB does not work, so long as such states only make up a small fraction of the full Hilbert space
Hcode. In contrast, we demanded that (33) was true for all states without exception. However, in practice, the two
conditions are comparably “difficult” to achieve; for example the quantum capacity of a channel is the same by
either definition.

18

https://scipost.org
https://scipost.org/SciPostPhys.12.5.157


SciPost Phys. 12, 157 (2022)

Finally let |Ψ〉 ∈Hcode ⊗HR ⊗HR be an arbitrary state. We want to introduce an appropriate
definition of state-specific reconstruction of Hb using HB ⊗HR

It turns out to be most natural to define state-specific reconstruction in terms of the recon-
struction of unitary operators as in Condition 4 of Theorems 3.1, 3.2, and 3.5. This is, after all,
the only condition that appeared in closely related form in all three theorems! A more precise
reason is that Conditions 2 and 3 of Theorem 3.5 really involve a choice of two states (either
two orthogonal states or two states whose span defines eHcode) rather than just one,20 and this
is hard to generalize to entangled states in subsystem codes.

A naive first guess then would be to define state-specific reconstruction for the state |Ψ〉
by the requirement that for any unitary Ub acting on Hb

∼= Hbi1
⊗ Hbi2

. . . , there exists a
reconstruction UBR such that

UBRV |Ψ〉 ≈ V Ub |Ψ〉 . (45)

However, it turns out that this is not always possible in holography, even if the reconstruction
UBR can be specific to the state |Ψ〉 with b the entanglement wedge of BR for the state |Ψ〉.
The reason is that the entanglement wedge b depends on the entanglement structure of the
bulk state |Ψ〉. If the operator Ub can change the entanglement structure of |Ψ〉, it can change
the entanglement wedge, and thereby, for example, change the entropy S(BR). Clearly this
change cannot be achieved by any unitary UBR.

It is therefore natural to restrict Ub to operators that don’t change the entanglement struc-
ture of |Ψ〉 – namely product unitaries.

Definition 3.6 (Product unitary). A unitary Ub acting on Hb =Hbi1
⊗Hbi2

⊗ ... is said to be a
product unitary if it can be written as a product of local unitaries Ubi1

⊗ Ubi2
⊗ ....

We saw a similar effect in the discussion at the end of Section 3.2, where the entanglement
structure of |Ψ0〉 ∈ Hcode ⊗HR – which, crucially, couldn’t be changed by unitaries Ucode –
controlled how easy reconstruction was. We therefore define state-specific product unitary
reconstruction by the following set of two equivalent conditions:

Theorem 3.7 (State-specific product unitary reconstruction).
Let V : Hcode

∼= Hb1
⊗Hb2

. . .Hbn
→ HB ⊗HB be an isometry, with b = {bi1 , bi2 ...} a subset of

input legs. Finally, let |Ψ〉 ∈ Hcode ⊗HR ⊗HR be a fixed, arbitrary state with HR,HR reference
systems of arbitrary dimension. Then the following two statements are equivalent:

1. (State-specific reconstruction of product unitaries) For any product unitary Ub, there ex-
ists a unitary reconstruction UBR such that



UBRV |Ψ〉 − V Ub |Ψ〉


≤ ε1 . (46)

2. (Forgetfulness of product unitaries by the environment) For any product unitary Ub, we
have



trBR[V Ub |Ψ〉 〈Ψ|U
†
bV †]− trBR[V |Ψ〉 〈Ψ|V †]





1
≤ ε2 . (47)

Specifically, Condition 1 implies Condition 2 with ε2 ≤ 2ε1, while Condition 2 implies Condition
1 with ε1 ≤

p
ε2.

Proof. See Appendix A.3.
20Physically, this is because state evolution is nontrivial to implement even when the initial state is already

known, whereas measurements are only nontrivial if the system can be in at least two possible states.

19

https://scipost.org
https://scipost.org/SciPostPhys.12.5.157


SciPost Phys. 12, 157 (2022)

Remark 3.8. In the special case where n= 1, b= {b1} and dR = dR = 1, Theorem 3.7 reduces
to Conditions 1 and 4 of Theorem 3.5.

Remark 3.9. The “no cloning theorem” does not prevent state-specific product unitary recon-
struction of the same subsystem from both HB and HB.21 Consider the example from Remark
2.6 where the state |ψ〉 has Hb1

∼= HB maximally entangled with Hb2
∼= HB (with V = 1,

db1
> db2

and dR = dR = 1). Since all maximally entangled states are related by a unitary
operator acting on the larger Hilbert space, {b1, b2} can be reconstructed from HB. However
b2 can also clearly be reconstructed from HB.

This type of reconstruction is almost sufficient to define the entanglement wedge. However
it still misses one important aspect: complementary recovery. Given any holographic bulk state
|Ψ〉 with a well defined entanglement wedge, the entanglement wedge of B R is always the
complement of the entanglement wedge of BR. Hence, any bulk subsystem Hbi

that cannot
be reconstructed from HB ⊗HR can always be reconstructed from HB ⊗HR.

Note it is crucial here that we are considering the purified state |Ψ〉. In general, the en-
tanglement wedges of B and B alone will not be complementary for a mixed state VρcodeV †,
unless we are working within a code space where the entanglement wedges of B and B are
fixed and hence state-independent complementary reconstruction is possible, as in [1].

With this, we have finally reached the full version of reconstruction that defines the entan-
glement wedge – complementary state-specific product unitary reconstruction.

Definition 3.10 (Complementary state-specific product unitary reconstruction).
Let V : Hcode

∼= ⊗iHbi
→HB ⊗HB be an isometry, with b = {bi1 , bi2 ...} a subset of input legs.

Finally, let |Ψ〉 ∈Hcode ⊗HR ⊗HR be a fixed, arbitrary state with HR,HR reference systems of
arbitrary dimension. We say that complementary state-specific product unitary reconstruction
is possible if for any product unitary Ub there exists a unitary reconstruction UBR, and for any
product unitary U ′

b̄
there exists a unitary reconstruction U ′

B R
, such that for all pairs of product

unitaries Ub, U ′
b̄

UBRU ′B RV |Ψ〉 ≈ V UbU ′
b̄
|Ψ〉 . (48)

Since complementary state-specific reconstruction seems a priori to be fairly distinct from
traditional definitions of quantum error correction, one might wonder what the relationship
is between Theorems 4.2 and 5.5 and Theorem 4.1 of [1]. The answer is that complemen-
tary state-independent reconstruction is possible whenever complementary state-specific re-
construction is possible for all states |Ψ〉, with the entanglement wedge b independent of the
state |Ψ〉.

Theorem 3.11 (From state-specific to state-independent reconstruction).
Let V : Hcode

∼= ⊗iHbi
→ HB ⊗HB be an isometry, with b = {bi1 , bi2 ...} a subset of input legs.

Finally, let |Ψ〉 ∈Hcode⊗HR be an arbitrary state with the reference system HR having dimension
dR = dcode. Then the following three statements are equivalent:

1. (State-specific reconstruction of product unitaries for all states) For every state |Ψ〉 and
product unitary Ub, there exists a unitary reconstruction UB such that

‖UBV |Ψ〉 − V Ub |Ψ〉‖ ≤ ε1 . (49)

2. (State-independent reconstruction of product unitaries) For every product unitary Ub,
there exists a unitary reconstruction UB such that for all states |Ψ〉

‖UBV |Ψ〉 − V Ub |Ψ〉‖ ≤ ε2 . (50)
21Instead, the no cloning theorem only rules out reconstruction of a subsystem by both HB and HB if in the state
|Ψ〉 that subsystem is maximally entangled with a reference system.
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3. (Schrödinger-picture subsystem code) There exists an isometry WB : HB →Hb⊗HE , such
that for all states ρcode



trBE[WBVρcodeV †W †
B ]− trb̄[ρcode]





1 ≤ ε3 . (51)

Specifically, Condition 1 implies Condition 2 with ε2 ≤
p

3ε1, Condition 2 implies Condition 3
with ε3 ≤ 2ε2 and Condition 3 implies Condition 1 with ε1 ≤ 2

p
ε3.

Proof. See Appendix A.3.

4 Exact codes

4.1 Theorem Statement

In this section we prove that the existence of an exact QMS prescription is equivalent to the
existence of exact complementary state-specific product unitary reconstruction. Before stat-
ing the theorem, we first formally define the min-entropy Hmin(A|B)|ψ〉, which will play an
important role.

Definition 4.1 (Min-entropy). The conditional min-entropy Hmin(A|B)|ψ〉 of a state
|ψ〉 ∈HA⊗HB ⊗HC is defined as follows. Let ψAB = trC[|ψ〉 〈ψ|]. Then

Hmin(A|B)|ψ〉 = −min
σB

Dmax(ρAB|1A⊗σB) = −min
σB

inf{λ :ψAB ≤ eλ1A⊗σB} , (52)

where the minimization is over all density matrices σB.

Theorem 4.2. Let V : Hcode
∼= ⊗iHbi

→HB ⊗HB be an isometry, with b= {bi1 , bi2 ...} a subset
of input legs, and b̄ its complement. Finally, let |Ψ〉 ∈Hcode⊗HR⊗HR be a fixed, arbitrary state
with HR,HR reference systems of arbitrary dimension.

Then the following two conditions are equivalent:

1. (Complementary Recovery) For all product unitaries Ub and U ′
b̄
, there exist unitary oper-

ators UBR and U ′
B R

respectively such that

UBRU ′
B R

V |Ψ〉= V UbU ′
b̄
|Ψ〉 . (53)

2. (Holographic Entropy Prescription) For all product unitaries Ub and U ′
b̄
,

S(BR)V UbU ′
b̄
|Ψ〉 = AB(b) + S(bR)UbU ′

b̄
|Ψ〉 . (54)

Moreover, both statements imply:

3. (One-shot Minimality) For all b̄′ ⊆ b̄ and b′ ⊆ b,

Hmin(b̄′|bR)|Ψ〉 ≥AB(b)− AB(b∪ b̄′) , (55)

Hmin(b
′|b̄R)|Ψ〉 ≥AB(b̄)− AB(b

′ ∪ b̄) . (56)

This in turn implies:

4. (Minimality) For all b′ ⊆ b∪ b̄,

AB(b
′) + S(b′R)|Ψ〉 ≥ AB(b) + S(bR)|Ψ〉 . (57)
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4.2 Proof

Before proceeding to the main parts of the proof of Theorem 4.2, we first need to introduce
some preliminary lemmas. These introduce one of the most important technical tools used in
the main proofs, which involves using an isometry W to extract information out of the holo-
graphic code and into an auxiliary Hilbert space isomorphic to the space of square-integrable
functions L2(U) on the unitary group U.

Lemma 4.3. Consider the group U(d) of unitary operators in d-dimensions. Let HU(d) be the
Hilbert space L2(U(d)), with “position basis” |U〉U(d), i.e. 〈U |U ′〉 = δ(U − U ′), with
∫

dU 〈U |U ′〉 = 1 where dU is the Haar measure on U(d) normalized so that
∫

dU = 1. Fi-
nally, let π : U(d)→ UA be a (measurable) map from U ∈ U(d) to unitary operators π(U)A on
the Hilbert space HA. Then the following defines an isometry Wπ : HA→HA⊗HU(d) for any map
π:

Wπ :=

∫

dU |U〉U(d) ⊗π(U)A . (58)

Proof. It suffices to show that Wπ preserves the norm for all |ψ〉A, i.e. 〈Wπψ|Wπψ〉= 〈ψ|ψ〉.22

This follows directly from

〈ψ|W †
πWπ |ψ〉=

∫

dU 〈ψ|π(U)†π(U) |ψ〉= 〈ψ|ψ〉 . (59)

It will be helpful to introduce the following powerful change of basis for L2(U(d)). Let
µ label an irreducible representation of U(d) and let Dµi j(U) label the matrix elements of the
unitary U for that representation. A famous theorem in representation theory guarantees these
matrix elements are orthogonal when interpreted as wavefunctions on L2(U(d)). Specifically,
we have

dµ

∫

dU Dµi j(U)
∗Dµ

′

i′ j′(U) = δµµ′δii′δ j j′ , (60)

see e.g. Appendix A of [36]. Another famous theorem, the Peter-Weyl theorem, guarantees
these wavefunctions form a complete basis (see Appendix A of [36]). All wavefunctions ψ(U)
can therefore be written

ψ(U) =
∑

µ

∑

i j

q

dµDµi j(U)ψ
µ
i j , (61)

where the sum over µ is over all irreducible representations of U(d) and

ψ
µ
i j =

∫

dU Dµi j(U)
∗ψ(U) . (62)

In Dirac notation, we have

|U〉=
∑

µ

q

dµ
∑

i j

Dµi j(U)
∗ |µ; i j〉 . (63)

This means that the Hilbert space L2(U(d)) naturally decomposes into a direct sum over finite-
dimensional blocks Hµ ⊗H∗µ:

HU(d) =
⊕

µ

Hµ ⊗H∗µ . (64)

With this rewriting in hand, we can now prove the following lemma:

22This also ensures that 〈Wπψ|Wπψ〉 is finite for any |ψ〉, and hence that W is a bounded operator.
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Lemma 4.4. Consider the setup from Lemma 4.3, specialized to the case d = dA, and let π= µ0
be the fundamental representation of UA. Then

W |ψ〉A =
∫

dU |U〉UA
⊗ U |ψ〉A = |ψ〉µ0

⊗ |MAX〉Aµ∗0 , (65)

where Hµ0
⊗H∗µ0

is the block associated to the fundamental representation µ0 in the decom-

position (64) and |MAX〉Aµ∗0 =
1p
d

∑d
i=1 |i〉A |i〉

∗
µ∗0

is the canonical maximally entangled state on
HA⊗H∗µ0

∼=HA⊗H∗A.

Proof. Rewriting W using the irrep basis for L2(U(d)) introduced above, we find

W |ψ〉A =
∫

dU |U〉UA
⊗ U |ψ〉A

=

∫

dU
∑

µ

q

dµ
∑

i j

Dµi j(U)
∗ |µ; i j〉UA

⊗
∑

i′
|i′〉A 〈i′|U

∑

j′
| j′〉A 〈 j

′|ψ〉

=
∑

µ

q

dµ
∑

i j
i′ j′

�∫

dU Dµi j(U)
∗Dµ0

i′ j′(U)

�

|µ; i j〉UA
⊗ |i′〉A 〈 j′|ψ〉

=
1
p

d

∑

i j

|µ0; i j〉UA
⊗ |i〉A 〈 j|ψ〉

=

 

∑

j

〈 j|ψ〉 | j〉µ0

!

⊗

�

1
p

d

∑

i

|i〉µ∗0 |i〉A

�

= |ψ〉µ0
⊗ |MAX〉µ∗0A .

(66)

Using Lemma 4.4, we can construct an isometry Wbi
: Hbi

→ Hbi
⊗HUbi

that extracts
all the quantum information out of Hbi

and into an isomorphic Hilbert space Hai
∼= Hbi

,
with the original subsystem Hbi

left maximally entangled with a reference system Hri
∼=H∗bi

.
Specifically, we have

Wbi
|Ψ〉b1...bi ...bnRR =

∫

dUbi
|Ubi
〉Ubi
⊗ Ubi

|Ψ〉b1...bi ...bnRR (67)

= |Ψ〉b1...ai ...bnRR |MAX〉bi ri
, (68)

where we have identified Hai
∼= Hµ0

and Hri
∼= H∗µ0

with the fundamental representation
block Hµ0

⊗H∗µ0
⊂HUbi

from Lemma 4.4.
It is then natural to define Wb : Hb → Hb ⊗ HUb

, where HUb
∼= HUbi1

⊗ HUbi2
. . . is

the Hilbert space of square-integrable functions L2(Ub) on the group of product unitaries
Ub
∼= Ubi1

×Ubi2
. . . , by

Wb |Ψ〉bb̄RR = [Wbi1
Wbi2

. . . ] |Ψ〉bb̄RR (69)

=

∫

dUb |Ub〉Ub
Ub |Ψ〉bb̄RR (70)

= |Ψ〉ab̄RR |MAX〉br . (71)
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In other words, Wb is an isometry, built out of product unitaries acting on Hb, that extracts
the quantum state out of Hb and into a copy Ha

∼= Hai1
⊗Hai2

. . . , leaving the original Hb

maximally entangled with Hr
∼=Hri1

⊗Hri2
. . . 23

Now suppose that BR can do state-specific product operator reconstruction of b for the
state |Ψ〉, i.e. for every product unitary Ub acting on Hb there exists a unitary UBR acting on
HB ⊗HR such that

UBRV |Ψ〉= V Ub |Ψ〉 . (72)

Then we can define an isometry WBR : HB ⊗HR→HB ⊗HR ⊗HUb
by

WBR =

∫

dUb |Ub〉 ⊗ UBR , (73)

such that

WBRV |Ψ〉bb̄RR = VWb |Ψ〉bb̄RR = V |Ψ〉ab̄RR |MAX〉br . (74)

Importantly, on the right hand side of (74), V : Hb ⊗Hb̄→HB ⊗HB and does not act on Ha.

Remark 4.5 (Measurability). Since the map Ub → V Ub |Ψ〉 is continuous, we can always
choose UBR such that Ub → UBR is piecewise continuous and hence measurable, as required
for WBR to be well defined.

By acting only on HB ⊗HR, we have successfully extracted the quantum state out of Hb
and into the copy Ha, leaving the original Hb maximally entangled with Hr. Schematically,
this can be represented by the following figure

(75)
Similarly, we can define the isometry Wb̄ : Hb̄→Hb̄ ⊗HUb̄

by

Wb̄ =

∫

dUb̄ |Ub̄〉 ⊗ Ub̄ , (76)

that extracts the quantum state out of Hb̄ and into Hā. If B R can do state-specific product
operator reconstruction of b̄, there exists an isometry

WB R =

∫

dUb̄ |Ub̄〉 ⊗ UB R , (77)

23Note that this is not quite the same as directly applying the construction from Lemma 4.4 to the Hilbert space
Hb; that would involve integrating over all unitaries acting on Hb

∼= Hbi1
⊗Hbi1

. . . rather than just product
unitaries.
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such that WB RV |Ψ〉 = VWb̄ |Ψ〉. Finally, if state-specific product operator reconstruction of
both b from BR and b̄ from B R are possible for the same state |Ψ〉, as in Condition 1, then we
have

WBRWB RV |Ψ〉bb̄RR = |Ψ〉aāRR V |MAX〉br |MAX〉b̄r̄ = |Ψ〉aāRR |CJ〉BBrr̄ . (78)

Graphically, we have

(79)
To reiterate, if we assume Condition 1 is true, then by acting with the product of an isometry
WBR acting only on HB ⊗HR with an isometry WB R acting only on HB ⊗HR, we can map the
boundary state V |Ψ〉 to the product of the Choi-Jamiolkwoski state |CJ〉 and the bulk state |Ψ〉
stored in the auxilary copy Ha ⊗Hā of the bulk Hilbert space. This trick will be at the heart
of the proof of Theorem 4.2, to which we now turn. It will allow us to relate the boundary
entropy S(BR)V |Ψ〉 to the sum of the bulk entropy S(bR)|Ψ〉 and the area term AB(b) = S(Br)|CJ〉.

Proof (1) =⇒ (2):

With (78) in hand, the proof that Condition 1 implies Condition 2 is almost immediate. Since
WBR and WB R are isometries, we have

S(BR)V |Ψ〉 = S(BRUb)WBRWB RV |Ψ〉 (80)

= S(Br)WBRWB RV |Ψ〉 + S(aR)WBRWB RV |Ψ〉 (81)

= S(Br)|CJ〉 + S(bR)|Ψ〉 (82)

= AB(b) + S(bR)|Ψ〉 . (83)

So the entropy S(BR)V |Ψ〉 is given by a holographic entropy prescription. All that remains to
complete the proof is to show that, for any Ub, U ′

b̄
, the entropy S(BR)V UbU ′

b̄
|Ψ〉 is also given by

a holographic entropy prescription. To see this, first note that

S(bR)UbU ′
b̄
|Ψ〉 = S(bR)|Ψ〉 , (84)

so all we need to do is show that

S(BR)V UbU ′
b̄
|Ψ〉 = S(BR)V |Ψ〉 . (85)

But Condition 1 tells us that there exist UBR and U ′
B R

such that

UBRU ′
B R

V |Ψ〉= V UbU ′
b̄
|Ψ〉 . (86)

Hence (85), and thus Condition 2, follows immediately.
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Proof (2) =⇒ (1):

The idea here is to show Condition 2 can only hold if a product unitary Ub (resp. U ′
b̄
) always

leaves the reduced state on B R (resp. BR) unchanged. Suppose for example we know that for
any Ub

trBR

�

V Ub |Ψ〉 〈Ψ|U
†
bV †

�

= trBR

�

V |Ψ〉 〈Ψ|V †
�

. (87)

Then V Ub |Ψ〉 and V |Ψ〉 would both be purifications of the same reduced density matrix on
HB ⊗HR. Since all purifications of a given state are related by a unitary operator acting on
the purifying system, we would know that there exists UBR such that

UBRV |Ψ〉= V Ub |Ψ〉 , (88)

as desired for Condition 1 to hold.
To show this, we again use the isometries Wb and Wb̄. Without any assumptions about V ,

we know
VWbWb̄ |Ψ〉bb̄RR = |Ψ〉aāRR |CJ〉BBrr̄ , (89)

and hence that

S(BRar)VWbWb̄|Ψ〉 = S(B Rār̄)VWbWb̄|Ψ〉 = AB(b) + S(bR)|Ψ〉 . (90)

Tracing out HB ⊗HR ⊗HUb
from (89) leaves

ΨāR ⊗ |CJ〉 〈CJ|Br̄ = trBRUb

�

VWbWb̄ |Ψ〉 〈Ψ|W
†
b W †

b̄
V †
�

= trB R

�∫

dUbdU ′b 〈U
′
b|Ub〉 ⊗ V UbWb̄ |Ψ〉 〈Ψ|W

†
b̄

U ′†bV †

�

=

∫

dUb trB R

�

V UbWb̄ |Ψ〉 〈Ψ|W
†
b̄

U†
bV †

�

.

(91)

Therefore,

S(B R ār̄)VWbWb̄|Ψ〉 ≥
∫

dUb S(B R ār̄)V UbWb̄|Ψ〉 =

∫

dUb S(BR)V UbWb̄|Ψ〉 , (92)

where the inequality follows from S
�∫

dUρ(U)
�

≥
∫

dUS(ρ(U)) and the last equality follows
from the purity of V UbWb̄ |Ψ〉. Because of the strict concavity of von Neumann entropy, this
inequality is saturated if and only if the state

ρB R ār̄(Ub) := trBR

�

V UbWb̄ |Ψ〉 〈Ψ|W
†
b̄

U†
bV †

�

(93)

is independent of Ub. Now note that

ρBR(Ub) = trB RUb̄

�

V UbWb̄ |Ψ〉 〈Ψ|W
†
b̄

U†
bV †

�

=

∫

dU ′
b̄
dU ′′b̄ trB R

�

V UbU ′
b̄
|Ψ〉 〈Ψ|U ′′†

b̄
U†

bV †
�

〈U ′′
b̄
|U ′

b̄
〉

=

∫

dU ′
b̄

trB R

�

V UbU ′
b̄
|Ψ〉 〈Ψ|U ′†

b̄
U†

bV †
�

.

(94)

Therefore,

S(BR)V UbWb̄|Ψ〉 ≥
∫

dU ′
b̄

S(BR)V UbU ′
b̄
|Ψ〉 . (95)
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Finally, we know from our assumption of Condition (2) that

S(BR)V UbU ′
b̄
|Ψ〉 = AB(b) + S(bR)|Ψ〉 , (96)

for all Ub, U ′
b̄
. Combining everything together, we find

AB(b) + S(bR)|Ψ〉 = S(B R ār̄)VWbWb̄|Ψ〉 ≥
∫

dUbS(BR)V UbWb̄|Ψ〉

≥
∫

dUbdU ′
b̄
S(BR)V UbU ′

b̄
|Ψ〉

= AB(b) + S(bR)|Ψ〉 .

(97)

Both inequalities must be saturated and so we see that a) ρB R ār̄(Ub) from (93) is independent
of Ub and b) for any fixed Ub,

σBR(Ub, U ′
b̄
) := trB R

�

V UbU ′
b̄
|Ψ〉 〈Ψ|U ′†

b̄
U†

bV †
�

(98)

is independent of U ′b.
Since all purifications of a fixed density matrix are related by a unitary on the purifying

system, we know from (a) that for all Ub, there exists a unitary UBR such that

UBRVWb̄ |Ψ〉= V UbWb̄ |Ψ〉 , (99)

and thus for any U ′
b̄

〈U ′
b̄
|
Ub̄

UBRVWb̄ |Ψ〉= UBRV U ′
b̄
|Ψ〉= V UbU ′

b̄
|Ψ〉 . (100)

Similarly, condition (b) implies that for all U ′
b̄
, there exists a U ′

B R
such that

V U ′
b̄
|Ψ〉= U ′

B R
V |Ψ〉 . (101)

Together, (100) and (101) tell us that for all Ub, U ′
b̄
,

UBRU ′
B R

V |Ψ〉= V UbU ′
b̄
|Ψ〉 , (102)

which is exactly Condition 1.

Proof (1) =⇒ (3):

We will need the following lemmas:

Lemma 4.6. (Corollary 5.9 of [37]) For any product state ρAB ⊗σA′B′ ,

Hmin(AA′|BB′)ρ⊗σ = Hmin(A|B)ρ +Hmin(A
′|B′)σ . (103)

Proof. For any state ρAB, the min-entropy and max-entropy are defined respectively by

Hmin(A|B) =−min
σB

Dmax(ρAB|1A⊗σB) , (104)

Hmax(A|B) =−min
σB

Dmin(ρAB|1A⊗σB) , (105)

where

Dmax(ρ|σ) := inf{λ : ρ ≤ eλσ} , (106)

Dmin(ρ|σ) :=− log
�

F(ρ,σ)2
�

, (107)
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where F(ρ,σ) = ‖pρ
p
σ‖1 is the fidelity. It follows that

Hmin/max(AA′|BB′)ρ⊗σ = −min
ωBB′

Dmax/min(ρAB ⊗σA′B′ ||1AA′ ⊗ωBB′)

≥ − min
ωB ,ω′

B′

Dmax/min(ρAB ⊗σA′B′ ||1A⊗ωB ⊗ 1A′ ⊗ω′B′)

= Hmin/max(A|B) +Hmin/max(A
′|B′) .

(108)

For the other inequality, introduce ρABC (resp. σA′B′C ′) as the purification of ρAB (resp. σA′B′).
From the above inequality, we have

Hmax(AA′|CC ′)ρ⊗σ ≥ Hmax(A|C)ρ +Hmax(A
′|C ′)σ . (109)

For any tripartite pure state on X Y Z , it holds that Hmin(X |Y )+Hmax(X |Z) = 0. It follows that

Hmin(AA′|BB′)ρ⊗σ ≤ Hmin(A|B) +Hmin(A
′|B′) . (110)

Combining the two inequalities concludes the proof.

Lemma 4.7. Consider the state |CJ〉BBrr̄ ⊗ |Ψ〉aāRR. Let b̄′ ⊆ b̄ (and let ā′ = {ai : bi ∈ b̄′} and
r̄′ = {ri : bi ∈ b̄′}). Then

Hmin(ā
′r̄′|B Rar)|CJ〉|Ψ〉 ≥ 0 =⇒ Hmin(b̄

′|bR)|Ψ〉 ≥ AB(b)− AB(b̄
′ ∪ b) . (111)

Proof. From Lemma 4.6, we know that

Hmin(ā
′r̄′|B Rar)|CJ〉|Ψ〉 = Hmin(r̄

′|B r)|CJ〉 +Hmin(b̄
′|bR)|Ψ〉 . (112)

Moreover,

Hmin(r̄
′|B r)|CJ〉 ≤ S(r̄′|B r)|CJ〉 = AB(b̄

′ ∪ b)− AB(b) . (113)

Combining these completes the proof.

Lemma 4.8. The following inequality holds for any state |ψ〉 ∈ HA ⊗HB and Haar random
unitaries UA acting on HA

∫

dUAdU ′A |UA〉 〈U ′A|UA
⊗ UA |ψ〉 〈ψ|AB U ′A

† ≤
∫

dUA |UA〉 〈UA|UA
⊗ UA |ψ〉 〈ψ|AB U†

A . (114)

Proof. The left-hand side is a rank one projector onto the state

WA |ψ〉=
∫

dUA |UA〉 ⊗ UA |ψ〉AB . (115)

Hence it suffices to show that the right-hand side is also a projector whose support includes
WA |ψ〉. To see that it is a projector, note that

�∫

dUA |UA〉 〈UA| ⊗ UA |ψ〉 〈ψ|U
†
A

�2

=

∫

dUA |UA〉 〈UA| ⊗ UA |ψ〉 〈ψ|U
†
A . (116)

Its support includes WA |ψ〉 because
�∫

dU ′A |U
′
A〉 〈U

′
A| ⊗ U ′A |ψ〉 〈ψ|U

′†
A

�

WA |ψ〉=WA |ψ〉 . (117)

This concludes the proof.
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We are now ready to prove that Condition 1 implies Condition 3. We want to show that,
assuming Condition 1, then for all b̄′ ⊆ b̄,

Hmin(ā
′r̄′|B Rar)VWbWb̄|Ψ〉 ≥ 0 . (118)

From this (55) follows immediately via Lemma 4.7 and (89). Similarly, if we can show that,
for all b′ ⊆ b

Hmin(a
′r′|B R ār̄)VWbWb̄|Ψ〉 ≥ 0 , (119)

then (56) follows immediately via Lemma 4.7 with all complementary Hilbert spaces ex-
changed (so for example Hb↔Hb̄, HB ↔HB and so on). We shall focus on (118), since the
proof of (119) is completely identical up to the relabelling of Hilbert spaces.

By definition, for any state ρAB

Hmin(A|B) =−min
σB

Dmax(ρAB|1A⊗σB)

≥− Dmax(ρAB|1A⊗ρB) ,
(120)

where
Dmax(ρ|σ) = inf{λ : ρ ≤ eλσ} . (121)

Therefore, in order to show that Hmin(A|B)ρ ≥ 0, it is sufficient to show ρAB ≤ 1A⊗ρB.
Using Condition 1, we can write

|φ〉 := |CJ〉BBrr̄ ⊗ |Ψ〉aāRR

=VWbWb̄ |Ψ〉bb̄RR

=WBRWBRV |Ψ〉bb̄RR .

(122)

Let b̄′′ = b̄ \ b̄′ be the complement of b̄′ in b̄, and similarly ā′′ = ā \ ā′ and r̄′′ = r̄ \ r̄′. Taking
a partial trace over HB ⊗HR ⊗Hā′′ ⊗Hr̄′′ , we then find

φBRarā′ r̄′ := trB R ā′′ r̄′′ |φ〉 〈φ|

= trB RUb̄′′

�

WBRWB RV |Ψ〉 〈Ψ|V †W †
B R

W †
BR

�

=

∫

dUb̄dU ′
b̄
〈U ′

b̄′′
|Ub̄′′〉WBR trB R

�

UB RV |Ψ〉 〈Ψ|V †U ′†
B R

�

W †
BR ⊗Πµ0

|Ub̄′〉 〈U
′
b̄′
|Πµ0

≤WBR trB R

�

V |Ψ〉 〈Ψ|V †
�

W †
BR ⊗

∫

dUb̄′Πµ0
|Ub̄′〉 〈Ub̄′ |Πµ0

≤φBRar ⊗ 1ā′ r̄′ .
(123)

In the third line, we expanded WB R, including explicitly expanding the product unitaries
Ub̄ = Ub̄′ ⊗ Ub̄′′ . We also used Lemma 4.4 to introduce projectors Πµ0

onto the fundamen-
tal representation block Hā′ ⊗Hr̄′ of HUb̄′

without affecting the state. The inequality in the
fourth line then follows from Lemma 4.8. This concludes the proof, since by the discussion
above, (123) implies (118) and hence (55).

Remark 4.9. This proof easily extends to a slightly stronger statement than (55). In (113),
we replaced a min-entropy in the |CJ〉 state with a conditional entropy, so that we could write
it as a difference in two areas. Had we left it in terms of the min-entropy, we would have
ended up with a stronger a statement, a bound on the min-entropy of the bulk state by the
min-entropy in the |CJ〉 state. One possible physical interpretation of this |CJ〉 min-entropy is
a bound on the fluctuations in the area difference. The stronger version of (55) would then
lower bound Hmin(b̄′|bR)|Ψ〉 by an upper bound on the area-difference, rather than the average
area difference.
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Proof (3) =⇒ (4):

This was previously proven in [11]. Recall that the min-entropy and max-entropy satisfy strong
sub-additivity [38],

Hmin/max(A|B)≥ Hmin/max(A|BC) . (124)

Consider an arbitrary subset b′ ⊆ {b1 . . . bn} . We want to show that

AB(b
′) + S(b′R)|Ψ〉 ≥ AB(b) + S(bR)|Ψ〉 . (125)

By the assumption of Condition 3,

AB(b∩ b′)− AB(b)≥ Hmax(b \ b′|[b∩ b′]R)|Ψ〉 . (126)

Here we combined (56) with the duality identity Hmax(A|B) = −Hmin(A|C) for any tripartite
pure state, and the equality between complementary areas described in Remark 2.2. By strong
subadditivity,

AB(b
′)− AB(b∪ b′) = −S(r \ r′|B r′)|CJ〉

≥ −S(r \ r′|B r∩ r′)|CJ〉 (127)

= AB(b∩ b′)− AB(b) ,

and

Hmax(b \ b′|[b∩ b′]R)|Ψ〉 ≥ Hmax(b \ b′|b′ R)|Ψ〉 ≥ S([b∪ b′]R)|Ψ〉 − S(b′R)|Ψ〉 , (128)

where we also used Hmax(A|B)≥ S(A|B). Hence

AB(b
′)− AB(b∪ b′)≥ S([b∪ b′]R)|Ψ〉 − S(b′R)|Ψ〉 . (129)

Meanwhile, (55) tells us

AB(b)− AB(b∪ b′)≤ Hmin(b
′ \ b|b)≤ S([b′ ∪ b]R)− S(bR) , (130)

where in the second inequality we used Hmin(A|B)≤ S(A|B). Combining (129) and (130) gives
(125), which is what we set out to show.

Remark 4.10. One can also more directly prove Condition 4 from Condition 1, without any
reference to min- and max-entropies. By an analogue of Lemma 4.7, together with the strong
sub-additivity arguments above, it is sufficient to show that

S(ā′r̄′|B R ā′′r̄′′)|CJ〉|Ψ〉 = −S(ā′r̄′|B Rar)|CJ〉|Ψ〉 ≤ 0 . (131)

But, if |φ〉= |CJ〉 |Ψ〉 as before,

φB R ā′′ r̄′′ =

∫

dUb̄dU ′
b̄
〈U ′

b̄′
|Ub̄′〉 UB R trB R

�

V |Ψ〉 〈Ψ|V †
�

U ′†
B R
⊗ |Ub̄′′〉 〈U

′
b̄′′
|

=

∫

dUb̄′ W b̄′′

B R
(Ub̄′) trB R[

�

V |Ψ〉 〈Ψ|V †
�

W b̄′′

B R
(Ub̄′)

† . (132)

Here we have defined the isometry

W b̄′′

B R
(Ub̄′) =

∫

dUb̄′′ UB R ⊗ |Ub̄′′〉 , (133)

which depends implicitly on Ub̄′ through UB R. By the concavity of the von Neumann entropy,
and its invariance under isometries, we therefore have

S(B R ā′′r̄′′)|CJ〉|Ψ〉 ≥ S(B R)V |ψ〉 = AB(b) + S(b)|Ψ〉 = S(B R ār̄)|CJ〉|Ψ〉 , (134)

as desired.
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5 Approximate and non-isometric codes

5.1 Error correction for non-isometric codes

In traditional applications of quantum error correcting codes, the map V is always an isom-
etry V †V = 1. This is for obvious physical reasons: time evolution in quantum mechanics is
unitary, and so any physical process that encodes a quantum state into a quantum code must
be isometric.24

This does not seem to be the case, however, in holographic codes, where the map V has a
very different physical interpretation as the “bulk-to-boundary map,” relating the semiclassical
description of the bulk state to the corresponding holographic boundary state. Because the
bulk has (at least) one more dimension than the boundary, a naive counting suggests that
there are in fact many more bulk states than there are boundary states!

Of course, if the bulk geometry is perturbatively close to vacuum AdS, we cannot excite
too many bulk degrees of freedom without causing gravitational backreaction that creates a
black hole.25 However, there is no such limit within the interior of a black hole. Instead, the
number of semiclassical degrees of freedom in a long wormhole behind a black hole horizon
can be arbitrarily large compared to the Bekenstein-Hawking entropy – the classic example of
this is an evaporating black hole after the Page time.

Traditionally, this fact has been regarded as unacceptable, and possibly as evidence for
new physics that avoids the excess semiclassical degrees of freedom [39–41]. However, recent
progress in understanding the black hole information paradox [9,10] has made it clear that the
semiclassical description of an black hole needs to be taken seriously, even after the Page time.
Instead, the apparent paradox is resolved by nonperturbative corrections to the semiclassical
inner product: exactly orthogonal simple states in the bulk quantum field theory have expo-
nentially small, but nonzero, overlap in quantum gravity [42]. Another way of saying this is
that while the bulk-to-boundary map V is still a linear map – the boundary dual of a superposi-
tion of semiclassical bulk states is just a superposition of the dual boundary states – it does not
preserve the inner product and so is not an isometry. As a result, the arbitrarily large Hilbert
space of semiclassical bulk states can be mapped by V into a much smaller Hilbert space of
holographic boundary states, the dimension of which is controlled by the Bekenstein-Hawking
entropy.

It may seem counterintuitive, or even impossible, for V to approximately preserve the
inner products of all pairs of simple states – for concreteness we can take these to be product
states on a large number of qubits – without V being (approximately) an isometry. However,
as the following theorem shows, not only in this possible, it is in fact generically true for
random maps V . The probability that any inner product is not preserved is actually doubly
exponentially suppressed.

Theorem 5.1. Let V : [C2]⊗n→ [C2]⊗m with n> m> 1 be defined by V = 2(n−m)/2 〈0|⊗(n−m) U
where U is a Haar random unitary, and let ε < 1 be an arbitrary positive number. Then, with
probability

p ≥ 1− 26n(n−m)+30n+4n6n exp[−
2m−5ε2

81π3
] , (135)

24The most natural physical interpretation of a non-isometric map V in this setting is a QEC code that relies on
postselection onto a particular measurement outcome to succeed. Since the outcome of a measurement cannot be
predicted in advance, such codes would not be useful in practice.

25It is also worth noting that the negative curvature of AdS-space mean that the volume and surface area of a
sphere grow at the same rate in the large radius limit.
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for all product states |ψ〉= |ψ1〉 |ψ2〉 . . . |ψn〉 and |φ〉= |φ1〉 |φ2〉 . . . |φn〉, we have
�

�〈φ|V †V |ψ〉 − 〈φ|ψ〉
�

�≤ ε . (136)

Proof. See Appendix A.4.

However, this story is impossible to understand in terms of state-independent quantum
error correction. You cannot use m qubits to encode n > m qubits in a state-independent
way; there simply aren’t enough degrees of freedom. Fortunately, state-specific reconstruction
offers a resolution. The bulk Hilbert space can be larger than the boundary Hilbert space and
nonetheless be encoded into it as a state-specific code, with all of the desirable features of
holography.

A simple example of such a state-specific code is given by Theorem 5.1: given a product
state |ψ〉 and a map V : Hcode → HB defined as in Theorem 5.1 – HB is trivial in this case –
we can implement any product unitary acting on |ψ〉, in a state-specific way, by acting with a
unitary on HB, because all product states have approximately the same norm.

Remark 5.2. While in Theorem 5.1 the state-specific reconstruction is only approximate, it
is easy to construct other examples where exact state-specific reconstruction is possible for
highly non-isometric codes. A simple example is a code space consisting of two qubits, with
|ψ〉 maximally entangled, and the map V projecting the first qubit into the state |0〉 (and
rescaling by

p
2).

An alternative approach to this problem is to only consider a small subspace of bulk states,
so that the restriction of the bulk-to-boundary map V to that subspace is indeed (approxi-
mately) an isometry and traditional definitions of quantum error correction are applicable.
This is of course completely valid as far as it goes, but it means that one can only treat a small
number of bulk degrees of freedom as “real” in any given calculation, even though all the
other bulk degrees of freedom are obviously necessary, for example in order to correctly apply
the QES prescription. Using the framework of state-specific reconstruction, one can correctly
understand how the entire bulk Hilbert space is encoded, and also how state-independent
reconstruction emerges upon restriction to sufficiently small subspaces of states.

The obvious question is whether complementary state-specific codes with non-isometric
maps V obey a version of Theorem 4.2. The answer to that question will be the subject of
Section 5.2, but the simple answer is that they do; in fact the basic proof strategy from Section
4.2 goes through essentially unchanged.

5.2 Theorem Statement

In this section, we extend Theorem 4.2 in two important and complementary ways. Firstly,
we allow arbitrary linear maps V that are not necessarily isometries, so long as V does not in-
crease the norm of any state U |ψ〉 related to |Ψ〉 by a product unitary U . (In practice ‖V U |ψ〉‖
will need to be approximately independent of the product unitary U .) Secondly, we allow the
existence of small corrections to each of the conditions in the theorem. As emphasized in Sec-
tion 3, this is both necessary to correctly capture the physics of holography – nonperturbative
corrections in quantum gravity will always prevent perfect reconstruction – and also appears
to be important if we want to actually find interesting and nontrivial examples of state-specific
codes.

The essence of the proof of Theorem 5.5 is the same as the proof of Theorem 4.2. However,
the necessity of keeping track of the various epsilons makes it noticeably more technical. As
such, we postpone the proof to Appendix C, and content ourselves for the moment with stating
the theorem in full and then making a few brief remarks.
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Before stating the theorem, however, we need to define the smooth min-entropy
Hεmin(A|B)|ψ〉. To do so, we first need to generalize the fidelity to subnormalized states:

Definition 5.3 (Generalized Fidelity). For positive semidefinite operatorsρ,σ on Hilbert space
H satisfying trρ, trσ ≤ 1, the generalized fidelity F̄(ρ,σ) is given by

F̄(ρ,σ) := sup
H′

sup
ρ̄,σ̄

F(ρ̄, σ̄) , (137)

where the supremum is taken over all isometries V ′ : H→H′ of H into a larger Hilbert space
H′ and over (normalized) density matrices ρ̄, σ̄ such that ρ = V ′†ρ̄V ′ and σ = V ′†σ̄V ′.

Definition 5.4 (Smooth min-entropy). The smooth min-entropy Hεmin(A|B)|ψ〉 is defined as

Hεmin(A|B)|ψ〉 = sup
ρ̃AB

Hεmin(A|B)ρ̃AB
, (138)

where the supremum is over subnormalized density matrices ρ̃AB such that the generalized
fidelity F̄(ρ̃AB,ψAB)≥

p
1− ε2.

Theorem 5.5. Let V : Hcode
∼= ⊗iHbi

→ HB ⊗HB be a linear map, with b = {bi1 , bi2 ...} a
subset of input legs, and b̄ its complement. Let Ub, Ûb (respectively U ′

b̄
, Û ′

b̄
) be a product of local

unitaries on b (respectively on b̄) chosen at random according to the Haar measure. Finally, let
|Ψ〉 ∈ Hcode ⊗HR ⊗HR be a fixed, arbitrary state with HR,HR reference systems of arbitrary
dimension such that for all product unitaries Ub, U ′

b̄
, we have ‖V UbU ′

b̄
|Ψ〉‖ ≤ 1.

Then the following two conditions are equivalent:

1. (Complementary Recovery) With probability p ≥ 1−κ1, there exist unitary operators UBR,
depending only on Ub, Ûb, and U ′

B R
, depending only on U ′

b̄
, Û ′

b̄
, such that



UBRU ′
B R

V ÛbÛ ′
b̄
|Ψ〉 − V UbU ′b̄ |Ψ〉



≤ ε1 , (139)

2. (Holographic Entropy Prescription) With probability p ≥ 1−κ2,
�

�

�S (BR)V ÛbÛ ′
b̄
|Ψ〉 −

�

AB(b) + S(bR)|Ψ〉
�

�

�

�≤ ε2 . (140)

Moreover, both statements imply:

3. (One-shot Minimality) For all b̄′ ⊆ b̄ and b′ ⊆ b,

Hε3
min(b̄

′|bR)|Ψ〉 ≥AB(b)− AB(b̄′b) , (141)

Hε3
min(b

′|b̄R)|Ψ〉 ≥AB(b̄)− AB(b
′b̄) . (142)

This in turn implies:

4. (Minimality) For all b′ ⊆ b∪ b̄,

AB(b
′) + S(b′R)|Ψ〉 ≥ AB(b) + S(bR)|Ψ〉 − ε4 . (143)

Specifically, for sufficiently small ε1,κ1, Condition 1 implies Condition 2 for any κ2 � κ1 with
ε2 ≤

q

ε2
1 +κ1/κ2 log[d2

Bd2
R/4(ε

2
1 + κ1/κ2)]. Condition 2 implies Condition 1 for any κ1 > 0

with ε1 ≤ (16/κ1)[8κ2 log(dBdR) + 8ε2]1/4. Condition 1 implies Condition 3 with
ε3 ≤

p

2ε1 + 2κ1. Finally, for any small ε3 ≥ 0, Condition 1 implies Condition 4 with
ε4 ≤ 4ε3 log[d2

codedRdR/(4ε
2
3)].
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Remark 5.6. Some of the implications in Theorem 5.5 involve unavoidable factors of log d
for various Hilbert space dimensions d. This is in contrast to the proofs in Section 3, where
all bounds were universal, with no such factors. At first glance, this may appear somewhat
problematic, since in Section 3 we emphasized that zero-bit codes and state-independent QEC
codes are inequivalent because the corresponding errors can differ by a factor of dcode. The
difference, however, is that d � log d. In holographic codes, we have log d = O(1/G), whereas
the reconstruction errors ε can be made nonpeturbatively small in G. Hence, polylogarithmic
factors of Hilbert space dimensions will still leave the errors nonperturbatively small. Polyno-
mial factors on the other hand can lead to large errors.

Remark 5.7. Unlike in Theorem 4.2, in Theorem 5.5 we cannot guarantee that bulk recon-
struction is possible for any specific single state |Ψ〉. Instead, we can only show that, with
high probability, bulk reconstruction will be possible for the state ÛbÛ ′

b̄
|Ψ〉, where Ûb, Û ′

b̄
are

chosen at random according to the Haar measure. This is because the area AB(b) is almost
unaffected by the action of V on a single state |Ψ〉. As a result, once ε2 is nonzero, we can
make bulk reconstruction impossible for the specific state |Ψ〉, without affecting Condition 2.

6 Discussion

6.1 State-specific definition of the entanglement wedge

In this paper, we have offered a new definition of the entanglement wedge as the region re-
constructible in a particular state-specific way. The entanglement wedge of boundary region
B is precisely the bulk region whose state can be changed to any other state with the same
spatial entanglement structure by acting unitarily on B – if the state on the complementary
bulk region can changed in the same way by acting on the complementary boundary region B
(or B R for the purification of a mixed state).

In Theorem 4.2, we showed this definition was equivalent to the more traditional definition
– namely the bulk region b satisfying S(B)V |Ψ〉 = AB(b) + S(b)|Ψ〉, where V is the bulk-to-
boundary map. That theorem also shows that, as a consequence, the entanglement wedge
minimizes the generalized entropy and is equal to both the so-called min- and max-EWs that
were defined in [11].

Theorem 4.2 is robust to small corrections, as we showed in Theorem 5.5. This is important
for two reasons. Firstly, in holography bulk reconstruction is always only approximate, with
inevitable errors of at least e−O(1/G) [4, 17, 18]. Secondly, the known nontrivial examples of
state-specific codes, such as random tensor networks, are generally approximate in nature.
Indeed, for zero-bit codes, which are the special case of state-specific product unitary codes
where there is only a single bulk subsystem, exact state-specific error correction always implies
exact state-independent error correction. The difference between the two only appears when
errors are introduced.

Finally, in Theorem 5.5, we also allowed the bulk-to-boundary map V to be non-isometric.
While fairly heretical from a traditional quantum information perspective, this generalization
appears to be crucial to understand the encoding of the black hole interior into the boundary
Hilbert space; we discuss this more in Section 6.5.

6.2 Geometry from entanglement

We have introduced a definition of “area” for surfaces bounding arbitrary bulk regions of ar-
bitrary quantum codes. Moreover, we showed that it is the functionally unique definition of
area that appears in the QMS prescription whenever such a prescription exists. We see this as
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a significant step towards a general understanding of how the geometry of the bulk emerges
from the entanglement structure of the dual CFT.

There is still some ambiguity here: one can redefine the area of surfaces that are never
quantum minimal without affecting the QMS prescription, so long as we never make them
smaller that the definition of area in Definition 2.1. Moreover, there is no reason to expect
that Definition 2.1 will give areas that are consistent with a smooth metric at scales that are
large compared to the cut-off scale.

Indeed, it is easy to check explicitly that our definition of area does not agree with geo-
metric area for all surfaces in quantum gravity. It seems possible that there exist preferred
properties that naturally pick out a “better” definition of area than Definition 2.1, thereby
resolving this ambiguity. We leave that question to future work.

Regardless, it is clear that the emergent geometry depends not only on the entanglement
structure of an individual boundary state, but also on the quantum code V relating the bulk
to the boundary. From this perspective, geometry is still related to entanglement. But it is
about more than that – it is about the specific relationship between the entanglement in the
boundary and the encoding of the bulk into the boundary. This basic idea is not new; it’s the
same perspective given by Harlow in [1]. In this work, we have generalized that lesson to a
much larger set of surfaces and areas.

This lesson is important, so we emphasize it: if we are to understand how the bulk ge-
ometry emerges from the dual CFT state, we need to understand the code that embeds bulk
operators into the boundary.

While this might seem to make the emergence of geometry even more daunting – we have
to understand not just boundary entanglement but also the bulk-to-boundary code – it actually
presents a somewhat surprising simplification. Naively, one might expect that understanding
the emergence of the bulk geometry requires understanding Planck scale physics. Instead,
many features of the geometry depend only on the encoding of low-energy, effective-field-
theory operators. This fact is one important reason to pursue an understanding of holographic
codes in the quest to understand the emergence of spacetime. More speculatively, one might
wonder how this relationship between bulk fields and geometry could connect to Einstein’s
equations, which also constrain the geometry based on data about the bulk fields; for previous
work along somewhat similar lines, see [43–48].

6.3 Algebras with centers

Curiously, as discussed in Appendix B.4, it seems hard to make a theorem like 4.2 if the local
bulk algebras contain nontrivial centers. No such theorem can be simultaneously consistent
with both a) the definition of area from [1] for algebras with state-independent complementary
reconstruction and b) Definition 2.1 for the area of algebras with trivial center.

Specifically, in Appendix B.4 we construct an example of a code with state-independent
complementary reconstruction of algebras with nontrivial center, as in [1]. Then we show
that the generalized entropy, defined using Definition 2.1, of the trivial algebra generated by
only the identity is smaller than the generalized entropy of the entanglement wedge, defined
as in [1]. That is, the entanglement wedge is not quantum minimal in this valid algebraic
code.

This situation is fairly unsatisfactory. Local algebras with nontrivial centers play an impor-
tant role in bulk gauge theories, which often appear in AdS/CFT. Perhaps more importantly, in
code spaces where the bulk geometry is not fixed – and hence the area of a surface is a quan-
tum operator rather than simply a number – the area operator itself should lie in the center of
the reconstructible algebra.

There are a couple of potential resolutions to this issue. The first is related to the argument
from [49] that bulk gauge fields in quantum gravity are always emergent at low energies, and
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hence that the microscopic algebra does not contain a nontrivial center. This suggests that
maybe we should really always be working with an “extended code space” that does factorize,
and hence for which Theorem 4.2 applies, even when bulk gauge fields exist.

The downside of this proposal is that all states must have the same area for any bulk
surface; any difference in geometry between different states has to be reinterpreted as a dif-
ference in bulk entanglement entropy. There is nothing wrong with such a reinterpretation –
the equivalence of entanglement and area is the basic idea of ER=EPR [50] – but it doesn’t
achieve the goal of describing an emergent bulk geometry with nontrivial area operators.

An alternative possibility is that Definition 2.1 should be corrected for certain surfaces that
are never quantum minimal, so that the counterexample found in Appendix B.4 no longer
exists. In other words, the existence of algebras with centers in the quantum code changes
Definition 2.1, even when applied to algebras that themselves have trivial center.

One alluring option is to combine these two possibilities, using extended Hilbert space
considerations to learn how to redefine the area of non-minimal surfaces. For instance, in the
example in Appendix B.4, the problem is that the trivial region has an area much smaller than
the boundary entropy, so we could not simultaneously satisfy a holographic entropy prescrip-
tion and minimality. Now note, the reason AB(∅) is so small is that Definition 2.1 depends
on the entropy of bulk states; increase the possible entropy of bulk states, and areas will in
general increase as well. If we calculated AB(∅) using a larger, factorizing “extended Hilbert
space” of bulk states, we would find a much larger area and thereby avoid the issue!

6.4 Extremality

A long term goal of this program is to see the emergence of not just spatial geometry, but
also to understand dynamics in holography. A first step would be to understand the quantum
extremal surface formula. Can our theorems be generalized to go beyond quantum minimal
surfaces and incorporate extremality in the time direction?

An immediate observation is that, as in the case of algebras with centers, the definition of
area given in Definition 2.1 would need alteration. To see this, consider a Cauchy slice of a
time-dependent spacetime in AdS/CFT that contains the minimal quantum extremal surface
for some boundary region B, but which is not maximin (i.e. the Cauchy slice also contains a
more minimal surface). Because the minimal QES divides the Cauchy slice into a part in the
entanglement wedge of B and a part in the entanglement wedge of B, the fields on this Cauchy
slice satisfy Condition 1 of Theorem 4.2, and hence obey a QMS prescription using the area
from Definition 2.1. However, by assumption, the minimal QES is not quantum minimal on
this Cauchy slice when we use the actual geometric area of surfaces.

To understand how this is consistent, we need to recall that Theorem 2.8, showing that the
area from Definition 2.1 lower bounds any alternative definition of area A′B, assumed explicitly
that A′B itself obeyed a quantum minimal surface prescription. In other words, Theorem 2.8
only applies to surfaces that lie in a maximin slice (including e.g. any static slice). For surfaces
in other slices, there is no guaranteed relationship between geometric area and Definition 2.1.

To obtain a full quantum maximin or QES prescription, one would presumably need to
start with a set of bulk algebras associated to every spacetime region, with appropriate nesting
properties, rather than simply a spatial tensor product structure. One issue here is that it is
hard or impossible to construct finite-dimensional algebraic structures with exact relativistic
lightcones.

6.5 State-specific reconstruction and the Page curve

One of the most exciting features of state-specific reconstruction is that, unlike state-
independent QEC, it is compatible with codes where the linear map V is not an isometry.
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As such it can provide a “Hilbert space” justification of the use of the QES prescription to de-
rive the Page curve of an evaporating black hole [9,10] using the semiclassical Hawking state.
In particular, it counters the objection of [?] that the “wrong” state is somehow being used to
calculate the real state’s entropy. While the physical state of the radiation is indeed not the
Hawking state, it is a state-specific encoding V |Ψ〉 of the Hawking state |Ψ〉, via a non-isometric
map V . Hence we can compute entropies from the Hawking state using the QES prescription.
A detailed discussion of these issues will appear in upcoming work [52].

6.6 From Condition 3 to Condition 1?

An unfortunate feature of Theorem 4.2 is that it provides generally no purely bulk method to
know that Conditions (1) and (2) are satisfied for some region b, even if you have been told
the bulk geometry in advance. One can find the minimal generalized entropy bulk region,
which will always be the region that satisfies Conditions 1 and 2 if any does, but you cannot
know whether the code V actually satisfies those conditions for the state |Ψ〉.

In contrast, in holography and in special classes of codes such as random tensor networks,
Condition 3 appears to be both a necessary and sufficient condition for Conditions 1 and 2 to
hold for the state |Ψ〉 [11]. Just by looking at bulk conditional min-entropies and areas, one
can determine whether there is a well-defined entanglement wedge.

We shouldn’t be surprised that the same is not true for general quantum codes; in general
Condition 3 simply doesn’t know enough about V to be able to prove Conditions 1 and 2.
However one might hope to find a simple additional constraint on the code V that makes
Condition 3 equivalent to Conditions 1 and 2. We leave the task of finding such a constraint
to future work.
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A Proofs of auxiliary theorems

Here we collect the proofs of the minor theorems that were not included in the main text. For
the reader’s convenience, we begin with proofs of some well-known theorems that will be used
in both the proofs later in this appendix and in the proof of Theorem 5.5.

A.1 Preliminaries

Lemma A.1 (Hölder’s inequality for the trace and operator norms). For any operators A, B we
have

tr[AB]≤ ‖A‖1‖B‖∞ . (144)

37

https://scipost.org
https://scipost.org/SciPostPhys.12.5.157


SciPost Phys. 12, 157 (2022)

Proof. Let A=
∑

i λi |ψi〉 〈φi| be a singular value decomposition. Then

tr[AB] =
∑

i

λi 〈φi|B|ψi〉 ≤
∑

i

λi‖B‖∞ = ‖A‖1‖B‖∞ . (145)

Lemma A.2 (Triangle inequality). For any operators A, B we have

‖A+ B‖1 ≤ ‖A‖1 + ‖B‖1 . (146)

Proof. Let A+ B = U DV † be a singular value decomposition. Then

‖A+ B‖1 = tr[(A+ B)V U†]≤ ‖A‖1‖V U†‖∞ + ‖B‖1‖V U†‖∞ ≤ ‖A‖1 + ‖B‖1 , (147)

where the first inequality uses Hölder’s inequality.

Lemma A.3 (Monotonicity). Let X : HA⊗HB →HA⊗HB be an arbitrary operator. Then

‖trB X‖1 ≤ ‖X‖1 . (148)

Proof. By Hölder’s inequality,

‖trB X‖1 =max
UA

tr[X UA]≤max
UAB

tr[X UAB] = ‖X‖1 . (149)

Here we used the singular value decomposition to see that a unitary saturating Hölder’s in-
equality exists.

Lemma A.4 (Lemma 3.21 of [53]). Let X , Y : HA→HB be arbitrary operators. It holds that

F(X X †, Y Y †) = ‖X †Y ‖1 . (150)

Proof. Let X = U1D1V †
1 and Y = U2D2V †

2 be singular value decompositions. We have

F(X X †, Y Y †) =






p

X X †
p

Y Y †






1
=


U1D1U†
1 U2D2U†

2





1 =


V1D1U†
1 U2D2V †

2





1 = ‖X
†Y ‖1 .

(151)

Lemma A.5 (Uhlmann’s theorem). Consider Hilbert spaces HA and HB. Let ρ,σ be posi-
tive semidefinite operators on HA with rank at most dimHB, and let |ψ〉 ∈ HA ⊗HB satisfy
trB[|ψ〉 〈ψ|] = ρ. It holds that

F(ρ,σ) =max{|〈ψ|φ〉| : |φ〉 ∈HA⊗HB, trB[|φ〉 〈φ|] = σ} . (152)

Proof. See e.g. Theorem 3.22 of [53]. Let X : HB → HA be a linear operator satisfying
|ψ〉= vec(X ), where

vec

 

∑

i j

ci j |i〉A 〈 j|B

!

:=
∑

i j

ci j |i〉A | j〉B .

Similarly, let Y : HB →HA be a linear operator satisfying |φ〉= vec(Y ) for some |φ〉 satisfying
trB[|φ〉 〈φ|] = σ. It follows that by Lemma A.4 that

F(ρ,σ) = F(X X †, Y Y †) = ‖X †Y ‖1 =max
UB

tr[X †Y U] =max
UB
〈ψ|UB|φ〉 . (153)

The result then follows from the equivalence of purification up to a unitary on the purifying
system.
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Lemma A.6 (Lemma 3.34 of [53]). Let P0 and P1 be positive semidefinite operators on Hilbert
space H. It holds that

‖P0 − P1‖1 ≥ ‖
p

P0 −
p

P1‖22 . (154)

Proof. Let Π0,Π1 = 1 − Π0 be projectors onto the positive and negative eigenspaces of
p

P0 −
p

P1 and let Q j = (−1) jΠ j(
p

P0 −
p

P1)Π j . By Hölder’s inequality,

tr [(Π0 −Π1)(P0 − P1)]≤ ‖P0 − P1‖1‖Π0 −Π1‖∞ = ‖P0 − P1‖1 . (155)

Now

tr [(Π0 −Π1)(P0 − P1)] =
1
2

tr
�

(Π0 −Π1)(
p

P0 −
p

P1)(
p

P0 +
p

P1)
�

+
1
2

tr
�

(Π0 −Π1)(
p

P0 +
p

P1)(
p

P0 −
p

P1)
�

= tr
�

(Q0 +Q1)(
p

P0 +
p

P1)
�

.

(156)

Finally, because Q0,Q1,
p

P0,
p

P1 are all positive semidefinite, we have

tr
�

(Q0 +Q1)(
p

P0 +
p

P1)
�

≥ tr
�

(Q0 −Q1)(
p

P0 −
p

P1)
�

= ‖
p

P0 −
p

P1‖22 .
(157)

Lemma A.7 (Fuchs-van de Graaf inequalities). Let ρ,σ be density matrices on Hilbert space
HA. It holds that

1−
1
2
‖ρ −σ‖1 ≤ F(ρ,σ)≤

√

√

1−
1
4
‖ρ −σ‖21 , (158)

or equivalently
2− 2F(ρ,σ)≤ ‖ρ −σ‖1 ≤ 2

Æ

1− F(ρ,σ)2 . (159)

Proof. See e.g. Theorem 3.33 of [53]. We will prove the two inequalities in (159), starting
with the first. Using Lemma A.6, one obtains

‖ρ −σ‖1 ≥ ‖
p
ρ −
p
σ‖22 = tr

�

(
p
ρ −
p
σ)2

�

= 2− 2 tr
�p
ρ
p
σ
�

= 2− 2F(ρ,σ) . (160)

Now for the second inequality in (159). Let HB be a Hilbert space with dimHB = dimHA. It
follows by Uhlmann’s theorem that there exist states |ψ〉 , |φ〉 ∈HA⊗HB satisfying

trB[|ψ〉 〈ψ|] = ρ , trB[|φ〉 〈φ|] = σ , |〈ψ|φ〉|= F(ρ,σ) . (161)

Note it holds that

‖|ψ〉 〈ψ| − |φ〉 〈φ|‖1 = 2
q

1− |〈ψ|φ〉|2 = 2
Æ

1− F(ρ,σ)2 , (162)

which can be proven by explicitly diagonalizing the rank-2 matrix |ψ〉 〈ψ|−|φ〉 〈φ|. By mono-
tonicity, we have

‖ρ −σ‖1 ≤ ‖|ψ〉 〈ψ| − |φ〉 〈φ|‖1 , (163)

completing the proof.

Lemma A.8. Let η(x) = −x log x. Then, for 0≤ r, s ≤ 1 with |r − s| ≤ 1/2, we have

|η(r)−η(s)| ≤ η(|r − s|) . (164)
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Proof. Without loss of generality, we can assume r > s. We first show thatη(r)−η(s)≤ η(r−s).
We have

η(r)−η(s) =
∫ r

s
d x η′(x)≤

∫ r−s

0

d x η′(x) = η(r − s) , (165)

where the inequality follows from the monotonicity of η′(x) = − log x − 1.
To show η(s)−η(r) ≤ η(r − s) for 0 ≤ s ≤ r ≤ 1 and r − s ≤ 1/2 is slightly more tedious.

We simply search systematically for the minimal value of f (r, s) = η(r−s)+η(r)−η(s) within
the allowed region and show that it is zero. Since ∇ f = 0 requires r = s, there are no minima
within the interior of the region. Considering each boundary piece in turn: for r = s we have
f = 0. For s = 0 we have f = 2η(r) ≥ 0. For r = 1, we have f (1, 1/2) = f (1, 1) = 0 with
a single maximum in between. Finally, for r − s = 1/2, f (r, s) decreases monotonically with
increasing r, s reaching its minimal value at f (1, 1/2) = 0. This completes the proof.

Lemma A.9 (Fannes’ inequality). Let ρ,σ be (subnormalized) density matrices on the Hilbert
space HA such that ‖ρ −σ‖1 ≤ ε ≤ 1/e and let S(ρ) := − tr[ρ logρ]. Then

|S(ρ)− S(σ)| ≤ ε log
dA

ε
. (166)

Proof. See e.g. Theorem 11.6 of [54]. If we write ρ − σ = P − Q, with P and Q positive
semidefinite and orthogonal, then

‖ρ −σ‖1 = tr[P +Q] = tr[2τ−ρ −σ] , (167)

where τ= ρ+Q = σ+ P. Writing ri , si , and t i respectively for the eigenvalues in descending
order of ρ, σ, and τ, we have t i ≥max{ri , si}= 1/2[ri + si + |ri − si|] and hence

‖ρ −σ‖1 =
∑

i

(2t i − ri − si)≥
∑

i

|ri − si| . (168)

Since for all i we have |ri − si| ≤ 1/e, by Lemma A.8

|S(ρ)− S(σ)|=

�

�

�

�

�

∑

i

(η(ri)−η(si))

�

�

�

�

�

≤
∑

i

η(|ri − si|) . (169)

If ∆=
∑

i |ri − si|, then

∑

i

η(|ri − si|) = η(∆)
∑

i

δη

� |ri − si|
∆

�

≤∆ log
dA

∆
, (170)

where the inequality follows from the bound S(ρ) ≤ log dA. The result then follows from the
monotonicity of η(x) in the range 0≤ x ≤ 1/e.

A.2 Areas in general quantum codes

Lemma A.10. Let |MAX〉 ∈ ⊗i[Hbi
⊗Hri

], withHri
∼=H∗bi

, be the canonical maximally entangled
state and let b,b′ ⊆ {b1 . . . bn} be arbitrary subsets of {b1 . . . bn}, with r := {ri : bi ∈ b} and
r′ := {ri : bi ∈ b′} the corresponding subsets of {r1 . . . rn}. Then

S(b′r)|MAX〉 ≥ S(b′R)|Ψ〉 − S(bR)|Ψ〉 , (171)

for any state |Ψ〉 ∈ ⊗iHbi
⊗HR ⊗HR.
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Proof. The state |MAX〉 is maximally entangled on Hb∩b′ ⊗Hr∩ r′ , while the reduced state of
|MAX〉 on Hb′ ⊗Hr is maximally mixed on Hb′\b ⊗Hr\r′ . We therefore find

S(b′r)|MAX〉 = S(b′ \ b)|MAX〉 + S(r \ r′)|MAX〉 (172)

= S(b′ \ b)|MAX〉 + S(b \ b′)|MAX〉 (173)

≥ S(b′ \ b)|Ψ〉 + S(b \ b′)|Ψ〉 , (174)

for any state |Ψ〉 ∈ ⊗iHbi
⊗HR ⊗HR.

It remains to show that

S(b′ \ b)|Ψ〉 + S(b \ b′)|Ψ〉 ≥ S(b′R)|Ψ〉 − S(bR)|Ψ〉 . (175)

By subadditivity, we have

S(b′ R)|Ψ〉 ≤ S(b′ \ b)|Ψ〉 + S(b∩ b′ R)|Ψ〉 , (176)

while, by the Araki-Lieb inequality, we have

S(bR)|Ψ〉 ≥ S(b∩ b′ R)|Ψ〉 − S(b \ b′)|Ψ〉 . (177)

Combining these completes the proof.

Proof of Theorem 2.8

Proof. We first prove that the area function AB always leads to a QMS prescription for the state
|MAX〉 ∈ ⊗i[Hbi

⊗Hri
] and region Br with entanglement wedge b. This is because

S(Br)V |MAX〉 = AB(b) = AB(b) + S(br)|MAX〉 (178)

by definition. Also, any product unitary U = Ub1
Ub2

. . . acting on |MAX〉 can be mirrored onto
a product unitary Ur1

Ur2
. . . acting on⊗iHri

, which manifestly leaves S(Br) unchanged. Hence
we always have

S(Br)V U |MAX〉 = AB(b) = AB(b) + S(br)U |MAX〉 . (179)

Finally, for any other set of subsystems b′, we have

AB(b
′) + S(b′r)|MAX〉 = S(Br′)|CJ〉 + S(r′ \ r)|MAX〉 + S(r \ r′)|MAX〉 ≥ S(Br) , (180)

where the inequality follows from the Araki-Lieb inequality together with subadditivity as in
the proof of Lemma A.10. This completes the proof that AB leads to a QMS prescription with
entanglement wedge b for the state |MAX〉 and the region Br.

Hence, according to Definition 2.7, the area function A′B must also lead to a QMS pre-
scription for the state |MAX〉 and the region Br. Of course, we do not yet know what the
entanglement wedge is according to that prescription, but it must be some b′ ⊆ {b1 . . . bn}.
But then

AB(b) = S(Br)|CJ〉 = A′B(b
′) + S(b′r)|MAX〉 ≤ A′B(b) + S(br)|MAX〉 = A′B(b) , (181)

where in the second equality we used the A′B QMS prescription to evaluate S(Br)|CJ〉 and in the
inequality we used the requirement of minimality.
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Proof of Theorem 2.9

Proof. By way of contradiction, we suppose that there does exist a state |Ψ〉 and subset b such
that b = EW′BR(|Ψ〉), but A′B(b) 6= AB(b). Recall from the proof of Theorem 2.8 that the area
function AB leads to a QMS prescription for the state |MAX〉 and the region Br, and hence
by assumption the A′B area function must also do so. If we use the A′B QMS prescription to
evaluate AB(b), we find

AB(b) = S(Br)|CJ〉 = A′B(b
′) + S(b′r)|MAX〉 , (182)

for some b′ ⊆ {b1 . . . bn}. We can then use Lemma A.10 and Theorem 2.8 to obtain

A′B(b) + S(bR)|Ψ〉 > AB(b) + S(bR)|Ψ〉 (183)

> A′B(b
′) + S(b′r)|MAX〉 + S(bR)|Ψ〉 (184)

> A′B(b
′) + S(b′R)|Ψ〉 . (185)

In (183), we used Theorem 2.8 together with the assumption that A′B(b) 6= AB(b). In (184),
we used the A′B QMS prescription for AB(b) from (182). Finally, in (185), we used Lemma
A.10. It can immediately be seen that (185) contradicts our assumption that b = EW′BR(|Ψ〉),
since b does not have minimal generalized entropy for the state |Ψ〉.

A.3 State-specific reconstruction

Proof of Theorem 3.1

Proof. We prove four implications.

1→ 2: From (25) we have that for any |ψ〉 ∈Hcode,

〈ψ|Ocode|ψ〉= tr[|ψ〉 〈ψ|Ocode] (186)

= tr
�

trBE[WBV |ψ〉 〈ψ|V †W †
B ]Ocode

�

(187)

= 〈ψ|V †W †
B OcodeW †

B V |ψ〉 (188)

= 〈ψ|V †OBV |ψ〉 . (189)

2→ 3: Let eOcode := O2
code. Condition 2, applied to both Ocode and eOcode, implies

V †
eOBV = eOcode = O2

code = V †OBV V †OBV . (190)

But because V V † and WBW †
B are projectors,

V †OBV V †OBV ≤ V †OBOBV (191)

≤ V †W †
B OcodeWBW †

B OcodeWBV (192)

≤ V †W †
B OcodeOcodeWBV (193)

≤ V †
eOBV , (194)

with the first inequality (191) saturated if and only if

OBV = V V †OBV = VOcode , (195)

which is equivalent to (27).
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3→ 4: Let Ucode = exp(iOcode). Statement 3 tells us that for all states |ψ〉 ∈Hcode

V Ucode |ψ〉= V exp(iOcode) |ψ〉= exp(iOB)V |ψ〉= UBV |ψ〉 , (196)

where UB = exp(iOB).

4→ 1: This last step is easiest to prove using the technology that we develop in Section 4.2.
In Lemma 4.4, it is shown that there exists an isometry W : HA → HA ⊗HUA

, where HA is
a finite-dimensional Hilbert space and HUA

is the space of square-integrable functions on the
unitary group UA with “position basis” {|UA〉}, such that

W |ψ〉A =
∫

dUA |UA〉UA
⊗ UA |ψ〉A = |ψ〉µ0

|MAX〉Aµ∗0 . (197)

Here Hµ0
⊗H∗µ0

⊆HUA
is a finite dimensional subspace of HUA

with Hµ0
∼=HA, and dUA is the

Haar measure on UA. We can therefore define an isometry WB : HB →HB ⊗HUcode
such that

WBV |ψ〉=
∫

dUcode |Ucode〉Ucode
⊗ UBV |ψ〉 (198)

=

∫

dUcode |Ucode〉V Ucode |ψ〉 (199)

= |ψ〉V |MAX〉 , (200)

as desired for Condition 1.26

Proof of Theorem 3.2

Proof. This proof is almost identical to that of Theorem 3.1.

1→ 2: From (29) we have that for any |ψ〉 ∈Hcode,

〈ψ|Ob|ψ〉= tr[trb̄[|ψ〉 〈ψ|]Ob] (201)

= tr
�

trBE[WBV |ψ〉 〈ψ|V †W †
B ]Ob

�

(202)

= 〈ψ|V †OBV |ψ〉 . (203)

2→ 3: Let eOb := O2
b . Condition 2 implies

V †
eOBV = eOb = O2

b = V †OBV V †OBV . (204)

But because WBV V †W †
B ≤ V V † ≤ 1, we have

V †OBV V †OBV ≤ V †
eOBV , (205)

with equality only possible if OBV = V V †OBV = VOb.

3 → 4: Condition 4 follows immediately from Condition 3 if we write Ub = exp(iOb) and
UB = exp(iOB).

26One might worry here about whether WB is truly an isometry mapping HB → Hcode ⊗HE for some HE , as
required by Condition 1. Since HUcode

is infinite dimensional, we can always write HUcode
∼=Hcode ⊗HE′ such that

Hcode is identified with Hµ0
on the subspace Hµ0

⊗H∗
µ0

. Moreover since HB and Hcode are finite dimensional, the
image of WB then lies in Hcode ⊗HE′′ where HE′′ ⊆ HE′ is finite dimensional. We can therefore simply identify
HE
∼=HB ⊗HE′′ to reach the exact form specified in Condition 1.
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4→ 1: As in the proof of Theorem 3.1, we define

WB :=

∫

dUb |Ub〉 ⊗ UB . (206)

Then

WBV |ψ〉bb̄ =

∫

dUb |Ub〉V Ub |ψ〉bb̄ = V |MAX〉bµ∗0 |ψ〉µ0 b̄ , (207)

where on the right hand side V still acts on Hcode
∼=Hb ⊗Hb̄. The reduced state WBV |ψ〉 on

Hµ0
is therefore equal to the reduced state of |ψ〉 on Hb, as required by Condition 1.

Proof of Theorem 3.5

Proof. We start with Condition 1 and prove the cycle of implications.

1→ 2: Consider the state |Φ〉 ∈Hcode⊗HR, where HR is a two-dimensional reference system,
given by

|Φ〉=
1
p

2
[|ψ〉 |0〉+ |φ〉 |1〉] , (208)

where {|ψ〉 , |φ〉} is an orthonormal basis for eHcode, and let |χ±〉 = 1/
p

2[|ψ〉 ± |φ〉] and
|χ±i〉= 1/

p
2[|ψ〉 ± i |φ〉]. We have

ΦBR =
1
4
(χ+

B
−χ−

B
)⊗ XR +

1
4
(χ−i

B
−χ+i

B
)⊗ YR

+
1
2
ψB ⊗ |0〉 〈0|R +

1
2
φB ⊗ |1〉 〈1|R

≈
1
2
ωB ⊗ 1R .

(209)

Here XR and YR are respectively the Pauli X and Y operators on HR. In the approximate equality
we used (38), applied to all of |ψ〉, |φ〉, |χ±〉, and |χ±i〉. More precisely, we can use the triangle
inequality for Schatten 1-norms to see that









ΦBR −
1
2
ωB ⊗ 1R









1
≤

1
2





χ+
B
−ωB







1
+

1
2





χ−
B
−ωB







1
+

1
2





χ+i
B
−ωB







1

+
1
2





χ−i
B
−ωB







1
+

1
2



ψB −ωB





1 +
1
2



φB −ωB





1

≤3ε1 .

(210)

In (210) we implicitly used the trace norms ‖XR‖1 = ‖YR‖1 = 2 and
‖|0〉 〈0|R‖1 = ‖|1〉 〈1|R‖1 = 1. By the first Fuchs-van de Graaf inequality, we therefore have

F(ΦBR,
1
2
ωB ⊗ 1R)≥ 1−

3
2
ε1 . (211)

Let |ω〉 ∈ HB ⊗HE be a purification of ωB where the dimension dE ≥ dB. By Uhlmann’s
theorem, there exists an isometry fWB : HB →Hcode ⊗HE such that

�

�〈Φ| 〈ω|fWBV |Φ〉
�

�

2 ≥ 1−
3
2
ε1 . (212)
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But we can now use the second Fuchs-van de Graaf inequality to bound the Schatten 1-norm


trBE[fWBV |Φ〉 〈Φ|V †
fW †

B ]− |Φ〉 〈Φ|




1 ≤ 2
p

3ε1 . (213)

For any state ρ̃code there exists a positive operator ρ̃1/2
R with operator norm ‖ρ̃1/2

R ‖ ≤
p

2 such

that trR[ρ̃
1/2
R |Φ〉 〈Φ| ρ̃1/2

R ] = ρ̃code. Hence, by monotonicity under partial traces and the Hölder
inequality, we have



trBE[fWBV ρ̃codeV †
fW †

B ]− ρ̃code





1 ≤ 4
p

3ε1 . (214)

Hence ε2 ≤ 4
p

3ε1.

2→ 3: Let eHcode = span{|ψ〉 , |φ〉}. Now define the positive operator

PB =fW
†
B |ψ〉 〈ψ|fWB .

Note that PB ≤ 1, but PB is not necessarily a projector. By (39), we have

1− 〈ψ|V †PBV |ψ〉= tr
�

|ψ〉 〈ψ|
�

|ψ〉 〈ψ| − trBE
fWBV |ψ〉 〈ψ|V †

fW †
B

��

≤ ε2 , (215)

and

〈φ|V †PBV |φ〉= tr
�

|ψ〉 〈ψ|
�

trBE
fWBV |φ〉 〈φ|V †

fW †
B − |φ〉 〈φ|

��

≤ ε2 . (216)

Hence

tr[PB(V |ψ〉 〈ψ|V † − V |φ〉 〈φ|V †)]≥ 1− 2ε2 . (217)

Suppose we now try to maximize the left hand side of (217) over all operators 0 ≤ PB ≤ 1B.
We are maximizing a linear function over a convex space, so the maximum always lies on
the boundary of the space, i.e. at a projector ΠB. It follows that there exists a projector ΠB
satisfying (40) with ε3 ≤ 2ε2.

3 → 4: Let 〈ψ0|Ucode|ψ0〉 = eiφ cosθ . We can then define the orthogonal, unnormalized
states

|ψ+〉= |ψ0〉+ e−iφUcode |ψ0〉 ,

and
|ψ−〉= |ψ0〉 − e−iφUcode |ψ0〉 .

Let ΠB be a projector satisfying the inequalities 〈ψ+|V †ΠBV |ψ+〉/ 〈ψ+|ψ+〉 ≥ 1 − ε3 and
〈ψ−|V †ΠBV |ψ−〉/ 〈ψ−|ψ−〉 ≤ ε3. We then define the unitary operator UB = eiφ(2ΠB − 1B).
We have

〈ψ0|U
†
codeV †UBV |ψ0〉=

1
4
(〈ψ+| − 〈ψ−|)V †(2ΠB − 1B)V (|ψ+〉+ |ψ−〉) (218)

= 1−δ , (219)

where

Re(δ) = 1+
1
4
〈ψ+|ψ+〉 −

1
4
〈ψ−|ψ−〉 −

1
2
〈ψ+|V †ΠBV |ψ+〉+

1
2
〈ψ−|V †ΠBV |ψ−〉

≤ 2ε3 .
(220)

Hence


V Ucode |ψ0〉 − UBV |ψ0〉


=
Ç

2− 2Re
�

〈ψ0|U
†
codeV †UBV |ψ0〉

�

≤ 2
p

ε3 . (221)
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4→ 1: Let |ψ〉 = Ucode |ψ0〉. Then by the second Fuchs-van de Graaf inequality and mono-
tonicity under partial traces,



trB[V |ψ〉 〈ψ|V †]− trB[UBV |ψ0〉 〈ψ0|V †U†
B]




1 ≤ 2ε4 . (222)

However, if we define ωB = trB[V |ψ0〉 〈ψ0|V †] then this is exactly (38), with ε1 = 2ε4.

Proof of Theorem 3.7

Proof. By Uhlmann’s theorem, Condition 1 is equivalent to the fidelity lower bound

F(trBR[V Ub |Ψ〉 〈Ψ|U
†
bV †], trBR[V |Ψ〉 〈Ψ|V †])≥

q

1− ε2
1 . (223)

Theorem 3.7 then follows immediately by applying the Fuchs-van de Graaf inequalities relating
the Schatten 1-norm and the fidelity.

Proof of Theorem 3.11

Proof. We first prove each equivalence in turn.

1→ 2: For any Ub, we have

max
UB

min
|Ψ〉

Re
�

〈Ψ|V †U†
BV Ub|Ψ〉

�

≤min
|Ψ〉

max
UB

Re
�

〈Ψ|V †U†
BV Ub|Ψ〉

�

, (224)

where on the left hand side we are minimizing with respect to |Ψ〉 (in a way that can depend
on UB) before maximizing with respect to UB, and on the right we do the opposite. Hence the
left hand side is related to the error in Condition 2, where we consider the one UB with the
best error for the worst-case state |Ψ〉, and the right hand side is related to Condition 1, where
we allow each UB to depend on the state |Ψ〉. Thus Condition 2 manifestly implies Condition 1
with ε1 ≤ ε2. To show the reverse implication, we need (224) to be approximately saturated.

The first step is to note that since

〈Ψ|V †U†
BV Ub|Ψ〉= tr[ρcodeV †U†

BV Ub] , (225)

where ρcode = trR |Ψ〉 〈Ψ|, we can replace the minimization over |Ψ〉 by a minimization over
density matrices ρcode. By Hölder’s inequality, we also have

max
UB

Re(tr[ρcodeV †U†
BV Ub]) =



trB[V UbρcodeV †]




1 = max
‖OB‖≤1

Re(tr[ρcodeV †O†
BV Ub]) , (226)

where the maximization is now over operators OB with operator norm ‖OB‖ ≤ 1.
Now by von Neumann’s minimax theorem,

max
‖OB‖≤1

min
ρcode

Re(tr[ρcodeV †O†
BV Ub]) =min

ρcode
max
‖OB‖≤1

Re(tr[ρcodeV †O†
BV Ub]) , (227)

since Re(tr[ρcodeV †O†
BV Ub]) is a bilinear function and we are minimizing and maximizing over

convex spaces.
For any Ub, we therefore have a state-independent operator OB with ‖OB‖ ≤ 1 such that

for all states |Ψ〉

Re(〈Ψ|V †O†
BV Ub |Ψ〉)≥ 1−

1
2
ε2

1 . (228)
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However, we don’t yet know that OB is unitary. Let OB have a singular value decompo-
sition OB =

∑

i λi |iR〉 〈iL| with 0 ≤ λi ≤ 1, and let |Ψ〉 have the Schmidt decomposition
|Ψ〉=

∑

j
p

p j |ψ j〉code | j〉R. Then

Re
�

〈Ψ|V †O†
BV Ub |Ψ〉

�

= Re

 

∑

i, j

λi p j 〈ψ j|V †|iR〉 〈iL|V Ub|ψ j〉

!

(229)

≤

√

√

√

√

√





∑

i, j

λi p j

�

�〈ψ j|V †|iR〉
�

�

2









∑

i, j

λi p j

�

�〈iL|V Ub|ψ j〉
�

�

2



 , (230)

where we have used the Cauchy-Schwarz inequality. Since
∑

i, j

λi p j

�

�〈ψ j|V †|iR〉
�

�

2 ≤
∑

i, j

p j

�

�〈ψ j|V †|iR〉
�

�

2
= 1 , (231)

and
∑

i, j

λi p j |〈iL|V Ub|iL〉|
2 ≤

∑

i, j

p j |〈iL|V Ub|iL〉|
2 = 1 , (232)

we have
∑

i, j

(1−λi)p j

�

�〈ψ j|V †|iR〉
�

�

2 ≤ ε2
1 , (233)

and
∑

i, j

(1−λi)p j |〈iL|V Ub|iL〉|
2 ≤ ε2

1 . (234)

Now let UB =
∑

i |iR〉 〈iL|. If we again apply the Cauchy-Schwarz inequality, we find

Re
�

〈Ψ|V †[O†
B − U†

B]V Ub |Ψ〉
�

≤

√

√

√

√

√





∑

i, j

(1−λi)p j |〈iL|V Ub|iL〉|
2









∑

i, j

(1−λi)p j

�

�〈ψ j|V †|iR〉
�

�

2



 (235)

≤ ε2
1 . (236)

Thus

Re
�

〈Ψ|V †U†
BV Ub|Ψ〉

�

≥ 1−
3
2
ε2

1 , (237)

and ε2 ≤
p

3ε1.

2→ 3: As in Section 4.2, we define the isometry WB : HB →HB ⊗HUb
such that

WBV |Ψ〉=
∫

dUb |Ub〉UBV |Ψ〉 . (238)
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We also identify Ha ⊗ Hr ⊆ HUb
with the subspace of HUb

associated to the fundamental
representation.27 From (71), we have

VWb |Ψ〉bb̄R =

∫

dUb |Ub〉V Ub |Ψ〉bb̄R = V |Ψ〉ab̄R |MAX〉br . (239)

By Condition 2, we therefore have

Re
�

〈Ψ|ab̄R 〈MAX|brV
†WBV |Ψ〉bb̄R

�

= Re
�

〈Ψ|bb̄RW †
b V †WBV |Ψ〉

bb̄R

�

(240)

=

∫

dUbRe
�

〈Ψ|U†
bV †UBV |Ψ〉

�

(241)

≥ 1−
1
2
ε2

2 . (242)

Hence, by the second Fuchs-van de Graaf inequality, we have


trBBr[WBVρcodeV †W †
B ]−ρa





1 ≤ 2ε2 , (243)

where ρa = trb̄ρcode. This is exactly Condition 3.

3 → 1: Let OB = W †
B UbWB. Note that ‖OB‖ ≤ 1 but OB is not in general unitary. From

Condition 3 and Hölder’s inequality, we know that, for all ρcode

�

�tr[(V †OBV − Ub)ρcode]
�

�≤ ε3 . (244)

Hence, the operator norm of both the Hermitian and anti-Hermitian parts of (V †OBV − Ub) is
bounded by ε3 and, by the triangle inequality,

‖V †OBV − Ub‖ ≤ 2ε3 . (245)

Thus

Re
�

〈Ψ|(U†
b − V †O†

BV )Ub|Ψ〉
�

≤ 2ε3 , (246)

and

Re
�

〈Ψ|V †O†
BV Ub|Ψ〉

�

≥ 1− 2ε3 . (247)

But, as discussed in the proof that Condition 1 implies Condition 2, the maximum of (247)
over all operators ‖OB‖ ≤ 1 is always achieved by a unitary UB. Hence ε1 ≤ 2

p
ε3.

A.4 Approximate and non-isometric codes

Preliminary lemmas

Lemma A.11 (Levy’s lemma (see, e.g. [56])). Given a function f : Sd → R with Lipschitz
constant K, and a random point φ on the d-dimensional sphere Sd , then for any ε > 0 we have
| f (φ)− 〈 f 〉| ≤ ε with probability

p ≥ 1− 2exp[
−(d + 1)ε2

9π3K2
] . (248)

27Recall from the discussion in Footnote 26 that we can trivially replace WB by an isometry HB → Hb ⊗HE

between finite-dimensional Hilbert spaces as in the statement of Condition 3. For notational clarity, however, we
will maintain the distinction between Ha and Hb.
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Lemma A.12 (Product state η-net). There exists a discrete set S of product states
|ψi〉= |ψi

1〉 . . . |ψi
n〉 ∈ [C

2]⊗n with size

|S| ≤
24nn3n(4+η2/n2)n

η3n
, (249)

such that any (normalized) product state |ψ〉= |ψ1〉 . . . |ψn〉 satisfies ‖|ψ〉− |ψi〉‖ ≤ η for some
|ψi〉 ∈ S.

Proof. We first construct an [η/n]-net for the single-qubit Hilbert space C2.28 To do so, we
consider a maximal set of states where all pairs of states are separated by a distance at least
η/n. Clearly, this is an [η/n]-net. However, we can upper bound the number of states in the
set using a volume counting argument: if each state lies at the center of a sphere of radius
η/2n, then none of the spheres can intersect. Therefore the total volume of all the spheres,
|S|V4(η/2n)4 with V4 the volume of the unit 4-sphere, is upperbounded by the difference in
volume of two spheres centered on the origin, one with radius 1+ η/2n and the other with
radius 1−η/2n. This bounds the number of points by

|S| ≤
(1+η/2n)4 − (1−η/2n)4

(η/2n)4
=

8+ 2η2/n2

(η/2n)3
. (250)

To construct the set S we simply take all possible products of states in this [η/n]-net. By the
triangle inequality, for any product states |ψ〉= |ψ1〉 . . . |ψn〉 and |φ〉= |φ1〉 . . . |φn〉, we have

‖|ψ〉 − |φ〉‖ ≤
∑

i

‖|ψi〉 − |φi〉‖ . (251)

It follows immediately that S is an η-net as desired.

Lemma A.13 (Norm bound). Let V be defined as in Theorem 5.1 and let |ψ〉 be any (normalized)
state. Then, for any δ > 0, we have

1−δ− 2−m−1 ≤ ‖V |ψ〉‖ ≤ 1+δ , (252)

with probability

p ≥ 1− 2 exp[−
2m+1δ2

9π3
] . (253)

Proof. We first estimate 〈‖V |ψ〉‖〉. Since the map x → x2 is convex, we have

〈‖V |ψ〉‖〉2 ≤ 〈‖V |ψ〉‖2〉 (254)

≤ 2n−m

∫

dU 〈ψ|U† |0〉 〈0|⊗(n−m) U |ψ〉 (255)

≤ 2−m 〈ψ|ψ〉 tr[|0〉 〈0|⊗(n−m) ⊗ 12m] = 1 . (256)

To obtain a lower bound on the average norm, we use the fact that x ≥ 3x2/2− x4/2 for all
x ≥ 0. Hence

〈‖V |ψ〉‖〉 ≥
3
2
〈‖V |ψ〉‖2〉 −

1
2
〈‖V |ψ〉‖4〉 (257)

≥
3
2
− 22n−2m−1

∫

dU 〈ψ|U† |0〉 〈0|⊗(n−m) U |ψ〉
2

(258)

≥
3
2
−

2n−2m−1

2n + 1

�

tr[|0〉 〈0|⊗(n−m) ⊗ 12m]2 + tr[|0〉 〈0|⊗(n−m) ⊗ 12m]
�

(259)

≥ 1− 2−m−1 . (260)

28One can mildly improve the scaling here by only constructing a net for qubit states up to a global phase. We
don’t do so primarily out of laziness, but hopefully also to make the proof slightly more readable.
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In (259), we used the standard result (see e.g. [56])
∫

dUU |ψ〉 〈ψ|U† ⊗ U |ψ〉 〈ψ|U† =
1+ FSWAP

22n + 2n
, (261)

where the operator FSWAP permutes the two copies of [C2]⊗n . We now have exponentially
close upper and lower bounds on 〈‖V |ψ〉‖〉.

To bound the fluctuations, we note that, by the triangle inequality,

‖2(n−m)/2 〈0|⊗(n−m) U1 |ψ〉‖ − ‖2(n−m)/2 〈0|⊗(n−m) U2 |ψ〉‖ ≤ 2(n−m)/2‖(U1 − U2) |ψ〉‖ . (262)

Hence ‖V |ψ〉‖ is a Lipschitz continuous function of U |ψ〉with Lipschitz constant 2(n−m)/2. We
can then use Lemma A.11 to obtain

Prob(|‖V |ψ〉‖ − 〈‖V |ψ〉‖〉| ≥ δ)≤ 2exp[−
2m+1δ2

9π3
] . (263)

Combining (263) with (256) and (260) completes the proof.

Lemma A.14 (Norm-squared bound). Let V be defined as in Theorem 5.1 and let |ψ〉 be any
(normalized) state. Then, for any positive δ < 1, we have

�

�‖V |ψ〉‖2 − 1
�

�≤ 3δ , (264)

with probability

p ≥ 1− 2 exp[−
2m+1δ2

9π3
] . (265)

Proof. The result follows almost directly from Lemma A.13. We first note that (265) is trivial
unless δ > 2−m. Hence

1− 3δ < (1−δ− 2−m−1)2 ≤ ‖V |ψ〉‖2 ≤ (1+δ)2 < 1+ 3δ . (266)

Proof of Theorem 5.1

Proof. For any two states |ψ〉 , |φ〉, we have

4 〈φ|V †V |ψ〉= ‖V (|ψ〉+ |φ〉)‖2 − ‖V (|ψ〉 − |φ〉)‖2 + i‖V (|ψ〉+ i |φ〉)‖2 − i‖V (|ψ〉 − i |φ〉)‖2

≈ ‖|ψ〉+ |φ〉‖2 − ‖|ψ〉 − |φ〉‖2 + i‖|ψ〉+ i |φ〉‖2 − i‖|ψ〉 − i |φ〉‖2

≈ 4 〈φ|ψ〉 ,
(267)

where the approximation is valid with high probability thanks to Lemma A.14. To be precise,
we can use the union bound to see that with probability

p ≥ 1− 8exp[−
2m+1δ2

9π3
] , (268)

we have

�

�〈φ|V †V |ψ〉 − 〈φ|ψ〉
�

�≤
3δ
4

�

‖|ψ〉+ |φ〉‖2 + ‖|ψ〉 − |φ〉‖2 + ‖|ψ〉+ i |φ〉‖2 + ‖|ψ〉 − i |φ〉‖2
�

≤ 12δ .
(269)
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To extend this argument to all product states we use Lemma A.12. One can show 〈φ|V †V |ψ〉
is a Lipschitz continuous function of |ψ〉 for fixed |φ〉 (and vice versa) with Lipschitz constant
2n−m as follows.

| 〈φ|V †V |ψ〉 − 〈φ|V †V |ψ′〉 | ≤ ‖V †V |φ〉‖ · ‖|ψ〉 − |ψ′〉‖
≤ 2n−m‖|ψ〉 − |ψ′〉‖ ,

(270)

where the first inequality follows from Cauchy-Schwarz, and the second follows directly from
the definition of V . It is therefore sufficient to show that

�

�〈ψi|V †V |ψ j〉 − 〈ψi|ψ j〉
�

�≤
ε

2
, (271)

for all pairs of states |ψi〉 , |ψ j〉 in an η-net for product states with η ≤ 2m−n−3ε . To see this,
note that, for any pair of states |ψ〉 , |φ〉, there exist states |ψi〉 , |ψ j〉 in the η-net such that by
the triangle inequality

| 〈φ|V †V |ψ〉 − 〈φ|ψ〉 | ≤ | 〈φ|V †V |ψ〉 − 〈ψi|V †V |ψ〉 |+ | 〈ψi|V †V |ψ〉 − 〈ψi|V †V |ψ j〉 |

+
�

�〈ψi|V †V |ψ j〉 − 〈ψi|ψ j〉
�

�+ | 〈ψi|ψ j〉 − 〈φ|ψi〉 |+ | 〈φ|ψ j〉 − 〈φ|ψ〉 |

≤ 2(2n−mη) +
ε

2
+ 2η≤ ε .

(272)

From Lemma A.12, we know that the number of states needed for such a net is at most

|S| ≤
24nn3n(4+η2/n2)n

η3n
≤ 215n+3n(n−m)+1n3n . (273)

We can therefore apply the union bound to (268) for all pairs of |ψi〉, using that the number of
pairs is bounded by |S|2. If we substitute ε = 24δ in (269), this leads to the desired result.

B Non-theorems and their counterexamples

While we have emphasized throughout this paper that Theorem 4.2 is a natural abstraction
of the core features of holographic codes, it is reasonable to ask whether there exist other
interesting theorems with the same basic interpretation, but different technical details. For
example:

1. In Condition (2), we insisted that the holographic entropy prescription (1) should apply
not just for the state |Ψ〉 but also for states related to |Ψ〉 by a product of local unitaries.
While this should always be true in quantum gravity whenever |Ψ〉 itself satisfies (1),29

it is clearly a stronger condition for general codes. Is it perhaps unnecessarily strong?

2. Furthermore, did we even need to talk about arbitrary product unitaries in Condition
(1)? Couldn’t we just consider local unitaries acting on a single bulk site?

3. In Condition (4), we minimized the generalized entropy over all possible subsets of
{b1 . . . bn}. But bulk entropies can be defined much more generally for any subsystem
in any tensor product decomposition of the bulk Hilbert space, as can areas using Defi-
nition 2.1. Can we prove minimality over all bulk subsystems, including ones that don’t
commute with the subsystems Hbi

?

29This is because gravitational replica trick calculations depend only on the entanglement structure of |Ψ〉, and
not on the specific bulk quantum state.
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4. Finally, 4.2 assumes that the bulk factorizes into a tensor product of local subsystems. Is
there a theorem like it for more general bulk von Neumann algebras, as in Theorem 5.1
of [1]?

The answer to all of these questions is no. At least in their most obvious versions, none of
these other potentials theorems actually exist. In the following subsections, we will present a
counterexample to each one in turn.

B.1 Counterexample with a holographic entropy formula for only the state itself

Suppose we have an isometry V , subsystem Hb and a state |Ψ〉, such that

S(BR)V |Ψ〉 = AB(b) + S(bR)|Ψ〉 . (274)

However, unlike in Condition 2 of Theorem 4.2, we make no assumptions about the entropy
S(BR)V UbUb̄|Ψ〉 for product unitaries Ub, Ub̄. As we shall see, on its own this is insufficient to
derive Condition 1, or anything similar to it.

As a counterexample, consider the isometry V : Hb1
→HB⊗HB (for simplicity we consider

only a single bulk subsystem), mapping the qudit Hb1
of dimension db1

to two qudits, HB and
HB with much larger dimension, such that

V | j〉b1
= |φ j〉BB :=

¨

1p
D

∑D
i=1 |i〉B |i〉B , j = 0 ,

∑D+d
i=D+1 ci |i〉B |i + j d〉B , j > 0 ,

(275)

where ci are set of arbitrary normalized coefficients. All |φ j〉 are orthogonal, so V is indeed
an isometry.

By a judicious choice of parameters D, d, ci , db1
, we can choose

S(B)|φ0〉 = AB(b1) + S(b1)0 , (276)

S(B)|φ j>0〉 6= AB(b1) + S(b1) j . (277)

Indeed, let S := S(B)|φ j〉, determined by the parameters ci . Then

AB(b1) := S(Br1)|CJ〉 = log db1
+

1
db1

�

log D+ (db1
− 1)S

�

. (278)

If

S = log

 

Dd
−

db1
db1
−1

b1

!

, (279)

which is achievable by many choices of D, d, ci , then

S(B)V |ψ0〉 = log D = AB(b1) = AB(b1) + S(b1)|ψ0〉 , (280)

ensuring (276).
However, since

S(B)V |ψ j 6=0〉 = S 6= S(B)V |ψ0〉 , (281)

then any unitary Ub1
such that Ub1

|ψ0〉 = |ψ j 6=0〉 will change the entropy on B, and hence
cannot be reconstructible on B. Since there is only a single bulk subsystem, the unitary Ub1

is
automatically “local”, thus ruling out any version of Condition 1.
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B.2 Counterexample with reconstruction possible only for local unitaries

Another naive possibility is that local unitaries Ubi
are sufficient in Condition 1, without the

need for more general product unitaries. For example, one might wonder whether the follow-
ing is true:

Untrue theorem (local unitaries). The following two statements are equivalent.

1. (Complementary Recovery) For all Ubi
, if bi ∈ b (respectively if bi ∈ b̄) then there exists a

unitary operator UBR (respectively UB R) such that,

UBRV |Ψ〉= V Ubi
|Ψ〉 , (respectively UB RV |Ψ〉= V Ubi

|Ψ〉) . (282)

2. (Holographic Entropy Formula) For all Ubi
,

S(BR)V Ubi
|Ψ〉 = AB(b) + S(bR)Ubi

|Ψ〉 . (283)

Let us first construct an example that satisfies Condition 1, but not Condition 2, and then
we will construct an example that satisfies Condition 2 but not Condition 1. Let Hb1

and Hb2

be qubits, with HB and HB qudits for large d. Let

V |0〉b1
|0〉b2

= |0〉B |0〉B , (284)

V |1〉b1
|0〉b2

= |1〉B |0〉B , (285)

V |0〉b1
|1〉b2

= |2〉B |0〉B , (286)

V |1〉b1
|1〉b2

=
d−1
∑

i=1

|i〉B |i〉B . (287)

Finally let |ψ〉= |0〉 |0〉. For any Ub1
we have Ub1

|ψ〉 ∈ span{|00〉 , |10〉}. Similarly, for any Ub2

we have Ub2
|ψ〉 ∈ span{|00〉 , |01〉}. Within both these subspaces, trB[V |φ〉 〈φ|V †] = |0〉 〈0|B

is independent of |φ〉; hence all local operators are reconstructible on HB and Condition 1
is satisfied for b = {b1, b2}. However S(B)|ψ〉 = 0, while AB(b) = S(Br1r2)|CJ〉 = S(B)|CJ〉
= O(log d). So Condition 2 is not satisfied.

Note that the product unitary X b1
X b2

cannot be reconstructed on HB, since

V X b1
X b2
|ψ〉= V |11〉 , (288)

which has a different reduced state on HB. Hence neither Condition 1 nor Condition 2 of the
true Theorem 4.2 are satisfied.

To see the reverse (an example that satisfies Condition 2 but not Condition 1 of the hypo-
thetical local unitary theorem), let

V |0〉b1
|0〉b2

=
1
p

d

d−1
∑

i=0

|i〉B |i〉B , (289)

V |1〉b1
|0〉b2

=
1
p

d

d−1
∑

i=0

|i〉B |i + d〉B , (290)

V |0〉b1
|1〉b2

=
1
p

d

d−1
∑

i=0

|i〉B |i + 2d〉B , (291)

V |1〉b1
|1〉b2

=
d−1
∑

i=0

ci |i + d〉B |i + 3d〉B , (292)

53

https://scipost.org
https://scipost.org/SciPostPhys.12.5.157


SciPost Phys. 12, 157 (2022)

for some normalized coefficients ci such that V |11〉 has entanglement entropy S. Again, we
can choose d, S such that with b= {b1, b2} and for all Ub1

, Ub2

S(B)V Ub1
|00〉 = S(B)V Ub2

|00〉 = S(B)V |00〉 = log d , (293)

and

AB(b) + S(b)Ub1
|00〉 = AB(b) + S(b)Ub2

|00〉 = AB(b) = S(Br1r2)|CJ〉 (294)

= log4+
1
4
(3 log d + S) (295)

are equal to one another. However, it is immediately obvious that in general the reduced
density matrix of V Ub1

|00〉 or V Ub2
|00〉 on HB is different from that of V |00〉, so Condition

1 of the hypothetical local unitary theorem is violated.

B.3 Counterexample to minimality over all subsystems

While we have proved that EWBR(V |Ψ〉) has minimal generalized entropy AB(b) + S(bR)|Ψ〉
over subsystems associated to subsets of {b1, . . . bn}, we have not shown that it is minimal
over all subsystems of the bulk Hilbert space. Indeed, to prove that the subsystem Hb was
more minimal than some other subsystem Hb′ , we had to use strong subadditivity,

S(bR) + S(b′R)≥ S([b∪ b′]R) + S([b∩ b′]R) . (296)

In other words, we made explicit use of the fact that there exists a tensor product decomposi-
tion

Hcode
∼=Hb∩b′ ⊗Hb∩b̄′ ⊗Hb̄∩b′ ⊗Hb̄∩b̄′ . (297)

Given two arbitrary subsystems of Hcode (i.e. Hilbert spaces Hb and Hb′ such that
Hcode

∼=Hb⊗Hb̄
∼=Hb′ ⊗Hb̄′ for some Hb̄ and Hb̄′), no such decomposition will exist, and so

our proof of minimality will not work. In general, a decomposition analogous to (297) exists if
and only if the superoperators that project operators into the subsystem algebras on Hb, Hb’,
Hb̄ and Hb̄′ all commute with one another.30

This is not just a failure of our proof method – it is simply not true in general that EWBR is
minimal over all subalgebras. Here is an example. Let Hb1

and Hb2
be qudits with dimension

d, and let V map them trivially to B and B respectively:

V |i〉b1
| j〉b2

= |i〉B | j〉B . (298)

It is straightforward to compute AB(b1) = 0. Now consider a maximally-entangled input state
|ψ〉 :=

∑

i |i〉b1
|i〉b2

/
p

d. Clearly, Condition 1 of Theorem 4.2 is satisfied with b = {b1}. The
QMS prescription tells us that

S(B)V |ψ〉 = AB(b1) + S(b1)|ψ〉 = d log d , (299)

and moreover that this is minimal relative to the AB + S|ψ〉 associated to inputs ∅, {b2}, and
{b1, b2}.

30Given a decomposition of the form (297), the commutativity of the projectors (e.g. Pb(O) = trb̄[O]⊗ 1b̄/db̄)
follows trivially from the commutativity of partial traces onto independent subsystems. Conversely, given commut-
ing projectors we can construct a decomposition of the form (297) by defining, e.g., Pb∩b′ = PbPb′ = Pb′Pb.
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Now define another subsystem via the following procedure. Let unitary U act as

U | j〉b1
| j〉b2

:=
1
p

d

d
∑

k=1

e2πi jk/d |k〉b1
|k〉b2

,

U | j〉b1
| j′〉b2

:= | j〉b1
| j′〉b2

, j 6= j′ .

(300)

Consider all operators of the form

U(Ob1
⊗ 1b̄)U

† . (301)

These form a von Neumann algebra Ab′1
on Hcode with projector

Pb′1
(O) = U trb2

[U†OU]⊗ 1b2
U† . (302)

Since the algebra Ab′1
is isomorphic to the algebra Ab1

of operators acting on Hb1
, Ab′1

is also
the algebra of operators acting on a subsystem Hb′1

, which is related to Hb1
by conjugation

with U . However Pb′1
does not commute with Pb1

, so our minimality proof does not apply.
Indeed, as we shall see,

AB(b
′
1) + S(b′1)|ψ〉 < S(B)V |ψ〉 = AB(b1) + S(b1)|ψ〉 , (303)

giving a counterexample to minimality over all possible subsystems. To compute AB(b′1), we
need the reduced density matrix of HB⊗Hr ′1

in the Choi-Jamiolkwoski state, which equals the
reduced density matrix of HB ⊗Hr1

in the state V U |MAX〉.

U |MAX〉b1 b2r1r2
=

1
d

U
∑

jk

| j〉b1
|k〉b2

| j〉r1
|k〉r2

=
1

d3/2

∑

j`

e2πi j`/d |`〉b1
|`〉b2

| j〉r1
| j〉r2

+
1
d

∑

j 6=k

| j〉b1
|k〉b2

| j〉r1
|k〉r2

=
1
d

∑

jk

| j〉b1
|k〉b2

| j〉r1
|k〉r2

+
1

d3/2

∑

jk

e2πi jk/d |k〉b1
|k〉b2

| j〉r1
| j〉r2

−
1
d

∑

j

| j〉b1
| j〉b2

| j〉r1
| j〉r2

= |MAX〉+O
�

1
d1/2

�

.

(304)

Using Fannes inequality and the fact that trace distances are monotonically decreasing under
partial traces, we have

AB(b
′
1) := S(Br ′1)|CJ〉 = S(Br1)|CJ〉 +O((1/

p

d) log d) =O((1/
p

d) log d) . (305)

All that remains is to compute S(b′1)|ψ〉. Noting that

U |ψ〉=
1
p

d
U

d
∑

j=1

| j〉b1
| j〉b2

=
1
d

d
∑

j,k=1

e2πi jk/d |k〉b1
|k〉b2

= |d〉b1
|d〉b2

, (306)

we have
S(b′1)|ψ〉 = S(b1)U |ψ〉 = 0 , (307)

and therefore

AB(b
′
1) + S(b′1)|ψ〉 =O

�

log d
p

d

�

, (308)

which is much less than AB(b1) + S(b1)|ψ〉 = log d for large d.
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B.4 Counterexample to minimality for algebras with centers

Theorem 4.2 is about bulk Hilbert spaces that factorize into a tensor product of local subsys-
tems. As such, it is comparable to (although much more general than) Theorem 4.1 of [1].
There is however a more general theorem (Theorem 5.1) in [1], where the local subsystems are
replaced by local von Neumann algebras. The new feature is that these subalgebras can have
a nontrivial center – operators that commute with every operator in the subalgebra. (Indeed a
finite-dimensional subalgebra with trivial center – i.e. containing only operators proportional
to the identity – is always just the algebra of all operators on some particular subsystem.) In
this way, the ‘area’ of a given surface can become a non-trivial operator that lies in the center
of the associated subalgebra, as we expect in AdS/CFT for code spaces where the bulk can
have any of multiple distinct possible geometries.

It is natural to hope that a similar generalization of Theorem 4.2 exists where the local
subsystems are replaced by local subalgebras. And indeed there exist fairly natural extensions
of our definition of area and state-specific product operator reconstruction for which some
aspects of Theorem 4.2 continue to hold.

However, there are also significant issues that show up. In particular there are serious
problems with trying to prove a version of minimality (Condition 4) for general von Neumann
algebras. For any such theorem, at least one of the following must not be true:

1. The definition of reconstruction includes state-independent algebraic reconstruction à
la Theorem 5.1 of [1] as a special case,

2. The definition of area reduces to the definition in Theorem 5.1 of [1] for cases where
that definition is valid,

3. The definition of area reduces to the value given by Definition 2.1 when evaluated on
algebras with trivial center.

To see this, consider the isometry

V |0〉= |0〉B |0〉B ,

V |1〉= 2−n/2
2n
∑

i=1

|i〉B |i〉B .
(309)

This is an algebraic QEC code in which B can state-independently reconstruct the algebra
Ab = {1, Z} acting on Hcode. This is a commuting subalgebra that is equal to its own com-
mutant Ab̄ =Ab and is also reconstructible from HB. We therefore have a state-independent
complementary algebraic QECC, exactly the conditions needed for Harlow’s Theorem 5.1.

Harlow’s area operator Â(b) ∈Ab is

ÂB(b) = n |1〉 〈1| . (310)

The entropy of B can be computed with the holographic entropy formula

S(B)V |ψ〉 = 〈ψ|ÂB(b)|ψ〉+ S(b)|ψ〉 , (311)

for all |ψ〉 ∈ Hcode. Here S(b)|ψ〉 is the algebraic entropy of the state |ψ〉 for the subalgebra
Ab. Hence in particular

S(B)V |1〉 = n , (312)

as can be readily verified. However, this generalized entropy is not minimal, even when con-
sidering only algebras whose projectors commute with that of Ab. According to Definition 2.1,
the area AB(∅) of the trivial algebra is

AB(∅) =
n
2
+O(n0) , (313)
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while the corresponding entropy vanishes S(∅)|ψ〉 = 0. Hence at large n the trivial algebra
has generalized entropy much less than Mb.

It is important to emphasize here that this counterexample does not depend on any spe-
cific proposal for the definition of area for general algebras. Instead, it simply used Harlow’s
definition in [1], applied to a code with complementary state independent recovery, together
with Definition 2.1 for the areas of algebras with trivial center, applied to the trivial algebra
of operators proportional to the identity. Changing either of these definitions seems a priori
undesirable. We comment on possible resolutions in Section 6.3.

C Proof of Theorem 5.5

Lemma C.1. Let |ψ〉 , |φ〉 ∈HA⊗HB satisfy ‖|ψ〉‖,‖|φ〉‖ ≤ 1. Then


 |ψ〉 〈ψ| − |φ〉 〈φ|




1 ≤ 2


 |ψ〉 − |φ〉‖ . (314)

Proof. By explicit diagonalization, we have



 |ψ〉 〈ψ| − |φ〉 〈φ|




2
1 = (〈ψ|ψ〉+ 〈φ|φ〉)

2 − 4| 〈ψ|φ〉 |2 (315)

≤ (〈ψ|ψ〉+ 〈φ|φ〉)2 − 4[Re(〈ψ|φ〉)]2 (316)

≤ 4


 |ψ〉 − |φ〉




2
. (317)

In the last inequality, we expanded A2 − B2 = (A+ B)(A− B) and then used

〈ψ|ψ〉+ 〈φ|φ〉+ 2Re(〈ψ|φ〉)≤ 4 . (318)

Lemma C.2. Let
ΦB R(Ub) := trBR

�

V Ub |Φ〉 〈Φ|U
†
bV †

�

. (319)

where |Φ〉 ∈ Hcode ⊗HR ⊗HR satisfies ‖V Ub |Φ〉‖ ≤ 1 for all Ub and all other terms are defined
as in Theorem 5.5. If

S

�∫

dUbΦB R(Ub)

�

−
∫

dUbS(ΦB R(Ub))≤ δ , (320)

for sufficiently small δ > 0, then with probability p ≥ 1−κ, there exists a UBR such that



UBRV Ûb |Φ〉 − V Ub |Φ〉




2 ≤
8
p

2δ
κ

. (321)

Proof. Recall how one proves that

S(ρ)≥
∑

i

piS(ρi) , (322)

for a density matrix ρ :=
∑

i piρi that is a mixture of density matrices ρi . Let ρ be defined on
system A, and introduce auxiliary system B, in joint state

ρAB =
∑

i

pi |i〉 〈i|B ⊗ρi . (323)

57

https://scipost.org
https://scipost.org/SciPostPhys.12.5.157


SciPost Phys. 12, 157 (2022)

These systems each have entropy

S(ρA) = S (ρ) , (324)

S(ρB) = S

�

∑

i

pi |i〉 〈i|B

�

= −
∑

i

pi log pi , (325)

S(ρAB) =
∑

i

piS (ρi)−
∑

i

pi log pi . (326)

The inequality (322) is then simply subadditivity. Explicitly,

S(ρ)−
∑

i

piS(ρi) = I(A : B)ρAB
= Srel(ρAB||ρA⊗ρB) . (327)

We want to write the analogue of (323), but for the continuous variable Ub, with proba-
bility measure dUb, rather than the discrete variable i. To do so, we need to use the language
of operator algebras. We define the von Neumann algebra A as the direct integral

∫ ⊕

AB R dUb , (328)

where AB R is the algebra of operators on HB ⊗HR. The analogue of the density matrices ρAB
and ρA⊗ρB are the linear functionals ρUbB R and ρUb

⊗ρB R defined by

ρUbB R

�∫ ⊕

OBR(Ub)dUb

�

=

∫

dUb tr
�

OB R(Ub)ΦB R(Ub)
�

, (329)

ρUb
⊗ρB R

�∫ ⊕

OB R(Ub)dUb

�

=

∫

dUbdU ′b tr
�

OB R(Ub)ΦB R(U
′
b)
�

. (330)

Note that ρUbB R and ρUb
⊗ρB R are both subnormalized

ρUbB R (1) = ρUb
⊗ρB R (1) =

∫

dUb tr
�

ΦB R(Ub)
�

≤ 1 . (331)

However, we can extend them to normalized states by defining an isometry V ′
B

: HB → HB
′

with dB
′ = dB + 1, as well as similar isometries for HR and HUb

. We then define normalized

states ρ̂Ub
′B
′
R
′ = V ′ρUbB RV ′†+ρ0 and ρ̂Ub

′⊗ρ̂B
′
R
′ = V ′ρUb

⊗ρB RV ′†+ρ0 with V ′ = V ′BV ′RV ′Ub

and

V ′†
B
ρ0V ′B = V ′†

R
ρ0V ′R = V ′†Ub

ρ0V ′Ub
= 0 . (332)

We then have

Srel(ρ̂Ub
′B
′
R
′ ||ρ̂Ub

′ ⊗ ρ̂B
′
R
′) = Srel(ρUbB R||ρUb

⊗ρB R)

=

∫

dUb tr

�

ΦB R(Ub)

�

log

�∫

dU ′bΦB R(U
′
b)

�

− logΦB R(Ub)

��

= S

�∫

dUbΦB R(Ub)

�

−
∫

dUbS(ΦB R(Ub))≤ δ .

(333)

By Pinsker’s inequality, it follows that




ρUbB R −ρUb
⊗ρB R







1
=




ρ̂Ub
′B
′
R
′ − ρ̂Ub

′ ⊗ ρ̂B
′
R
′







1
≤
p

2δ . (334)
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However, we can explicitly evaluate





ρUbB R −ρUb
⊗ρB R







1
=

∫

dUb









ΦB R(Ub)−
∫

dU ′bΦB R(U
′
b)









1

. (335)

Finally, by Markov’s inequality, we know that with probability p ≥ 1−κ/2








ΦB R(Ub)−
∫

dU ′bΦB R(U
′
b)









1

≤
2
p

2δ
κ

, (336)

where we can choose κ such that 1� κ� δ. Now we can use the triangle inequality to show
that with probability p ≥ 1−κ



ΦB R(Ub)−ΦB R(Ûb)




1 ≤
4
p

2δ
κ

. (337)

If we extend ΦB R(Ub),ΦB R(Ûb) to normalized states Φ̂B
′
R
′(Ub), Φ̂B

′
R
′(Ûb) in the same way as

before, we find


Φ̂B
′
R
′(Ub)− Φ̂B

′
R
′(Ûb)





1
=


ΦB R(Ub)−ΦB R(Ûb)




1 +
�

�‖ΦB R(Ub)‖1 − ‖ΦB R(Ûb)‖1
�

� (338)

≤
8
p

2δ
κ

, (339)

where we used the triangle inequality. We then use the first Fuchs-van de Graaf inequality to
bound the fidelity

F
�

Φ̂B R(Ub), Φ̂B R(Ûb)
�

≥ 1−
4
p

2δ
κ

. (340)

It follows by Uhlmann’s theorem (together with the fact that projecting the states back into
the original Hilbert space using V ′†

B
V ′†

R
can only decrease the norm) that there exists a unitary

UBR such that


UBRV Ûb |Φ〉 − V Ub |Φ〉




2 ≤
8
p

2δ
κ

. (341)

Lemma C.3. For any state |ψ〉 ∈HA⊗HB ⊗HC and sufficiently small ε > 0, we have

Hεmin(A|B)|ψ〉 ≤ S(A|B)|ψ〉 − 4ε log
dAdB

2ε
. (342)

Proof. Let |ψ̃〉 maximize the min-entropy Hmin(A|B) within an ε-ball of |ψ〉. The state |ψ̃〉
may in general be subnormalized; however, as in the proof of Lemma C.2, we can extend the
Hilbert spaces HA/B/C with isometries VA/B/C : HA/B/C →H′A/B/C and define a normalized state

|ψ̃′〉 ∈H′A⊗H′B ⊗H′C such that

V †
A |ψ̃

′〉= V †
B |ψ̃

′〉= V †
C |ψ̃

′〉= |ψ̃〉 . (343)

We have

Hεmin(A|B)|ψ〉 = Hmin(A|B)|ψ̃〉 ≤ S(A|B)|ψ̃〉 = S(A|B)|ψ̃′〉 . (344)

But, by the definition of the generalized fidelity (Definition 5.3),31 we have

| 〈ψ̃′|ψ〉 | ≥
p

1− ε2 , (345)

31Because |ψ〉 is normalized, there is no need to supremize over isometries V .
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and hence

‖ψ̃′AB −ψAB‖1 ≤ 2ε . (346)

Finally, by Fannes’ inequality, we have32

S(A|B)|ψ〉 ≥ S(A|B)|ψ̃′〉 − 4ε log
dAdB

2ε
. (347)

Proof (1) =⇒ (2):

The proof proceeds analogously to the exact version in Section 4.2. We again have

S(BRar)VWbWb̄|Ψ〉 = AB(b) + S(bR)|Ψ〉 . (348)

For a given Ûb, Û ′
b̄
, let

W (Ûb)
BR =

∫

dUb |Ub〉 ⊗ UBR , (349)

and

W
(Û ′

b̄
)

B R
=

∫

dU ′
b̄
|U ′

b̄
〉 ⊗ U ′

B R
, (350)

with UBR, U ′
B R

satisfying (139) when possible and arbitrarily chosen otherwise.
Let p(RCVR) be the probability that UBR, U ′

B R
satisfying (139) exist for randomly chosen

Ub, U ′
b̄
, Ûb, Û ′

b̄
. Meanwhile let p(RCVR|Ûb, Û ′

b̄
) be the probability that UBR, U ′

B R
satisfying (139)

exist for randomly chosen Ub, U ′
b̄
, conditioned on some particular Ûb, Û ′

b̄
. By assumption of

Condition 1

1− p(RCVR) =

∫

dÛbdÛ ′
b̄
[1− p(RCVR|Ûb, Û ′

b̄
)]≤ κ1 . (351)

Hence by Markov’s inequality, for any κ2� κ1, the inequality

1− p(RCVR|Ûb, Û ′
b̄
)≤

κ1

κ2
, (352)

is satisfied with probability p(Ûb, Û ′
b̄
) ≥ 1− κ2 for Haar random unitaries Ûb, Û ′

b̄
. From now

on, we assume that Ûb, Û ′
b̄

satisfy (352).
By explicit evaluation



WBRWB RV ÛbÛ ′
b̄
|ψ〉 − VWbWb̄ |Ψ〉





2 ≤
∫

dUbdU ′
b̄



UBRU ′
B R

V ÛbÛ ′
b̄
|ψ〉 − V UbU ′b̄ |Ψ〉





2

≤ ε2
1 +

κ1

κ2
. (353)

Applying Lemma C.1, together with Fannes’ inequality, then tells us that
�

�

�S (BR)V ÛbÛ ′
b̄
|Ψ〉 −

�

AB(b) + S(bR)|Ψ〉
�

�

�

�=
�

�

�S (BR)V ÛbÛ ′
b̄
|Ψ〉 − S(BR)VWb̄Wb|Ψ〉

�

�

� (354)

≤
√

√

ε2
1 +

κ1

κ2
log

d2
Bd2

R

4(ε2
1 + κ1/κ2)

. (355)

32Here we have simply applied the standard Fannes’ inequality to S(AB) and S(B) separately. You can improve
this bound somewhat (and avoid any dB dependence) using the Fannes-Alicki inequality [57], but we have not
done so in the interests of being self-contained.
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Proof (2) =⇒ (1):

Recall from the proof of the exact case in Section 4.2 that

S(B Rār̄)VWbWb̄|Ψ〉 = S(BRar)VWbWb̄|Ψ〉 = AB(b) + S(bR)|Ψ〉 , (356)

and that

S(B R ār̄)VWbWb̄|Ψ〉 ≥
∫

dUbS(BR)V UbWb̄|Ψ〉 ≥
∫

dUbdU ′
b̄
S(BR)V UbU ′

b̄
|Ψ〉 . (357)

But by Condition 2,
∫

dUbdU ′
b̄
S(BR)V UbU ′

b̄
|Ψ〉 ≥ (1−κ2)(AB(b) + S(bR)|Ψ〉)− ε2 (358)

≥ AB(b) + S(bR)|Ψ〉 −κ2 log(dBdR)− ε2 . (359)

Hence, by Lemma C.2 (applied to |Φ〉=Wb̄ |Ψ〉), for any κ > 0 there exists UBR such that, with
probability p ≥ 1−κ,



UBRV ÛbWb̄ |Ψ〉 − V UbWb̄ |Ψ〉




2 ≤
8
p

2κ2 log(dBdR) + 2ε2

κ
. (360)

Since



UBRV ÛbWb̄ |Ψ〉 − V UbWb̄ |Ψ〉




2
=

∫

dU ′
b̄



UBRV ÛbU ′
b̄
|Ψ〉 − V UbU ′

b̄
|Ψ〉





2
, (361)

we can use Markov’s inequality to show that



UBRV ÛbU ′
b̄
|Ψ〉 − V UbU ′

b̄
|Ψ〉





2 ≤
8
p

2κ2 log(dBdR) + 2ε2

κ2
, (362)

with probability p ≥ 1−2κ. By an analogous argument, there also exists U ′
B R

(depending only
on U ′

b̄
) such that



U ′
B R

V ÛbÛ ′
b̄
|Ψ〉 − V UbÛ ′

b̄
|Ψ〉





2 ≤
8
p

2κ2 log(dBdR) + 2ε2

κ2
, (363)

with probability p ≥ 1−2κ. By the union bound, both (362) and (363) are true with probability
p ≥ 1− 4κ. Using the triangle inequality, and choosing κ1 = 4κ, we find



UBRU ′
B R

V ÛbÛ ′
b̄
|Ψ〉 − V UbU ′

b̄
|Ψ〉



≤


UBRU ′
B R

V ÛbÛ ′
b̄
|Ψ〉 − UBRV ÛbU ′

b̄
|Ψ〉





+


UBRV ÛbU ′
b̄
|Ψ〉 − V UbU ′

b̄
|Ψ〉



 (364)

≤


U ′
B R

V ÛbÛ ′
b̄
|Ψ〉 − V ÛbU ′

b̄
|Ψ〉





+


UBRV ÛbU ′
b̄
|Ψ〉 − V UbU ′

b̄
|Ψ〉



 (365)

≤
16[8κ2 log(dBdR) + 8ε2]1/4

κ1
. (366)
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Proof (1) =⇒ (3):

By Condition 1, there exists Ûb, Û ′
b̄

such that (139) is satisfied for a randomly chosen Ub, U ′
b̄

with probability p ≥ 1−κ1 and thus



WBRWB RV ÛbÛ ′
b̄
|Ψ〉 − VWbWb̄ |Ψ〉



=

∫

dUbdU ′
b̄



UBRU ′
B R

V ÛbÛ ′
b̄
|ψ〉 − V UbU ′b̄ |Ψ〉



 (367)

≤ ε1 +κ1 . (368)

By Lemma C.1 and monotonicity, we have


ρ −σ




1 ≤ 2ε1 + 2κ1 , (369)

where ρ and σ are the reduced states on HB ⊗HR ⊗HUb̄′
⊗HUb

of WBRWB RV ÛbÛ ′
b̄
|Ψ〉 and

VWbWb̄ |Ψ〉 respectively. As in the proof of Lemma C.2, these states can be extended to normal-
ized states ρ̂, σ̂ on larger “primed” Hilbert spaces, while at most doubling the Hilbert space
distance between them. Hence by the first Fuchs-van de Graaf inequality, the generalized
fidelity

F̄(ρ,σ)≥ F(ρ̂, σ̂)≥ 1− (2ε1 + 2κ1) . (370)

It follows, if ε3 =
p

2ε1 + 2κ1, then

Hε3
min(ā

′r̄′|B Rar)VWbWb̄|Ψ〉 ≥ Hmin(Ub̄′ |B RUb)WBRWBRV ÛbÛ ′
b̄
|Ψ〉 . (371)

But, as in (123), if |φ〉=WBRWBRV ÛbÛ ′
b̄
|Ψ〉, then

φBRUbUb̄′
≤ φBRUb

⊗ 1Ub̄′
, (372)

and so

Hmin(Ub̄′ |B RUb)WBRWBRV ÛbÛ ′
b̄
|Ψ〉 ≥ 0 . (373)

From this, Condition 3 follows by Lemma 4.7.

Proof (3) =⇒ (4):

Recall from (127) in the proof of the exact version in Section 4.2, that by strong subadditivity

AB(b
′)≥ AB(b∪ b′) + AB(b

′ ∩ b′)− AB(b) . (374)

Hence, by Condition 3, and the equality of complementary areas (Remark 2.2), we have

AB(b
′)≥ AB(b)−Hε3

min(b
′ \ b|bR)|Ψ〉 −Hε3

min(b̄
′ \ b̄|b̄R)|Ψ〉 . (375)

Finally, applying Lemma C.3 to the two smooth min-entropies gives

AB(b
′)≥ AB(b) + 2S(bR)|Ψ〉 − S([b∪ b′]R)|Ψ〉 − S([b∩ b′]R)|Ψ〉 − 4ε3 log

d2
codedRdR

4ε2
3

, (376)

from which Condition 4 follows immediately by strong sub-additivity.
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