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How a skyrmion can appear both massive and massless
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Abstract

When a magnetic skyrmion is modeled as a point particle, its dynamics depends on
the precise definition of the skyrmion center. The guiding-center position, defined as
the first moment of the skyrmion density, exhibits Thiele’s massless dynamics; position
based on the first moment of magnetization component m z shows Larmor oscillations
characteristic of a massive particle. We show that, even with the latter definition, the
Larmor oscillations may be absent for certain types of external forces such as adiabatic
spin torque. We offer an alternative mechanical model of a skyrmion featuring two
coupled massless particles.
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Q = 0 Q = 1

Figure 1: A uniform state (Q = 0) and a Belavin-Polyakov [9] skyrmion (Q = 1).

1 Introduction

Topological solitons in magnets attract the interest of both physicists and engineers [1]. Their
stability on the one hand and mobility on the other make them attractive for storing and
processing information. Current experimental efforts are focused on domain walls [2, 3] and
skyrmions [4–7], previously known as magnetic bubbles [8]. A thorough understanding of the
dynamics of topological solitons in magnets is a prerequisite for the success of these efforts.

1.1 Skyrmion

A skyrmion in a two-dimensional ferromagnet with continuous spatial coordinates r= (x , y, 0)
is a soliton with nontrivial topology of the magnetization field m = (mx , my , mz) normalized
for convenience to a unit length |m| = 1. A smooth magnetization field m(r) approaching a
uniform state at spatial infinity is characterized by an integer topological invariant defined as
the degree of mapping r 7→m,

Q =
1

4π

∫

d x d y m · (∂xm× ∂ym) . (1)

States with different skyrmion numbers Q (Fig. 1) cannot be continuously deformed into one
another so long as the boundary condition m→ const as r→∞ is maintained.

Skyrmions—stable isolated solitons with Q = ±1—exist in a number of ferromagnetic mod-
els, including the pure, SO(3)-symmetric Heisenberg model [9] as well as its anisotropic vari-
ations with additional interactions: chiral Dzyaloshinskii-Moriya terms [10] and long-range
dipolar forces [11].

Setting aside the (rather complex) question of skyrmion energetics, we assume that an
isolated Q = 1 skyrmion in equilibrium is centered at the origin and has a round, axially
symmetric shape, Fig. 1. Under these assumptions, it can be parametrized as follows:

θ (r) = Θ(r) , Θ(0) = 0 , Θ(∞) = π , φ(r) = α+ const . (2)

Here (r,α) are polar coordinates and (θ ,φ) are spherical angles,

x + i y = reiα , mx + imy = sinθ eiφ , mz = cosθ . (3)

1.2 Skyrmion dynamics

The dynamics of a magnetization field m(r, t) is described by the Landau-Lifshitz equation,

S∂tm= −m×
δU
δm

, (4)
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where Sm(r) is the local density of angular momentum, U[m(r)] is the energy functional, and
δU/δm(r) is its functional derivative [12]. (We neglect the damping effects.) Eq. (4) is a
nonlinear partial differential equation with precious few exact solutions.

A general method to find an approximate solution for a moving ferromagnetic soliton was
suggested by Thiele [13]. Under the assumption that a moving soliton preserves its shape,
we may express the magnetization field m(r, t) at an arbitrary time t by rigidly translating its
initial configuration m0(r)≡m(r, 0)

m(r, t) =m0(r−R(t)) . (5)

Time evolution of the soliton displacement R(t) = (X , Y, 0) is given by the Thiele equation,

G× Ṙ+ F= 0 , (6)

expressing the balance of forces acting on the soliton. The first term represents a gyroscopic
force linked to the precessional motion of spins. The gyrovector G= (0,0, G) is perpendicular
to the film plane; its magnitude G = 4πQS is proportional to the skyrmion number (1) and
the spin density S. The second term F in the Thiele equation (6) represents all other forces
acting on the soliton. For instance, position dependence of the soliton energy U(R) creates a
conservative force F= −∂ U/∂R.

Numerical studies of skyrmion dynamics have uncovered significant deviations from
Thiele’s theory under fairly mild driving forces [14–19]. The failure can be traced to the
breakdown of the rigidity assumption (5). Deformation of a soliton makes the very defini-
tion of its position R ambiguous. Different conventions for R can yield dramatically different
trajectories [15,19].

1.3 Position defined by skyrmion density

Papanicolaou and collaborators [20, 21] defined the skyrmion position R as the first moment
of the skyrmion density ρ = 1

4πm · (∂xm× ∂ym):

Rsky =

∫

d x d y ρr
∫

d x d y ρ
. (7)

Trajectory Rsky(t) shows excellent agreement with Thiele’s equation. For example, when
a non-uniform magnetic field is suddenly turned on, exerting a constant Zeeman force F on
the skyrmion, the soliton moves in a straight line with a constant velocity perpendicular to the
applied force.

It is not a coincidence that Rsky(t) satisfies the Thiele equation (6) even when the rigidity
assumption is violated. Rsky is directly related to the linear momentum of a skyrmion in two
dimensions by the identity [20,22]

P= −G×Rsky , (8)

which is valid for arbitrary deformations of the soliton. When a skyrmion is driven by an
external force F, its linear momentum changes at the rate Ṗ = F. It follows immediately that
Rsky(t) satisfies the Thiele equation.

1.4 Position defined by out-of-plane magnetization

Another common definition of the skyrmion position [14–19, 23] uses the out-of-plane mag-
netization mz (relative to its ground-state value of mz = −1) as the statistical weight:

Rmag =

∫

d x d y (mz + 1)r
∫

d x d y (mz + 1)
. (9)
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For example, magnetic dichroism of X-rays allows the mapping of the magnetization com-
ponent mz(r, t) with sufficient spatial and temporal resolutions to determine the skyrmion
trajectory [24].

In numerical simulations, Rmag(t) shows marked deviations from Thiele’s equation [14–
17]. A suddenly switched on Zeeman force generates a cycloidal trajectory, a superposition
of the linear motion and a cyclotron orbit [19]. An excellent description of this trajectory is
obtained by endowing the Thiele equation with an inertial term [14,15,17],

mR̈= G× Ṙ+ F . (10)

The empirically introduced skyrmion mass m determines the frequency of cyclotron motion
ω = G/m. The origin of this mass can be traced to the deformation of the skyrmion that in-
creases linearly with the velocity of the driven skyrmion. The energy cost is quadratic in the
deformation and thus in the velocity, effectively producing a kinetic energy m|Ṙ|2/2. Emer-
gence of inertia in ferromagnetic domain walls in the form of kinetic energy was first pro-
posed in theory by Döring [25] and has been observed experimentally [26, 27]. Ivanov and
Stephanovich applied this line of argument to skyrmions [28].

1.5 Controversy over the “right” definition

Is there a compelling reason to prefer one definition of the skyrmion position over another?
Kravchuk et al. [29] have recently argued in favor of Rsky, going as far as to declare Rmag
“not physically sound because it does not describe the skyrmion displacement in the sense of
the traveling-wave model.” We are not convinced by this argument. The assumption of rigid
displacement has no profound principle behind it. It was adopted by Thiele for a practical task
of describing steady-state motion of a soliton. A closing remark in his letter [13] clearly states
that this approach “may be used as a first approximation” beyond steady-state situations. We
thus see no fundamental reason why Rsky should be prefrable to Rmag.

In our view, both definitions can be useful. Rsky is clearly more convenient because of
the simplicity of its dynamics. However, it is Rmag that is experimentally accessible at the
moment [24]. This situation is entirely analogous to the dynamics of a massive charged particle
in the presence of a magnetic field. The physical position of the particle—the analog of Rmag—
exhibits cyclotron oscillations on top of a steady drift in the direction orthogonal to an external
force. The guiding center of the cyclotron orbit—-the analog of Rsky—exhibits a simpler motion
without the oscillations. The guiding center is a useful tool in the analysis of low-energy physics
of the n = 0 Landau level (such as the quantum Hall effects). However, it cannot replace the
physical position of the electron if we want to include the degrees of freedom beyond the
lowest Landau level.

1.6 Outline of the paper

In the remainder of this paper, we intend to show that the presence or absence of Larmor
oscillations does not boil down to the subjective choice of the skyrmion coordinates. Even if
we use the oscillation-prone Rmag to describe the skyrmion position, there are realistic physical
situations in which the oscillations disappear and the skyrmion motion is described by the
inertia-free Thiele equation. An early example of that was found in a numerical study of
Schütte et al. [18]. The goal of our paper is to elucidate the split personality of the skyrmion
through a simple analytical model.

To see how such an outcome is possible, recall that the skyrmion’s kinetic energy is simply
the potential energy of its deformation in disguise. If the driving force avoids deforming the
skyrmion then there will be no kinetic energy and no Larmor oscillations. Put differently, re-
ducing the skyrmion description to just its position is a coarse-graining procedure that discards
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its numerous hard modes. Most of these modes can be safely integrated out without affecting
the dynamics of translational motion. However, one hard mode is special because it serves as
the canonical momentum for the remaining mode Rmag. Integrating out the canonical momen-
tum generates kinetic energy for skyrmion translations. If this hard mode also couples to the
driving force then there is an additional effect: integrating out the hard mode also modifies
the coupling of Rmag to the driving force. Under the right circumstances, the modified driving
force will not cause any Larmor oscillations.

More detailed explanations are provided in the following sections. In Sec. 2 we discuss
two equivalent models for translational motion of a skyrmion. One of them is the familiar
model of a massive particle in a magnetic field equivalent to the modified Thiele equation
with a mass term (10); the other has a massless particle coupled to an invisible partner via
potential and gyroscopic forces. Integrating out the invisible particle generates a mass and
modifies the driving force. In Sec. 3 we show that the second model describes the modes of a
skyrmion bubble relevant to its translational motion and give a physical example of the driving
force—spin-transfer torque—that creates no Larmor oscillations. Sec. 4 contains concluding
remarks.

2 Models of Skyrmion Translational Motion

2.1 Massive particle in a magnetic field

We begin with the familiar example of a massive particle moving in a uniform magnetic field.
The particle is confined to the x y plane, so that r = (x , y, 0), and the field is normal to the
plane, B= (0, 0, B). We add an electric field E= (E, 0, 0) as the driving force.

The equation of motion for the particle is

mr̈=
e
c
ṙ×B+ eE . (11)

Eq. (11) is an inhomogeneous linear differential equation for r. It has a partial solution in the
form of uniform motion

r(t) = r(0) + vd t , vd =
E×B

B2
c , (12)

where the drift velocity vd is perpendicular to the direction of the electric field. The general
solution of Eq. (11) is a superposition of drift (12) and circular motion at the Larmor angular
frequency

ω= −
eB
mc

. (13)

It can be seen that the drift (12) is a purely gyroscopic effect independent of inertia. In
contrast, the Larmor frequency (13) is explicitly dependent on mass m; therefore, Larmor
rotation reveals inertia.

Whether the inertial effects are seen in the particle’s dynamics depends on the precise way
in which it is set in motion. With the particle initially at rest at the origin, switching on the
electric field suddenly at t = 0 puts the particle on a cycloidal trajectory with equal speeds of
drift and rotational motion:

v(t) =
Ec
B
(sinωt, cosωt − 1, 0) , r(t) =

Ec
Bω
(1− cosωt, sinωt −ωt, 0) . (14)

If, on the other hand, the electric field E(t) is turned on gradually, so that it does not change
appreciably during a Larmor period T = 2π/ω, the Larmor rotation will be absent and the
particle will always be moving at the instantaneous drift velocity (12).
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The equation of motion (11) can be rewritten as Ṗ= eE, where

P= mṙ−
e
c
r×B (15)

is a generalized version of linear momentum in a uniform magnetic field. In the absence of the
external force eE it is conserved, hence the name “conserved linear momentum.” In quantum
mechanics P is known as the generator of “magnetic translations” [30].

Conserved linear momentum can be expressed geometrically as a position known as the
guiding center of the cyclotron orbit rgc:

P= −
e
c
rgc ×B , (16)

where

rgc = r−
ω× ṙ
ω2

. (17)

When the external force is absent and the particle moves in a circular orbit, rgc is conserved.
Under an external force, the guiding center drifts sideways:

e
c
ṙgc ×B+ eE= 0 . (18)

The guiding center moves without inertia, just like the skyrmion coordinate Rsky.

2.2 Massless particle with an invisible partner

Inertia is not a property inherent to spins. Their dynamics is purely precessional. Inertia in
the context of a ferromagnet is an emergent property. When a soft mode of a ferromagnet is
coupled gyroscopically to a hard mode, integrating out the hard mode creates effective kinetic
energy for the soft mode. The model of a massive particle considered in Sec. 2.1 can also be
derived from a basic model of two particles with no inertia.

Consider two massless particles at positions r1 and r2 confined to move in the x y plane.
They are coupled by a spring force that compels them to move more or less together. In
addition, the particles are coupled by a Lorentz-like force that is somewhat unusual: the force
on particle 1 is proportional to the velocity of particle 2 and vice versa. Finally, there is an
external electric field to which they couple with different strengths determined by their electric
charges. The equations of motion are

Particle 1:
q
c

ṙ2 ×B+ k(r2 − r1) + q1E= 0 ,

Particle 2:
q
c

ṙ1 ×B+ k(r1 − r2) + q2E= 0 .
(19)

Note that the coupling to the electric field is defined by the electric charges q1 and q2, which
are distinct from the coupling q for the mutual magnetic field B. Furthermore, because q
and B appear only as a product, we are free to rescale them as long as the product qB stays
unchanged. It will be convenient to set 2q equal to the net electric charge:

q1 + q2 = 2q . (20)

Eqs. (19) can be simplified by the introduction of normal modes, position of the guiding
center rgc = (r1 + r2)/2 and relative position rrel = r1 − r2:

Guiding center:
2q
c

ṙgc ×B+ 2qE= 0 ,

Relative motion: −
q
2c

ṙrel ×B− krrel +
q1 − q2

2
E= 0 .

(21)
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The guiding center moves in the direction orthogonal to the electric field with the drift velocity
(12). The relative motion is rotation at the Larmor frequency (13) with e = 2q.

If the observer can only see the center position rgc then he or she will find that the motion
of the center exhibits no inertial effects. Suppose, however, that the observer can only see
particle 1 but not particle 2. Then we should eliminate r2 from the equations of motion and
express everything in terms of r1. The resulting dynamics is reminiscent of a massive particle
(11):

mr̈1 =
2q
c

ṙ1 ×B+ 2qE+
q2

q
Ė×B

B2
mc . (22)

The effect of integrating out r2 is threefold. First, particle 1 acquires a mass

m=
q2B2

kc2
. (23)

Second, its electric charge is renormalized from q1 to q1+q2 = 2q, indicating that the external
force q2E, formerly applied to particle 2, has been transferred to particle 1. Third, a new
dynamical force, proportional to Ė×B, arises if the electric field varies in time.

It is instructive to examine what happens when we switch on the electric field suddenly
at t = 0, with the particles initially at rest, r1 = r2 = 0. Because of the extra force, particle 1
receives a kick instantaneously increasing its velocity to

ṙ1(+0) =
q2

q
E×B

B2
c . (24)

If the particles have the same electric charge, q1 = q2 = q, then this velocity exactly equals
the drift velocity (12). In this case, particle 1 will keep moving at the drift velocity without
Larmor oscillations.

Although the exact cancellation of Larmor oscillations at q1 = q2 looks like a happy coin-
cidence, there is, in fact, a deeper principle at work. When q1 = q2, Eq. (21) tells us that the
normal mode rrel, responsible for Larmor oscillations, has no coupling to the electric field. It
does not get excited and therefore r1 = rgc+rrel/2= rgc. Even though the observer is watching
particle 1, its motion is the same as that of the guiding center, so it does not exhibit inertia.

This example demonstrates that the dynamics of a system with emergent inertia may or
may not exhibit inertial effects such as Larmor oscillations if the external force that sets the
system in motion couples to it in a particular way.

Equations of motion (19) can be obtained from the following Lagrangian:

L(r1, r2) = −
q
c

B · (ṙ1 × r2)−
k(r1 − r2)2

2
+ (q1r1 + q2r2) · E . (25)

The Lagrangian can also be expressed in terms of the guiding center and relative coordinate:

L(rgc, rrel) = −
q
c

B · (ṙgc × rgc) + 2qrgc · E+
q
4c

B · (ṙrel × rrel)−
kr2

rel

2
+

q1 − q2

2
rrel · E . (26)

It is evident from this Lagrangian that the electric field is decoupled from relative motion when
q1 = q2, so Larmor oscillations are not induced in this case.

3 Translational Motion of a Skyrmion Bubble

3.1 Heuristic argument

A quick way to see that the two-particle model described in Sec. 2.2 applies to skyrmion dy-
namics is through a modest generalization of Thiele’s approach. Instead of allowing rigid
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mz = + 1

mz = − 1

mz = + 1

mz = − 1

Figure 2: A Q = +1 skyrmion bubble in equilibrium. Arrows show the direction of
the in-plane magnetization components (mx , my) on a Bloch (left) or Neél (right)
domain wall separating domains with mz = +1 (gray) and mz = −1 (white).

translations of the entire magnetization field m(r) 7→m(r−R), we do the same with the fields
of spherical angles θ and φ and let them shift independently from each other:

θ (r) 7→ θ (r− r1) , φ(r) 7→ φ(r− r2) . (27)

This yields two pairs of collective coordinates r1 and r2 instead of just one in Thiele’s method.
The fields θ and φ are of course coupled: we do not expect the center of θ (r − r1) to run
away from the center of φ(r− r2). We may therefore anticipate the presence of a rotationally
symmetric parabolic confining potential U = k(r1 − r2)2/2. In addition, there is a gyroscopic
coupling, as we shall see next.

Equations of motion for general collective coordinates q = {q1, q2, . . .} of a ferromagnetic
soliton are [31,32]

Fi j q̇
j −
∂ U
∂ qi
= 0 . (28)

Here we omitted the effects of viscous friction; Fi j is the antisymmetric gyroscopic tensor

Fi j = −F ji = −S
∫

dV m ·
�

∂m
∂ qi
×
∂m
∂ q j

�

= −S
∫

dV sinθ
�

∂ θ

∂ qi

∂ φ

∂ q j
−
∂ θ

∂ q j

∂ φ

∂ qi

�

, (29)

and S is the spin density in a fully magnetized state. We assume an axially symmetric skyrmion
(2) and use the identities

∂ θ

∂ x1
= −

∂ θ

∂ x
= −

dθ
dr

cosα ,
∂ φ

∂ y2
= −

∂ φ

∂ y
= −

1
r

dφ
dα

cosα , (30)

and set r1 = r2 = 0 to obtain

Fx1 y2
= −Fy2 x1

= −S
∫ ∞

0

r dr

∫ 2π

0

dα sinθ
dθ
dr

1
r

dφ
dα

cos2α= −2πS . (31)

We also find, along similar lines, that Fx2 y1
= −Fy1 x2

= −2πS. All other components of the
gyroscopic tensor vanish.

Substitution of the gyroscopic tensor and potential energy into Eq. (28) immediately yields
the equations of motion of the two-particle model (19) with q

c B= (0, 0,−2πS), albeit without
an electric field, which requires an external perturbation.
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3.2 Basic modes of a magnetic skyrmion

We shall now derive the results anticipated in Sec. 3.1 in a more systematic way. We do so for
a skyrmion bubble, a type of skyrmion that exists in thin ferromagnetic films with easy-axis
anisotropy. A bubble with skyrmion number Q = +1 can be described as a circular domain with
magnetization m = (0,0,+1) separated by a domain wall from the surrounding domain with
m = (0,0,−1), Fig. 2. The equilibrium radius of the bubble r̄ is determined by a competition
between the easy-axis anisotropy and long-range dipolar interactions and is typically much
larger than the characteristic width of the domain wall.

It is convenient to identify the domain wall with the line on which the easy-axis component
of magnetization vanishes, mz = 0. On this line, the magnetization lies in the hard plane x y
and is coupled to the direction of the domain wall by the dipolar [17] or Dzyaloshinskii-Moriya
interactions [33]. In equilibrium, the in-plane magnetization is typically either parallel to the
domain wall (Bloch skyrmion, left panel of Fig. 2) or perpendicular to it (Néel skyrmion, right
panel of Fig. 2).

Low-energy states of a circular bubble can be conveniently parametrized in terms of polar
coordinates (r,α) in the x y plane: r(α) gives the position of the domain wall and φ(α) the
azimuthal angle of in-plane magnetization. Low-energy dynamics of the bubble is confined to
its boundary and can be viewed as slow variations of these fields. It can be obtained from the
Lagrangian [17] for the fields r(t,α) and φ(t,α),

L[r(α),φ(α)] = r̄

∫ 2π

0

dα
�

−2S ∂ r
∂ t
φ −

κ

2
(φ −φeq)

2
�

− U[r(α)] . (32)

The first term in the integrand represents the gyroscopic force and comes from the spin Berry
phase; S is the spin density per unit area (in a uniform ground state). The second, potential
term is the cost of the in-plane magnetization deviating from its equilibrium orientation for a
given shape of the boundary r(α),

φeq(α) = α+δ−
1
r̄
∂ r
∂ α

. (33)

Here δ = ±π/2 (Bloch domain wall) or 0,π (Néel domain wall). Lastly, the functional U[r(α)]
in Eq. (32) is the part of potential energy that depends on the shape of the bubble r(α); this
contribution need not concern us because translational motion of the bubble does not affect
its shape.

The fields r(α) and φ(α) are conveniently expressed in terms of Fourier amplitudes:

r(α) = r̄ +
∞
∑

m=0

(am cos mα+ bm sin mα) ,

φ(α) = α+δ+
∞
∑

m=0

(ξm cos mα+ηm sin mα) .

(34)

Amplitude a0 describes the breathing mode of the bubble; a2 and b2 quantify elliptic defor-
mations of its boundary. Displacements of the circular boundary without changes in its size or
shape are described by amplitudes a1 and b1 (left panels of Fig. 3). As the boundary is defined
as the locus of points where cosθ = 0, we may identify a1 and b1 as the rigid displacements
of the θ field from Sec. 3.1,

r1 = (a1, b1) . (35)

A rigid translation of the φ field,

φ(r) 7→ φ(r− r2) = φ(r)− r2 · ∇φ(r) = φ(r) +
x2 sinα− y2 cosα

r
. (36)
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a1 > 0 b1 > 0 η1 > 0ξ1 > 0

Figure 3: Basic modes of a skyrmion bubble with the azimuthal number m= 1. Left
panels: r1. Right panels: r2.

Comparison with Eq. (34) yields
r2 = (r̄η1,−r̄ξ1) . (37)

These two modes are shown in the right panels of Fig. 3.
Upon substituting the Fourier expansion (34) into the Lagrangian of the domain wall (32),

we obtain the Lagrangian of the four m= 1 modes:

L(a1, b1,ξ1,η1) = −2πr̄S(ȧ1ξ1 + ḃ1η1)−
πκ

2r̄

�

(a1 − r̄η1)
2 + (b1 + r̄ξ1)

2
�

. (38)

Comparison of Eqs. (25) and (38) reveals a precise analogy between the dynamics of a skyrmion
bubble and that of two massless particles considered in Sec. 2.2. Thus rigid displacements of
the field θ play the role of the observable particle, whereas those of the field φ serve as the
invisible partner. Integrating out “invisible” φ amplitudes ξ1 and η1 yields a particle of mass
m= 4πr̄S2/κ, a result derived previously [17].

Note that rigid translations of the bubble correspond to combinations of boundary shifts
and twists proportions a1 = r̄η1 and b1 = −r̄ξ1 (left panels of Fig. 4). These normal modes
cost no potential energy and are the analogs of translations in the two-particle model. An
orthogonal pair of normal modes with a1 = −r̄η1 and b1 = +r̄ξ1 (right panels of Fig. 4)
correspond to the relative motion. The correspondence is as follows:

rgc =
1
2
(a1 + r̄η1, b1 − r̄ξ1, 0) , rrel = (a1 − r̄η1, b1 + r̄ξ1, 0) . (39)

Next we consider external forces driving a skyrmion bubble.

3.3 Zeeman coupling

The simplest example is provided by the Zeeman coupling to a magnetic field H = (0, 0, H)
applied along the easy z-axis [16, 17, 24]. A uniform field exerts uniform pressure on the
domain wall of the bubble, which has no effect on the m= 1 modes related to displacements.

a1 = r̄η1 > 0 b1 = − r̄ξ1 > 0 a1 = − r̄η1 > 0 b1 = − r̄ξ1 > 0

Figure 4: Normal modes of a skyrmion bubble with the azimuthal number m = 1.
Left panels: rgc. Right panels: rrel.

10

https://scipost.org
https://scipost.org/SciPostPhys.12.5.159


SciPost Phys. 12, 159 (2022)

For a field with constant gradient, Hz(r) = Hz(0) + r · ∇Hz , the Zeeman coupling endows
the displacements with potential energy

U(r1) = −γS
∫

d x d y Hz(r)mz(r) = U(0)−Mzr1 · ∇Hz , (40)

where γ is the gyromagnetic ratio and Mz = γS
∫

d x d y (mz + 1) is the magnetic moment of
the skyrmion relative to the mz = −1 ground state.

Equations of motion for collective coordinates r1 and r2 can now be obtained from the
general recipe, Eq. (28):

− 2πS ṙ2 × ez + k(r2 − r1) +Mz∇Hz = 0 ,

− 2πS ṙ1 × ez + k(r1 − r2) = 0 .
(41)

Here ez = (0,0, 1) and k = πκ/r̄. We see that the field gradient couples to r1 but not r2.
The equations of motion for the guiding center and relative position are

− 2πS ṙgc × ez +
1
2

Mz∇Hz = 0 ,

−πS ṙrel × ez − krrel +
1
2

Mz∇Hz = 0 .
(42)

The field gradient couples to both the guiding center and relative position. It will therefore
not only cause drift but also excite Larmor oscillations, revealing the skyrmion’s inertia.

The obtained equations of motion are the same as for two massless particles (19) with the
following parameters:

q1E= Mz∇Hz , q2E= 0 ,
q
c

B= (0,0,−2πS) . (43)

3.4 Coupling to a spin-polarized electric current

An electric current passing through a ferromagnet becomes spin-polarized along the local di-
rection of magnetization m(r). Spatial variations of magnetization lead to the rotation of the
spins in the flowing current, thereby applying a torque. The current then applies an equal and
opposite torque to the magnetization [34–37]. In the adiabatic approximation, the density of
the spin-transfer torque is

τst = −
Pħh
2e
(j · ∇)m , (44)

where j is the density of electric current, e is the electron charge, and P is the degree of spin
polarization in the current. It is convenient to express the spin torque in terms on an effective
velocity u defined by the relation

Su=
Pħh
2e

j . (45)

The Landau-Lifshitz equation (4) then reads

S(∂t + u · ∇)m= −m×
δU
δm

. (46)

For a uniform current density j, and hence uniform u, the equations of motion read

−2πS(ṙ2 − u)× ez + k(r2 − r1) = 0 ,

−2πS(ṙ1 − u)× ez + k(r1 − r2) = 0 .
(47)

11

https://scipost.org
https://scipost.org/SciPostPhys.12.5.159


SciPost Phys. 12, 159 (2022)

The equations of motion for the guiding center and relative position are

−2πS(ṙgc − u)× ez = 0 ,

πS ṙrel × ez − krrel = 0 .
(48)

It can be seen that the adiabatic spin-transfer torque only couples to the guiding center, but not
to the relative motion. Therefore, Larmor oscillations are not excited by an electric current.

Translation to the model with two massless particles is as follows:

q1E= q2E=
q
c

B× u= −ez ×
πPħh

e
j . (49)

The electric current couples equally strongly to both particles, so q1 = q2 = q and the exter-
nal force produces pure drift with no Larmor oscillations and with an instantaneous velocity
proportional to the driving force,

ṙ1 = ṙgc +
1
2

ṙrel = ṙgc = u(t) . (50)

The absence of Larmor oscillations in a skyrmion driven by an electric current was pointed out
by Schütte et al. [18].

It bears noting that the absence of soliton deformations and its apparently massless dy-
namics under adiabatic spin-transfer torque are well-known and robust results that transcend
the narrow topic of this paper (skyrmions) and its technical method (collective coordinates).
That has already been pointed in a general context by Bazaliy et al. [34] and for domain walls
in one dimension by Barnes and Maekawa [36]. Their line of reasoning was as follows. Sup-
pose a static configuration m0(r)minimizes the energy functional U and therefore satisfies the
Landau-Lifshitz equation (46) with u= 0. It then follows that the rigid traveling-wave Ansatz
(5) is the solution for an arbitrary u(t), provided that the instantaneous velocity of the wave
matches the instantaneous effective velocity, Ṙ(t) = u(t).

This general argument is only applicable for this specific form of external perturbation (adi-
abatic spin-transfer torque). Other perturbations induce soliton deformations and therefore
require the treatment of collective coordinates beyond just simple translations.

4 Conclusion

We have presented a simple mechanical model of a skyrmion that resolves a recent controversy
about skyrmion mass [19, 29]. The toy model consists of two massless particles coupled to
each other by two distinct forces: a parabolic potential and a mutual Lorentz force (19). Only
particle 1 is accessible to observations, whereas particle 2 stays hidden.

Loosely speaking, the observable particle in our analogy is associated with the dynamics of
the longitudinal magnetization mz and the hidden particle with that of the transverse ones mx
and my . We have presented a formal derivation in the limit where the skyrmion is a magnetic
bubble—a circular domain of the mz = +1 state separated by a narrow domain wall from a
surrounding domain of the mz = −1 state. In this case, particle 1 represents the displacement
of the bubble Rmag (9), whereas particle 2 depicts fluctuations of the transverse magnetization
(or its azimuthal angle) on the domain wall. Experiments typically measure Rmag, hence the
analogy.

Integrating out invisible particle 2 endows particle 1 with an emergent (Döring) mass, in
agreement with our prior result [17]. The emergent inertia manifests itself in Larmor oscil-
lations of relative motion. However, whether these oscillations can be observed is a subtle
question. The answer depends on the nature of the driving force, specifically on the relative
strengths of its couplings to the two particles. Two idealized cases illustrate this point.
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(a) If the external force does not couple at all to the invisible particle then integrating out the
hidden degrees of freedom only generates the Döring mass for the observed motion. A
sudden onset of this force generates Larmor oscillations. The skyrmion appears massive.

(b) If the external force couples equally strongly to both particles then it is decoupled from
the normal mode responsible for Larmor oscillations. The skyrmion appears massless.

It is remarkable that the two limiting cases are realized quite naturally by the two most
common external forces available to the experimentalist: (a) the Zeeman energy of an inho-
mogeneous magnetic field; (b) the adiabatic spin-transfer torque from an electric current. If
a generic external perturbation falls somewhere in the middle then the Larmor oscillations
will be present, albeit in an attenuated form. So under a generic perturbation a skyrmion will
appear massive.

The presence of inertial mass can be traced, as in previous studies [25,28], to a deformation
of the moving soliton. Both the velocity of the soliton and its deformation are proportional to
the external force driving the motion and, therefore, to one another. The concomitant energy
increase is quadratic in the degree of deformation and thus in velocity, which makes it possible
to view it as kinetic energy. An important point of this work is that some external perturbations
create no deformation and therefore do not generate kinetic energy. Thus the answer to the
question of whether the skyrmion is massive or massless depends not just on the properties
of the skyrmion itself but also on the nature of the driving force. Our alternative mechanical
model of a skyrmion as two coupled massless particles encompasses all such scenarios.
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