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Abstract

The generation of unit-weight events for complex scattering processes presents a se-
vere challenge to modern Monte Carlo event generators. Even when using sophisticated
phase-space sampling techniques adapted to the underlying transition matrix elements,
the efficiency for generating unit-weight events from weighted samples can become a
limiting factor in practical applications. Here we present a novel two-staged unweight-
ing procedure that makes use of a neural-network surrogate for the full event weight.
The algorithm can significantly accelerate the unweighting process, while it still guar-
antees unbiased sampling from the correct target distribution. We apply, validate and
benchmark the new approach in high-multiplicity LHC production processes, including
Z /W +4 jets and tt+3 jets, where we find speed-up factors up to ten.
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1 Introduction

Multi-purpose Monte Carlo event generators such as HERWIG [1,2], PYTHIA [3,4] or SHERPA [ 5,
6], are indispensable tools for the analysis and interpretation of high-energy particle-collision
experiments, e.g. at the Large Hadron Collider (LHC). They encapsulate our present-day un-
derstanding of the fundamental laws of nature, and provide means to simulate individual
scattering events in a fully exclusive manner. With such virtual collisions we can quantify
expected event yields and predict detailed final-state properties for in principle arbitrary scat-
tering processes.

The central and often the computationally most expensive element of event simulations is
a hard-scattering process — addressing the highest momentum-transfer interactions — that gets
described by transition matrix elements evaluated in fixed-order perturbation theory. Given the
enormous collision energies and impressive luminosities achieved at the LHC, paired with the
excellent performance of the experiments, the need to provide evaluations of higher multiplic-
ity hard-scattering processes is steadily growing. In view of the upcoming HL-LHC this becomes
an even more pressing problem, requiring much faster event generation in order to match the
expected event yields with the projected computing resources [7,8]. The underlying matrix-
elements are calculated by dedicated matrix-element generators. Widely used tree-level tools
such as ALPGEN [9], AMEGIC [10], CoMix [11], MADGRAPH [12] and WHIZARD [13] automati-
cally construct tree-level amplitudes, but also provide efficient means to generate momentum
configurations for the initial- and final-state particles taking part in the hard scattering. Fur-
thermore, there exist dedicated tools for the construction and evaluation of one-loop ampli-
tudes in QCD and the electroweak coupling, e.g. MADLOOP [14,15], McFM [16,17], NJET [18],
OPENLOOPS [19,20], POWHEGBOX [21], and RECOLA [22,23]. These tools can be used to compile
fixed-order partonic cross-section computations and to probabilistically generate parton-level
events. When incorporated into or interfaced to a multi-purpose event generator they provide
the momentum-space partonic scattering events that get dressed by QCD parton showers, if
applicable supplemented by an underlying event simulation, and finally transitioned to fully
exclusive hadron-level final states by invoking a hadronisation model [24].

An efficient sampling of the final-state phase space is particularly crucial for complex scat-
tering processes, where a single evaluation of the matrix element can take O(1s) [25]. Es-
pecially for experimental applications, i.e. the actual generation of pseudo data, including a
simulation of the detector response, see e.g. refs. [26-28], unit-weight event samples are re-
quired, that are conventionally obtained from weighted events via rejection sampling. The
resulting unit-weight events are unbiased random samples of fully uncorrelated probes of the
target distribution given by the squared transition matrix element. They appear with frequen-
cies that we would expect in a corresponding experiment. Although information about the
target is lost in the unweighting step, the expensive detector simulation or other post process-
ing of many events with minuscule weight gets avoided.

In modern matrix-element generators importance-sampling techniques are used, that ac-
count and possibly adapt [29] to the modal structures of the target, thereby employing knowl-
edge about the propagator and spin structures of a given process [30]. These methods aim
to reduce the inherent variance of the weight distribution of weighted event samples, and in
turn also improve the unweighting efficiencies.

There have recently been a number of different strands of research to make optimal use
of event-weight information, and, largely driven by algorithmic opportunities provided by
novel machine-learning (ML) techniques, to optimise phase-space sampling and also event
unweighting. On-the-fly reweighting methods are meanwhile routinely used to account for
systematic uncertainties [31-33], or alternative physics models [34,35]. The use of MCMC
techniques for exploring high-dimensional phase spaces has been studied in [36]. In [37]
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the application of analysis-specific optimal sampling distributions was proposed, similar to
methods of biasing event generation, e.g. to oversample tails of physical distributions [38]. A
number of approaches to accelerate event generation based on (generative adversarial) neu-
ral networks have been presented [39-47]'. An alternative and particularly attractive class
of algorithms is based on normalizing flows [49-51], i.e. trainable bijectors parametrised by
neural networks, see for instance [52-55], that can represent highly expressive importance-
sampling maps [56,57]. Corresponding implementations and first applications of normalizing
flows to Monte Carlo event generation in high-energy physics have been presented in [58-61].
Ref. [62] discussed the usage of GANSs, trained on weighted Monte Carlo samples to produce
unit-weight events. However, in order to guarantee the reproduction of the true target distri-
bution, an additional post-processing step is needed. Possible solutions to this problem based
on reweighting have been presented in [63, 64]. The application of Bayesian networks for
event generation including the quantification of uncertainties has been presented in [65, 66].

We here propose an alternative approach to accelerate the unweighting procedure using
ML methods. During the initial integration phase of a standard importance sampler we train
a deep neural network to predict the event weight for given phase-space points. For com-
plex processes, this surrogate is much cheaper to evaluate than the actual event weight. We
therefore employ it in an initial rejection sampling. Only when the surrogate event weight
gets accepted, we invoke a second unweighting step, where we account for the difference be-
tween the surrogate and the actual event weight. While a two-step unweighting procedure
has been applied before [9], our combination with a neural-network surrogate gives it a new
purpose. Given the neural network approximates the weight distribution reasonably well, we
can significantly reduce the number of evaluations of the computationally expensive target
function. Our approach easily generalises to non-positive targets and is thus suitable also for
unweighted-event generation beyond the leading order in perturbation theory. We have im-
plemented, validated and benchmarked the method in the SHERPA event-generator framework
and here present results for tree-level Z /W +4 jets and tt+3 jets production at the LHC.

The paper is organised as follows, in Sec. 2 we briefly review the basics of Monte Carlo
event generation and event unweighting in the canonical approach. We then introduce our
novel unweighting procedure, exemplified for a simple toy example. In Sec. 3 we discuss the
neural-network setup and the used training procedure to obtain a predictor for the weight of
scattering events. In Sec. 4 we describe our implementation of the new method in the SHERPA
framework and present exemplary results for high-multiplicity LHC production processes. We
conclude and give an outlook in Sec. 5.

2 Phase-space sampling and event unweighting

For sake of simplicity, we begin by considering the generic integral

sz f@)du, D
Q

with f a positive-definite target distribution f : © ¢ R? — [0, 00) defined over the unit
hypercube = [0,1]¢. The Monte Carlo estimate of the integral is given by

N
InEy = f@) =), @
i=1

1A critical review on the application of Generative Adversarial Networks (GANSs) in the context of event gen-
eration has been presented in [48].
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where we assumed N uniformly distributed random variables u; € Q. The random points u;
are interpreted as individual events and w; = f (u;) is called the corresponding event weight?;
the integral is thus estimated by the average of the event weights (w)y. The standard deviation
of the integral estimate is given by

o (f) = Q W) _ Q G )

with Vi the corresponding variance. Variance-reduction techniques aim for a minimisation
of Vy, e.g. by a remapping of the input random variables u to a non-uniform distribution
v :Q — Q, called importance sampling [67]. For the desired integral this results in

/ /

= [ 0,y [ 100
Q g (u ) Q g (u )

With suitably chosen probability density g(u), the variance of the integrand can be signifi-
cantly reduced. A prominent example widely used in particle physics is VEGAs [68]. Given
the multimodal nature of high-energy scattering matrix elements, state-of-the-art generators

employ adaptive multi-channel importance samplers [10,11,69,70]. Thereby the probability
density g(u) is decomposed into a sum of N, channels, i.e.

av(u)
du

dv' with g(u)=

u'=u'(v')

. (4)

N,

NC C
g(u)zZajgj(u), with Zaj =1 and 0<q;<1, (5)
j=1 j=1

I:f f@
o8

The channel weights a; can thereby be adjusted dynamically such that the variance of the
integral gets minimised [29].

To sample unit-weight events from the target function f (u), typically a rejection sampling
algorithm [71] is employed that utilises the maximal event weight in the integration volume,
Wpax- A sample of N2 weighted events is thus converted into a set of N < N™als unweighted
events, where N corresponds to the number of accepted events. The related unweighting
efficiency for large N is given by

yielding

va’. . (6)

u'=u’ (v]f )

N, N /
iZajgj(u/) du’ = Zaj f_ f)
j=1 j=1 Q@

g(u)

N <W> Ntrials
€ = — = .
NN trials

(7)
Wmax

Its inverse determines the average number of target-function evaluations needed before an
event is accepted with unit-weight.

An exact determination of w,., is often neither possible — given finite statistics — nor desir-
able in a numerical calculation that might exhibit a few points with spuriously large weights,
as this would yield a prohibitively small unweighting efficiency. Instead, to avoid being domi-
nated by such rare outliers, there are various possibilities to define a reduced maximum such
that some “overweight” events with w > w_,,, are allowed and will be assigned a correction
weight W = w/w,,,,, effectively leading to partially unweighted events®. Ref. [59] proposed
a bootstrap method where the maximum is given by the median of n determinations from

%In the following we drop the index i as we are always referring to the generation of a single event.
3While the event weight w is typically a dimensionful quantity, in unweighted events the weights i are con-
sidered dimensionless. To obtain the correct normalisation of a differential cross section, e.g. in a histogram, they

. . . . ~ ~ g
need to be normalised to the generated inclusive cross section as reported by the event generator, w; — W, - de;_ .
j i

4
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independent event batches. A more conventional approach would be the exclusion (from the
maximum definition) of large-weight events with a certain quantile of the cross section®. In
what follows we will make use of both techniques. The classical unweighting algorithm with
overweight treatment for generating a single event is sketched in Alg. 1.

Algorithm 1: The classic rejection-sampling unweighting algorithm.

while true do
generate phase-space point u;
calculate exact event weight w;
generate uniform random number R € [0, 1);
if w>R-w,,, then
| return u and w = max(1, w/w,,4,)
end
end

The application of variance-reduction methods will typically also lead to an improved un-
weighting efficiency €. In fact, an optimal sampler would directly produce event weights
w = const, resulting in an unweighting efficiency of 100%. However, in realistic use cases
this is never achieved. For high-multiplicity scattering processes unweighting efficiencies are
instead often well below 1% [25,59]. To systematically improve € one needs to reduce w., .
The FoaM [72, 73] algorithm attempts to achieve this and aims for an optimised unweighting
efficiency by gaining control over the maximal event weight.

2.1 A novel unweighting procedure

We here propose an alternative method aiming for a reduction of the computational resources
needed to produce unweighted events that follow the desired target distribution. This can
be achieved through a light-weight surrogate for the full event-weight calculation that enters
a two-staged rejection-sampling algorithm. Given such a local surrogate s for the true event
weight w, that can for example be obtained from a well-trained neural-network predictor, cf:
Sec. 3, we can use this surrogate in an initial rejection sampling against the maximal event
weight w,,,,. However, to ultimately sample from the correct distribution, we need to account
for the mismatch between the estimated and the actual event weight. This is accomplished
with a correction factor x = w/s. This factor could be applied as an additional weight to
accepted events, or a second rejection sampling step can be added to unweight this against
the (predetermined) maximum, X,,.,, see below. The resulting unweighting algorithm for
generating a single unit-weight event is sketched in Alg. 2 and explained in more detail in the
following.

For a fast surrogate perfectly reproducing the exact weights, i.e. x = 1, the potential for
saving resources is maximal, even though the unweighting efficiency obtained with the stan-
dard approach is not altered. This is the case, because for all trial configurations failing the
first step only the surrogate gets evaluated, while the full weight is computed for accepted
events only. However, in practice this is not realistic and the x will vary around unity. Note,
we do not require the approximation s to overestimate w, and thus will also face values x > 1.

The appearance of non-unit relative weights x makes a second unweighting step conve-
nient. To this end, we need to predetermine the maximum x,,,,, against which to perform the
additional rejection-sampling. Again, to avoid being dominated by rare outliers, we reduce
Xmax in @ controlled way by either excluding a certain quantile of the largest weights or using

“This is also the default in SHERPA for the standard rejection-sampling method.
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Algorithm 2: Two-stage rejection-sampling unweighting algorithm using an event-
wise weight estimate.

while true do
generate phase-space point u;
calculate approximate event weight s;
generate uniform random number R, € [0, 1);
# first unweighting step
if s > R - w,,,, then
calculate exact event weight w;
determine ratio x = w/s;
generate uniform random number R, € [0, 1);
# second unweighting step
if x > Ry - X}, then
| return u and w = max(1,s/ W) - max(1, x/Xme)
end
end
end

the median from several independent x,,, determinations. We correct for the mismatch with
the overweight x /x,., when x > x,.«. The final weight for an accepted event u is then given

by
- s X
W:max(l, )~max(1, ) . (8
Wmax xmax

As consequence of this residual weight, one might need to generate more events using the
surrogate approach to achieve the same statistical accuracy as in standard unweighting. To
account for this, we use the Kish effective sample size N [74] in the following,

2
(> w)
Neff = ~ 2 =aN, (9)

2w
where the sums run over all N events passing the second unweighting and we introduced the
proportionality factor a < 1. The statistical accuracy of the sample is given by 1/4/N.g. Only
when using the true maximal weight x,.,, the effective sample size equals N, corresponding
toa=1.
We can now introduce the effective gain factor f.¢ of the described two-staged unweighting
procedure:

o Tstandard
fet = o

TS urrogate

{tam)
Nefi - Efyll

N _( (tsurr> + (tfull) )

€1st,surr€2nd,surr €2nd,surr

1
= a- . (10)
(tsurr) . €full €full
(tfull) €1st,surr€2nd,surr €2nd,surr

It accounts for all timing, efficiency, and statistical differences in the proposed event generation
with Alg. 2 compared to standard (partially) unweighted event generation with Alg. 1. Here
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(tgq) and (tg,,) denote the average evaluation times of the full weight and the surrogate,
respectively. The quoted unweighting efficiencies are given by

trials

N Nan surr N
€full = trials €lstsurr “= " irials and €ond,surr = rals (11)
full 1st,surr 2nd,surr

where the N, sttrei;ls denote the number of trials used in the respective unweighting step. We point
out that phase-space cuts are applied before unweighting and therefore events rejected due to
cuts do not count towards the number of trials here.

Significant speed gains can be expected if the standard unweighting efficiency eg,y is rather
low and the surrogate approximates the true weights well, i.e. €15 gy & €gun and €359 surr ~ 1,
while still being significantly faster, i.e. (tgyy) < (Ea)-

Note, the gain factor f.4 has to be understood as an upper bound of a potential CPU time
saving in an overall budget, as it does not apply to other stages of the event generation like
parton showering and, more importantly, also not to post-processing steps like a detector sim-

ulation.

2.2 Generalisation to non-positive event weights

The above described unweighting method can easily be extended to the case of non-positive
event weights. These naturally appear in higher-order perturbative calculations based on local
subtraction methods such as Catani-Seymour [ 75] or Frixione-Kunszt-Signer [ 76] subtraction
for next-to-leading-order (NLO) QCD calculations. In approaches matching and merging NLO
matrix elements with QCD parton showers negative-weight events can resolve potential dou-
ble counting of hard real-emission contributions and shower emissions off Born-like configura-
tions, see for instance [77,78]. However, the appearance of such negative weights reduces the
statistical significance of a fixed-size event sample as possibly large cancellations take place.
In corresponding unweighted samples events contribute with weights £1. The generalisation
of the standard unweighting algorithm allowing for negative weights is given in Alg. 3. We
thereby make use of a single maximal weight w ., = |W|pnax > 0 in the rejection sampling,

that is determined by the largest weight modulus observed in an initial exploration run®.

Algorithm 3: Standard rejection-sampling unweighting algorithm allowing for
negative-weight events.

while true do
generate phase-space point u;
calculate exact event weight w;
generate uniform random number R € [0, 1);
if [w| > R - w,,,, then
| return u and w = sgn(w) - max(1, |w|/wq)
end
end

This can be extended to our two-staged unweighting approach, using a surrogate for the
full event weight that can now also become negative, cf Alg. 4. We still employ a single max-
imal weight modulus in the first rejection step, where correspondingly we have to use the
modulus of the surrogate, i.e. |s|. Similarly, for the second rejection sampling we use the mod-
ulus of the estimate for the maximal ratio between the full and the surrogate weights. Note

5As before, we consider the reduction of the maximum, compensated for by partial over-weighting.
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that the sign of the ratio w/s is not unique, as the surrogate s might sometimes get the sign of
the true weight wrong. Accordingly, we have to use x = |w/s| also in the (partial) overweight-
ing. The absolute weight value of an accepted event is still given by Eq. (8), however, its sign
is determined by sgn(w) = sgn(w).

Algorithm 4: Two-stage rejection-sampling algorithm, allowing for negative valued
(surrogate) weights. We hereby assume w,,,, > 0 and x,,,, > 0 given by the respec-
tive maximal modulus determined in a pre-run.

while true do
generate phase-space point u;
calculate approximate event weight s;
generate uniform random number R, € [0, 1);
# first unweighting step with w,,, >0
if [s| > Ry - Wy, then
calculate exact event weight w;
determine ratio x = |w/s|;
generate uniform random number R, € [0, 1);
# second unweighting step with x,,, > 0
if x > Ry - X;;q, then
| return u and w = sgn(w) - max(1, |s|/ W) - max(1, x/Xmae)
end
end
end

To illustrate and validate the proposed algorithm we consider a simple 1d example by
sampling from the target distribution

fw)=u®—-0.25, for uefo,1]. (12)
As surrogate we here just use a piecewise constant function over u € [0, 1] given by

s(u) = —0.25x70,0.2)(w) —0.15x70.2,0.4)() +0.05 x70.4,0.6)() +0.25 1706 0.8)() +0.75 x0.5 17(1) ,
(13)

l1:ueM
= . 14
xu(@) {O:ug’éM (14

where

This encloses the cases that the surrogate over- or underestimates the target, as well as predict-
ing its sign wrongly. In the left panel of Fig. 1 we compile the target distribution, the surrogate
and their ratio. Furthermore, we mark the maximum used in the second unweighting step, i.e.
Xmax = 1.5. This is chosen such that there are regions where |f (u)/s(u)| > X4, triggering
the appearance of events with weight |w| > 1. In the right panel of Fig. 1 we present the dis-
tributions obtained from 500k events generated with the standard unweighting algorithm and
the two-staged approach. Comparing to the true target distribution we see that both methods
produce the desired density. To further confirm the proper treatment for those events where
X > Xpax, We provide a close-up view of the region around u = 0.6. In the standard approach
the unweighting efficiency is eg,; = 0.33, requiring thélilals ~ 1.5M calls of the target function
to generate 500k unit-weight events. In contrast, with the given surrogate and the choice of
Xmax We obtain €14 gy = 0.39 and €54 gy = 0.58, corresponding to N, trials o 2.2M. However,

surr

for the given event sample we only had to evaluate the target thélifls A 875k times.
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Figure 1. One-dimensional toy example for applying the standard unweighting algo-
rithm and the two-staged surrogate method to a non-positive target function. The left
panel shows the target (red) and the employed surrogate (blue), given by Eq. (13),
as well as their ratio (green dashed). Indicated is the (capped) maximal ratio x,,
used in the second unweighting step. The right panel contains the comparison of the
distributions of generated events with the true target.

3 Machine learning event weights

The calculation of transition matrix elements for complicated scattering processes, in partic-
ular when considering higher-order corrections, becomes computationally very expensive. In
applications that require a large number of repeated evaluations this poses a severe bottle-
neck. The generation of unweighted events considered here is only one such example, others
include the fitting of parton density functions (PDFs), or scans over large parameter spaces in
searches for New Physics, i.e. corresponding limit-setting procedures.

For the fast evaluation of fixed-order differential cross sections needed in the determination
of PDFs interpolation grids such as APPLGRID [ 79], FASTNLO [80], and PINEAPPL [81] are widely
used, and there exist tools for their largely automated construction [82,83]. To facilitate and
accelerate analyses searching for New Physics, there have recently been efforts to use deep-
learning techniques for the regression of cross-section integrals [84-86]. Very recently also
the approximation of scattering matrix elements rather than integrated cross sections through
neural networks has been addressed by several groups [87-90]. These approaches suggest
that high-quality surrogates for full scattering matrix elements are feasible, offering potential
for significant speed-ups in the event-generation process when applied within the unweighting
framework described above.

3.1 Neural-network based matrix-element emulation

For a first application of the surrogate-based unweighting, we introduce a custom ML model,
which learns and predicts the complete weight of partonic scattering events. This combines
the squared matrix element and the phase-space weight, the latter including Jacobian factors
Jg from variable mappings of the Lorentz invariant phase-space element ¢, used by the un-
derlying integrator. For a given 2 — n parton-level process our surrogate s(py, Py, P1s--->Pn)
thus approximates the following part of the fully differential cross section:

= fulas 115) FyCps )| Mapn|” (15)

-~
S

doab—>n

Jg,

dx,dx, d®,

Pa>PpsAPi} PasPy-{pi}

Here f,/, denotes the PDF for the incoming parton a/b with momentum fraction x,/p,

9
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evaluated at factorisation scale uy. Note, the PDF contribution could also be factored out of
the surrogate and evaluated exactly on an event-wise basis but we here decided to include it.
The external particle momenta satisfy four-momentum conservation and on-shell conditions:

n
Pa+Py=).Pi» P =0, and pP=m? (Vi=1,...,n). (16)
i=1

Accordingly, the dimensionality of the physical phase space is d =3n—4+ 2.

When comparing Eq. (15) to the first identity in the multi-channel integral given by Eq. (6),
we identify the phase-space element dx, dx;d®, in momentum space with the differential du’
multiplied by the multi-channel density »_ ;i a; g;(u"). The Jacobian factor |Js | corresponds to
1/g(u’). Our NN thus has to approximate the ratio f(u’)/g(u’), that is obviously dependent
on the total importance sampling density g, but not on the very channel used to produce the
phase-space point, see also Ref. [69].

Alternatively to Eq. (15) one could approximate the squared matrix element only, i.e.
s’ ~ |./\/lab_m 2, and fully calculate the Jacobian factors for each phase-space point. Due to
its factorised nature, this approach would in fact be easier to implement. However, it suffers
from the significant costs of evaluating the phase-space weight for multi-leg processes, which
can sometimes even rival the evaluation cost of the matrix element. Furthermore, the combi-
nation of Jacobian factors and matrix elements often yields a smoother function over phase
space. We thus only consider the approach of replacing the combined matrix-element and
phase-space weight with a fast surrogate here.

Various test cases for surrogate models were considered in the course of this work, includ-
ing (boosted) decision trees, random forests and neural networks. While being faster®, random
forests and (boosted) decision trees yield a poorer prediction accuracy, rendering them inade-
quate for an application in the surrogate-based unweighting [91]. Thus, only neural networks
are discussed further in the following.

Given the specific role of the surrogate in the proposed unweighting procedure, we seek
for light-weight network architectures, flexible enough to approximate the weight of high-
multiplicity scattering events well, and fast to evaluate. To this end we employ rather simple
multi-layer feedforward fully connected neural networks (NN).

As input-layer variables we use the three-momentum components of the initial- and final-
state particles’, i.e. 3n+2 inputs. In general, any set of variables that has an injective mapping
to the phase-space point could be used, even with different dimensionality if adding or remov-
ing variables.

One might alternatively consider a particular set of input variables, namely the random
numbers v; from the phase-space sampling, which have been mapped into momenta as de-
scribed by Egs. (4) and (6). While this is straightforward for simple sampling methods, it be-
comes more tricky for multi-channel samplers. Here, the mapping between random numbers
and phase-space point is not unique, but depends on the randomly chosen channel j =1...N,.
To remedy this situation, one could either train a separate NN for each phase-space channel
j, or one could add the channel number j (or the random number determining it) as another
input variable. We postpone a study of these possibilities to future works.

The single output variable of our NN corresponds to the real-valued event weight. The
network is further defined by the number of hidden layers and the set of nodes per layer as
detailed in Table 1. As output activation function for the network nodes we use the Rectified

®The prediction speed of the machine-learning models depends on their architecture. One can construct simple
neural networks which are able to predict faster than a very deep decision tree. However, the accuracy and ability
to generalise may decrease with simpler topologies.

"Note, we here assume the initial-state momenta of partonic scattering events to be collinear with the incoming
beams, i.e. along the +z-axis, such that their x and y components vanish.
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Linear Unit (ReLU) [92]. We use HE weight initialisation [93] and train the NN with the ADAM
optimiser [94].

The practical implementation of NN training in the SHERPA framework and the interface
for (general) surrogate models for application in event unweighting will be detailed in Sec. 4.
In the remainder of this section, however, details on the hyperparameters of our NN and the
training procedure are given. The NN performance is first studied for the example process
gg — e etggdd. We used this channel as a test bed for investigations on the NN perfor-
mance in terms of timing and the quality of the event-weight predictions as a function of the
hyperparameters. Being primarily interested in a conceptual proof-of-concept and an initial
estimation of the method’s potential to save resources in event unweighting, we do not attempt
to systematically optimise the NN setup. Furthermore, while in principle different scattering
processes might get better approximated by a different NN architecture, we will employ the
hyperparameter set found in the following example also in our other applications presented
in Sec. 4.

3.2 Anexample: gg — e e*ggdd

We consider the partonic channel gg — e"e*ggdd at the leading order, i.e. (’)(azaf), that
represents a tree-level contribution to Z+4 jets production at the LHC. Correspondingly, the
input-parameter space for the NN here is 20-dimensional. The fiducial phase space used
in the training and for the predictions is constrained by requiring a dilepton invariant mass
m,—+ > 66 GeV and four anti-k, jets [95] with radius parameter R = 0.4 and pr; > 20 GeV.
We consider a proton—proton centre-of-mass energy of /s = 13 TeV, and use the NNPDF-3.0
NNLO PDF set [96]. As matrix-element and phase-space generator we employ AMEGIC [10] in
the framework of SHERPA-2.2.

Our NN has four hidden layers with 128 nodes each. The training dataset consists of 1M
events generated with SHERPA after the optimisation phase of the AMEGIC integrator. We split
the dataset such that 80% of the events are used for training and 20% for validation. In order
to normalise the input features, we scale the momenta to the range [—1, 1] using min-max
normalisation with the min-max values given by +4/s/2. As the values of the weights can
span several orders of magnitude, we take the logarithm of the weights in order to avoid
numerical problems. The NN model is fitted to the data by minimising the mean squared error
(MSE) loss using the ADAM optimiser with a learning rate of 10™2. We use a batch size of 1000
and train in epochs containing all training points in random order. Early stopping is used to
end the training when the validation loss does not decrease for 30 epochs and save the model
with the lowest validation loss. Like for the training we also use the MSE loss for validation.
Fig. 2 shows the convergence behaviour of our model. One can see that the loss decreases
fairly smoothly and that the variations between different initialisations of the model are small.

To test the quality of our trained NN surrogate s for the true event weights w we present
in Fig. 3a the resulting distribution of x = w/s for 1M phase-space points generated with
SHERPA. The x-distribution is centred around x = 1, rather symmetric, and falls off quite
steeply. This confirms that the chosen NN is indeed suitable for a prediction of the event weight.
Still we observe that the tails of the distribution stretch beyond |log;,(x)| > 4, meaning the
NN sometimes severely over- or underestimates the true weight. In particular the largest x-
values will affect the performance of the unweighting algorithm proposed in Sec. 2.1, as they
determine the maximum x,,, against which to perform the second rejection sampling. Fig. 3b
shows that the largest and smallest values of x correspond to small values of w. As opposed to
this, the NN approximation is much better for higher values of w as can be recognized by the
smaller spread of the x-values. This behaviour can be expected given the MSE loss function
used for the training of the NN. While Fig. 3b shows that the largest relative deviations can be
found for small values of w, the absolute deviations in that region are actually small. The MSE
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Table 1: Summary of hyperparameters specifying the employed feedforward NN ar-
chitecture and the means of training.

NN Hyperparameter Value

Hidden Layers 4
Nodes per Layer 128
Activation Function ReLU
Loss Function MSE
Optimiser ADAM
Learning Rate 1073
Batch Size 1000
—— training
101 4 —— validation
("]
3
w
(%]
=
100 4
0 50 100 150 200 250 300

epoch

Figure 2: Training (blue) and validation (orange) MSE loss of the best performing NN
during training. The dashed line illustrates the stopping point due to early stopping.
The coloured bands show the variations from ten independently trained initialisa-
tions of the same model.

loss function penalizes absolute deviations at larger w-values more than at smaller w-values
which leads to larger relative deviations for small values of w.

As described already in the context of the first unweighting step in Alg. 1, we can use
maximum-reduction techniques also for x,,,, in the second rejection sampling. These will re-
duce the sensitivity to the tail of the weight distribution and in particular rare outliers by using
a reduced maximum, again at the price of a partial overweighting of events. In our perfor-
mance study in Sec. 4 we will employ two reduction techniques. The first being the quantile
reduction method, where we define xhay such that the remaining overweights contribute at
most 1%o to the total cross section o. We consider an event sample of N = 1M events with
weights {w;}. For reference, in the standard unweighting method we can determine wh,,; by

sorting the sequence of weights {w;} such that w; < w;,; and requiring that

N N
whM = min | w; | > w; <0.001- > w; | 17)
i=j+1 i=1

The equivalent procedure for our two-stage unweighting method is to calculate the values of
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Figure 3: Distribution of weights using 1M test points generated with SHERPA for
the process gg — e et ggdd in proton—proton collisions at /s = 13 TeV. (a) One-
dimensional histogram of the ratio x = ¥. The two vertical lines indicate the values of

the reduced weight maxima xﬁ;g; (dashed) and x;‘:g (dotted). (b) Two-dimensional
histogram showing the relationship between the ratio x = ¥ and the true event

weight w.

s and x for all events and to sort the sequence {x;} such that x; < x;,; and to use the same
order for the {s;}. The reduced maximum is then defined as

N N
xP o i=min | X; Z x;s; < 0.001 -le-si . (18)
i=j+1 i=1

As a somewhat more aggressive alternative we introduce the median reduction method. Here
we consider N{E‘ta;flrr = 1M trial points for which we perform the first unweighting n = 50
times with different random seeds. For the accepted events in each iteration we determine

Xmax- From the final set of maxima we then determine the median xgl’:g, ie.

med .__ i

xmax T med({xmax}) . (19)

For our example process the resulting values of x5 and xg‘:g are illustrated by the vertical

dashed and dotted line in Fig. 3a, respectively. In this specific example we obtain x5y ~ 73
and xr“r}:g ~ 27, which corresponds to a reduction of x5k, by about two orders of magnitude
with respect to the naive maximum, and an additional factor of three when using the median
approach.

We close this section with a comment on the timings for the evaluation of the matrix el-
ement and the NN surrogate for a single phase-space point. On average the evaluation of
the full event weight for the gg — e e*ggdd process from AMEGIC takes about 85ms®. In

contrast, for the NN model this just takes 0.13 ms, which translates into a speed-up of

~ 650. (20)

8The quoted times correspond to the evaluation on a single core of an Intel® Xeon® Processor E5-2680 v3 @
2.50GHz.

13


https://scipost.org
https://scipost.org/SciPostPhys.12.5.164

Scil SciPost Phys. 12, 164 (2022)

4 Surrogate-based unweighting: Implementation, Validation and
Results

The event-weight estimator from Sec. 3.1 is optimally suited to be used as light-weight sur-
rogate in the two-stage unweighting method presented in Sec. 2.1. In the following, we will
briefly describe the implementation of the algorithm in the SHERPA generator framework. As a
first application we will again consider the gg — e e ggdd process. We will then benchmark
the method in a variety of partonic channels contributing to W+4 jets and tt+3 jets production
at the LHC and validate the obtained results.

4.1 Implementation in the SHERPA framework

The SHERPA framework embeds modules to automatically construct the transition matrix el-
ements and suitable multi-channel integrators for in-principle arbitrary tree-level processes.
To this end it has two matrix-element generators built-in, AMEGIC and COMIX. Our current
implementation of the novel unweighting algorithm employs the AMEGIC generator.

In an initial optimisation phase the integrator is adapted to the specific process and fiducial
phase space using the channel-weight optimisation described in [29]. During the integration
phase the value of w,,, is determined based on the quantile approach. We use the SHERPA
default of letting overweighted events have a relative contribution of 1% to the inclusive cross
section. The optimised generator is then used to produce a sample of 2M weighted events. We
use the first 1M events as training (80%) and validation (20%) data for our NN model.’ For the
NN implementation and training we use KERAS [97] with the TENSORFLow [98] backend. The
model parameters leading to the lowest validation loss are written out as an HDF5 [99] file.
While KERAS is based on Python, SHERPA is written in C++. To use the KERAS model in SHERPA
without having to rely on an interface we use the header-only library frugally-deep [100]
which runs the model in prediction mode on a single CPU core.

The second 1M events are used to determine the x,,, for the second unweighting using
the per mille quantile or median approach. For the latter we consider n = 50 independent iter-
ations over the data set. This procedure is repeated for ten independently trained NN models
and we finally choose the one achieving the lowest x,,,, on the test dataset to be used in the
following. The NN and the value of x,,., then serve as inputs to SHERPA for subsequent event-
generation runs. We use different events for the determination of x,,, than for the training
of the NN. If one were to use the same data set, x,,, would likely be underestimated. With
data not seen by the model during training, however, we get a much more reliable estimate.

For the performance analysis we log several quantities during the event generation. To
determine the efficiencies, we count the numbers of trials for the first and second unweighting
steps. Also, we measure the time it takes on average to evaluate the surrogate by taking the
sum of user and system time spent in the respective parts of the code.

4.2 Anexample: gg — e e*ggdd

Before proceeding with the application of our novel unweighting approach to W+4 jets and
tt+3 jets production at the LHC, we examine its technical and physics performance in more
detail for the example process of gg — e~e* ggdd. This is the channel initially used to optimise
the NN performance in terms of timing and accuracy, ¢f. Sec. 3.2.

°In a production implementation in the future, one could also perform the training on the same events that
are generated during the integration phase after the integrator optimisation.
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Performance analysis

The evaluation of the NN surrogate for a single phase-space point was found to be about 650-
times faster than the full weight calculation with AMEGIC. In Fig. 3a we have presented the
obtained distribution of x = w/s, where we also indicated the reduced maxima for the per
mille quantile and the median approach, i.e. xhny ~ 73 and xggg ~ 27, respectively. Using
the trained NN and each of these maxima, we generate from scratch 100k events with our sur-
rogate unweighting algorithm. In Tab. 2 we summarise the obtained efficiency of the default
single-stage unweighting, e, the efficiencies of the first and second rejection-sampling step
in the surrogate unweighting, as well as the a-parameter that determines the effective sample
size, ¢f Eq. (9), for the two maximum-reduction methods'. Lastly, we give the resulting gain
factors f., cf. Eq. (10).

Table 2: Sampling measures for the gg — e"e*ggdd partonic channel in pp colli-
sions at /s = 13 TeV. All efficiencies, the sample-size parameters and effective gain
factors are determined in the generation of 100k unweighted events.

process: gg — e et ggdd

p-m. p-m. P p-m. med emed med fmed

€full €1st,surr Xmax Ean,surr eff X max 2nd,surr eff

8.8¢—3 || 6.4e—3 || 729 1.9e—2 09982 1.73 || 266 5.1e—2 09962 4.69

Using the default unweighting algorithm, AMEGIC achieves an unweighting efficiency of
about 0.9%. This in fact is quite remarkable, given that we consider a six-particle final state.
When using the NN surrogate we obtain a similar performance, €1 g,y & 0.64%, and given
the fast evaluation time for the surrogate this slightly lower efficiency barely affects the over-
all performance. More relevant is the second unweighting, for which we find efficiencies of
eggﬁ;surr = 1.9% and e‘znrfisurr = 5.1%. Accordingly, when using the median-reduction tech-
nique, we need to evaluate the full weight roughly a factor 2.7 less often than for the quantile
approach. For the considered process this almost directly transfers to the effective gain factors
that yield el?fm' = 1.73 and ferfr}ed = 4.69. These gains are a consequence of the speed of the
surrogate evaluation, and its excellent approximation of the true weights, i.e. the very steep
fall-off of the x = w/s distribution. In fact, the effective sample size reduces only to 99.8 %
and 99.6 % of a unit-weight sample, which will be negligible in practical applications.

The obtained a values close to unity reflect the fact that only few events retain non-unit
weights w in the end, ¢f Eq. (8). This is confirmed by Fig. 4 where we present the final
event-weight distribution for the sample of 100k events generated using the more aggressively
reduced maximum xﬁzg in the second unweighting step. Indeed, only a small fraction of events
exhibits weights w > 1. Furthermore, the overweights rarely exceed w = 3 and the maximum

we observe within this sample is w ~ 9.

Physics validation

To prove that our algorithm indeed produces the correct target distribution we now move to
the validation of differential cross sections. Figure 5 collects various physical observables com-
paring the predictions of SHERPA with and without the novel unweighting approach. For both
methods we produced samples of 1M events at the parton level. Parton shower and hadro-
nisation effects are disabled in these and the following simulations to increase the resolution
and sensitivity to potential differences between the two approaches. These were analysed with

1°Note, the w,,,, used in the first unweighting is always reduced using the per mille quantile approach to keep
the full and the surrogate approach comparable.
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Figure 4: Final event weights w of 100k gg — e e*ggdd events in proton—proton

.. _ . . . . med
collisions at 4/s = 13 TeV generated using surrogate unweighting with x°C.

the RIVET3 toolkit [101] using the MC_ZINC and MC_ZJETS analyses. In panel (a) we show
the dilepton invariant mass, (b) the dilepton rapidity distribution, (c) the py of the jet with
highest transverse momentum, and (d) the azimuthal distance between the two leading jets.
For each plot we provide two sub-panels. In the first we depict the ratio of the predictions
obtained from the surrogate approach and nominal SHERPA, where the errorbars indicate the
bin-wise statistical uncertainty. The second panel displays directly the statistical compatibility
of the two predictions measured in terms of standard deviations.

For all four observables we find full statistical agreement, which proves that the surrogate
approach produces the correct target function. This also applies to the tail of the distributions.
No significant increase in the statistical errors is observed for the surrogate-based prediction,
which verifies the negligible reduction of a™d = 0.9962. Furthermore, there is no visible
imprint of statistical fluctuations from the events that exceed the maximum in the second
unweighting.

For the considered example process we can conclude that when using the surrogate un-
weighting approach we can generate samples of almost identical statistical accuracy that repro-
duce the exact physical distribution. Depending on the method used to reduce the maximum
in the second unweighting step we find effective gain factors up to 4.7.

4.3 Results for LHC production processes

In this section we present results for processes contributing to W+4 jets and tt+3 jets produc-
tion at the LHC, providing further insight into the potential and limitations of the surrogate-
unweighting method. Both final states receive contributions from a large number of partonic
channels, from which we pick representatives here. Given the high final-state multiplicity, the
large number of contributing Feynman diagrams, and the complexity in QCD colour space,
these matrix elements are highly non-trivial functions over phase space and rather expensive
to evaluate, such that we can expect gains from employing the surrogate method.

In the following we employ the same network architecture and training measures as de-
scribed in Sec. 3.1 and used in the Z+4 jets example and apply them in each partonic channel
separately. We do not attempt to specifically adjust and optimise the hyperparameters, though
this could potentially further improve performance. As before, all setups are studied with
SHERPA-2.2 for pp collisions at /s = 13 TeV, using the NNPDF-3.0 NNLO PDF set and AMEGIC
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Figure 5: Comparison of different differential distributions generated using
SHERPA with (re:d) and without (black) an NN weight surrogate for the process
gg — e et ggdd in proton—proton collisions at /s = 13 TeV.
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as matrix-element and phase-space generator.

Besides quantifying timing improvements, we scrutinise the physics description by validat-
ing observable distributions against the standard unweighting approach. It is worth mention-
ing that all presented timing improvements can likewise be translated into energy savings as
no notable additional computing resources are needed for the new approach.

4.3.1 W+4 jets

We consider three partonic channels with varying numbers of external gluons that contribute
to W+4 jets in proton—proton collisions. These are listed along with their respective tree-level
production cross section in Tab. 3. While the dimensionality of the input-parameter space for
the NN surrogate is identical to the Z+4 jets example, we now consider the charged-current
weak interaction and different combinations of initial- and final-state partons.

Table 3: Selection of partonic channels contributing to W+4 jets production at the
LHC and their corresponding leading-order production cross sections.

process cross section [pb]

dg —e v,gggu 24.5(2)
dd - e v,ggdu 4.62(3)
ud — e v, duud  0.0572(3)

The quoted cross sections correspond to a fiducial phase space requiring four anti-k, jets
with R = 0.4 and py; > 20GeV, and m,-5 > 1 GeV. Due to the high total production rate,
W+4 jets final states constitute an important background to top-quark pair-production and
many searches for new physics phenomena. From Tab. 3 we can infer that the cross sections
of different partonic channels vary significantly. In particular processes with more external
gluons dominate over quarks. An additional driver are the initial-state flavour PDFs. The
larger the contribution of a partonic channel to the total W+4 jets cross section the more
events it will contribute to an inclusive sample. Accordingly, it is desirable to speed up event
generation in particular for the dominant production channels.

Performance analysis

In Tab. 4 we compile the performance measures for unweighted event generation separately
for the three considered W+4 jets partonic channels. They are determined from samples of
100k events generated with the standard and the NN surrogate approach.

Notably, for all three processes the standard unweighting efficiency is lower than for the
Z+4 jets channel. For the process with four external gluons the evaluation of the surrogate
model is again more than 600 times faster than the full weight calculation. However, for the
other two cases we achieve speed-up factors of 162 and 25 only. These lower gains originate
from shorter evaluation times for the full weights of 20ms for dd — e~ v,ggdu and 3ms
for ud — e~ v,duud, while the NN surrogate takes about 0.12ms for each channel. While the
maxima xrngjg are all of a similar size as in the Z+4 jets case, the values for x} are significantly
higher, ranging up to 1650 for ud — e~ v, duud. This suggests that the NN provides an inferior
approximation of the weights for the processes and fiducial phase space considered here. To
illustrate this we show in Fig. 6a the distribution of x = w/s for 1M events for the process
dd — e v,ggdu. When comparing to Fig. 3a we indeed observe a broader distribution that
exhibits more pronounced tails. The two vertical lines indicate the values of x5 (dashed)
and x™¢ (dotted). By comparing the relationship between x and w shown in Fig. 6b to the

max
one shown in Fig 3b, we see that the spread of x-values is much broader overall. However,
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Table 4: Performance measures for partonic channels contributing to W+4 jets pro-
duction at the LHC.

|| dg —e v,gggu | dd — e v,ggdu | ud — e~ v,duud

Efull || 1.4e—3 | 3.1e—4 | 3.6e—4
€1st,surr 7.1e—4 1.1e—4 1.3e—4
(tram) / (ure) 667 162 25
xh 234.03 544.96 1642.77
€ nd surr 8.5e—3 5.2e—3 1.8e—3
aP ™ 0.9953 0.9958 0.9953
e 1.93 0.29 0.02
xmed 40.28 30.53 38.53
€t surr 5.3e—2 8.5e—2 7.3e—2
amed 0.9285 0.8204 0.4323
flned 10.36 3.91 0.25

otherwise it shows a similar behaviour with the more extreme values of x corresponding to
small values of w.

The efficiencies of the initial unweighting step are also consistently lower than for the
neutral gauge-boson channel. In particular for the process without external gluons, where
(team)/(tsurr) is 'only’ 25, the factor of three between egy; and €54 g,y might not be negligi-
ble. As expected given the larger values of x5 the corresponding efficiencies for the second
unweighting step are all below 1%, i.e. as low as 2%o for ud — e~ v,duud. However, for
the median-reduced maximum the situation improves significantly, with eglnei < iD the range
of 5—8%. This efficiency improvement comes at the expense of the statistical power of the
sample. While in the quantile approach the resulting aP™ factors are very close to unity, i.e.
the effective sample size is larger than 99.5% of a true unit-weight sample, we observe more
significant fractions of overweights with the median approach. This is true in particular for
dd — e v,ggdu (Neg ~ 82%N) and ud — e~ v,duud (Ng =~ 43%N).

These performance measures are condensed into the resulting effective gain factor f.¢ ac-
cording to Eq. (10). For the dominant dg — e~ ,g g gu channel we find quite significant gains,
even exceeding a factor of ten for the median approach. For the other channels the situation
is different. For the all-fermion process surrogate unweighting needs more resources than the
standard approach. This can be traced back to the relatively fast evaluation of the full weight,
due to the simpler form of the matrix element, and the inferior performance of the NN in
approximating the true event weights. However, in the global W+4 jets context, this channel
contributes little to the total production rate and thus relatively few events need to be gen-
erated for such a channel. For the intermediate process, dd — e~ v,ggdu, we find fer?fed ~ 4.
This speed-gain, however, also goes along with a more sizeable fraction of overweights, yield-
ing a™4 & 0.82. We will therefore compare differential distributions for physical observable
for this channel in the median approach next.

Physics validation

In Fig. 7 we present a comparison of physical distributions for the channel dd — e~ %,ggdu
generated with and without the NN surrogate, employing xg,jg in the second unweighting. We

show results for (a) the transverse momentum of the charged boson, (b) the k; 4-jet resolution
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Figure 6: Distribution of weights using 1M test points generated with SHERPA for
the process dd — e~ ,ggdu in proton—proton collisions at 4/s = 13 TeV. (a) One-

dimensional histogram of the ratio x = ¥. The two vertical lines indicate the values of

the reduced weight maxima xﬁ;g; (dashed) and x;‘:g (dotted). (b) Two-dimensional
histogram showing the relationship between the ratio x = ¥ and the true event
weight w.

d34, (c) the scalar sum of the four jet transverse momenta, Hr, and (d) the invariant mass of the
two leading p jets within the RIVET analyses MC_WINC, MC_WJETS, and MC_WKTSPLITTINGS.

For all four differential distributions we observe full statistical compatibility between the
two samples of 1M events each. This further underlines that our surrogate-unweighting ap-
proach produces the exact target distribution. The considered observables all deeply probe
the high-p tails of phase space. In fact, the p%v and dj4 distributions extend over five or-
ders of magnitude in cross section. While for the given sample size of N = 1M we observe
significant statistical fluctuations in the tails, these are fully consistent between standard and
NN-surrogate generated samples. Even given a™¢ ~ 0.82, corresponding to an effective sam-
ple size of N, = 820Kk, neither spikes or bumps are manifest in the nominal distributions,
nor a significant increase in the statistical uncertainties for particular observable bins. And
with a resulting gain factor of f.; ~ 4, the surrogate method outperforms standard unweight-
ing drastically. However, to some extent and as noted earlier, this statement depends on the
post-processing procedures for the events. If the overall generation time of parton-level pre-
dictions is small compared to e.g. a full detector simulation, the standard unweighting might
be preferable, at least for sub-channels with medium or low f.

4.3.2 tt+3 jets

Finally, we present results for processes belonging to the tt+3 jets group. This probes the
generalisation beyond the production of a single electroweak gauge boson in association with
jets to a pure QCD process with massive particles. Even though the final state contains one
particle less this process still poses a severe challenge. As top quarks carry colour charge
there is a significant proliferation of Feynman diagrams when considering their jet-associated
production. Despite these differences we employ the same neural-network architecture as
before, adjusting the input-space dimensionality for the NN to 17, again utilising the three-
momenta as input variables. We require three anti-k, jets with R = 0.4 and pr; > 20 GeV and
do not impose phase-space cuts for the external top quarks. The latter are treated as on-shell
in the matrix-element calculation, p? = p% = mf with m, = 173.4 GeV, and only decayed a
posteriori to allow a more realistic definition of observables in the following physics validation.
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In Tab. 5 we list the four considered partonic channels and their respective leading-order cross
section in proton—proton collisions at /s = 13 TeV.

Table 5: Selection of partonic channels contributing to t+3 jets production at the
LHC and their corresponding leading-order production cross sections.

process cross section [pb]

gg —ttggg 108.4(2)
ug — ttggu 26.00(4)
uu— ttguu  3.733(8)
uii — ttgdd  0.01840(6)

Clearly, under LHC conditions the all-gluon process has the largest production rate. In the
second channel, i.e. ug — ttggu we instead consider an initial-state up-quark. Given that the
QCD interaction does not change flavour, this parton species also appears in the final state.
The third channel contains two up-quarks in the initial- and final state, corresponding to t-
channel dominance in the top-quark production. The last considered process is uit — ttgdd,
here top-quarks can be produced through s-channel gluons. Note, its production rate and
correspondingly its contribution to an inclusive sample of unweighted events is significantly
suppressed.

Performance analysis

In Table 6 we collect the performance measures for the surrogate-unweighting approach ap-
plied to the four top-quark productions channels. The reference unweighting efficiencies eg,;
for standard unweighting with AMEGIC are typically higher than the ones found for W+4 jets
before.

Table 6: Performance measures for partonic channels contributing to t¢+3 jets pro-
duction at the LHC.

H gg —ttggg ‘ ug — ttggu ‘ uu — ttguu ‘ uil — ttgdd

et || 1le=2 | 73e3 | 683 | 66e—4
€15t surr 8.7e—3 5.8e—3 4.7e—3 3.6e—4
(tean)/ {toure) 39312 2417 199 64
xP 52.03 32.52 69.76 326.19
p.m.
€ i sur 2.4e—2 3.8e—2 2.1e—2 5.6e—3
aP ™ 0.9989 0.9984 0.9994 0.9981
p.m.

o 2.21 4.89 1.47 0.19
xmed 30.40 19.14 27.78 25.34
ened 4.3e—2 6.4e—2 5.1e—2 7.1e—2
amed 0.9983 0.9966 0.9943 0.9321
fired 3.90 8.26 3.91 2.22

When comparing the evaluation times for the full event weights and the NN surrogate,
quite significant speed-ups are found for gg — ttggg and ug — ttggu. As before, a single
evaluation of the surrogate weight takes about 0.12ms. However, the weight calculation for
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the all-gluon channel takes around 5s, for ug — ttggu it is still around 0.3s. Although we
observe this high ratio of weight evaluation times, the effective gain factor f. is much smaller
in the end and of the same order of magnitude than for the other processes. This can be
mostly attributed to the relatively high unweighting efficiencies we start from. With a value of
€p) = 1.1e—2 the process gg — ttggg has the highest unweighting efficiency of the examples
considered here. According to Eq. 10, this clearly limits the possible gains. The reason for the
high values of e is that this kind of multi-gluon channel is well-optimised in the integrator
used by SHERPA.

The results obtained for x*™ and x™*¢ are less spread out than for the W+4 jets processes.
For ug — ttggu the NN performs best, with x5oy ~ 33 and xgsg ~ 19. Only for uii — ttgdd
do we find an inferior performance with x5, > 300. The values for the efficiency of the
first unweighting step are comparable to what we found for the Z+4 jets channel, only for
uit — ttgdd it is significantly lower. Similar findings hold for €2y which is lowest for

med

2nd,surr’
uii — ttgdd. All effective sample size parameters are found to be larger than 0.99, with the

exception of the uii process when using the median reduction method, where a™¢ ~ 0.93.
However, when using xgjf in the rejection sampling the effective gain factors are all higher
than two, being largest for ug — ttggu with ferfr;ed ~ 8. For the two computationally most
expensive channels, that also feature the largest production rates, we obtain gains larger than
two even with the per mille maximum reduction.

Physics validation

We close again by comparing predictions for physical observables, obtained with and without
using the weight surrogate for the partonic channel uu — ttguu. Note, the on-shell top-
quarks produced in the hard scattering get decayed with SHERPA’s decay handler [6] prior to
the final-state analysis. We here consider the semi-leptonic decay channel, i.e. tf — [v,q3’bb
and employ the RIVET analysis MC_TTBAR.

In Fig. 8 we present exemplary results for (a) the invariant mass of hadronic W-boson
candidates, (b) the H distribution of all final-state jets, (c) the invariant mass of the hadronic
top-quark candidates, and (d) the transverse momentum of the harder of the two final-state
b-quark jets.

As before, we find full statistical agreement between the two samples for all considered ob-
servables. The rather fine binning of the invariant-mass distributions leads to larger statistical
fluctuations for the given sample size of N = 1M. However, as we will illustrate in Sec. 4.3.3
the deviations are in agreement with perfect statistical compatibility, i.e. both samples follow
the same target distribution. Given a™4 = 0.9966 we do not expect and in fact do not ob-
serve any visible effects from a reduced statistical accuracy of the sample produced with the
surrogate approach.

4.3.3 Summary of physics validation for LHC processes

In addition to the selected observables for the three processes shown in the previous sections,
we have performed a statistical compatibility analysis between the full and the surrogate setups
based on 190 observables with almost 16,000 bins in total. The predictions are normalised in
each observable for this analysis, to avoid a sensitivity to differences in the integrated cross
section of each run, which would otherwise have to be accounted for as a correlation between
different bins. As can be seen in Fig. 9, the deviations follow a normal distribution N (u, o?)
with u =0 and o = 1, thereby validating our approach as faithful and unbiased.

23


https://scipost.org
https://scipost.org/SciPostPhys.12.5.164

w
o,

do/dm [pb GeV~']

Ratio

do/dm [pb GeV~1] Deviation []

Ratio

Deviation [¢]

SciPost Phys. 12, 164 (2022)

1.08
1.06
1.04 "II
1.02 ff

i

(Ne=1) (Ny=1)
T L LI LI LI ‘ LI ‘ LI ‘ LI ol F T =
10 ' — |
E Full Sherpa —— 3 2
E Surrogate Sherpa —+— Q
r B 2 1073 —
=] E E|
I 15 :
102 — ) r B
£ E N E i
C ] © L —t+— Full Sherpa B
r 7 1o E —t— Surrogate Sherpa 3
103 — o i
E 107° -

M. NN U .m.nlm |

IRRRRERRE S ww'T"q_'_rrT‘rlm |

Ratio

0.98 |
0.96 f
0.94
0.92

NNNRRRRRRAR AmRRRRRRRL
—0—: 1

T m‘m‘m‘\g

o r
HH‘

| —

=]

—

e m—

]

E=]

=

\‘H\
o = N

I n )
i Y ey L]JLN“ u

L ‘ I ‘ L1 ‘ L1 ‘ L1 ‘ Lo1h ‘ - ‘ I N |
40 60 ) 100 120 140 160 180 103
m [GeV] Hr [GeV]

Deviation [¢]

[RARRRRA==E22E

d
g
3
2
il

(a) Mass distribution for W boson (b) H; distribution for all jets
(N,=1) (N, =1)
T ‘ T T T ‘ T T T ‘ T T T ‘ T T T ‘ T T T ‘ T
Full Sherpa —+— 3
Surrogate Sherpa —+—

- ] T

do/dp, [pb Gev1]

—+— Full Sherpa
—+— Surrogate Sherpa

1.08 &
1.06
1.04
1.02 g

-

0.98 i
0.96
0.94 £
0.92 £

Ratio
=
E
gé_
7
:
£
=
E
= i AT

Deviation [¢]
(=
=
=

=
i
O
0

T IR s s PN AT AL A

HHH OMHH‘\H
I:|
-
=
=,
=
=]

n

—
i

Il ‘ Il Il Il ‘ Il Il Il ‘ Il Il Il ‘ Il Il Il ‘ Il Il Il ‘ Il
140 160 180 200 220 240 102
m [GeV] p1 [GeV]

(c) Mass distribution of reconstructed top (d) Transverse momentum distribution for
leading b-jet

Figure 8: Comparison of different differential distributions generated using
SHERPA with (red) and without (black) an NN weight surrogate for the process
uu — ttguu with subsequent leptonic top-quark decays in proton—proton collisions
at /s = 13TeV.
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5 Conclusions

Virtual particle collisions as simulated by Monte Carlo event generators play a central role in
high-energy physics. Representing our best-knowledge theoretical expectations, they are used
in the design and development of particle detectors for collider experiments, the planning and
preparation of measurements, and, foremost, in the actual analysis and interpretation of real
experimental data. To match actual measurements, particle-level virtual events need to be
supplemented by a detailed simulation of the detector response. Given the calculational com-
plexity and resource consumption of the detector emulation, ideally particle-level events with
unit weight should be provided. However, the growing need in high-statistics simulations for a
wide range of complex, high-multiplicity partonic scattering processes, including higher-order
perturbative corrections, makes event unweighting a severe and very relevant computational
challenge.

We have presented a novel two-staged unweighting algorithm that has the potential to
significantly accelerate event unweighting. In an initial rejection-sampling step we employ a
light-weight neural-network surrogate for the computationally expensive exact integrand, i.e.
the matrix-element and phase-space weight. The mismatch of the surrogate and the true event
weight is then corrected for in a second unweighting step. To protect against rare outliers in the
true weight distribution as well as in the point-wise ratio of the true and the surrogate weight,
we systematically reduce the respective numerically found maxima using a quantile or median
approach, resulting in a partial overweighting of events. The relevant performance measures
for the algorithm are the quality of the approximation, as well as the evaluation time per phase-
space point, which can be combined into an effective per-event gain factor f.¢ with respect to
conventional rejection sampling. This measure accounts for the reduced statistical power of
the sample due to overweighting. It is used throughout this work to give a rigorous assessment
of the effective improvement to be expected in various example processes. While the proposed
unweighting algorithm has been developed in the context of collision-event simulations, it is
in fact more general and can be used in other applications as well.

In Sec. 3 we have discussed the setup and training procedure used to approximate event
weights with deep feedforward neural networks. As an initial test bed we have used a repre-
sentative partonic channel contributing to tree-level Z+4 jets production at the LHC. We found
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that our neural network is well capable of estimating the true event weights, thereby being
more than 600 times faster.

In Sec. 4 we presented the practical implementation of the novel two-staged unweight-
ing algorithm in the SHERPA event-generator framework. To further validate, benchmark and
gauge the potential of the method, we applied it to high-multiplicity partonic channels con-
tributing to W+4 jets and tt+3 jets at the LHC. For the dominant partonic channels with
sizeable cross sections and expensive matrix elements we found gain factors from using sur-
rogate unweighting ranging from two up to ten. By comparing differential distributions of
physical observables we were able to show that the proposed method indeed reproduces the
correct target distribution. We were furthermore able to show that the partial overweight-
ing of events, due to employing reduced maxima in the rejection sampling, barely affects the
statistical accuracy and leaves no visible effect in physical distributions.

The unweighting algorithm presented here can also be applied in event generation beyond
the leading order, where in parts of the phase space the event weights can become negative.
While the proposed algorithm can take negative-valued weights into account, our SHERPA im-
plementation is currently limited to tree-level matrix elements, where only positive weights
appear. We leave the generalisation to NLO event generation and corresponding performance
studies for future work. It will furthermore be interesting to apply our algorithm with alter-
native and potentially more powerful surrogate methods on the market, and evaluate their
performance using the measures introduced in this work.
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