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Abstract

We theoretically study spin-1/2 fermions confined to two spatial dimensions and ex-
periencing isotropic short-range attraction in the presence of both spin-orbit coupling
and Zeeman spin splitting – a prototypical system for developing topological superflu-
idity in the many-body sector. Exact solutions for two-particle bound states are found
to have a triplet contribution that dominates over the singlet part in an extended region
of parameter space where the combined Zeeman- and center-of-mass-motion-induced
spin-splitting energy is large. The triplet character of dimers is purest in the regime of
weak s-wave interaction strength. Center-of-mass momentum is one of the parameters
determining the existence of bound states, which we map out for both two- and one-
dimensional types of spin-orbit coupling. Distinctive features emerging in the orbital
part of the bound-state wave function, including but not limited to its p-wave character,
provide observable signatures of unconventional pairing.

Copyright U. Ebling et al.
This work is licensed under the Creative Commons
Attribution 4.0 International License.
Published by the SciPost Foundation.

Received 20-12-2021
Accepted 02-05-2022
Published 19-05-2022

Check for
updates

doi:10.21468/SciPostPhys.12.5.167

Contents

1 Introduction 2

2 General formalism for solving the two-particle problem 4
2.1 Case of noninteracting particles 6
2.2 Bound states resulting from s-wave attraction 7
2.3 Binding energy from the Bethe-Peierls boundary condition 9

3 Bound-state properties for 2D-type spin-orbit coupling 11
3.1 Case of zero center-of-mass momentum 11
3.2 Effect of finite center-of-mass momentum 14

4 Bound states formed with 1D-type spin-orbit coupling 16

1

https://scipost.org
https://scipost.org/SciPostPhys.12.5.167
mailto:j.brand@massey.ac.nz
http://creativecommons.org/licenses/by/4.0/
https://crossmark.crossref.org/dialog/?doi=10.21468/SciPostPhys.12.5.167&amp;domain=pdf&amp;date_stamp=2022-05-19
https://doi.org/10.21468/SciPostPhys.12.5.167


SciPost Phys. 12, 167 (2022)

5 Orbital characteristics of the bound-state wave function 18

6 Experimental detection 20

7 Conclusions and outlook 20

A Singlet and triplet projections of helicity-basis product states 21

B Momentum representation of the Green’s function 22

C Boundaries of parameter regions for P= 0 bound states 23

D Analytical results for fractional weights of total-spin eigenstates in the bound
state for P= 0 and Ẽb ≤ −1− h̃2 24
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1 Introduction

Since their early days, ultracold atomic gases have provided an intriguing avenue for exploring
and simulating condensed-matter-physics phenomena. Artificial gauge fields [1–4] constitute
pertinent examples for the great degree of control and ability to fine-tune parameters that
are often fixed in a solid-state material. While spin-orbit coupling for quasi-free electrons in
materials is fundamentally determined by the band structure [5–8] and can only be manipu-
lated in a limited fashion via nanostructuring [9], it has recently become possible to realize
synthetic versions of one-dimensional (1D) [1] and two-dimensional (2D) [10, 11] types of
spin-orbit coupling for ultracold neutral atoms by means of Raman coupling with lasers. Fur-
thermore, advances in manipulating and probing quantum gases have enabled the study of
low-dimensional systems such as 2D Fermi gases [12–19] and provided detailed insights into
their many-body physics via spectroscopic techniques [20]. In the future, low-dimensional sys-
tems with spin-orbit coupling and Zeeman spin splitting will allow experimentalists to create
exotic condensed-matter phases such as topological superfluids that can host unconventional
Majorana-fermion excitations [21]. Mean-field theory predicts the emergence of such a topo-
logical phase in s-wave superfluids of 2D fermions with spin-orbit coupling and large-enough
Zeeman splitting [22–26].

Complementary to mean-field studies of interacting many-particle systems, analysis of the
two-fermion bound state in vacuum sheds a different light on pairing that can provide crucial
insight, e.g., into the strong-coupling (BEC) limit of tightly bound dimers. Dimers of fermionic
atoms are further of interest in their own right, e.g., as providing qubits for quantum informa-
tion processing [27]. We consider two particles (atoms) interacting only via isotropic, short
range, and attractive low-energy s-wave scattering under the influence of synthetic spin-orbit
coupling. Previous work on bound states in 3D [28–31] (see Ref. [32] for a trapped system)
and in 2D [33–35] largely ignored the effects of Zeeman spin splitting. Dimers of spin-orbit-
coupled fermions in a 3D gas have already been produced and probed experimentally [36].

The presence of spin-orbit coupling adds several interesting features to the two-particle
problem, including the fact that strongly bound states acquire properties solely determined
by the gauge field (becoming so-called "rashbons" [29]). Furthermore, Galilean invariance is
broken. While total center-of-mass (COM) momentum is still conserved, it enters the bound-
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state problem as a parameter. As a consequence, bound states may dissociate when scattered
to large values of the COM momentum [29,35]. Also, spin-orbit coupling induces a spin-triplet
component in the two-fermion bound state even with pure s-wave attraction [28,33,36]. This
is in contrast to the situation in the absence of spin-orbit coupling, where s-wave attraction
has no effect in the decoupled triplet channel and, thus, generates pure spin-singlet bound
states (including in situations with Zeeman splitting present [36,37]). As s-wave interactions
are usually dominant in ultra-cold atoms where higher-orbital-momentum interactions are
strongly suppressed [38], spin-orbit coupling is thus a promising avenue to induce a triplet
character to atomic dimers.

In this paper, we examine the exact bound-state solutions of the two-particle Schrödinger
equation in 2D. By considering the effects of Zeeman spin splitting on the same footing as finite
COM momentum, we extend previous works where the effects of Zeeman spin splitting were
not considered in detail [33–35]. We calculate the dimer bound-state energy and delineate
the critical boundary in parameter space beyond which Zeeman splitting and/or COM momen-
tum destabilise the bound state. We also calculate, for the first time, the spin projections for
the 2D bound states. The orbital part of the bound-state wave function projected onto spin-
singlet and -triplet components reveals their respective s-wave and p-wave-like features. We
find that both finite COM momentum and Zeeman spin-splitting favour triplet contributions
to the ground state and contribute similar effects to the bound-state problem. However, while
finite COM momentum favours unpolarised triplet character, the Zeeman spin splitting leads
to a spin-polarised triplet character of the bound state that is associated with a chiral-p-wave
orbital wave function. Such triplet-dominated p-wave dimers can be seen as a precursor of the
topological superfluid that is expected to emerge in the many-body regime [21, 22, 26]. The
region in parameter space where the triplet character dominates turns out to be a striking fea-
ture of systems with 2D-type (e.g., Rashba [39–41]) spin-orbit coupling, but triplet-dominated
bound states are also present for 1D-type spin-orbit coupling, albeit in a reduced parameter
range. The polarized spin-triplet character of bound states could be probed experimentally by
spectroscopic techniques [42, 43] or spin-resolved momentum-correlation measurements on
the single-particle level in the few-atom regime as recently realised in Ref. [44].

The remainder of this paper is organized as follows. In section 2, we develop the gen-
eral formalism for solving the two-particle problem for any type of spin-orbit coupling and
an effective Zeeman splitting that subsumes both the actual Zeeman spin splitting and finite
COM momentum. In section 3, we apply this formalism to obtain bound-state solutions for
2D-type spin-orbit coupling. We first discuss the case with zero COM momentum where we
obtain analytic expressions for all terms in the implicit equation for the bound-state energy
as well as for the critical value of the Zeeman-spin-splitting energy above which no bound
state exists. We also calculate the relative weights of spin-singlet and spin-triplet components
in the two-fermion bound state and find that a parameter region exists where bound dimers
have a large triplet component. We then address the case of finite COM momentum, for which
no analytical results can be obtained and where the shape of the bound state is different. In
section 4, we repeat our analysis for the case of 1D-type spin-orbit coupling. Compared with
the 2D-type spin-orbit coupling, the parameter range for having a bound state is increased.
In contrast, while dimers with a dominant triplet component still exist in this case, these oc-
cur now much closer to the threshold where the combined Zeeman- and COM-induced spin
splitting destabilizes the bound state. Then, in section 5, we plot the orbital part of the bound-
state wave function in relative-momentum space for the different total-spin components and
parameter regimes considered in the preceding sections. We discuss possible experimental
detection methods in section 6 before presenting our conclusions in section 7.
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Table 1: Types of spin-orbit coupling considered in this work. Each of these is as-
sociated with a particular form of the term λ̂(p) in the single-particle Hamiltonian
(2) and with a matrix M entering the transformation of momentum vectors into
momentum-dependent spin splittings via Eq. (4). The constant λ, which has dimen-
sions of velocity, quantifies the magnitude of the spin-orbit coupling.

2D-Dirac 2D-Rashba 2D-Dresselhaus 1D

λ̂(p) λ (px σ̂x + py σ̂y) λ (py σ̂x − px σ̂y) λ (px σ̂x − py σ̂y) λ px σ̂x

M





1 0
0 1
0 0









0 −1
1 0
0 0









1 0
0 −1
0 0









1 0
0 0
0 0





2 General formalism for solving the two-particle problem

We consider two spin-1/2 fermions that interact via isotropic short-range interactions. Their
movement is confined to the 2D plane defined by the x and y directions. The particles’ or-
bital motion is coupled to their spin degree of freedom via a spin-orbit coupling that depends
linearly on in-plane momentum components. In addition, Zeeman spin splitting lifts the en-
ergy degeneracy of spin projections parallel to the out-of-plane (z) direction. The Hamiltonian
describing such a two-particle system is given by

Ĥ = Ĥ(1)1 ⊗1+1⊗ Ĥ(2)1 + V (r1 − r2) , (1)

where V (r1 − r2) is the two-particle interaction potential, and Ĥ( j)1 denotes the single-particle
Hamiltonian for particle j;

Ĥ( j)1 =
p2

j

2m
+ h σ̂z + λ̂(p j) . (2)

We use the symbolˆto indicate quantities that are operators in spin space, such as the vector of
Pauli matrices σ̂ ≡ (σ̂x , σ̂y , σ̂z). The Zeeman-spin-splitting parameter h quantifies an energy
offset dependent on the z component of the spin. Spin-orbit coupling is embodied in the form
of λ̂(p). Results obtained in this work pertain to the unitarily equivalent 2D-Dirac [45], 2D-
Rashba [39–41] and 2D-Dresselhaus [7,46] types of spin-orbit coupling, as well as the 1D type
that is more straightforwardly realizable in cold-atom experiments [1]. Table 1 lists λ̂(p) for
each of these four possibilities.

All of the spin-orbit-coupling types considered in this work can be expressed as

λ̂(p) = λ
∑

a∈{x ,y,z}

σ̂a

∑

µ∈{x ,y}

Maµ pµ ≡ λ σ̂ ·Mp , (3)

with a velocity scale λ measuring the spin-orbit-coupling strength and Maµ ∈ {0,±1}. The
3× 2 matrix M connects spin and orbital degrees of freedom. The particular choices for M
associated with each type of spin-orbit coupling are also specified in Table 1. In the following,
a versatile theoretical treatment of different spin-orbit couplings is facilitated by introducing
the 3-vector of momentum-dependent spin splittings

q≡





qx
qy
qz



=Mp , (4)
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such that λ̂(p) = λ σ̂ ·q. The fact that MTM= 12×2 for all of the 2D-type spin-orbit couplings
causes certain physical properties of these systems to be identical and also underpins their qual-
itative difference with the case of 1D-type spin-orbit coupling for which MTM = diag(1,0).
As q is fully in-plane (i.e., qz ≡ 0) for the spin-orbit-coupling types considered in this work, this
will be implicit in the formalism. In particular, q2 ≡ q2

x + q2
y in all mathematical expressions

below.
The eigenstates |α j ,p j〉 of the single-particle Hamiltonian (2) are labelled by the individual

particle’s momentum p j and a helicity quantum number α j = ±1 that distinguishes spin-split
single-particle energy bands εα j

(pj) with dispersions

εα(p) =
p2

2m
+α Z(p) . (5)

Here we introduced the effective spin-splitting energy

Z(p) =
Æ

h2 +λ2 q2 , (6)

that is a function of p via the momentum-dependent spin splitting q [see Eq. (4)]. Using the
eigenbasis of σ̂z , the single-particle eigenspinors can be written more explicitly as

|α,p〉=





e−iφ/2
r

Z(p)+αh
2Z(p)

α eiφ/2
r

Z(p)−αh
2Z(p)



 , (7)

with φ = arg(qx + iqy). The dispersion (5) has its minimum at the value [1]

εmin =

�

−1
2

�

mλ2 + h2

mλ2

�

, for |h| ≤ mλ2

−|h| , for |h| ≥ mλ2 . (8)

To address the two-particle problem, we switch to COM and relative coordinates for the
orbital motion,

R=
1
2
(r1 + r2) , r= r1 − r2 , P= p1 + p2 , p=

1
2
(p1 − p2) , (9)

and introduce the total-spin operator

Σ̂=
1
2
(σ̂ ⊗1+1⊗ σ̂) , (10)

whose eigenstates are the familiar singlet and triplet states |S M〉 with S ∈ {0,1} and
M = −S,−S+1, . . . S denoting eigenvalues of Σ̂z . It is possible to separate off the COM kinetic
energy and write the two-particle Hamiltonian (1) in the form

Ĥ =
P2

4m
+ ĤP + V (r) , (11)

where ĤP contains the relative-motion kinetic energy and the spin-orbit coupling terms, which
still depend parametrically on the COM momentum P:

ĤP =
p2

m
+λq · (σ̂ ⊗1−1⊗ σ̂) + 2BP · Σ̂ . (12)

Here we have introduced the abbreviation

BP =





λQ x/2
λQ y/2

h



 , (13)
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where Q=MP with the matrix M associated with the spin-orbit-coupling type as per Table 1.
The last term in Eq. (12) constitutes a Zeeman-splitting-like two-particle energy contribution,
where BP plays the role of an effective three-dimensional magnetic-field vector with in-plane
components arising from the COM motion through spin-orbit coupling. However, it is not the
only term that determines the spin-dependence of the two-particle energies and eigenstates.
As [Σ̂

2
, ĤP] 6= 0 due to the second term in Eq. (12), two-particle eigenstates will generally be

superpositions of the eigenstates |S M〉 for total spin when λ 6= 0. The form of BP indicates that,
when spin-orbit coupling is finite, COM momentum affects the relative motion via a Zeeman-
like coupling to the in-plane total-spin components. We will see below that there are certain
similarities between how finite Zeeman energy h and finite COM momentum P affect the two-
particle binding energy, and how they both drive the dimer state to have predominantly triplet
character when their respective Zeeman-splitting magnitudes |h| and λ |Q| are large. However,
the detailed bound-state structure is strongly influenced by the interplay of h and λQ, such
that it differs markedly in the two limits when either P or h vanish.

We now proceed to solve the relative-motion problem embodied by the Hamiltonian
ĤP + V (r). While the coordinate transformation to relative and COM coordinates of Eq. (9)
has not completely removed the dependence on COM properties, it nevertheless reduces the
dimensionality from four to two degrees of freedom. As the total momentum P is a good
quantum number, the remaining P dependence in the relative-motion problem is solely of
parametric nature as P can be considered to have a fixed value. The P-dependent terms in the
relative-motion Hamiltonian of Eq. (12) are proportional to the spin-orbit coupling strength
λ and thus originate directly from the spin-orbit coupling. Any of the different forms of spin-
orbit coupling considered in this work (see Table 1) generate such terms. We first consider the
situation of noninteracting particles and then solve the two-particle bound-state problem.

2.1 Case of noninteracting particles

In the absence of interactions, the two-particle eigenstates are eigenstates of ĤP, which can
be written as antisymmetrized products of the individual particles’ helicity and momentum
eigenstates;

|p;α1,α2〉〉P =A
�

|p) |α1,α2〉p,P

�

≡
1
p

2

�

|p) |α1,α2〉p,P − | − p) |α2,α1〉−p,P

�

. (14)

Here, |p) denotes a relative-momentum eigenstate, α j = ±1, and A is the antisymmetrization
operator. Throughout this paper, we use a notation where |·) denotes states for the relative-
orbital-motion degree of freedom, |·〉 are spin states, and |·〉〉 are full two-particle states in the
product space of spin and orbital degrees of freedom. The two-particle spin state |α1,α2〉p,P is
a product state of single-particle helicity states given in Eq. (7);

|α1,α2〉p,P = |α1,P/2+ p〉 ⊗ |α2,P/2− p〉 . (15)

The associated two-particle eigenenergies are

εP(α1,α2,p) =
p2

m
+α1 Z+ +α2 Z− , (16)

with the definitions

Z± =

√

√

√

h2 +λ2

�

Q
2
± q

�2

. (17)

The relative-motion energy dispersion (16) has its minimum at

εmin
P =

(

−mλ2 − B2
P

mλ2 , for
q

B2
P ≤ mλ2

−2
q

B2
P , for

q

B2
P ≥ mλ2

. (18)
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For fixed P and p, the states |α1,α2〉p,P form an orthonormal basis within two-particle spin-ket
space, thus providing a resolution of the unity operator 1p,P in this subspace;

∑

α1,α2

|α1,α2〉p,P p,P〈α1,α2|= 1p,P . (19)

2.2 Bound states resulting from s-wave attraction

The treatment of the 2D-fermion bound-state problem with short-range interactions in the
absence of spin-orbit coupling is well-established [47, 48]. Recent generalizations [33–35]
were developed to explore ramifications of 2D-type spin-orbit coupling. Here we extend the
Green’s-function formalism employed in Refs. [34, 35] to study the combined effects of spin-
orbit coupling and Zeeman spin splitting.

A bound state is a solution of the Schrödinger equation
�

ĤP + V (r)
�

|ψb〉〉= Eb|ψb〉〉 , (20)

with energy below the continuum of energies available to two unbound particles. Depending
on whether or not different COM-motion states are accessible to the two-particle system under
consideration, two possible threshold energies for bound states can be defined. In situations
where dissociation can involve transitions between different COM momenta, stability of bound
states requires their total two-particle energy Eb + P2/(4m) to be below the lowest-possible
energy 2εmin two unbound particles can have, where εmin is given by Eq. (8). In this case, one
should be looking for eigenstates |ψb〉〉 of ĤP + V (r) that satisfy Eb < Eabs

th with

Eabs
th = 2εmin −

P2

4m
≡

¨

−mλ2 − h2

mλ2 − P2

4m , for |h| ≤ mλ2

−2 |h| − P2

4m , for |h| ≥ mλ2
. (21)

Alternatively, if the COM motion of the two-particle system is considered to be conserved,
we can focus only on the relative-motion dynamics for a two-particle system with fixed COM
momentum P. Then the threshold energy for bound states is given by the minimum energy
εmin

P available to the relative motion of two unbound particles at the fixed COM momentum P
[see Eq. (18)], i.e., the bound states need to satisfy Eb < Erel

th with

Erel
th = ε

min
P ≡







−mλ2 − h2

mλ2 −
Q2

4m , for
Ç

h2 + λ2Q2

4 ≤ mλ2

−2
Ç

h2 + λ2Q2

4 , for
Ç

h2 + λ2Q2

4 ≥ mλ2
. (22)

All three energies Eb, Eabs
th and Erel

th depend parametrically on the COM momentum P, and
Eabs

th = Erel
th for P = 0. For 2D-type spin-orbit coupling and B2

P ≤ m2λ4, Eabs
th and Erel

th are
identical even when P 6= 0, but Eabs

th < Erel
th when P 6= 0 for 1D-type spin-orbit coupling and/or

B2
P ≥ m2λ4. In the present work, we adopt Erel

th as the threshold energy to determine the
existence of two-particle bound states and to calculate their binding energy

εb ≡ Erel
th − Eb . (23)

Such states are only metastable when Eabs
th ≤ Eb < Erel

th , but they can still be sufficiently long-
lived, and therefore accessible experimentally, in situations when COM-changing processes are
weak. Note that both threshold energies are negative, Eabs

th ≤ Erel
th ≤ 0, and thus Eb < 0. At the

same time, the binding energy is defined to be positive; εb > 0.
The Schrödinger equation (20) can be formally solved via

|ψb〉〉=
1

Eb − ĤP
V |ψb〉〉 , (24)
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as the denominator on the right-hand side is never zero because the bound-state energy is
outside the eigenvalue spectrum of ĤP. We can expand the full bound-state wave function
with respect to the relative-momentum eigenbasis,

|ψb〉〉=
∫

d2p′

(2πħh)2
(p′|ψb〉〉 |p′) , (25)

keeping in mind that the expansion "coefficients" (p′|ψb〉〉 ≡ |ψb(p′)〉 are actually still kets in
spin space that parametrically depend on the total momentum P and are nonorthogonal for
different arguments p′. Inserting the expansion (25) on the r.h.s. of Eq. (24) and projecting
both sides onto (p|, we obtain

|ψb(p)〉=
1

Eb − ĤP

∫

d2p′

(2πħh)2
(p|V |p′) |ψb(p

′)〉 ≡ ĜP(Eb,p)

∫

d2p′

(2πħh)2
(p|V |p′) |ψb(p

′)〉 ,

(26)
where the Green’s function ĜP(E,p) is an operator (a 4×4 matrix) in two-particle spin space.

A general isotropic interaction potential can be expanded in partial waves, yielding

(p|V |p′) =
∞
∑

l=−∞
Vl(p,p′) eil(φp−φp′ ) . (27)

Here φp is the polar angle of the vector p. Furthermore, as the eigenstates |S M〉 of total spin
form a basis in two-particle spin space, we can expand

|ψb(p)〉=
∑

S,M

|S M〉〈S M |ψb(p)〉 , (28)

where, due to the antisymmetry requirement of two-fermion wave functions, 〈00|ψb(p)〉must
be an even function of p, whereas the functions 〈1 M |ψb(p)〉must be odd. Inserting both (27)
and (28) into the r.h.s. of (26) yields

|ψb(p)〉=
∑

S,M

ĜP(Eb,p) |S M〉
∑

l

∫

d2p′

(2πħh)2
Vl(p,p′) eil(φp−φp′ ) 〈S M |ψb(p

′)〉 . (29)

For the case of short-range, low-energy, s-wave scattering, Vl(p,p′)→ V0δl,0 and the integral
on the r.h.s. of Eq. (29) remains finite (vanishes) for the singlet(triplet)-state contribution(s)
because the integrand is an even (odd) function of p′. Thus Eq. (29) simplifies to

|ψb(p)〉= ĜP(Eb,p) |00〉 V0

∫

d2p′

(2πħh)2
〈00|ψb(p

′)〉 , (30)

and it follows that the bound-state wave function is obtained by the action of the Green’s
function on the singlet state;

|ψb(p)〉= NP ĜP(Eb,p) |0 0〉 . (31)

The modulus of the P-dependent normalization factor NP is determined by the normalization
condition for |ψb〉〉;

〈〈ψb|ψb〉〉=
∫

d2p
(2πħh)2

∫

d2p′

(2πħh)2
(p|p′) 〈ψb(p)|ψb(p

′)〉=
∫

d2p
(2πħh)2

〈ψb(p)|ψb(p)〉= 1 ,

(32)
where we used the orthogonality relation (p|p′) = 2πħh2δ(p′ − p) for relative-momentum
eigenstates. The right-most equality from Eq. (32) demonstrates that a spin-space ket |ψb(p)〉
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is not itself normalized to unity. Inserting (31) and recognizing also that ĜP(Eb,p) is a Hermi-
tian operator in two-particle spin space yields

|NP|=
�∫

d2p
(2πħh)2

〈00| [ĜP(Eb,p)]2 |00〉
�− 1

2

. (33)

The amplitudes 〈S M |ψb(p)〉 for the s-wave-attraction-generated bound state (31) can be
neatly expressed in terms of matrix elements of the Green’s function,

〈S M |ψb(p)〉= NP 〈S M | ĜP(Eb,p) |0 0〉 , (34)

for which we have obtained the general analytical expressions (see Appendix B for details of
the derivation)

〈0 0|ĜP(Eb,p)|0 0〉= −
s
d

�

s2 − 4h2 −λ2 Q2
�

≡ −
s
d

�

s2 − 4B2
P

�

, (35a)

〈1 0|ĜP(Eb,p)|0 0〉= −
2λ
d

�

2λhQ · q− i s (Q× q)z
�

, (35b)

〈1 1|ĜP(Eb,p)|0 0〉= −
p

2λ
d

�

λ2 Q · q (Q x − i Q y) + (s
2 + 2s h)(qx − i qy)

�

, (35c)

〈1 − 1|ĜP(Eb,p)|0 0〉= −
p

2λ
d

�

λ2 Q · q (Q x + i Q y) + (s
2 − 2s h)(qx + i qy)

�

. (35d)

Here we used the abbreviation

d = s4−4s2
�

λ2q2 + h2 +λ2Q2/4
�

+4λ4 (Q · q)2 ≡ s2
�

s2 − 4B2
P − 4λ2q2

�

+4λ4 (Q · q)2 , (36)

and s = p2/m − Eb. The expressions (34) to (36) for the bound-state wave function extend
similar expressions given in Ref. [35] for the case with h = 0 by fully accounting for nonzero
Zeeman spin splitting. Based on the expansion (28) with amplitudes (34), we define the
fractional weights of total-spin eigenstates in the bound-state wave function as

NSM =

∫

d2p
�

�〈S M |ĜP(Eb,p)|00〉
�

�

2

∑

S,M

∫

d2p
�

�〈S M |ĜP(Eb,p)|00〉
�

�

2 . (37)

2.3 Binding energy from the Bethe-Peierls boundary condition

The characteristic equation for the bound-state energy can be found by projecting Eq. (30)
onto the singlet state and integrating over momentum, which yields

1
V0
=

∫

d2p
(2πħh)2

〈00|ĜP(Eb,p)|00〉 , (38)

with the matrix element of the Green’s function between singlets given explicitly in Eq. (35a).
Although principally correct, Eq. (38) turns out to be impractical for determining bound-state
energies because the integral on its r.h.s. is ultraviolet-divergent. Ad hoc cut-offs have some-
times been introduced to circumvent this issue [35]. Here we address the problem using the
Bethe-Peierls boundary condition for a scattering wave function in 2D.

We consider the equivalent of Eq. (31) in real space,

|ψb(r)〉= NP ĝP(Eb, r) |00〉 , (39)
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where g(Eb, r) denotes the real-space Green’s function1

ĝP(Eb, r) =

∫

d2p
(2πħh)2

e
ip·r
ħh ĜP(Eb,p) . (40)

Employing the resolution of unity Eq. (19) in two-particle spin space in terms of eigenstates
of ĤP, the real-space Green’s function’s matrix element between singlets is found as

〈00| ĝP(Eb, r)|0 0〉=

1
(2πħh)2

∫

d2p
∑

α1,α2

e
ip·r
ħh |〈00|α1,α2〉p,P|2

�

1
Eb − εP(α1,α2,p)

−
1

Eb − p2/m

�

+
1

(2πħh)2

∫

d2p e
ip·r
ħh

1
Eb − p2/m

, (41)

where the first term on the right-hand side is regular and we have separated off the second
term, which diverges logarithmically for |r|= 0. Noting that Eb < 0, this second term evaluates
explicitly to a modified Bessel function

1
(2πħh)2

∫

d2p e
ip·r
ħh

1
Eb − p2/m

= −
m

2πħh2 K0(|r|
p

−m Eb/ħh) , (42)

for which the small-argument behavior is known: K0(ξ) = −γ− ln(ξ/2) + o(ξ). Thus we can
expand the Green’s function in the short-range limit |r| → 0 as

〈00| ĝP(Eb, r)|00〉=
m

2πħh2

�

ln
�

|r|
p

−m Eb/2ħh
�

+ γ+ FP(Eb, h) + o(|r|)
�

, (43)

with finite spin-orbit coupling giving rise to the r-independent contribution

FP(Eb, h) =
1
m

∫

d2p
2π

∑

α1,α2

|〈0 0|α1,α2〉p,P|2
�

1
Eb − εP(α1,α2,p)

−
1

Eb − p2/m

�

=
1
m

∫

d2p
2π

�

〈0 0|ĜP(Eb,p)|0 0〉+
1
s

�

≡
4λ2

m

∫

d2p
2π

�

λ2 (Q · q)2 − s2 q2

s d

�

. (44)

Here we made use of Eq. (35a) to derive the last equality in Eq. (44).
For the singlet component of the bound-state wave function, the short-range behavior is

described by the Bethe-Peierls boundary conditions [48] which, for 2D systems, have a loga-
rithmic divergence

〈0 0|ψb(r)〉= NP 〈00| ĝP(Eb, r)|0 0〉 ∝ ln(|r|/a2D) + o(|r|) . (45)

Unlike their 3D counterparts, in two spatial dimensions there is no additional term added due
to the spin-orbit coupling [49]. Matching the Bethe-Peierls boundary condition (45) to the
short-range limit of the singlet projection for the bound-state wave function given in Eq. (43),
we obtain the implicit equation

γ+ ln
�

a2D
p

−m Eb/2ħh
�

+ FP(Eb, h) = 0 (46)

for the bound state energy Eb. For convenience, we parameterize the two-particle interaction
strength in terms of the energy scale ε0 = ħh2/ma2

2D. Introducing characteristic units in terms

1Note that ĝP(Eb, r) pertains to real space only for the two particles’ relative motion but is still in momentum
space at constant P for their COM motion.
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of the spin-orbit-coupling strength λ allows us to define the dimensionless quantities

Ẽb =
Eb

mλ2
, (47a)

h̃=
h

mλ2
, (47b)

ε̃0 =
ε0

mλ2
. (47c)

In terms of these, Eq. (46) becomes

γ+ ln





1
2

√

√

√−Ẽb

ε̃0



= −FP(Ẽb, h̃) . (48)

In the absence of spin-orbit coupling, i.e., for λ → 0, the r.h.s of Eq. (48) vanishes and
Eb → −4 e−2γε0 is obtained, reproducing the well-known result [48] for the two-particle
bound-state energy in two spatial dimensions.

3 Bound-state properties for 2D-type spin-orbit coupling

In this section, we consider the bound-state problem for the case of 2D-type spin-orbit cou-
plings of the Dirac, Rashba or Dresselhaus forms (see Table 1). The bound state’s energy and
conditions for its existence are the same for all three forms because they give rise to the same
FP(Eb, h) and Erel

th . This is a direct consequence of the relation MTM = 12×2 holding for the
three 2D-type spin-orbit couplings, which ensures the universal forms q2 ≡ p2, Q2 ≡ P2 and
Q · q ≡ P · p for momentum-dependent terms in the expressions (44) and (22). For the same
reason, the singlet component of the bound-state wave function is also the same for all 2D-type
spin-orbit couplings, but this universality does not extend to the triplet components as these
are sensitive to the particular form of M [see Eqs. (35)].

3.1 Case of zero center-of-mass momentum

We first assume P = 0. In this case, we can obtain an analytic expression for the quantity
FP(Ẽb, h̃) that appears on the r.h.s. of Eq. (48);

F0(Ẽb, h̃) =
1

4(h̃2 + Ẽb)

�

− Ẽb ln

�

Ẽ2
b

Ẽ2
b − 4h̃2

�

−















2(2h̃2+Ẽb)
Æ

−1−h̃2−Ẽb

�

π
2 − arctan

�

−Ẽb−2

2
Æ

−1−h̃2−Ẽb

��

�

, for Ẽb ≤ −1− h̃2

2(2h̃2+Ẽb)
Æ

1+h̃2+Ẽb
arcoth

�

−Ẽb−2

2
Æ

1+h̃2+Ẽb

�

�

, for −1− h̃2 < Ẽb < −2|h̃|
.

(49)

For given dimensionless interaction strength ε̃0 and Zeeman energy h̃, Eq. (48) constitutes an
implicit equation for the dimensionless bound-state energy Ẽb, which needs to be below the
threshold Ẽth ≡ Erel

th /(mλ
2) with Erel

th from Eq. (22). We find that there is at most one such
solution of Eq. (48) anywhere in parameter space. Figure 1 shows plots of the dimensionless
binding energy ε̃b = εb/(mλ2), with εb defined in Eq. (23), as a function of ε̃0 and h̃.

The nature of the bound-state solutions depends on the value of h̃. For |h̃| ≤ 1 we have
Ẽth = −1− h̃2 according to Eq. (22). Since Ẽb < Ẽth, the upper option for the last term in the
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Figure 1: Binding energy of a 2D-fermion dimer with zero center-of-mass momentum
(P= 0) formed in the presence of 2D-type spin-orbit coupling and Zeeman splitting.
Orange color in panel (a) indicates the parameter region where a bound state exists.
The analytical result (51) for its boundary is indicated by the solid blue curve, and the
dashed black curve indicates the dividing line between regions where the two differ-
ent forms of F0(Ẽb, h̃) given in Eq. (49) apply. Here ε̃0 ≡ ε0/(mλ2) and h̃≡ h/(mλ2)
are the s-wave interaction strength and the Zeeman energy, respectively, measured
in units of the spin-orbit-coupling energy scale mλ2. The dimensionless binding en-
ergy ε̃b ≡ εb/(mλ2) is represented by the color scale in panel (a) and plotted as a
function of h̃ for selected values of ε̃0 in panel (b).

expression (49) for F0(Ẽb, h̃) applies in this case. In particular, solving Eq. (48) with F0(Ẽb, 0)
obtained from the |h| → 0 limit of Eq. (49) yields the result given in Ref. [33] for the binding
energy in the absence of Zeeman spin splitting.

In contrast, for |h̃|> 1 we have Ẽth = −2|h̃|, and the region where a bound state exists has
two parts. The two parts are distinguished by whether Ẽb ≤ −1− h̃2 or −1− h̃2 < Ẽb < −2|h̃|
is satisfied and, accordingly, which form of the last term in (49) is applicable. The boundary
dividing these two regions can be found by letting Ẽb→−1− h̃2 in Eq (48) with F0(Ẽb, h̃) from
Eq. (49) on the r.h.s., which yields (see Appendix C for mathematical details)

ε̃div
0 (h̃) = e2γ+2 1+ h̃2

4

�

h̃2 − 1

h̃2 + 1

�1+h̃2

Θ(|h̃| − 1) . (50)

Here Θ(·) denotes the Heaviside step function. In Fig. 1, we plot ε̃div
0 (h̃) calculated according

to Eq. (50) as the dashed black curve.
While a bound state always exists for small-enough Zeeman splitting |h̃| ≤ 1, having a

bound state for |h̃| > 1 requires sufficiently strong attractive interactions. The white area
shown in Fig. 1(a) indicates the parameter range for which no bound state exists. The min-
imum dimensionless interaction strength ε̃crit

0 (h̃) needed to maintain a bound state at finite
Zeeman splitting is obtained by substituting the threshold energy Ẽth = −2|h̃| applicable for
|h̃|> 1 into Eq (48), yielding (details of the derivation are provided in Appendix C)

ε̃crit
0 (h̃) = e2γ |h̃|

2

�

2
|h̃| − 1

|h̃|

�
2

2−|h̃|

Θ(|h̃| − 1) . (51)

We show ε̃crit
0 (h̃) as the solid blue line in Fig. 1(a). As is apparent from Fig. 1(b), the binding en-

ergy approaches zero continuously at this boundary. In the Zeeman-splitting-dominated limit
|h̃| � 1, ε̃crit

0 (h̃)→ e2γ h̃/2, which is reminiscent of the Chandrasekhar-Clogston criterion [50,
51] for the stability of s-wave pairing against spin paramagnetism. For a two-particle prob-
lem without spin-orbit coupling, the critical interaction strength εcrit

0 (h) = e2γ |h|/2 emerges
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Figure 2: Boundary of the region in ε̃0-h̃ space with a two-fermion bound state.
The solid blue curve plots Eq. (51) for the dimensionless critical interaction strength
ε̃crit

0 (h̃) above which a bound state exists in the presence of spin-orbit coupling. Its
asymptote e2γ |h̃|/2 for large dimensionless Zeeman coupling h̃ ≡ h/(mλ2) is indi-
cated by the dashed green line. For pairs of parameter values (ε0 , h) from the region
above this line, bound states are formed also in the absence of spin-orbit coupling. In
contrast, in the region between the two curves, s-wave-attraction-generated bound
states would not exist without spin-orbit coupling.

from equating the two-fermion binding energy [48] 4 e−2γ ε0 with the Zeeman-splitting en-
ergy 2|h|. Figure 2 illustrates how spin-orbit coupling enlarges the region in parameter space
where two-fermion binding due to s-wave attraction is possible in the presence of Zeeman spin
splitting.

It is known that the combination of s-wave attraction and spin-orbit coupling can result in
behavior analogous to a system subject to p-wave interactions without spin-orbit coupling [22].
In our case, this would manifest as having also triplet components of the bound-state wave
function, even though the attractive potential is s-wave. In the case without spin-orbit cou-
pling, s-wave interactions at low energy only lead to binding in the singlet channel, and the
overlap of the wave function to the triplet component would vanish, as the Green’s function in
Eq. (31) would be diagonal in spin space. Turning on a Zeeman splitting h> 0 in the absence
of spin-orbit coupling does not affect the singlet dimer until its complete destabilization when
the energy −2 h of the triplet state |1 − 1〉 goes below the bound-state energy. However, with
spin-orbit coupling present, the s-wave interaction potential still projects the wave function
onto the singlet but the subsequent free propagation in the presence of spin-orbit coupling
rotates parts of the wave function back into the triplet channel. Here we are interested to
understand in which regime a large triplet component of the bound state develops. As the
triplet state |1 − 1〉 is energetically favored for large Zeeman splitting, it can be expected to
dominate the system. The same behavior is also seen in the BCS mean-field theory of the
many-body system where the topological superfluid with p-wave order parameter emerges for
large Zeeman splitting [21,22,26]. As we see below, the bound-state wave function is indeed
dominated by the triplet components in an extended region near the critical Zeeman splitting
h̃crit(ε̃0) obtained by inverting the expression for ε̃crit

0 (h̃) from Eq. (51).
We obtain the fractional weights of total-spin eigenstates contributing to the bound-state

wave function via numerical evaluation of Eq. (37), utilizing the expressions (35) for Green’s-
function matrix elements. As the r.h.s. of Eq. (35b) vanishes identically for P = 0, the triplet
state |1 0〉 makes no contribution to the bound state in the presently considered case. Fig-
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Figure 3: Triplet-state admixture to 2D-fermion bound states with zero center-
of-mass momentum. The color scale in panel (a) visualizes the difference
∆N =

∑

M N1M −N00 between the combined fractional weights of triplet states con-
tributing to the dimer and that of the singlet-state contribution. Panel (b) shows
plots of NSM (except for N10 = 0) for total-spin eigenstates in bound states formed
for parameter combinations (h̃ , ε̃0) ≡ (h̃crit , ε̃crit

0 ) corresponding to the solid blue
line shown in Fig. 1(a), with ε̃crit

0 [h̃crit] given by Eq. (51) [by inverting Eq. (51)].

ure 3(a) shows the difference ∆N ≡
∑

M N1M −N00 between the combined fractional weights
for triplet states and that of the singlet state within the region of parameter space depicted in
Fig. 1(a). The quantity ∆N constitutes a measure for the triplet character of the two-particle
bound state as, by construction, −1 ≤ ∆N ≤ 1, where ∆N = 1 indicates a pure triplet and
∆N = −1 a pure singlet state. From Fig. 3(a), we see that the triplet contribution to the
bound state dwarfs the singlet part in an extended part of parameter space adjoining the
critical boundary that delimits the region where bound states exist, suggesting that p-wave
character of the bound-state wave function should be prevalent there. The values NSM for
individual triplet states are plotted in Fig. 3(b) for the parameter pairs (h̃crit , ε̃crit

0 ) along the
boundary of the region of existence for bound states in Fig. 1(a), given explicitly by Eq. (51).
Asymptotically, as ε̃0→ 0 and h̃→ 1, the bound-state wave function becomes the state |1 −1〉.
In contrast, the admixture of the |1 1〉 triplet component to the bound-state wave function is
vanishingly small, albeit not identically zero. Thus the dimer becomes an almost pure chiral
triplet in the limit of weak interactions and close to the critical Zeeman energy h̃crit ∼ 1.

3.2 Effect of finite center-of-mass momentum

We now look for solutions of the characteristic equation (48) for Ẽb with finite COM momen-
tum P. While we were not able to find closed-form analytic expressions for FP(Ẽb, h̃) when
P 6= 0, numerical results for the bound-state energy and the fractional weights of the total-
spin eigenstates from Eq. (37) are readily obtained. These turn out to not depend on the
direction of P, as the polar angle of Q either does not enter relevant mathematical expressions
(e.g., the threshold Erel

th is a function of Q2) or can be absorbed into an integration variable
(namely, the polar angle of q) when it explicitly appears such as in Eq. (44) for FP(Ẽb, h̃).

In Fig. 4(a), the binding energy for moderate interaction strength (ε̃0 = 1) is plotted as
a function of both the Zeeman energy h and the COM-momentum magnitude |P|. We see
that, as we discussed earlier in this paper, COM momentum acts qualitatively like an effective
Zeeman coupling, with the region in the plane spanned by the variables h̃ ≡ h/(mλ2) and
P̃ ≡ |P|/(mλ) where a bound state exists exhibiting an approximately circular symmetry. The
boundary of this region is defined by the vanishing of the binding energy (23), i.e., Eb = Erel

th
with Erel

th from Eq. (22). The more stringent condition Eb < Eabs
th with Eabs

th given in Eq. (21)
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Figure 4: Effect of finite center-off-mass momentum P on dimer formation. Orange
color in panel (a) indicates the range for dimensionless parameters quantifying the
COM-momentum magnitude [P̃ ≡ |P|/(mλ)] and the Zeeman energy [h̃≡ h/(mλ2)]
within which a 2D-fermion bound state exists. The color scale represents the dimen-
sionless binding energy ε̃b ≡ εb/(mλ2). The dotted black curve delimits the region
of absolute bound-state stability where Eb < Eabs

th ≤ Erel
th , with the threshold energies

defined in Eqs. (21) and (22). Data shown in panel (a) are obtained for a fixed value
ε̃0 ≡ ε0/(mλ2) = 1 of the dimensionless interaction strength. Panel (b) shows plots
of ε̃b as a function of P̃ for selected values of ε̃0 and fixed h̃= 0.

holds within the smaller region delimited by the dotted black curve, i.e., bound states are
only metastable within the sliver of parameter space bounded by this curve and the boundary
between orange and white regions in Fig. 4(a).

In Fig. 4(b), we plot the binding energy at zero Zeeman energy as a function of the dimen-
sionless COM-momentum magnitude P̃ and observe a similar dependence as seen in Fig. 1(b)
as a function of the Zeeman spin splitting. The weakening and eventual loss of the bound state
with finite COM momentum is a well known property of dimers in the presence of spin-orbit
coupling [29, 35]. It implies that, e.g., in a not fully condensed gas with a momentum dis-
tribution of a certain width, pairs at the outer edge of this distribution are no longer bound;
thus such a setup would contain both bound pairs and unbound atoms. In a time-of-flight
measurement, the unbound atoms are expected to form a ring around the bound pairs closer
to the center of the momentum distribution [29].

As Fig. 4(a) shows, Zeeman splitting and COM momentum are qualitatively similar in their
effect on the bound-state formation and its energy. However, details of the bound-state struc-
ture are quite different in the two cases. To illustrate this, we consider the fractional weights
of total-spin eigenstates in the bound-state wave function, evaluating the integrals entering
the expressions (37) numerically. In Fig. 5(a), we plot the difference ∆N between the com-
bined weights of all triplet states and that of the singlet state as a function of h̃ and P̃ for fixed
ε̃0 = 0.1. Triplet character is seen to be dominant all along the outer boundary of the param-
eter region where dimers are formed. However, the actual bound-state composition changes
radically as one moves between the Zeeman-energy-dominated and the COM-momentum-
dominated regimes. This becomes apparent when comparing Fig. 3(b) with Fig. 5(b), where
we plot the individual fractional weights of total-spin eigenstates making up the bound state
for h̃= 0. Here we see that, for finite COM momenta close to the boundary of the bound-state
region, the triplet state |1 0〉 has the largest weight, whereas this state does not contribute
at all to the zero-COM-momentum bound state (see Sec. 3.1). Thus the type of dominating
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Figure 5: Bound-state triplet admixture for dimers with finite center-of-mass mo-
mentum P. Panel (a) shows the quantity ∆N =

∑

M N1M − N00, which measures the
balance between triplet and singlet character in the 2D-fermion dimer, as a func-
tion of dimensionless COM-momentum magnitude P̃ ≡ |P|/(mλ) and dimensionless
Zeeman energy h̃ ≡ h/(mλ2). The relative weights NSM of individual total-spin
eigenstates contributing to the bound-state wave function are plotted in panel (b) as
a function of P̃ for fixed h̃ = 0, which is the parameter range along the vertical axis
in panel (a). Data shown here were calculated for fixed dimensionless interaction
strength ε̃0 ≡ ε0/(mλ2) = 0.1.

triplet character differs crucially depending on how it is generated: large Zeeman splitting
renders a spin-polarized triplet state to be dominant, whereas large COM-momentum favors
the spin-unpolarized triplet state.

The behavior for large spin splitting of Zeeman or COM-motion origin can be contrasted
with the case P̃ = 0 and h̃ = 0 that is also depicted in Fig. 5(b). In this situation, the singlet
component to the bound state is dominant and the state |10〉 is completely absent. There is
also a sizable triplet contribution, with the oppositely spin-polarized triplet states |1 ±1〉 con-
tributing equally to preserve an overall spin-unpolarized bound-state wave function. The exact
values for the total-spin-eigenstate proportions in the bound state for both COM momentum
and Zeeman energy being zero, as well as their change as the Zeeman energy becomes finite,
can be gleaned from analytical results provided in Appendix D.

4 Bound states formed with 1D-type spin-orbit coupling

The 1D-type spin-orbit coupling λ̂(p) = λ px σ̂x is not isotropic since a particular in-plane
direction is singled out. As a consequence, the two-particle relative-motion problem only de-
pends on the x component of the COM momentum Px through the effective magnetic field BP
of Eq. (13). Specifically, Px affects bound-state properties via the dependence of FP(Ẽb, h̃), Erel

th
and the spinor amplitudes from Eqs. (35) on Q, whose only nonzero component is Q x ≡ Px .
The other COM component Py is only relevant for determining the metastability threshold Eabs

th
[see Eq. (21)].

Specializing the general formulae from Sec. 2 to the case with 1D-type spin-orbit coupling
means adopting BP = (λ Px/2, 0, h), Q = (Px , 0, 0) and q = (px , 0, 0). The resulting form of
the implicit equation (48) for the bound-state energy can only be solved numerically. For the
case of zero COM momentum (implying Px = 0), we calculate the binding energy for the same
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Figure 6: Dimensionless binding energy ε̃b [panel (a)] and bound-state triplet char-
acter quantified by∆N ≡

∑

M N1M −N00 [panel (b)] of 2D-fermion dimers with zero
center-of-mass momentum formed in the presence of 1D-type spin-orbit coupling and
Zeeman splitting. These plots can be compared with corresponding results for the
2D-type spin-orbit couplings shown in Figs. 1(a) and 3(a), respectively. The solid
blue curve in panel (a) is the critical-boundary line (51) delimiting the region where
a bound state exists for 2D-type spin-orbit coupling. Evidently, the existence region
for bound states formed with asymmetric spin-orbit coupling extends well beyond.

Figure 7: Fractional weights NSM of total-spin eigenstates in the 2D-fermion bound
state with zero COM momentum (P = 0) formed at fixed Zeeman energy h̃ = 1,
plotted as a function of the s-wave interaction strength parameterized by ε̃0 for 2D-
type [panel (a)] and 1D-type [panel (b)] spin-orbit couplings. We do not show N10
as it vanishes identically in both cases for zero COM momentum.

range of Zeeman-energy values and s-wave-interaction strengths as in the previous section.
Results are shown in Fig. 6(a). We find that the parameter region within which a bound state
exists is larger than in the case of 2D-type spin-orbit coupling. To illustrate this, the boundary
line that we derived in Eq. (51) for the 2D-type case is drawn as the solid blue curve for
comparison. In addition, the binding energy is generally higher than with 2D-type spin-orbit
coupling.

We also adapt the formalism presented in Sec. 2.2 for calculating the fractional weights
NSM of total-spin eigenstates in the bound state to the case of 1D-type spin-orbit coupling.
This amounts to using BP = (λ Px/2,0, h), Q = (Px , 0, 0) and q = (px , 0, 0) in Eqs. (35). In
Fig. 6(b), the difference ∆N between the total weight from triplet states contributing to the
bound state and the weight of the singlet state are shown. The results are qualitatively similar
to the case with 2D-type spin-orbit coupling [compare Fig. 3(a)], but the region where the
triplet contribution to the bound state dominates has a much narrower range in h̃. Figure 7
shows a comparison in the interaction-strength dependence of relative weights for the total-
spin eigenstates present in bound states for 2D-type and 1D-type spin-orbit couplings. Again,
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Figure 8: Orbital wave functions of the two-fermion bound state formed in the pres-
ence of 2D-Dirac spin-orbit coupling in relative-momentum p ≡ (px , py) represen-
tation. Surface height and color scale depict amplitude and phase, respectively, for
〈S M |ψb(p)〉/NP ≡ 〈S M |ĜP(Eb,p) |0 0〉 as a function of p̃ j ≡ p j/(mλ). Panels (a)
and (b) show the singlet component (S = 0, M = 0) and panels (c) and (d) the spin-
polarized triplet component (S = 1, M = −1), which is dominant for P = 0, h̃ ≈ 1
and weak s-wave interaction strength. Panels (e) and (f) show the spin-unpolarized
triplet component (S = 1, M = 0), which occurs only for finite P. The dimensionless
interaction strength is ε̃0 = 0.2, and values for the dimensionless Zeeman energy h̃
and COM momentum P/(mλ) = (P̃, 0) are indicated in each panel.

qualitatively similar behavior is exhibited in both cases, except that the region of dominant
triplet character occurs at much weaker interaction strengths in the presence of 1D-type spin-
orbit coupling. While 1D-type spin-orbit coupling is easier to realise experimentally than the
2D types [1], its utilization may pose new practical challenges due to the narrower parameter
region where the triplet character dominates and the associated smallness of binding energies
(typically a fraction of the spin-orbit energy scale mλ2).

5 Orbital characteristics of the bound-state wave function

In previous sections, we have discussed the binding energy and the spin properties of two-
particle bound states. We now explore features in the orbital part of the bound-state wave
function. Specifically, we focus on the amplitudes 〈S M |ψb(p)〉 appearing in its expansion
(28) in terms of total-spin eigenstates.

We plot representative examples obtained for 2D-Dirac spin-orbit coupling in Fig. 8. The
singlet component, shown in panels (a) and (b), has no imaginary part. It exhibits radial
symmetry in the relative-momentum (p) plane for vanishing COM momentum [panel (a)]. A
local minimum occurs at p= 0 as a result of spin-orbit coupling modifying the noninteracting
dispersion (16), creating an energy minimum at nonzero momentum. This local minimum in
the orbital wave function associated with the singlet component at vanishing COM momentum
disappears for sufficiently strong interactions ε̃0 ≥ 1. For finite COM momentum P [the case
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Figure 9: Orbital wave functions for two-fermion bound states formed in the pres-
ence of 1D-type spin-orbit coupling λ̂(p) ≡ λ px σ̂x in the relative-momentum
p ≡ (px , py) representation. Panel (a) shows the singlet |0 0〉 component and panel
(b) the |1 − 1〉 triplet component. The surface plots depict the real-valued functions
〈S M |ψb(p)〉/NP ≡ 〈S M |ĜP(Eb,p) |0 0〉, calculated with ε̃0 = 0.01 for the dimension-
less interaction strength, Zeeman splitting h̃ = 1 and vanishing COM momentum
P= 0, in their dependence on p̃ j ≡ p j/(mλ).

P≡ (P , 0) is shown in panel (b)], the radial symmetry is broken as the singlet-wave-function
amplitude gets suppressed along the direction of P.

Panels (c) and (d) in Fig. 8 show the orbital part of the spin-polarized triplet state with
M = −1 for the same set of parameters used in panels (a) and (b), respectively. This wave
function is complex and, for P = 0, shows typical p-wave behavior: a radially symmetric
amplitude and single phase winding around the node at the origin p = 0. For finite COM
momentum, the phase still behaves the same, but the radial symmetry of the wave-function
amplitude is broken in an analogous fashion as seen for the singlet component in panel (b).
Panels (e) and (f) depict the orbital wave function for the spin-unpolarized triplet component
(S = 1, M = 0) that is only ever finite for nonvanishing COM momentum. Without Zeeman
splitting [panel (e)], this wave function is purely imaginary and proportional to the relative-
momentum component perpendicular to the COM momentum [see the cross-product term
in Eq. (35b)]. When the Zeeman energy is finite as well [panel (f)], the sign change in the
imaginary part of the wave function turns into a full 2π phase rotation, while the node along
the direction parallel to P softens into a finite local minimum.

It is straightforward to adapt the results plotted in Fig. 8 to the other 2D-type spin-orbit
couplings. According to the general formulae given in Eqs. (35), the bound-state spinor am-
plitudes 〈S M |ψb(p)〉 are fundamentally a function of q defined in Eq. (4). As q ≡ (px , py , 0)
for 2D-Dirac spin-orbit coupling (see the form of the matrix M given for this case in Table 1),
the plots from Fig. 8 in fact directly show the momentum-space wave functions in their de-
pendence on qx and qy . Hence, the particular shape of the wave functions for any specific
2D-type spin-orbit coupling with its associated matrix M listed in Table 1 can be deduced by
replacing the relative-momentum components in axes labels of plots from Fig. 8 according to
the rule pa→

∑

µ∈{x ,y}Maµ pµ. As the plots pertaining to finite P assumed the particular form
P= (P , 0) and therefore represent Q= (P , 0, 0), they correspond to the case P=MT (P, 0, 0)T

for general 2D-type spin-orbit couplings.2

Results shown in Fig. 9 for 1D-type spin-orbit coupling look like anisotropic versions of

2This follows from multiplying both sides of the equation Q =MP from the left with MT and applying the
identity MTM= 12×2 that holds for all 2D-type spin-orbit couplings.
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the behavior seen for 2D-Dirac spin-orbit coupling. As the amplitudes 〈S M |ψb(p)〉 are all
real-valued in this case, there is no phase winding but simply a sign inversion in the triplet
component. Instead of a radially symmetric minimum, the singlet part exhibits a saddle point
at p= 0.

6 Experimental detection

Bound states could be probed with radio-frequency spectroscopy [20], or with high spectral
resolution using magneto-association spectroscopy [42]. Spin-selective imaging can provide
information on the spin content of ultra-cold atomic gases [43]. In order to determine the
relative weight of different total-spin contributions to bound states, we propose to turn off
the spin-orbit-coupling fields, which projects the cold-atom population to spin eigenstates,
before using spin-selective imaging of single-particle populations. The p-wave character of
the bound-state wave function can be detected by time-of-flight imaging of the single-particle
momentum distribution. The characteristic signature of the p-wave character of the bound
state is a vortex-like momentum distribution with a hole in the center, see Fig. 8. In the
regime where triplet character dominates in the bound state, a density maximum is expected
at the momentum scale mλ

Æ

ε̃b + h̃2 − 1. As the square root is typically of order unity, this
yields the characteristic momentum scale of spin-orbit coupling, which is well accessible in
current experiments. The parameter regime with a large triplet component in the bound state
could be probed by a fluorescence-imaging approach with single-atom spin and momentum
resolution, as recently demonstrated [44]. Due to the single-particle resolution achieved in this
experiment, it is possible to obtain relative momentum distributions at fixed COM momentum
by post selection. The ratio of pairs with same and opposite spin would give a clear indication
on the number of singlet or triplet pairs in the system.

7 Conclusions and outlook

In this paper, we have investigated the properties of bound states of two fermions in a 2D
gas with Zeeman spin splitting and spin-orbit coupling. While spin-orbit coupling enhances
binding, both the Zeeman splitting and a finite COM momentum of the dimer counteract the
formation of bound states. We show that the COM momentum acts like an additional in-plane
component of the Zeeman coupling. The bound state ceases to exist when either or both the
Zeeman energy and the COM momentum exceed a threshold. For 1D-type spin-orbit coupling,
the binding is stronger and the Zeeman energy for which a bound state can exist is larger than
for 2D-type spin-orbit coupling.

Further, we have calculated the fractional weights of individual total-spin components in
the bound state. In the systems we consider in this paper, there is a competition between the
s-wave interactions, which project the two-body wave function onto the singlet state, and the
spin-orbit coupling, which rotates the total-spin state into the triplet sector. By this mechanism,
the triplet character of the wave function can become dominant. This happens when the
Zeeman energy |h| is near the critical value for the existence of a bound state. In this regime,
the wave function is mostly in the spin-polarized triplet state that minimizes the total energy
and has a p-wave-like shape with a node at zero relative momentum. We find that, for 1D-type
spin-orbit coupling, this regime where triplet states dominate occurs in a much narrower range
of Zeeman energies for fixed interaction strength (and vice versa) as compared to systems with
2D-type spin-orbit coupling. Nevertheless, large triplet-state fractions are still reached also for
the bound states formed in the presence of 1D-type spin-orbit coupling.

20

https://scipost.org
https://scipost.org/SciPostPhys.12.5.167


SciPost Phys. 12, 167 (2022)

With finite COM momenta, we find that the bound state also reaches dominant triplet
character but now in the unpolarized S = 1, M = 0 triplet state. This triplet component is
only present for nonzero COM momentum. These findings show that, in a many-body system
such as a thermal Fermi gas, the distribution of COM momenta will lead to a gas with bound
pairs in the singlet state at the center of the momentum distribution, triplet pairs further out,
and unbound fermions at even higher momenta. We also discuss how such bound states could
be detected experimentally; in particular, the detection of opposite-spin and same-spin corre-
lations can reveal whether a 2D Fermi gas with spin-orbit coupling contains singlet or triplet
bound pairs.
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A Singlet and triplet projections of helicity-basis product states

This section provides useful identities involving the two-particle states (15) that are direct
products of single-particle energy eigenstates labelled by the individual particles’ momentum
p j and helicity α j . Indicating the spin-up (spin-down) eigenstate of σ̂z by |↑〉 (|↓〉), we get for
the singlet projection of such states

〈0 0|α1,α2〉p,P =
1
p

2
(〈↑|α1,p1〉 〈↓|α2,p2〉 − 〈↓|α1,p1〉 〈↑|α2,p2〉)

=
1
p

2

�

α2 e−
i
2 (φ1−φ2)

√

√Z+ +α1h
2Z+

√

√Z− −α2h
2Z−

−α1e
i
2 (φ1−φ2)

√

√Z+ −α1h
2Z+

√

√Z− +α2h
2Z−

�

.

(52)

Analogously, for the overlap with the S = 1, M = 0 triplet state, we find

〈10|α1,α2〉p,P =
1
p

2
(〈↑|α1,p1〉 〈↓|α2,p2〉+ 〈↓|α1,p1〉 〈↑|α2,p2〉)

=
1
p

2

�

α2e−
i
2 (φ1−φ2)

√

√Z+ +α1h
2Z+

√

√Z− −α2h
2Z−

+α1e
i
2 (φ1−φ2)

√

√Z+ −α1h
2Z+

√

√Z− +α2h
2Z−

�

.

(53)

For the projections onto the spin-polarized triplet states, straightforward calculation yields

〈11|α1,α2〉p,P = 〈↑|α1,p1〉 〈↑|α2,p2〉= e−
i
2 (φ1+φ2)

√

√Z+ +α1h
2Z+

√

√Z− +α2h
2Z−

, (54)

and

〈1 − 1|α1,α2〉p,P = 〈↓|α1,p1〉 〈↓|α2,p2〉= e
i
2 (φ1+φ2)

√

√Z+ −α1h
2Z+

√

√Z− −α2h
2Z−

. (55)

The phases appearing in these identities are φ j = arg(p j,x + i p j,y).
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Relevant for calculations leading to results presented in this paper are the absolute square
of the singlet projection and the latter’s products with the triplet projections. To obtain more
compact expressions, 3D vectors Z± = (λ[Q x/2±qx],λ[Q y/2±qy], h) are introduced, in terms
of which we find

|〈00|α1,α2〉p,P|2 =
1
4

�

1−α1α2
Z+ · Z−
Z+Z−

�

, (56)

〈1 0|α1,α2〉p,P p,P〈α1,α2|0 0〉=
1
4

�

h (α1 Z− −α2 Z+)
Z+Z−

+ iα1α2
(Z+ × Z−)z

Z+Z−

�

, (57)

〈11|α1,α2〉p,P p,P〈α1,α2|0 0〉=
1

4
p

2

�

α2 e−iφ2
λ|p2|

p

(Z+ +α1 h)2

Z+Z−

−α1 e−iφ1
λ|p1|

p

(Z− +α2 h)2

Z+Z−

�

, (58)

〈1 − 1|α1α2〉p,P p,P〈α1,α2|0 0〉=
1

4
p

2

�

α2 eiφ1
λ|p1|

p

(Z− −α1 h)2

Z+Z−

−α1 eiφ2
λ|p2|

p

(Z+ −α2 h)2

Z+Z−

�

. (59)

B Momentum representation of the Green’s function

Here, we show how to obtain somewhat compact expressions for the momentum representa-
tion of the Green’s function. As we consider only s-wave interactions that couple exclusively
to the singlet channel, relevant formulae always contain the Green’s function acting on the
singlet total-spin eigenstate to the right. Thus we need to calculate the four matrix elements

〈S M |ĜP(E,p)|0 0〉=
∑

α1,α2

〈S M |α1,α2〉p,P p,P〈α1,α2|0 0〉
E − εP(α1,α2,p)

, (60)

where we employed the Lehmann representation in terms of the eigenstates (14) of ĤP.
Numerators appearing in (60) have been obtained in the previous section. As was first

shown in Ref. [35], introducing the variable s = p2/m− E allows us to perform the sum over
the four combinations of {α1 = ±,α2 = ±} and obtain a more compact form of the Green’s
function. For illustration, we show this in detail for the singlet component:

〈00|ĜP(E,p)|0 0〉=
∑

α1 α2

|〈00|α1,α2〉p,P|2

−(α1Z+ +α2Z−)− s
(61)

=
1
4

��

1−
Z+ · Z−
Z+Z−

��

1
Z+ + Z− − s

+
1

−Z+ − Z− − s

�

+
�

1+
Z+ · Z−
Z+Z−

��

1
Z+ − Z− − s

+
1

−Z+ + Z− − s

��

= −
s
2

�

1
s2 − (Z+ + Z−)2

+
1

s2 − (Z+ − Z−)2

+
Z+ · Z−
Z+Z−

�

1
s2 − (Z+ − Z−)2

−
1

s2 − (Z+ + Z−)2

��

= −
s
d

�

s2 − (Z2
+ + Z2

− − 2Z+ · Z−)
�

= −
s
d

�

s2 − 4h2 −λ2(q2
1 + q2

2 + 2q1 · q2)
�
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= −
s
d

�

s2 − 4h2 −λ2(q1 + q2)
2
�

= −
s
d

�

s2 − 4h2 −λ2Q2
�

, (62)

thus obtaining (35a) with (36) giving the explicit expression for the denominator d. Along
the same lines, the expressions (35b), (35c) and (35d) for Green’s-function matrix elements
involving the triplet states are derived. Our results agree with the expressions given in Ref. [35]
for the vanishing-Zeeman-splitting limit |h| → 0.

C Boundaries of parameter regions for P= 0 bound states

For 2D-type spin-orbit coupling and zero COM momentum, the boundary between the param-
eter regions with and without a bound state can be obtained analytically. In the following, we
assume |h̃|> 1 since there is always a bound state when |h̃| ≤ 1. To derive ε̃crit

0 , we substitute
the threshold energy Ẽth = −2|h̃| applicable for |h̃|> 1 in place of Ẽb into Eq. (48), using also
the analytical expression (49) for F0(Ẽb, h̃). First we consider

F0(Ẽb, h̃)
�

�

Ẽb=−2|h̃| = lim
Ẽb→−2|h̃|

¨

−Ẽb ln
�

−Ẽb

�

2(h̃2 + Ẽb)

−

�
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− Ẽb − 2+ 2
Æ

1+ h̃2 + Ẽb

�

4
Æ

1+ h̃2 + Ẽb (h̃2 + Ẽb)
ln
�

−Ẽb − 2+ 2
q

1+ h̃2 + Ẽb

�

+

�

1−
Æ

1+ h̃2 + Ẽb

� �

− Ẽb − 2− 2
Æ

1+ h̃2 + Ẽb

�

4
Æ

1+ h̃2 + Ẽb (h̃2 + Ẽb)
ln
�

−Ẽb − 2− 2
q

1+ h̃2 + Ẽb

�

)

.

(63)

Recognizing that the third term between curly brackets on the r.h.s. of Eq. (63) vanishes in the
limit Ẽb→−2|h̃| with |h̃|> 1, we obtain

F0(−2 h̃, h̃) =
ln
�

2|h̃|
�

− ln[4(|h̃| − 1)]

|h̃| − 2
≡
−1

|h̃| − 2
ln

�

2
|h̃| − 1

|h̃|

�

. (64)

Using this, Eq. (48) with Ẽb→−2|h̃| becomes

γ+ ln





1
2

√

√

√2|h̃|
ε̃0



≡
1
2

ln

�

e2γ|h̃|
2ε̃0

�

= ln

�

2
|h̃| − 1

|h̃|

�
1
|h̃|−2

, (65)

which can be straightforwardly solved for ε̃0 to yield Eq. (51).
In a similar fashion, we determine the boundary line dividing regions in the ε̃0-h̃ parameter

space where Ẽb ≤ −1− h̃2 and −1− h̃2 < Ẽb < −2|h̃|, i.e., the curve where Ẽb = −1− h̃2 for
|h̃|> 1. Introducing δ̃b ≡ −1− h̃2 − Ẽb, we find

F0(−1− h̃2, h̃) =

1
4

�

2
�
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�
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�

�

. (66)
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With this (using also |h̃2−1| ≡ h̃2−1 with our assumptions), Eq. (48) for Ẽb = −1−h̃2 becomes

γ+ ln





1
2

√

√

√1+ h̃2

ε̃0



= −1−
1+ h̃2

2
ln

�

h̃2 − 1

h̃2 + 1

�

, (67)

yielding Eq. (50).

D Analytical results for fractional weights of total-spin eigenstates
in the bound state for P= 0 and Ẽb ≤ −1− h̃2

To calculate the fractional weights NSM of total-spin eigenstates in the two-particle bound
states according to Eq. (37), integrals over the squared magnitude of Green’s-function matrix
elements are needed. For the case of vanishing COM momentum and bound-state energy
satisfying Ẽb ≤ −1− h̃2, we can provide analytical results for the latter:

∫

d2p |〈0 0|Ĝ0(Eb,p)|0 0〉|2 =
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, (68)

and
∫
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Note that, because 〈1 0|Ĝ0(Eb,p)|0 0〉= 0, N10 = 0 for the case P= 0.
For the case of vanishing Zeeman splitting, the results above simplify considerably, leading

to

∫

d2p |〈0 0|Ĝ0(Eb,p)|0 0〉|2→
1

2(−1− Ẽb)
−

Ẽb

�

arctan
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2
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2

�
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, (70)

∫
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. (71)

24

https://scipost.org
https://scipost.org/SciPostPhys.12.5.167


SciPost Phys. 12, 167 (2022)

Using Ẽb = −1.55 [consistent with ε̃b = 0.55 obtained for ε̃0 = 0.1, h̃ = 0 and P̃ = 0; see
Fig. 4(b)] in the expressions (70) and (71), one derives N00 = 0.65 and N1±1 = 0.17 in
agreement with the P̃ = 0 results shown in Fig. 5(b).
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