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Abstract

We generalize the notion of hidden conformal symmetry in Kerr/CFT to Kerr-(A)dS black
holes in arbitrary dimensions. We build the SL(2,R) generators directly from the Killing
tower, whose Killing tensors and Killing vectors enforce the separability of the equa-
tions of motion. Our construction amounts to an explicit relationship between hidden
conformal symmetries and Killing tensors: we use the Killing tower to build a novel ten-
sor equation connecting the SL(2, R) Casimir with the radial Klein-Gordon operator. For
asymptotically flat black holes in four and five dimensions we recover previously known
results that were obtained using the “near-region” limit and the monodromy method.
We then perform a monodromy evaluation of the Klein-Gordon scalar wave equation for
all Kerr-(A)dS black holes, finding explicit forms for the zero mode symmetry generators.
We also extend this analysis to the large-dimensional Schwarzschild black hole as a step
towards buliding a Large-D/CFT correspondence.
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1 Introduction

The powerful insight that the physics of a gravitational system can be described via a lower-
dimensional conformal field theory (CFT) has evolved much in the past 20 years. Beyond the
celebrated AdS/CFT correspondence [1], a CFT description of an extremal Kerr black hole
in flat space was achieved by [2] in a near-horizon limit. This Kerr/CFT correspondence not
only provided a flat space example of a gauge/gravity duality, but it also helped provide a
microscopic accounting of the Bekenstein-Hawking entropy of the extremal Kerr black hole,
assuming the validity of a Cardy formula. Since then, Kerr/CFT has been extended to higher-
dimensional extremal black holes [3–7]. It was then of immediate interest to determine the
extent to which such conformal structure exists away from extremality.

The possibility of a CFT description of the Kerr black hole away from extremality was first
studied by [8]. There they considered the dynamics of a massless scalar field on a generic
Kerr background. They found that conformal symmetry was preserved away from extremality,
provided that a near-region limit was taken in the Klein-Gordon equation (as opposed to the
metric)1. Since the conformal symmetry of the non-extremal Kerr solution is only discernable
by studying the dynamics rather than the background geometry alone, this feature is referred to
as a hidden conformal symmetry. A corresponding near-region analysis has now been applied to
many non-extremal black hole systems, and hidden conformal symmetry has thus been shown
to be a generic feature of black hole backgrounds [10–12]. The physical connection between
this near-region approach of finding hidden conformal symmetry and black hole soft hair [13]
is treated in [9,14,15].

There is a second method of diagnosing hidden conformal symmetry in black hole back-
grounds, known as the monodromy method [16–19]. While the spirit of the monodromy and
near-region methods is the same (studying the near-horizon behavior of the wave equation),
the former does not require taking a near-region/soft hair limit by hand. The hidden confor-
mal symmetry generators for Kerr and the 5D Myers-Perry black hole were found using the
monodromy method in [18], reproducing the near-region results of [8, 10]. In this paper we
will use both the near-region and monodromy approaches extensively, and so we review them
in Section 2.

1The authors of [8] refer to this as a “near-region limit” in order to distinguish it from the near-horizon limit
taken in the metric, as in Kerr/CFT. In [9], the authors describe this as a near-horizon limit in the dynamics. As we
will discuss in Section 2, the near-region limit is defined by ωM << 1 and ωr << 1, where ω is the eigenvalue of
i∂t and M is the black hole mass.

2

https://scipost.org
https://scipost.org/SciPostPhys.12.5.170


SciPost Phys. 12, 170 (2022)

Intriguingly, the concept of hidden symmetry has played a powerful role in a seemingly
unrelated area of physics: separability and integrablilty of equations of motion [20,21]. That
is, separability of the Klein-Gordon equation and total integrability of geodesic motion is guar-
anteed if the spacetime admits a principal tensor2 which generates a tower of Killing tensors
and Killing vectors. A Killing tensor is a higher rank object that satisfies Killing’s tensor equa-
tion∇(µkαβ) = 0. Remarkably, it was shown by [20,22] that the most general Kerr-NUT-(A)dS
spacetime in any number of dimensions admits enough Killing tensors that all equations of
motion are separable. Unlike Killing vectors l(i), which generate explicit symmetries of the
metric (isometries) with conserved quantities linear in momentum lapa, Killing tensors gen-
erate hidden symmetries of the dynamics, with conserved quantities that are higher order3 in
momenta kabpapb. For an extensive review on separability, hidden symmetries and Killing
tensors, see [21].

The fact that the same black hole spacetimes that exhibit hidden conformal symmetry
in a near-region limit also admit a Killing-Yano tensor that ensures separability has already
been observed by [23, 24]. In this paper, we make these connections precise. We use the
Killing tower of [21] to construct a tensor equation for the quadratic Casimir H2 of the hidden
conformal symmetry generators for Kerr-(A)dS spacetimes. We construct the general form of
this tensor equation for all dimensions, and compute explicit expressions in 4D and 5D with
Λ = 0. From the monodromy point of view we can go further, and build the monodromy
parameters α± (to be defined in Section 2.1.2) in general spacetime dimensions from the
Killing tower, recovering in particular results previously obtained for Kerr and the 5D Myers-
Perry black hole [18] and Kerr-AdS [15]. This connection is of particular interest, as it may
point to a thermodynamic interpretation of the Killing tower.

In addition, it is interesting to consider the large dimension (large D) limit of black hole
spacetimes ( [25–34] or for a recent full review, see [35]), as calculations in this limit are
greatly simplified without compromising the near-horizon physics. It is particularly interesting
to study hidden conformal symmetry in the large D limit, as this could point to a Large-D/CFT
correspondence.4 In the present work, we attempt to construct a Killing tensor equation for
the quadratic Casimir in the large D limit, using two different approaches. First, we take the
large D limit in the metric (as is standard practice), and then we take the large D limit directly
in the wave equation. We discuss the results of the former approach, and the complications of
the latter.

This paper is structured as follows. In Section 2 we review the topics that are central to this
work. Section 2.1 focuses on the near-region and monodromy methods for finding the hidden
conformal symmetry generators, and Section 2.2 reviews the Killing tower construction and
separability of the wave equation. In Section 3 we generalize the hidden conformal symmetry
generators of [8] to general dimension, which is necessary to construct a tensor equation
for the quadratic Casimir. We build the full tensor equation for four and five dimensions,
and highlight the difficulty that arises when considering general dimension. In Section 4 we
construct the monodromy parameters α± from the Killing tower for the general D Kerr-(A)dS
spacetime, allowing us to compute the hidden conformal symmetry generators from the Killing
tower as well. In Section 5 we match the Casimir and perform a monodromy analysis for large
D Schwarzschild-Tangherlini black holes. A discussion of our results and future work is given
in Section 6. In Appendix A we set our notation and write down the metrics that we use.

2This is more correctly called a non-degenerate closed conformal Killing-Yano 2-form.
3In general there exist Killing-Yano tensors of the form f c1 ...cD−2 j−1 ; the Killing tensors we use here are built

from the square of the jth Killing-Yano: kab
( j)∝ f ( j)c1 ...cD−2 j−1

f ( j)bc1 ...cD−2 j−1 . For a full list of objects in the Killing tower,

see section 5 of [21].
4The large D quadratic Casimir of the hidden symmetry generators of charged AdS black holes was found

in [36]; for the charged case, they find the temperatures but do not build the H generators or the conformal
coordinates explicitly.
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Appendix B gives a physical discussion of the monodromy basis introduced in Section 2.1.2.

2 Review: Hidden Conformal Symmetry, Killing Tensors and Sep-
arability

Here we review two separate manifestations of hidden symmetry. The first is the hidden con-
formal symmetries obtained by analyzing the wave equation in [8, 18]. The second is the
hidden symmetries as generated from Killing tensors in [21].

2.1 Hidden Conformal Symmetry in Kerr/CFT

With the establishment of the Kerr/CFT correspondence [2], the next question that arises is
whether conformal symmetry also exists away from extremality. In this section we review two
programs that obtain hidden conformal symmetry generators in the Kerr background and the
five-dimensional Myers-Perry black hole.

2.1.1 Near-region limit

The first progress in uncovering hidden conformal symmetry away from extremality was
accomplished in [8]. The authors considered the Klein-Gordon equation for a massless
scalar field Φ in a Kerr background. This equation famously separates under the ansatz
Φ= R(r)S(θ )ei(mφ−ωt), and for convenience the radial equation is reproduced below

�

∂r(∆∂r) +
(2M r+ω− am)2

(r − r+)(r+ − r−)
−
(2M r−ω− am)2

(r − r−)(r+ − r−)
+ (r2 + 2M(r + 2M))ω2

�

R(r) = KR(r) , (1)

where∆= r2+a2−2M r = (r− r+)(r− r−), r± = M±
p

M2 − a2 are the inner and outer event
horizons. a = J/M is the black hole spin (with M and J the mass and angular momentum),
and K is a separation constant. In order to see hints of hidden conformal symmetry emerge,
the authors of [8] took a near-region limit, defined by ωM << 1 and ωr << 1. In this limit,
the final ω2 term in (1) vanishes:

�

∂r(∆∂r) +
(2M r+ω− am)2

(r − r+)(r+ − r−)
−
(2M r−ω− am)2

(r − r−)(r+ − r−)

�

R(r) = KR(r) . (2)

The resulting solutions are hypergeometric functions, which transform in representations of
SL(2, R). The authors of [9] refer to these low ω solutions as soft hair modes, and give an
interpretation of the near-region limit as a near-horizon limit of phase space, rather than a
near-horizon limit of spacetime: ω(r − r+)<< 1.

To make the conformal symmetry more manifest, it is prudent to work in the conformal
coordinates introduced in [8,37] and subsequently utilized and adapted by [9,10,14–16,18]

w+ =
�

r − r+
r − r−

�1/2

e2πTRφ ,

w− =
�

r − r+
r − r−

�1/2

e2πTLφ−
t

2M ,

y =
�

r+ − r−
r − r−

�1/2

eπ(TL+TR)φ−
t

4M ,

(3)
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where
TR =

r+ − r−
4πa

, TL =
r+ + r−

4πa
. (4)

The surface w+ = 0 is the past horizon, w− = 0 defines the future horizon, and w± = 0 is
the bifurcation surface. The coordinates (3) are the Kerr analogue of the coordinate trans-
formation which takes the BTZ black hole metric to the upper-half plane of AdS3 in Poincaré
coordinates [38]. That is, close to the bifurcation surface (to leading order in w± = 0), the
Kerr metric (155) becomes

ds2 =
4ρ2
+

y2
dw+dw− +

16J2 sin2 θ

y2ρ2
+

d y2 +ρ2
+dθ2 + . . . , (5)

which is warped AdS3 (for a given θ slice). Here ρ2
+ = r2

+ + a2 cos2 θ . Further motivation for
these coordinates is discussed in Section 3.1.

The key point is now to construct the locally defined vector fields

H1 = i∂+ , H0 = i(w+∂+ +
1
2

y∂y) , H−1 = i((w+)2∂+ +w+ y∂y − y2∂−) ,

H̄1 = i∂− , H̄0 = i(w−∂− +
1
2

y∂y) , H̄−1 = i((w−)2∂− +w− y∂y − y2∂+) .
(6)

Each set of vector fields satisfies an SL(2, R) algebra

[H0, H±1] = ∓iH±1 , [H−1, H1] = −2iH0 , (7)

with quadratic Casimir

H2 = −H2
0 +

1
2
(H1H−1 +H−1H1)

=
1
4
(y2∂ 2

y − y∂y) + y2∂+∂− ,
(8)

(where analogous statements hold for the H̄s). Upon taking the near-region limit, [8] showed
that the quadratic Casimir (8) is precisely the radial Klein-Gordon operator (2), i.e.

H2Φ= H̄2Φ= KΦ . (9)

This same approach was taken in [10] to find the analogous hidden conformal symmetry
structure in the 5D Myers-Perry black hole. In five dimensions the separation ansatz for the
wave equation solution is Φ = R(r)S(θ )ei(m1φ1+m2φ2−ωt). It turns out that considering two
specific types of waves (namely m1 = 0 and m2 = 0) gives rise to two unrelated CFTs, one in
the φ1 sector and the other in the φ2 sector. To show this, the principal new step of [10] was
to generalize the conformal coordinates to five dimensions. For example, in the φ1 sector we
have:

w+ =

�

r2 − r2
+

r2 − r2
−

�1/2

e2πTRφ1−2KR t ,

w− =

�

r2 − r2
+

r2 − r2
−

�1/2

e2πTLφ1−2KL t ,

y =

�

r2
+ − r2

−

r2 − r2
−

�1/2

eπ(TL+TR)φ1−(KL+KR)t ,

(10)
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where

TR =
1
π

κ+(κ− −κ+)
ΩR(κ− −κ+)−ΩL(κ− +κ+)

, TR =
1
π

κ+(κ− + κ+)
ΩR(κ− − κ+)−ΩL(κ− +κ+)

,

KR =
1
π

ΩLκ+κ−
ΩR(κ− −κ+)−ΩL(κ− +κ+)

, KR =
1
π

ΩRκ+κ−
ΩR(κ− −κ+)−ΩL(κ− + κ+)

,
(11)

ΩR = Ωφ1
+Ωφ2

=
r+(a1 + a2)(r+ + r−)
(r2
+ + a2

1)(r
2
+ + a2

2)
,

OmegaL = Ωφ1
−Ωφ2

=
r+(a1 − a2)(r+ − r−)
(r2
+ + a2

1)(r
2
+ + a2

2)
.

(12)

Ωφ1
and Ωφ2

are the angular velocities with respect to each angle, and κ± are the surface
gravities at the inner and outer horizons. The barred versions are the same, except the right
and left expressions are exchanged: TL ↔ TR and KL ↔ KR. To obtain the expressions (10) -
(12) for the φ2 sector, simply replace φ1 with φ2 and exchange a1↔ a2.

With this definition of the conformal coordinates, equations (6) - (9) hold for each inde-
pendent sector (m1 = 0 and m2 = 0). In order to study the existence of hidden conformal
symmetries in higher dimensions, our immediate objective is to generalize these conformal
coordinates. We discuss this procedure in Section 3.1.

2.1.2 Monodromy method

There is a second method of probing hidden conformal symmetry which demonstrates that
the SL(2, R)× SL(2, R) symmetry of the radial equation discovered in [8,10] actually persists
without taking the near-region limit in the Klein-Gordon equation. This monodromy method
only requires examining the analytic structure of the full radial equation.

We begin by analyzing the regular singular points of a differential equation

R′′(r) + P(r)R′(r) +Q(r)R(r) = 0 . (13)

This equation possesses a regular singular point ri if P(r) or Q(r) diverges as r → ri but
(r − ri)P(r) and (r − ri)2Q(r) remain finite as r → ri . Due to the branch cuts that form at
these singular points, the solutions develop a monodromy when going around a singular point
in the complex r plane. To find the monodromy data around a given singular point ri , we
consider a series solution for R(r) near that singular point. The two solutions will be of the
form

Rout
i = (r − ri)

iαi (1+O(r − ri)), Rin
i (r) = (r − ri)

−iαi (1+O(r − ri)) . (14)

Here αi is the monodromy parameter.
Let’s again consider the example of a massless scalar field in the Kerr background. The

radial equation (1) has two regular singular points at the horizons r+ and r−, and an irregular
singular point at r =∞5. In order to compute the monodromy parameter around r = r±, we
first express (1) in standard form:

(r − r±)
2R′′(r) + (r − r±)λ(r)R

′(r) + γ(r)R(r) = 0 , (15)

where
λ(r) = (r − r±)P(r) (16)

5For the purposes of our discussion, we will not need to address the irregular singular point at infinity. Indeed,
the monodromy information for this irregular singular point is already encoded in that of the two regular singular
points via the relation M+M−M∞ = I, where Mi is the monodromy matrix around the ith singular point. The
curious reader can consult for example [16] for further discussion.
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and
γ(r) = (r − r±)

2Q(r) . (17)

We can solve the above differential equation around the singular point r = r± using the Frobe-
nius method of series expansions. This gives the following indicial equation

β(β − 1) +λ0β + γ0 = 0 , (18)

where β ≡ iα, λ0 ≡ λ(r±) and γ0 ≡ γ(r±). Solving the indicial equation gives the monodromy
parameters α± associated with the inner and outer horizons [16]

α± =
ω−Ω±k

2κ±
. (19)

Expressions for angular velocitiesΩ± ≡
dφ
d t

�

�

�

r=r±
and surface gravities κ± are given in Appendix

A.
As we will motivate in Section 3.1 and Appendix B, we employ the change of basis

ωL = α+ −α− ,

ωR = α+ +α− .
(20)

The variables tL and tR conjugate to ωL and ωR are found by comparing the Fourier modes

e−iωL tL−iωR tR = e−iωt+imφ . (21)

Plugging in the expicit values of α± in (19) and grouping the coefficients ofω and those of m,
we find

tR = 2πTRφ , tL =
1

2M
t − 2πTLφ . (22)

The new basis (ωL ,ωR) are eigenvalues of the operators (i∂tL
, i∂tR

). In the (t,φ) basis, these
operators become the generators

H0 =
i

2πTR
∂φ + 2iM

TL

TR
∂t , H̄0 = −2iM∂t (23)

posited in [8]. Further, comparing the conformal coordinates in (3) and the left- and right-
moving coordinates in (22) shows that (tL , tR) fix the conformal coordinates themselves (up
to an r-dependent scaling). Thus we are able to completely fix the exponential factors of
the (H, H̄) in (6) using the monodromy method. The analogous monodromy calculation was
presented for the 5D Myers-Perry black hole in [16], and their results matched those of [10].

2.2 Hidden Symmetry, Killing Tensors and Separability

We now review the Killing vectors and Killing tensors responsible for the separability of wave
equation in general Kerr-NUT-(A)dS black hole spacetimes. As reviewed in [21], spacetimes
which possess a non-degenerate closed conformal Killing-Yano 2-form, also known as a princi-
pal tensor, must additionally have a full tower of Killing objects. As the authors of [20,22,39]
showed, these spacetimes consequently have enough Killing tensors to separate all equations
of motion.

For this paper, we will not need the details of the principal tensor or its entire associated
Killing tower (see [21] for a thorough review of these topics). Instead, we will focus on the
Killing vectors and Killing tensors of the Kerr-(A)dS geometries.
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We begin by stating the metric for the Kerr-NUT-(A)dS geometry in canonical coordinates,
first found in [40]:

ds2 =
n
∑

µ=1

� Uµ
Xµ

d x2
µ +

Xµ
Uµ

�

n−1
∑

j=0

A( j)µ dψ j

�2
�

+ ε
c

A(n)

�

n
∑

k=0

A(k)dψk

�2
. (24)

Here D = 2n + ε, so ε = 0 for even D and ε = 1 for odd D, and c is an arbitrary constant
and is fixed by the transformation to Boyer-Lindquist-like coordinates. The radial direction is
given by xn = ir, while the xµ, µ= 1, . . . , n, correspond to longitudinal directions. The Killing
directionsψk, where k = 0, . . . , n+ε−1, are related to theφµ and t of the Boyer-Lindquist-like
coordinates (158) via

t =ψ0 +
n+ε−1
∑

k=1

A(k)ψk , f racφµaµ = λψ0 −
n+ε−1
∑

k=1

(A(k−1)
µ −λA(k)µ )ψk . (25)

Here λ is related to the cosmological constant Λ and 1/g, the (A)dS curvature scale, as

Λ=
1
2
(D− 1)(D− 2)λ , λ= ±g2 . (26)

The sign on λ depends on if the spacetime is de Sitter or Anti-de Sitter. Accordingly, we will
continue writing in terms of the parameter λ itself so we capture both cases. Additionally, A(k)µ
and A(k) are functions of the spins aµ:

A(k) =
n−1+ε
∑

ν1,··· ,νk=1
ν1<···<νk

a2
ν1
· · · a2

νk
, A(k)µ =

n−1+ε
∑

ν1,··· ,νk=1
ν1<···<νk
νi 6=µ

a2
ν1
· · · a2

νk
. (27)

The functions Uµ, A(k)µ , U , and A(k) used in (24) are given by,

A(k)µ =
n
∑

ν1,··· ,νk=1
ν1<···<νk , νi 6=µ

x2
ν1
· · · x2

νk
, A(k) =

n
∑

ν1,··· ,νk=1
ν1<···<νk

x2
ν1
· · · x2

νk
, (28)

Uµ =
n
∏

ν=1
ν6=µ

(x2
ν − x2

µ) , U =
n
∏

µ,ν=1
µ<ν

(x2
µ − x2

ν) = detA( j)µ .

The function Xµ depends only on the single coordinate xµ, via

Xµ =
−λx2

µ − 1

(−x2
µ)ε

n−1+ε
∏

k=1

(a2
k − x2

µ) + 2Mδµ,n

�

−i xµ
�1−ε

. (29)

Because these spacetimes possess a principal tensor [21], they also possess a set of Killing
tensors kab

( j), j = 0, .., n− 1 and Killing vectors la
( j), j = 0, ..., n+ ε− 1. Explicit expressions for

these are given by,

l( j) = ∂ψ j
, (30)

k( j) =
n
∑

µ=1

A( j)µ

� Xµ
Uµ
∂ 2

xµ
+

Uµ
Xµ

�

n−1+ε
∑

k=0

(−x2
µ)

n−1−k

Uµ
∂ψk

�2
�

+ ε
A( j)
A(n)

∂ψn
2 . (31)
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For j = 0, the Killing tensor is just the inverse metric kab
(0) = gab. These Killing objects satisfy

the following equations,

∇a l b
( j) +∇

b la
( j) = 0 , ∇(akbc)

( j) = 0 . (32)

These objects guarantee exactly enough conserved quantities to allow for the separation of
variables in the wave equation. Since k( j) and l( j) are generated by the same principal tensor,
the operators −∇akab

( j)∇b and −ila
( j)∇a mutually commute. Consequently they have a common

eigenfunction Φ. Accordingly, we can write,

−∇akab
( j)∇bΦ= K jΦ, − ila

( j)∇aΦ= L jΦ , (33)

where the 2n+ 2ε eigenvalues are written as K j and L j . Since k0 is the metric, K0 is just the
mass of the scalar field; we study the massless Klein-Gordon equation so will often set this
parameter to zero. These conserved quantities allow the multiplicative separation ansatz

Φ=
n
∏

µ=1

Rµ

n−1+ε
∏

k=0

exp(i Lkψk) , (34)

where each function Rµ depends only on one coordinate xµ, and Rµ = Rµ(xµ). The authors
of [39] showed that equations (33) are equivalent to the conditions,

XµR
′′

µ +

�

X
′

µ +
εXµ
xµ

�

R
′

µ +
χµ

Xµ
Rµ = 0 , (35)

where

χµ = Xµ

n−1+ε
∑

j=0

K j(−x2
µ)

n−1− j −





n−1+ε
∑

j=0

L j(−x2
µ)

n−1− j





2

. (36)

We find the radial separated wave equation by substituting xµ = xn = ir in (35). We find, for
the radial wavefunction R(r),

−X rR
′′
(r)−

�

X
′

r +
εX r

r

�

R
′
(r) +

χ

X r
Rr(r) = 0 , (37)

where χ = χn and

X r = −
1−λr2

r2ε

n+ε−1
∏

k=1

(a2
k + r2) + 2M r1−ε ≡ −∆ . (38)

The definition X r ≡ −∆ is to remind us that X r is the generalization of the function ∆, that
appears for example in the 4D Klein-Gordon equation (1), to general dimension and nonzero
cosmological constant. We have also chosen the overall factor in (37) to match with the 4D
Klein-Gordon equation (1).

3 Generalizing the Generators

We now begin to generalize the hidden conformal results of section 2.1 to general dimen-
sion black holes with arbitrary spin and arbitrary cosmological constant (158). In the pro-
cess, we will highlight the relationship between the hidden conformal symmetry generators
H±, H0, H̄±, H̄0 and the Killing tower as reviewed in section 2.
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3.1 Conformal coordinates

We begin by generalizing the conformal coordinates (3) and (10) so that we can include cos-
mological constants as in [15] as well as examine higher dimensions [3].

We will want coordinates which include the r and t directions. In analogy with the five-
dimensional case (10), we will always focus on only one further angle. Eventually we will
choose this angle to match one of the Boyer-Lindquist angles φµ as in (158) (since they are
periodic up to 2π), but for now we will leave the choice of angle arbitrary, and only insist that
it be a Killing direction. We will call this unfixed angle ψ. Accordingly, we adopt conformal
coordinates (w±, y) defined in terms of (t, r,ψ) by

w+ = g(r)h(r)e2πTRψ−2KR t ,

w− = g(r)h(r)e2πTLψ−2KL t ,

y = g(r)eπ(TR+TL)ψ−(KR+KL)t .

(39)

Here, g(r) and h(r) are undetermined functions of r, while TL,R and KL,R are constants which
will be fixed by the black hole geometry (and the choice of ψ angle). For physical clarity
in the discussion that follows, however, we will temporarily restrict ourselves to a particular
coordinate choice. First, we choose the timelike Boyer-Lindquist coordinate t (158), since our
system is asymptotically static. Next, just as in the five-dimensional case [10,16], we also turn
on the angular momentum conjugate to only one single φµ. We will set this particular index
µ = ? in what follows. We pick among the Boyer-Lindquist angles φµ because they are all
identified up to 2π, as previously discussed in 3.1. All other momenta conjugate to Killing
vector directions are turned off.

The two coordinate systems (t, r,φ?) and (w±, y) have different utilities. As we now ex-
plain, the Boyer-Lindquist coordinates (t, r,φ?) show the thermal nature of the black hole back-
ground, while the conformal coordinates (w±, y) exhibit any conformal structure of the black
hole horizon. We know from [41] that three-dimensional black holes can be constructed from
portions of AdS3 (such as the upper half-plane) via a coordinate identification that imbues the
spacetime with a quotient structure. The importance of the Boyer-Lindquist-like coordinates
(t, r,φ?) is that this periodic coordinate identification φ? ∼ φ? + 2π is evident. In addition,
these are the coordinates that are generally used to define energy and momentum (that is, for
eignenmode Φ= R(r)S(θ )ei(kφ?−ωt) the eigenvalues of i∂t and −i∂φ? , respectively).

On the other hand, as mentioned in Section 2.1.1, near the bifurcation surface w± = 0,
the conformal coordinates (w±, y) transform a constant θ slice of the Kerr metric (155) into
warped AdS3 (5). Furthermore, the form of the coordinates (39) are adapted from the well-
understood case of the BTZ black hole. As discussed in [37], the boundary of AdS3 inherits a
natural set of null coordinates (analogous to w±) in which the boundary CFT is in its vacuum
state. Thus the reason for the exponential structure of the coordinate transformation (39)
between “vacuum” coordinates and “thermal” coordinates is clear: it is just the coordinate
transformation between the Minkowski vacuum and the Rindler wedge. This point is discussed
for example in [8,16,37].

There is an ambiguity in defining the exponential factors of the conformal coordinates in
(39). A priori, we could consider any combination of the coordinates (t,φ?)

w+ = g(r)h(r)eaφ?+bt ,

w− = g(r)h(r)ecφ?+d t ,

y = g(r)e((a+c)φ?+(b+d)t)/2,

(40)

leaving us with the four parameter family (a, b, c, d). First, choosing that the metric (158) has
the expansion (5) near the bifurcation surface w± = 0 fixes two of the parameters (a, b, c, d).
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As discussed in [15], the other two parameters are fixed by insisting that the linear com-
bination of (t,φ?) (or rather (∂t ,∂φ?)) that are of physical interest are

ζ± = κ±

 

∂t +
n+ε−1
∑

µ=1

Ωµ,±∂φµ

!

. (41)

Here κ± is the surface gravity at the inner and outer horizons, and Ωµ,± with the angular
velocity of the inner and outer horizon with respect to angle φµ. Fixing an angle φµ = φ?
means that all terms ∂φµΦ will vanish for µ 6= ?. The parameter ε distinguishes between even
and odd dimensions: ε = 0 for D even and ε = 1 for D odd, and n is defined such that
D = 2n+ ε. The generators (41) are interesting from a thermodynamic point of view. Wald
noted [42] that the entropy of a general bifurcate Killing horizon is equal to the integrated
Noether charge associated to the Killing field vanishing on that surface. The generators (41)
are precisely those vanishing on the inner and outer horizons r±. We would like to build the
set of 6 locally defined SL(2, R) × SL(2, R) symmetry generators (H, H̄) defined in (6) from
conformal coordinates (39). If we do this correctly, the quadratic casimir (8) should match
the radial Klein-Gordon operator (Laplacian) in (37). We will now see that demanding the
Casimir H2 is proportional to (37) will constrain the conformal coordinates further.

We find the conformal coordinates (39) obey the relations

w+w−

y2
= h2 ,

w+

w−
= e−2π(T−ψ−K− t) ,

w+w− + y2 = g2(1+ h2)e2π(T+ψ−K+ t) ,

(42)

where we have defined T± = TL ± TR and πK± = KL ± KR. Taking partial derivatives with
respect to w+, w− and y on each of these relations, and doing some algebra, we find

y∂y =
2T−
Ω

�

1+
hg ′

h′g

�

∂t +
2K−
Ω

�

1+
hg ′

h′g

�

∂ψ −
h
h′
∂r ,

w+∂+ =
1
Ω

�

T+ − T−
hg ′

h′g

�

∂t +
1
Ω

�

K+ − K−
hg ′

h′g

�

∂ψ +
h

2h′
∂r ,

w−∂− =
1
Ω

�

−T+ − T−
hg ′

h′g

�

∂t +
1
Ω

�

−K+ − K−
hg ′

h′g

�

∂ψ +
h

2h′
∂r ,

(43)

where we have now defined

Ω≡ 2π(T+K− − T−K+) = 4 (TRKL − TLKR) . (44)

Since, by inspection, we can see that the radial Klein-Gordon operator in (37) contains no
cross terms of the form ∂t∂r or ∂ψ∂r , we can further constrain our conformal coordinates. By
plugging the partial derivative expressions (43) into the quadratic Casimir (8) as found from
the H generators, we find the term

−T−
Ωhh′

�

h2 +
�

h2 + 1
� hg ′

h′g

�

∂t∂r , (45)

and a similar term for ∂ψ∂r . Since both of these coefficients must vanish, in order for the
quadratic Casimir to match the radial Klein-Gordon operator, we must have

hh′

h2 + 1
=
−g ′

g
. (46)
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This equation is satisfied if we set

g2(h2 + 1) = C , (47)

for any constant C . In the four- and five-dimensional cases, C was set to 1; since it is an overall
scale in the conformal coordinates (40), we will keep this fixing below.

Under the restriction (47), the Casimir built from the H generators becomes

H2 =
h2 + 1
4(h′)2

∂ 2
r +

�

1+ h2

4hh′

�

(h′)2 − h′′h
(h′)2

�

+
h

2h′

�

∂r +

�

T2
−

Ω2(h2 + 1)
−

T2
+

Ω2h2

�

∂ 2
t

+
�

2T−K−
Ω2(h2 + 1)

−
2T+K+
Ω2h2

�

∂t∂ψ +

�

K2
−

Ω2(h2 + 1)
−

K2
+

Ω2h2

�

∂ 2
ψ .

(48)

3.2 Matching the r-derivative Pieces of the Separated Klein-Gordon Equation

We aim to match the quadratic Casimir (48) to the radial Klein-Gordon operator as in (37)-
(38). We begin by comparing the ∂ 2

r and ∂r terms, deferring matching of the non-derivative
terms to section 3.3.

Matching the r-derivative terms fixes the radial dependence h(r) of the conformal coor-
dinates (39) for the general dimension black hole. In the case of asymptotically flat black
holes in 4 and 5 dimensions, we can directly match the coefficients of ∂ 2

r and ∂r from the
Klein-Gordon equation as in (37). Matching the double and single r-derivative pieces, we find

∆=
h2 + 1
4h′2

, ∆′ +
ε∆

r
=

1+ h2

4hh′
d
dr

�

h
h′

�

+
h

2h′
. (49)

Solving these two equations simultaneously recovers an expression for h(r), but also requires
that the leading order piece of ∆(r) ∼ r2. Thus, matching directly the coefficients for 49 is
only possible for asymptotically flat black holes in 4 and 5 dimensions.6

Consequently, we will multiply the Klein-Gordon equation (37) by an overall scalar factor
s. Accordingly, we must solve instead the equations

s∆=
h2 + 1
4h′2

, s
�

∆′ +
ε∆

r

�

=
1+ h2

4hh′
d
dr

�

h
h′

�

+
h

2h′
. (50)

We begin by equating the ratios

∆′ + ε∆
r

∆
=

1+h2

4hh′
d
dr

� h
h′
�

+ h
2h′

h2+1
4h′2

. (51)

Solving (51) gives

∆=
r−εc1h(1+ h2)

h′
, (52)

which we can use to solve for the radial function h(r). We find:

h2 =
eI

1− eI
, (53)

where

I = 2c1

∫

r−ε

∆(r)
dr . (54)

6We can see that allowing for a nonzero cosmological constant in the metric factor∆= −X r as in (38) increases
the leading power of r, so asymptotically flat black holes in 4 or 5 dimensions are the only cases where we can
match directly the coefficients of (49).
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Using (52), we can easily find the scalar function s in terms of h:

s ≡
h2 + 1
4h′2∆

=
rε

4c1h′h
=

∆r2ε

4c2
1h2(h2 + 1)

. (55)

In principle, we have now fixed the radial dependence of the conformal coordinates. How-
ever, the form of the radial function ∆ = −X r (38) is sufficiently simple that we can actually
compute the integral (54) for the general spin (A)dS black hole in arbitrary dimensions. Since
∆ = 0 defines the horizon locations (only two of which are real and positive for flat space
or AdS; de Sitter can also have cosmological horizons), we will now rewrite it in terms of its
roots. Again using ε = 0 for even dimensions, ε = 1 for odd dimensions, and setting σ = 0
for flat space and σ = 1 for (A)dS, we can write

∆= r−2ε
2Nε,σ
∏

i=1

(r − ri) , Nε,σ = n− 1+ ε+σ . (56)

where 2Nε,σ = 2(n− 1+ ε+σ) is the number of roots. We will also make use of the handy
relation

∆′(ri) = r−2ε
i

2Nε,σ
∏

j=1, j 6=i

(ri − r j) . (57)

Let’s look at the even case first, when ε= 0. We find

I = 2c1

∫

1
∏2N0,σ

i=1 (r − ri)
dr = 2c1





2N0,σ
∑

i=1

log(r − ri)
∏2N0,σ

j=1, j 6=i(ri − r j)
+ c2





= 2c1

 2N0,σ
∑

i=1

log(r − ri)
∆′(ri)

+ c2

!

.

(58)

For the odd case (ε= 1) we have

I = 2c1

∫

r
∏2N1,σ

i=1 (r − ri)
dr = 2c1





2N1,σ
∑

i=1

ri log(r − ri)
∏2N1,σ

j=1, j 6=i(ri − r j)
+ c2





= 2c1

 2N1,σ
∑

i=1

log(r − ri)
ri∆′(ri)

+ c2

!

.

(59)

Combining (58) and (59), we have

I = 2c1

 2Nε,σ
∑

i=1

log(r − ri)
rεi ∆

′(ri)
+ c2

!

. (60)

For the 4D and 5D cases, it will turn out that we can set c2 = 0. For the large D analysis, we
will see that we require a different choice for c2. But for now, setting c2 = 0, we arrive at

eI =
2Nε,σ
∏

i=1

(r − ri)
2c1

rεi ∆
′(ri ) . (61)
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For a 4D black hole in flat space, we have only two real roots: the inner and outer horizons
r±. For this case, eI simplifies considerably. Since for any polynomial (with isolated roots),
∑

i
1

∆′(ri)
= 0, here we have ∆′(r+) = −∆′(r−). Thus, we find

eI
4D =

�

r − r+
r − r−

�2c1/∆
′(r+)

. (62)

The exponent here is now just a constant. Since c1 is not yet fixed, we use it to set the exponent
to one; that is, we choose

c1 =
1
2
∆′(r+) . (63)

Using the relation (53) we find

h2
4D =

r − r+
r+ − r−

, (64)

which indeed matches w+w−/y2 = h2 for the 4D conformal coordinates (3). We can addition-
ally check that s = 1 for this case.7

For a black hole in 6D flat space, or for the 4D case with a nonzero cosmological constant,
there are four roots. We still have the relation

∑

i
1

∆′(ri)
= 0, but our single constant c1 is not

enough to set all of the three remaining exponents to integers. In general no further relation
exists among the roots, and so eI and h2 have branch cuts. These branch cuts prevent matching
the remaining terms in the Casimir (48) to the Klein-Gordon equation. However, we can again
choose the constant c1 =

1
2∆
′(r+) which sets the exponent for the outer horizon, r+, to one.

If we then expand the rest of the terms near the outer horizon, we can recover eI as a ratio of
polynomials as needed. As we will see below, even this near-horizon limit will not allow us to
completely match the quadratic Casimir; an ω2 error term is still present. However, since this
error term does not become large as r → r±, while the other terms in the wave equation have
singularities at the horizons. Accordingly, a near-horizon limit will make the ω2 term small in
comparison. Similar behavior occurs for all D ≥ 6.

3.3 Matching the Killing Vector Directions

We now build the matching equations for the coefficients of the terms without r-derivatives,
choosing our coordinates in the manner discussed in Section 3.1. That is, we choose the
timelike Boyer-Lindquist coordinate t and a single Boyer-Lindquist angular directionφµ (158).
To highlight that we are choosing one particular angle φµ we often call the index µ= ?.

The remaining piece we wish to match in the Klein-Gordon equation (37) is

−s
χ

∆
= s

n−1+ε
∑

j=0

K j(r
2)n−1− j +

s
∆





n−1+ε
∑

j=0

L j(r
2)n−1− j





2

, (65)

Here χ is obtained by setting µ= n= r in (36). To proceed, we need to identify the L j , so we
write our Klein-Gordon scalar in Fourier modes as

Φ∝ eimφ?−iωt ∝ eim
∑ ∂ φµ

∂ψk
ψk−iω ∂ t

∂ψk
ψk . (66)

Using the coordinate relations (25) and the definition

LkΦ= −i
∂Φ

∂ψk
, (67)

7For a black hole in 5D flat space a similar trick works; although there are 4 real roots, they are just ±r±, so
again we are able to set the exponent to an integer by choosing c1 = r2

+ − r2
−; again we find the 5D conformal

coordinates (10) match with this choice. In this case we find s = 1/4.
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we find
Lk = ma?

�

λA(k)? −A(k−1)
?

�

−ωA(k) . (68)

Here, the A and A? are defined as in (27), except we have additionally used

A(0)? =A(0) = 1 , A−1
? = 0 . (69)

In addition to allowing only the ω and m momenta, we have one further adjustment to
make to our radially separated wave equation (37). We have already multiplied by s (55), but
now we will want to isolate the separation constants that come from the Killing tensors. Much
as in [8, 10], we will not ask the Casimir to reproduce these terms, moving them instead to
the right-hand side of our Klein-Gordon equation.

As we will see in detail in sections 3.5 and 3.6, for both the 4D and 5D cases, the Killing
tensor separation constant terms are shifted from the K1 values given by (33).8 Explicitly, we
allow the shift

K ′k = Kk −
n+ε−1
∑

i=0

n+ε−1
∑

i=0

Qi j
k Li L j . (70)

There are two special cases which we will not shift: first, Kn = L2
n/A

(n), present only in odd
dimensions, is actually already built just from the Ln. Next, K0, since it is built from kab

(0) = gab,

is just the Klein-Gordon mass2. As we are studying the massless equation, we will not want to
shift this constant.

Expanding χ explicitly as in (65), and moving the K ′n terms to the right hand side, we
rewrite the Klein-Gordon equation (37) as

∆R′′+
�

∆′ +
ε∆

r

�

R′+
n−1+ε
∑

i=0

n−1+ε
∑

j=0

Li L j

�

1
∆

r2(2n−2−i− j) +
n−1+ε
∑

k=1

Qi j
k r2(n−1−k)

�

= −R
n−1
∑

k=0

K ′kr2(n−1−k) .

(71)
Here we have defined Qi j

n ≡ εδi
nδ

j
n/A(n) for compactness.

Since we have already matched the r-derivative pieces, our goal is to match the last term
on left hand side of (71), multiplied by s as in(55), with the ∂t and ∂ψ = ∂φ? terms in (48).
Multiplying both of these expressions by h2(h2 + 1), we obtain

1

4c2
1

n−1+ε
∑

i=0

n−1+ε
∑

j=0

Li L j

�

r2(2n−2−i− j+ε) +∆
n−1+ε
∑

k=1

Qi j
k r2(n−1−k+ε)

�

(72)

=
1
Ω2

�

−
�

T2
−h2 − T2

+(h
2 + 1)

�

ω2 +
�

T−K−h2 − T+K+(h
2 + 1)

�

2mω−
�

K2
−h2 − K2

+(h
2 + 1)

�

m2
�

.

The Lk here are given by (68), and consequently depend only on m and ω. We will need to
match the m2 terms and the mω terms, but the ω2 terms may be partially absorbed by the
generalization of the near-region limit from section 2.1.1.

The m2 terms require

−
1
Ω2

�

K2
−h2 − K2

+(h
2 + 1)

�

(73)

=
a2
?

4c2
1

n−1+ε
∑

i=0

n−1+ε
∑

j=0

�

λA(i)? −A(i−1)
?

� �

λA( j)? −A( j−1)
?

�

r2(n−1+ε)
�

r2(n−1−i− j) +∆
n−1+ε
∑

k=1

Qi j
k r−2k

�

,

8The 4D and 5D cases also have another simplification not present in the general case: since only K1 is nonzero
in those cases, and since s itself is also a constant, the term on the right-hand side is also a constant (no powers of
r remain).
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while the mω terms need

2
Ω2

�

T−K−h2 − T+K+(h
2 + 1)

�

=

−a?
4c2

1

n−1+ε
∑

i=0

n−1+ε
∑

j=0

��

λA(i)? −A(i−1)
?

�

A( j) +
�

λA( j)? −A( j−1)
?

�

A(i)
�

× r2(n−1+ε)

�

r2(n−1−i− j) +∆
n−1+ε
∑

k=1

Qi j
k r−2k

�

.

(74)

From these two equations, we can more clearly see the trouble with h2 being non-polynomial.
If eI (61), and thus h2, is itself a ratio of polynomials with integer powers of r, then it is
possible to choose T±, K±, and Qi j

k , all functions of only the black hole parameters, so that
the matching equations (73) and (74) are both satisfied. Then, we can take an appropriate
near-region limit, in both ω and r, to eliminate the remaining ω2 terms.

However, we really only need a near-region limit for 4D and 5D black holes with flat
asymptotics. If we add a cosmological constant, or if we go up in dimension, then eI contains
non-integer powers, and we must first take a near-horizon limit in r alone before taking the
near-region limit. Since the near-horizon limit will cause the singular terms which show up
in the Casimir to be larger than the nonsingular ω2 term, the near-region limit is redundant
there.

3.4 Sandwiching the Hs: Building towards a Tensor Equation

Now that we have made the form of our conformal coordinates (39) more explicit, we will
work towards a tensor equation which will exhibit the relationship between the quadratic
Casimir H2 and the separated radial equation (37). Beginning with the radial equation (71),
we have already matched H2/s to the left hand side of this equation, in sections 3.2 and 3.3.
Up to the near-horizon limit, we have

H2Φ= −s
n−1
∑

k=0

�

Kk −
n+ε−1
∑

i=0

n+ε−1
∑

i=0

Qi j
k Li L j

�

r2(n−1−k)Φ . (75)

We can rewrite this equation as a tensor operator acting on Φ:
�

−Ha
0∇aH b

0∇b +
1
2

Ha
1∇aH b

−1∇b +
1
2

Ha
−1∇aH b

1∇b

�

Φ

= −s
n−1
∑

k=0

r2(n−1−k)

�

−∇akab
(k)∇b +

n+ε−1
∑

i=0

n+ε−1
∑

i=0

Qi j
k la
(i)∇a l b

( j)∇b

�

Φ .
(76)

Here we have used the eigenequation (33).
We want to propose a tensor equation T ab = 0, which enforces the result ∇aT ab∇bΦ= 0.

First, though, we need to rearrange the pieces of the form Ha
i ∇aH b

j ∇b to instead be in the

sandwiched form ∇a

�

Ha
i H b

j ∇b

�

. This rearrangement produces an extra term, since

Ha
i ∇aH b

j ∇b =∇a

�

Ha
i H b

j ∇b

�

−
�

∇aHa
i

�

H b
j ∇b . (77)

We also need to reorder la
(i)∇a l b

( j)∇b =∇a la
(i)l

b
( j)∇b, which is satisfied as the l(i) are all Killing

vectors. Last, we need to pull the factor of sr2(n−1−k) inside, which produces an extra term:

n−1
∑

k=0

(∇asr2(n−1−k))

�

−kab
(k)∇b +

n+ε−1
∑

i=0

n+ε−1
∑

i=0

Qi j
k la
(i)l

b
( j)∇b

�

Φ . (78)
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Since s only depends on r, kab
(k) is symmetric, and r is not a killing vector direction, this term

reduces to

−
n−1
∑

k=0

�

∂r

�

sr2(n−1−k)
��

kr b
(k)∇bΦ . (79)

We thus propose the tensor equation

−Ha
0 H b

0 +
1
2

Ha
1 H b
−1 +

1
2

Ha
−1H b

1 = −s
n−1
∑

k=0

r2(n−1−k)

�

−kab
(k) +

n+ε−1
∑

i=0

n+ε−1
∑

i=0

Qi j
k la
(i)l

b
( j)

�

+ Eab , (80)

where the error term Eab satisfies

∇aEab∇bΦ=−
�

∇aHa
0

�

H b
0∇bΦ+

1
2

�

∇aHa
1

�

H b
−1∇bΦ+

1
2

�

∇aHa
−1

�

H b
1∇bΦ

−
n−1
∑

k=0

�

∂r

�

sr2(n−1−k)
��

kr r
(k)∇rΦ− Q̃00ω2Φ+ ẼΦ+ E?Φ .

(81)

We have derived the form of equations (80) and (81) up to the unknown error terms Ẽ and E?
and the free constant Q̃00. We have not shown explicitly that (81) vanishes in a near region
limit for the general case, and leave that to future work. Here, Ẽ expresses any errors from
the near-horizon limit necessary to make eI a ratio of polynomial terms (see the discussion at
the end of Section 3.2). In 4D and 5D with flat asymptotics, this term should be absent, since
no near-horizon limit is needed.

Since we only matched the m2 and mω terms in the Klein-Gordon equation to the Casimir,
we expect the ω2 term does not yet match; accordingly, we have included an adjustment Q̃00

(which is allowed to depend on r). Additionally, in D ≥ 5, the choice to concentrate on only
one Boyer-Lindquist angle φµ = φ?, means that we should expect error terms along φµ for all
µ 6= ?; we have denoted these contributions by E?. In particular the condition that ∂µ 6==?Φ= 0
will set E?Φ= 0.

We expect the entire error term in (81) to vanish, regardless of dimension, when we addi-
tionally take a near-region limit; that is, ∇aEab∇bΦ should be O(ω2). Even more specifically,
they will be O(ω2r2) or O(ω2M2). In order to recover a valid near-region limit of this form,
we may need to set the constants Q00

k appropriately. Since we did not match the ω2 terms in
the Klein-Gordon equation to the Casimir, the constants are as yet unfixed.

As we will show in the next section for 4D and 5D black holes with flat asymptotics, s is
a constant and the error term Ẽ indeed vanishes, and ∇aEab∇bΦ consists of only terms of
order ω2, which describe exactly the near-region limit. The general case is considerably more
challenging so we defer it to future work, instead exploring the large D limit in (5).

3.5 The Tensor Equation for Kerr in D = 4

Here we will use the results from the previous four sections to rederive the conformal coordi-
nates for 4D Kerr. In the process, we will find the tensor equation for Kerr as expected from
section 3.4.

We begin with h2
4D from (64), s = 1, and 2c1 = r+ − r− from (63), all of which arose from

matching the Casimir to the r-derivative pieces in section 3.2. Our goal is to find the remaining
four parameters which specify the conformal coordinates in (39): TL,R and KL,R. We will use
the definitions T±, K± as well as Ω as in (44) from 3.1.

As discussed in section 3.3, to fix these remaining parameters we need to match the m2

terms following (73) and the mω terms as in (74). Using the definitions from (27) and (69),
we find that the only nonzero A for the 4D flat Kerr case are

A(0) = 1 , A(1) = a2 , A(0)1 = 1 . (82)
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Since λ= 0 for flat asymptotics, we can reduce the m2 equation (73) to

K2
+ − K2

−

Ω2
r −

K2
+r− − K2

−r+
Ω2

=
a2

r+ − r−

�

1+∆Q11
1

�

. (83)

Since ∆= r2 − 2M r + a2, we can immediately see that Q11
1 = 0 in order to match coefficients

of r on both sides. Matching the other powers of r requires

K2
+ = K2

− =
Ω2a2

(r+ − r−)2
. (84)

Similarly for the mω equation (74), we find

2
Ω2
[T−K−(r − r+)− T+K+(r − r−)] =

2a
r+ − r−

�

r2 +∆Q10
1 + a2

�

, (85)

where we have used that Qi j
k = Q ji

k is symmetric. Now, matching the r2 coefficients requires
Q10

1 = −1. Matching the remaining terms and satisfying the constraint (84) fixes

T+ =
r+

2πa
, T− =

r−
2πa

, K+ = K− =
1

2π(r+ + r−)
, (86)

up to some overall sign choices. The choices listed here recover

TR =
r+ − r−

4πa
, TL =

r+ + r−
4πa

, KR = 0, , , KL =
1

4M
, (87)

which match the conformal coordinates in [8].
In addition to the TL,R and KL,R, we also found

Q11
1 = 0 , Q10

1 =Q01
1 = −1 . (88)

We can thus propose the tensor equation (80) for the specific case of 4D. Recalling that Qi j
0 = 0

and kab
(0) = gab, we expect

−Ha
0 H b

0 +
1
2

Ha
1 H b
−1 +

1
2

Ha
−1H b

1 = r2 gab + kab
(1) + la

(1)l
b
(0) + la

(0)l
b
(1) −Q00

1 la
(0)l

b
(0) + Eab . (89)

In order to find the error term Eab, we first compute the cost to sandwich the H generators:

−
�

∇aHa
0

�

H b
0∇bΦ+

1
2

�

∇aHa
1

�

H b
−1∇bΦ+

1
2

�

∇aHa
−1

�

H b
1∇bΦ= 2r

r2 − 2M r + a2

r2 + a2 cos2 θ
∂rΦ . (90)

Next we compute the cost to move sr2(n−1−k):

−
1
∑

k=0

�

∂r

�

sr2(1−k)
��

kr r
(k)∇rΦ= −2r g r r∂rΦ= −2r

r2 − 2M r + a2

r2 + a2 cos2 θ
∂rΦ . (91)

We can rewrite these residuals as ±∇a

�

r2 gab∇bΦ
�

, perhaps unsurprisingly as this term
matches the the contribution from single r-derivative terms in the Casimir; we chose the factor
s to ensure those terms would be correctly reproduced when the double r-derivative coefficient
was fixed to ∆.

Consequently, these two costs cancel, leaving us with an error term in (81) of the form

∇aEab∇bΦ= −Q̃00ω2Φ . (92)

If we additionally choose to adjust our separation constant using Q00
1 = a2 in (89), then we

find the error term becomes

Q̃00 = 4M2 + 2M r + r2 , Eab = δa
t δ

b
t Q̃00 . (93)

Indeed, this error term vanishes in a near-region limit, and the explicit form of (89) can be
verified as a tensor equation. Additionally, we note that the same exact equation holds for the
H̄ generators, as expected since their Casimirs are designed to match.
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3.6 The Tensor Equation for Myers-Perry in D=5

We will now rederive the conformal coordinates for 5D Myers-Perry, and again find a tensor
equation as in section 3.4 along the way.

We begin by using (61) with a choice of c1 = r2
+ − r2

− to find

eI5D =
r2 − r2

+

r2 − r2
−

, h2
5D =

r2 − r2
+

r2
+ − r2

−
. (94)

and, from (55), s = 1/4. The nonzero A from (27) and (69) become

A(0) = 1 , A(1) = a2
1 + a2

2 , A(2) = a2
1a2

2 , (95)

while the Aµ=? become

A(0)? = 1 , A(1)? =
a2

1a2
2

a2
?

. (96)

We will also want to use the following relationships valid for 5D asymptotically flat black holes:

r2
+ + r2

− = 2M − a2
1 − a2

2 , r2
+r2
− = a2

1a2
2 . (97)

Again using λ= 0 for flat asympotics, the m2 equation (73) becomes

−
1
Ω2

�

K2
−(r

2 − r2
+)− K2

+(r
2 − r2

−)
�

(98)

=
a2
?

4(r2
+ − r2

−)

�

�

r2 +∆r2Q11
1

�

+
a2

1a2
2

a2
?

�

2+ 2∆r2Q12
1

�

+
a4

1a4
2

a4
?

�

r−2 +∆r2Q22
1 −

∆

a2
1a2

2

��

.

Similarly the mω equation (74) is now

2
Ω2

�

T−K−(r
2 − r2

+)− T+K+(r
2 − r2

−)
�

(99)

=
−a?

4(r2
+ − r2

−)

�

−2(r4 +∆r2Q01
1 )− 2

a2
1a2

2

a2
?

(r2 +∆r2Q02
1 )− 2(a2

1 + a2
2)
�

r2 +∆r2Q11
1

�

−2
a2

1a2
2

a2
?

(a2
? + a2

1 + a2
2)
�

2+∆r2Q12
1

�

− 2
a4

1a4
2

a2
?

�

r−2 +∆r2Q22
1 −

∆

a2
1a2

2

��

.

Together, matching the powers of r in these equations sets values for T±, K±, which match the
values found in [10,16]. We also find two restrictions for the Qi j

1 :

Q11
1 = −2

a2
1a2

2

a2
?

Q12
1 −

a4
1a4

2

a4
?

Q22
1 ,

Q01
1 = −1−

a2
1a2

2

a2
?

Q02
1 +

a4
1a4

2

a4
?

Q12
1 +

a6
1a6

2

a6
?

Q22
1 .

(100)

Thus there is a 3-parameter family of solutions. We will pick the simplest option, setting
Q02

1 = Q12
1 = Q22

1 = 0. Accordingly, we have Q11
1 = 0 and Q01

1 = Q10
1 = −1, with all others set

to zero.
Our proposed tensor equation thus becomes

−Ha
0 H b

0+
1
2

Ha
1 H b
−1+

1
2

Ha
−1H b

1 =
1
4

�

r2 gab + kab
1 + la

0 l b
1 + la

1 l b
0

�

−Q00
1 la
(0)l

b
(0)+Eab+Eab

? , , (101)
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where Eab
? is only allowed to have components along angular Killing vector directions other

than φ?. As before, this equation will be the same for H and H̄, and aside from the error term
E?, independent of the choice of angle φ?.

To characterize the error term Eab, we begin by finding the cost to sandwich the H gener-
ators, which is same for φ? = φ1 or φ? = φ2, as well as for H or H̄:

−
�

∇aHa
0

�

H b
0∇bΦ+

1
2

�

∇aHa
1

�

H b
−1∇bΦ+

1
2

�

∇aHa
−1

�

H b
1∇bΦ

=
a2

1a2
2 + a2

1 r2 + a2
2 r2 − 2M r2 + r4

r(a2
1 + a2

2 + 2r2 + (a2
1 − a2

2) cos(2θ )
∂rΦ=

1
4
∇a

�

r2 gab∇bΦ
�

.
(102)

As we found in the 4D case, (90) and (91), the cost for sandwiching sr2(n−1−k) exactly cancels
this factor.9 We thus see that the error term in the proposed tensor equation (101) becomes
∇a(Eab + Eab

? )∇bΦ= Q̃00ω2Φ as before.
We will find it simpler to write both error terms together. For definiteness, we pickφ? = φ1

below; a similar equation holds for the φ? = φ2 case. The error term is independent of the
choice of H vs. H̄. The error terms are

Eab + Eab
1 =

1
4

�

�

−a2
1 − a2

2 + 2M + r2
�

δa
t δ

b
t +

a2(a2
1 + r2)(a2

1 + r2
−)(a

2
1 + r2

+)

a2
1(r2 − r2

−)(r2 − r2
+)

�

δa
t δ

b
φ2
+δa

φ2
δb

t

�

(103)

a2(a2
1 + r2

−)(a
2
1 + r2

+)

a1(r2 − r2
−)(r2 − r2

+)

�

δa
φ1
δb
φ2
+δa

φ2
δb
φ1

�

+
−a4

1 + a2
2 r2 + a2

1a2
2 + 2Ma2

1 − a2
1 r2

(r2 − r2
−)(r2 − r2

+)
δa
φ2
δb
φ2

�

.

As expected, there are several error terms with δa
φ2

; these terms will always vanish when we

turn off the momenta conjugate to φ2. The term proportional to δa
t δ

b
t , however, will only be

eliminated when we take our near-region limit. Setting the constant Q00
1 = a2

1 + a2
2 − 2M in

(101), the tensor equation indicates that our near-region limit should obey

r2ω2→ 0 . (104)

As in section 3.5 for 4D, here we have now shown for 5D that matching the quadratic Casimir
to the relevant pieces of the Klein-Gordon equation fixes KL,R, TL,R, and also builds a tensor
equation whose error term defines our near region limit. For general dimensions, or for any
D ≥ 4 with a cosmological constant, we already needed to take a near-horizon limit in order
to match the r-derivative pieces; this limit will itself make any error terms of the form (104)
irrelevant compared to the near-horizon terms which are O(r − r±)−1.

As we will see in the following section, the KL,R, TL,R fixed here can also be found via a
monodromy procedure (and indeed the 4D and 5D results match). Since the monodromy
procedure itself studies the near-horizon behavior of the wave equation, we will actually be
able to fix KL,R, TL,R for general dimensions without taking any limits.

4 Monodromy: H0s for general D

In this section we use the monodromy approach [16–19] as reviewed in Section 2.1.2 to build
the zero mode generators H0 and H̄0 for an arbitrary dimension D. We also match our results
for the 4D and 5D cases as worked out in [10,15,16].

9The reader may wonder if the cost to sandwich the generators H will always cancel the cost to sandwich the
sr2(n−1−k) factor. Unfortunately we are not so lucky; the cancelation only holds in the 4D and 5D cases. Briefly,
since the cost to sandwich sr2(n−1−k) depends on kr r

j , it can in general depend on the xµ coordinates for µ 6= n; in
other words, it can depend on the θ -like directions. In specific, the general formula for this cost is ∂r(sUn)g r r∂rΦ,
where the Un as defined in (28) depends on the other θ -like directions xµ6=n. In 4D and 5D where n = 2, there is
only one other such coordinate, s is a constant, and so ∂r(sUn) = 2rs. Conversely, for the H generators, they only
ever depend on r, so the cost to sandwich them will only be r dependent.
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We begin by computing the monodromies around the singular points r± of the radial wave
equation (37). Expressing (37) in the standard form (15), we find

λ(r) = (r − r±)

�

X
′

r

X r
+
ε

r

�

, (105)

and
γ(r) = −(r − r±)

2 χ

X 2
r

. (106)

Here χ is again obtained after setting µ= n= r in (36),

χ = X r

n−1+ε
∑

j=0

K j(r
2)n−1− j −





n−1+ε
∑

j=0

L j(r
2)n−1− j





2

, (107)

and X r is given by10

X r = 2M r1−ε − [(r2 + a2
1) . . . (r2 + a2

n−1+ε)](1−λr2)r−2ε

= 2M r1−ε − (−λ)σr−2ε

 Nε,σ
∑

j=0

r2(Nε,σ− j)Ã( j)
!

.
(108)

Here we have again used the parameter Nε,σ from (56), and Ã(k) is defined as

Ã(k) =
Nε,σ
∑

i1...ik=1
i1<....<ik

a2
i1

...a2
ik

, (109)

where Ã(0) = 1 and a2
Nε,σ
= −1/λ. Note that this definition matches A(k) (27) when σ = 0.

In (109), we have modified this definition to include the cosmological constant λ in Ã(k) so
(A)dS backgrounds can be easily included in the calculations below.

Next, the parameters in the indicial equation (18) become

λ0 = λ(r)|r=r± = 1 , (110)

and

γ±0 = γ(r)|r=r± = −
(r − r±)2χ

X 2
r

|r=r± . (111)

We can now solve the indicial equation (18) to find the monodromy parameters α±, finding

iα± =
1−λ0 +

Æ

(1−λ0)2 − 4γ±0
2

= i
q

γ±0 . (112)

In order to simplify the evaluation of γ0 in (111) near the horizons11 r±, we factor out
r − r± from X r , writing

X r = (r − r±)P±(r) , (113)

10In order to take the λ→ 0 limit in (108), we need only set σ = 0, choosing of course Nε,σ = Nε,0 = n− 1+ ε
as well.

11The roots of X r are the regular singular points. Even for arbitrary dimension D, for flat space and AdS, it
turns out there are only two real positive (physical) roots r± for such black holes. For de Sitter black holes there
are also real roots for the cosmological horizons.
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where r2εP±(r) is a polynomial with terms r0 up to r2Nε,σ−1. Now, matching the coefficients
of all powers of r in (108) and (113) we find

P±(r) = r−2ε(−λ)σ




Ã(Nε,σ)

r±
−

Nε,σ−1
∑

k=0

Ã(k)
2(Nε,σ−k)−1
∑

j=1

r j r
2(Nε,σ−k)−1− j
± + εr

 Nε,σ
∑

j=0

r
2(Nε,σ− j−1)
± Ã( j)

!



. (114)

Now evaluating P±(r) at r± gives

P±(r±) = r−2ε
± (−λ)σ

Nε,σ
∑

k=0

(1+ ε− 2k)Ã(Nε,σ−k)r2k−1
± . (115)

Using (111) and (112) we find that the monodromy parameters around the singular points r±
are

α± = i

p

χ(r±)
P±(r±)

. (116)

The result (116) suggests a connection between the monodromies and the Killing tower. As we
point out in Section 3.1 and Appendix B, the horizon entropy is related to the Noether charge
associated with the Killing field that vanishes on the black hole bifurcation surface, which in
turn is related to monodromies [16]. The entire Killing tower structure should also have a
similar thermodynamic interpretation, as we will explore further in the discussion in section
6.

Now that we have the monodromies built we can compute the energy eigenvalues (20)
associated with the two Killing horizons,

ωL =
i
p

χ(r+)
P+(r+)

−
i
p

χ(r−)
P−(r−)

,

ωR =
i
p

χ(r+)
P+(r+)

+
i
p

χ(r−)
P−(r−)

,

(117)

where
Æ

χ(r±) = i
n−1+ε
∑

j=0

L j r
2(n−1− j)
± . (118)

As in sections 3.1 and 3.3, we now choose the Boyer-Lindquist time t and a specific Boyer-
Lindquist angle φ?, where we have denoted the chosen µ index via ?. We then expand the
Klein-Gordon scalar in Fourier modes, Φ∝ eimφ?−iωt , and find the Li as in (68). With the Li ,
we find

i
Æ

χ(r) =
n+ε−1
∑

k=0

(−ma?(λA(k)? −A(k−1)
? ) +ωA(k))r2(n−1−k) . (119)

We note that this equation uses A(k) from (27) and (69). We can now identify the ω and m
components of ωL,R (117). We write

ωR = Aω− Bm , (120)

ωL = Cω− Dm , (121)
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and identify

A=
n+ε−1
∑

k=0

A(k)
�

r2(n−k−1)
+

P+(r+)
+

r2(n−k−1)
−

P−(r−)

�

, (122a)

B = a?

�n+ε−1
∑

k=0

�

λA(k)? −A(k−1)
?

�

�

r2(n−k−1)
+

P+(r+)
+

r2(n−k−1)
−

P−(r−)

��

, (122b)

C =
n+ε−1
∑

k=0

A(k)
�

r2(n−k−1)
+

P+(r+)
−

r2(n−k−1)
−

P−(r−)

�

, (122c)

D = a?

�n+ε−1
∑

k=0

�

λA(k)? −A(k−1)
?

�

�

r2(n−k−1)
+

P+(r+)
−

r2(n−k−1)
−

P−(r−)

��

. (122d)

As we will show below, the zero mode generators, as well as the exponents of the conformal
coordinates, can be found in terms of these parameters.

Next, we find tR and tL such that

e−iωR tR−iωL tL = e−iωt+imφ . (123)

Since tR, tL , t, φ are all spacetime coordinates and A, B, C , D are all dependent on only black
hole background parameters, the only way to satisfy this equation is to match coefficients of
ω and m on both sides. From this matching we find the matrix equation

�

t
φ

�

=

�

A C
B D

��

tR
tL

�

. (124)

We can now identify the zero mode generators as

H0 = i∂tR
= Ai∂t + Bi∂φ ,

H̄0 = −i∂tL
= −Ci∂t − Di∂φ .

(125)

Additionally, tR, tL , which appear in the exponents of the conformal coordinates, can be solved
for by inverting the matrix equation (124).

Our results above are generic for Kerr-(A)dS black holes with arbitrary dimension, spin,
and cosmological constants. Although we have not done so here, adding NUT charges should
be straightforward.

Instead, we now show that our results are consistent with previous results for the H0 and
H̄0 in 4D flat, 5D flat, and 4D AdS black holes with arbitrary spins. Beginning with the 4D
asymptotically flat black hole, we find

P4D
± =

(a2 − r2
±)

r±
, (126)

which leads to the zero mode generators

H4D
0 = −2iM∂t , H̄4D

0 =
2ia

r+ − r−
∂φ +

2iM(r+ + r−)
r+ − r−

∂t . (127)

This result matches with [8], as well as to our rederivation as found in section 3.5.
For the 5D asymptotically flat case, we have

P5D
± =

2(a2
1a2

2 − r4
±)

r3
±

= ∓
2(r2
+ − r2

−)

r±
. (128)
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We then specify the choice φ? = φ1, which, along with the useful facts (97), leads to the zero
mode generators

H5D
0 =

−iM
(r+ + r−)

∂t +
i(a1 − a2)
2(r+ + r−)

∂φ1
, H̄5D

0 =
iM

(r+ − r−)
∂t −

i(a1 + a2)
2(r+ − r−)

∂φ1
. (129)

These generators match [10, 16]12. Additionally these generators match those rederived for
5D in section 3.6. To obtain the generators for φ2 instead, simply exchange 1↔ 2.

For the case of the (A)dS asymptotics in 4D, we find

P4D
± =

a2 + (λa2 − 1)r2
± + 3λr4

±

r±
. (130)

In this case the zero mode generators become

H4D,Λ
0 =

�

r3
+ + a2r+

a2 + (λa2 − 1)r2
+ + 3λr4

+
+

r3
− + a2r−

a2 + (λa2 − 1)r2
− + 3λr4

−

�

i∂t (131)

+

�

aλr3
+ − ar+

a2 + (λa2 − 1)r2
+ + 3λr4

+
+

aλr3
− − ar−

a2 + (λa2 − 1)r2
− + 3λr4

−

�

i∂φ ,

H̄4D,Λ
0 =−

�

r3
+ + a2r+

a2 + (λa2 − 1)r2
+ + 3λr4

+
−

r3
− + a2r−

a2 + (λa2 − 1)r2
− + 3λr4

−

�

i∂t (132)

−
�

aλr3
+ − ar+

a2 + (λa2 − 1)r2
+ + 3λr4

+
−

aλr3
− − ar−

a2 + (λa2 − 1)r2
− + 3λr4

−

�

i∂φ .

Our results here are not easily matchable to the basis chosen in [15], but they do recover the
λ → 0 results in (127).13 In the next section, we will analyze the Schwarzschild black hole
in the large D limit, and will again recover monodromy results compatible with our general
dimension, general spin results in (122a).

5 A worked example: The Schwarzschild Black Hole in Two Large
D Limits

Thus far, we have connected the hidden conformal symmetry from Kerr/CFT directly to the
hidden Killing tower symmetries of rotating black hole spacetimes, via the tensor equations
built in sections 3.5 and 3.6. Then, we have confirmed the zero mode generators H0 and H̄0
via the monodromy approach in 4.

Since the calculations in 4 apply to all Kerr-(A)dS black holes in general dimensions, and
the same spacetimes also possess a full Killing tower, we expect a similar tensor equation can
be found, in an appropriate limit, for all of these spacetimes. We will now show that exactly
this connection can be built for the large D Schwarzschild black hole.

We begin with a brief review of the large dimension limit (for a recent full review, see [35]).
As first shown in [25], taking the large dimension (or large D) limit of the Schwarzschild black
hole results in two important regions: a flat ‘far’ region whose fluctuations do not see the
black hole, and a near-horizon ‘membrane’ region which encodes the most important black

12Convention differences include the sign of angles and the choice of how to assign left and right movers to the
sum or difference of α±.

13To show that (131) becomes (127) in the λ→ 0 limit, first set λ= 0 explicitly. Then, use the root relationship,
valid only at λ= 0, that r+r− = a2. The general λ version of this relationship is

�

r+r− −
a2

λr+ r−
− (r+r−)2

�

= a2− 1
λ ,

and the roots also solve a2r− + a2r+ + (r+ + r−)λr2
+r2
− = 2M r+r−.
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hole physics [29, 30]. We can explicitly see these regions by considering the metric for a
Schwarzschild black hole of radius r0 in general dimensions:

ds2 = − f (r)d t2 +
dr2

f (r)
+ r2dΩD−2 , f (r) = 1−

� r0

r

�D−3
. (133)

The flat region appears if we fix any r > r0 and let D→∞. However, if we instead examine
a near-horizon region by setting r = r0

�

1+ λ
D−3

�

and fixing λ as we take D→∞, we obtain
the ‘membrane’ region. Using the radial coordinate ρ = (r/r0)

D−3, and setting n̄ = D− 3 the
metric in this region becomes

ds2 = −
�

1−
1
ρ

�

d t2 +
r2
0

n̄2

dρ2

ρ(ρ − 1)
+ r2

0 dΩn̄+1 . (134)

As two of us showed in [34], the off-shell graviton quasinormal modes in this background
are given by hypergeometric functions with integer parameters, indicative of an underlying
SL(2, R). We will now make this connection explicit, by building towards a set of conformal
coordinates whose H generators have a Casimir that matches the Klein-Gordon equation, and
then showing the zero mode generators match the monodromy analysis.

Afterwards, we consider instead beginning with the metric (133), building the scalar Klein-
Gordon equation, and then taking a large D limit. We find this approach still requires an
explicit near-horizon limit in order to match the R coefficient terms in the Klein-Gordon equa-
tion. A monodromy analysis provides this limit naturally and thus recovers the results from
the metric limit.

5.1 The metric Large D Limit

In this section, we consider the large D limit taken in the metric. Specifically, we will start
with the metric (134), and build the scalar Klein-Gordon equation:

(ρ − 1)∂ 2
ρΦ+ ∂ρΦ+

�

−`(`+ n̄)
n̄2ρ

+
ω2

n̄2(ρ − 1)

�

Φ= 0 . (135)

Here, n̄= D− 3 as above, ` is the total angular momentum from the n̄+ 1 angular directions,
and ω is the frequency conjugate to the static coordinate t. We have additionally set r0 = 1
for simplicity.

The next step is to find conformal coordinates, of the form (39), whose H generators have
a Casimir that matches (135). Since again the radially separated equation here has no ∂ρ∂t or
∂ρ∂ψ crossterms (for any angle ψ), the radial functions g(ρ) and h(ρ) must still satisfy (47).
Accordingly, their Casimir must be of the form (48).

We begin by matching the ratio of the ∂ 2
ρ and ∂ρ terms between the Klein-Gordon equation

(135) and the Casimir (48). This equation looks like the general Klein-Gordon equation (37),
if we use ρ as the radial coordinate instead of r and set ∆ = (ρ − 1) with ε = 0. Thus we
require

ρ − 1=
c1h(1+ h2)
∂ρh

, (136)

which is solved by h2 = eI/(1− eI) as in (53). Here we find

eI = c̃2(ρ − 1)2c1 , (137)

where c1 and c̃2 = ec2 are (as yet unfixed) constants.
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In order to match both radial terms, we must multiply the Klein-Gordon equation (135)
by an overall factor just as in (50), which we again term s. Matching to the radial second
derivative term in the Casimir (48), or using (55), we find

s =
(ρ − 1)

�

1− eI
�2

4c2
1 eI

=

�

1− c̃2(ρ − 1)2c1
�2

4c2
1 c̃2(ρ − 1)2c1−1

. (138)

We begin by ensuring the ∂ψ∂t cross term in (48) vanishes, since there is no cross term in our
large D Klein-Gordon equation. We require

T−K−
h2 + 1

=
T+K+

h2
. (139)

Since the radial dependence of these two terms is different, both sides must vanish indepen-
dently. That is, we require T−K− = T+K+ = 0.

Next, we match the ∂ 2
ψ

term in (48) to the `-dependent term in the Klein-Gordon equation
(135). Since we expect to turn on the momentum in only one angular direction, we will
identify `(`+ n̄) with the momentum in the ψ direction:

K2
−

Ω2(h2 + 1)
−

K2
+

Ω2h2
=
−s

n̄2ρ
. (140)

Rewriting both sides in terms of eI , we find

K2
−

�

1− eI
�

Ω2
−

K2
+

�

1− eI
�

Ω2eI
= −
(ρ − 1)

�

1− eI
�2

n̄24c2
1 eIρ

. (141)

Solving for eI we obtain

eI =
4c2

1 n̄2K2
+ρ −Ω

2ρ +Ω2

4c2
1 n̄2K2

−ρ −Ω2ρ +Ω2
= c̃2(ρ − 1)2c1 , (142)

where in the last equality we have plugged in our solution for eI (137). This equation and the
mω equation (139) are solved simultaneously by setting

c̃2 = −1, c1 =
1
2

, K+ = 0, T− = 0, T+ =
n̄

2π
. (143)

From these parameters we find

eI = 1−ρ, s = −ρ2 . (144)

If we set our last remaining parameter to K− = n̄/2π, then we find the leftover term is

ω2ρ

n̄2
. (145)

As expected this term does not have a pole atρ = 1; thus it is not important for the monodromy
behavior around the horizon at ρ = 1, and we can argue that it will be removed if we study
either a near-horizon or near-region limit. Formally we would then write

KL = KR =
n̄
4

, TL = TR =
n̄

4π
, (146)

but the matching between the two temperatures here is actually somewhat specious; rather
than a full CFT, we expect only a chiral CFT with only one temperature.
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Studying the monodromy behavior of the Klein-Gordon equation (135), we first find λ and
γ from writing the equation in the standard form (15):

λ(ρ) = 1 , γ(ρ) =

�

−`(`+ n̄)(ρ − 1)
n̄2ρ

+
ω2

n̄2

�

. (147)

Evaluating at ρ = 1 and solving the indicial equation (18), we find

α1 =
ω

n̄
. (148)

The equation does not have a second singular point; rather the singular point at ρ = 1 is
repeated. Accordingly, just as matching the Casimir directly, we only see evidence of a single
chiral theory with one temperature.

5.2 The Large D Limit in the Klein-Gordon Equation

In this section, we instead study the exact separated Klein-Gordon equation, and only work
out where the large D limit is needed when we are matching the Casimir to the field equation
itself. We will start building towards a quadratic Casimir, but will not succeed at matching the
R coefficients, only being able to match the R′ and R′′, at least if we do not further expand
around the horizon. The situation for this exact Schwarzschild metric in general dimensions is
thus akin to the behavior for the more general class of black holes we considered previously;
either a monodromy approach which naturally studies the near-horizon behavior, or an explicit
near-horizon limit, must be taken.

We now consider the Klein-Gordon equation in the general dimension Schwarzschild met-
ric (133) written in the coordinate ρ = (r/r0)n̄ but without taking a large n̄ limit. We find

ρ(ρ − 1)n̄2∂ 2
ρΦ+ n̄2 (2ρ − 1)∂ρΦ+

�

−`(`+ n̄) +
ρ1+2/n̄ω2

ρ − 1

�

Φ= 0 . (149)

Here, we can use ∆= ρ(ρ−1) as in the previous section, and find again that h2 = eI/(1− eI)
as in (53), with

eI = c̃2

�

ρ − 1
ρ

�2c1

, (150)

for as yet unfixed constants c̃2 and c1. As in the previous section, we must have
T−K− = T+K+ = 0 since mω terms are not present in the scalar equation (149). We also
find a similar equation for matching the m2 pieces; after plugging in our new value for eI we
find

c̃2

�

ρ − 1
ρ

�2c1

=
4c2

1 K2
+ −Ω

2n̄2ρ(ρ − 1)

4c2
1 K2
− −Ω2n̄2ρ(ρ − 1)

. (151)

After some algebraic rearrangement, we find

4c2
1 c̃2K2

−(ρ − 1)2c1 − c̃2Ω
2n̄2ρ(ρ − 1)2c1+1 = 4c2

1 K2
+ρ

2c1 −Ω2n̄2ρ2c1+1(ρ − 1) . (152)

Now we can clearly see the problem. Matching the leading ρ2c1+2 behavior fixes c̃2 = 1,
since only the second term on each side of the equation is involved. However, the next power
down, ρ2c1+1, then cannot match; again only the second term on each side is involved, but the
coefficient on one side has a factor of 2c1+ 1 from the binomial expansion. Accordingly, even
though we were able to match the ∂ 2

ρ and ∂ρ terms, and even though we could pick eI to be

a ratio of polynomials, we cannot proceed to match this m2 term in the non-derivative piece
without a further near-horizon limit.
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Rather than attempt to take this limit explicitly here, we will instead study the monodromy
approach. Rewriting the equation (149) in standard form around ρ = 1, we find

λ0 =
2ρ − 1
ρ

�

�

�

�

ρ=1
= 1 , γ0 =

�

−`(`+ n)(ρ − 1)
ρn̄2

+
ρ2/nω2

n2

��

�

�

�

ρ=1

=
ω2

n2
. (153)

Using the indicial equation (18), we again find the monodromy parameter

α1 =
ω

n
. (154)

Additionally, as before, the only horizon is at ρ = 1; this single monodromy parameter is
thus our only information about the near-horizon behavior necessary to set the temperature
of the chiral CFT. Unsurprisingly, this result exactly matches the metric limit parameter, (148),
because the explicit near-horizon metric used there already focuses on exactly the same infor-
mation the monodromy method does given its focus on behavior near the singular points.

In order to do a more full large D analysis, we would want to allow for inner and outer
horizons; the simplest case to study would be the Myers-Perry black hole with all spins ai set
equal to a single value a. We leave this analysis to future work.

6 Discussion

In this work, we have constructed elements of the hidden conformal symmetry narrative of
[8] and [18] directly from the Killing tower objects that guarantee separability of the wave
equation. In 4D and 5D, we built a tensor equation for the quadratic Casimir H2 of [8] and
[10]. We then built the monodromy parameters α± of [16–19] directly from the Killing tower
for Kerr-(A)dS black holes in general dimension. We also used this machinery to calculate the
hidden conformal symmetry generators for large D Kerr-(A)dS black holes. We hope that this
will be a step toward establishing a Large-D/CFT correspondence, since many have shown [35]
that much of the key black hole physics is captured by the large dimension limit.

We believe that there are many avenues for future work in this program. For example, one
important aspect of the generators (6) proposed by [8] is that they are not globally defined.
That is, they are not invariant under the identification φ ∼ φ+2π, and the SL(2, R)×SL(2, R)
symmetry is spontaneously broken to SL(2, R) × U(1). Recently, a different set of globally
defined symmetry generators of the near-region Klein-Gordon equation were defined in [43].
In addition, the generators of [43] possess a smooth Schwarzschild limit a→ 0, and reproduce
the hidden symmetry generators for Schwarzschild found in [44]. It would be interesting
to analyze what role these globally defined generators might play in the hidden conformal
symmetry narrative outlined in this paper. For example, why does the monodromy method
seem to naturally reconstruct the locally defined generators (6) instead of the globally defined
ones of [43]?

It would be interesting if this framework could be used to provide a thermodynamic de-
scription of the Killing tower objects of separability and integrability. Our equation for the
monodromies, (116), is essentially a relationship between 1) the conserved quantities L from
the Killing tower (33) and 2) the conserved charges α± associated with Wald’s Killing vec-
tors (41) that vanish on the inner and outer horizons.14 We leave further development of this
relationship for future work.

In the 4D and 5D asymptotically flat black holes, early work [8–10] studying the hidden
conformal symmetry needed a ‘near-region’ limit to remove the mismatch between the Casimir

14Further discussion of α± as conserved charges can be found in [16] and Appendix B.
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and the full radial Klein-Gordon operator. However, subsequent work [18] has demonstrated
that this near-region limit is not necessary to probe the hidden conformal symmetry at the
horizon. Indeed, the monodromy method teaches us that only the lowest order contribution
in an expansion around either the inner or outer horizon is necessary to reproduce the SL(2, R)
generators found by [8] and [10].

Conversely, in this work, for D ≥ 6 in asymptotically flat space and for D ≥ 4 with a
cosmological constant, we see that a near-horizon limit (by which we mean keeping only terms
at leading order near r = r±, regardless of the relative value of ω) is necessary in our Killing
tensor construction as well. In Section 3.2, we needed this limit in order to match the quadratic
Casimir to the r-derivative terms in the Klein-Gordon equation. Since this matching is the first
step in the procedure to build the conformal coordinates, taking this limit is necessary before
matching the Killing vector directions, which fix the KL,R and TL,R parameters.

However, in the monodromy approach, since it intrinsically captures the behavior near
singular points of the wave equation, no separate near-horizon limit is needed to find the KL,R
and TL,R in any dimension. Consequently, we were able to explicitly find these parameters,
which fix the t and φ dependence in the conformal coordinates, without requiring a near-
horizon limit; our expressions are valid for the general spin Kerr-(A)dS black hole. Of course,
if we want the conformal coordinates to actually reproduce the wave equation, we still need
to match the r-derivative pieces which would then force an explicit near-horizon limit.

In future work, we will work towards building a tensor equation for general dimensions.
We believe the best approach will be to combine our general dimension radial coordinate result
in (53) and (61), with our general dimension monodromy result (122a). The radial coordinate
result sets the radial dependence of the conformal coordinates, but its poor analytic behavior
requires focusing on near-horizon information. Rather than take an explicit near-horizon limit,
it is logical to use the monodromy approach to fix the t and φ dependence of the conformal
coordinates, since it naturally focuses on the analytic behavior near the inner and outer horizon
already. Unfortunately this combined approach does not allow immediate use of the Klein-
Gordon equation written in terms of the Killing tensors kab

( j), so we leave its study to future
work.

Another important point regarding our tensor equations for 4D and 5D, (89) and (101),
and possible future generalizations to higher dimensions, is how they rewrite the inverse metric
as sum of ‘squared’ terms (up to the near-region limit). The quadratic Casimir itself is a sum of
paired products of H generators, while the remaining terms are either products of two Killing
vectors, or the single Killing tensor term kab

1 . However even the single Killing tensor term
can itself be written as kab

1 = f a
c f bc , where f is the Killing-Yano tensor. This clear “squared”

rewriting hints at a classical double-copy picture for the generic Kerr-NUT-AdS black holes,
since the writing in terms of Killing-Yano tensors is possible (although more complicated) for
general dimensions. Again we leave this connection to future work.

Lastly, since diagnosing hidden conformal symmetry requires studying the dynamics of a
probe field on a black hole background, it is interesting to ask the question: does changing
the dynamics affect the presence of hidden conformal symmetry? In a forthcoming work [45],
we investigate hidden conformal symmetry in higher derivative theories of gravity, so that the
equation of motion is

�

∇µ∇µ
�r
Φ = 0, for general integer r > 1. This theory is additionally

interesting to look at, since known holographic duals to logarithmic conformal field theories
(Log CFTs) involve higher derivative interactions [46]. Finding hidden conformal symmetry
in this setting could thus point to a new instance of a Log CFT correspondence. It is perhaps
especially interesting to note that this higher derivative theory is nonunitary, and so this could
be an example of a Cardy formula reproducing the Bekenstein-Hawking entropy of a black
hole in a nonunitary situation.
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A Metrics and notation

The Kerr metric is Boyer-Lindquist coordinates is

ds2 =
ρ2

∆
dr2 −

∆

ρ2
(d t2 − a sin2θdφ)2 +ρ2dθ2 +

sin2θ

ρ2
((r2 + a2)dφ − ad t)2 , (155)

with definitions∆= r2+a2−2M r and ρ2 = r2+a2cos2θ . The spin parameter a is the ratio of
the black hole’s angular momentum J and mass M : a ≡ J

M . The surface gravities and angular
velocities associated with the inner and outer horizons r± = M ±

p
M2 − a2 are

κ± =
r+ − r−
4M r±

, Ω± =
a

2M r±
, (156)

respectively. The Kerr black hole has two temperatures related to the inner and outer horizons.
They are commonly written as

TL =
r+ + r−

4πa
, TR =

r+ − r−
4πa

. (157)

The general dimension Kerr-(A)dS metric in Boyer-Lindquist-like coordinates is given by
[21,47,48]

g =−
�

1−λr2
�

W dt2

+
2M r1−ε

Σ

�

W dt +
n−1+ε
∑

ν=1

µ2
νaν

1+λa2
ν

dφν

�2

+
Σ

∆
dr2 + (1− ε)r2dµ2

0 +
n−1+ε
∑

ν=1

r2 + a2
ν

1+λa2
ν

�

dµ2
ν +µ

2
ndφ2

ν

�

+
λ

(1−λr2)W

�

(1− ε)r2µ0dµ0 +
n−1+ε
∑

ν=1

r2 + a2
ν

1+λa2
ν

µνdµν

�2

.

(158)

Here the metric functions are given by

∆=
�

1−λr2
�

n−1+ε
∏

ν=1

�

r2 + a2
ν

�

r−2ε − 2M r1−ε ,

Σ=

�

(1− ε)µ2
0 +

n−1+ε
∑

ν=1

r2−2εµ2
ν

r2 + a2
ν

� n−1+ε
∏

µ=1

�

r2 + a2
µ

�

,

W = (1− ε)µ2
0 +

n−1+ε
∑

ν=1

µ2
ν

1+λaν
,

(159)
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and
n−1+ε
∑

ν=ε
µ2
ν = 1 . (160)

The dimensionality of the metric is given by D = 2n+ε, where ε= 0 for even dimensions and
ε= 1 for odd dimensions. The parameter aν is the spin associated with the angle φν.

B The (ωL,ωR) basis

In this appendix, we discuss the change of basis

ωL = α+ −α− , ωR = α+ +α− . (161)

We first explore this from a thermodynamic point of view. As was mentioned in [16],
the monodromy parameters α± are related to Wald’s interpretation of black hole entropy as a
Noether charge [42]. That is, consider a stationary black hole with bifurcate Killing horizon.
There is a particular Killiing field that vanishes on the bifurcation surface Σ. For Kerr, it is

ζ± = (∂t +Ω±∂φ) , (162)

where Ω± are defined in (156), and (162) is normalized to have unit surface gravity κ±. Then
the horizon entropy S± is 2π times the integral of the Noether charge associated with (162)
over the bifurcation surface Σ.

We can also see that the choice (161) gives the Wald generators (162) a CFT interpretation.
Consider again our change of basis

e−iωL tL−iωR tR = e−iωt+imφ . (163)

With the choice (161), the conjugate variables

tR = 2πTRφ , tL =
1

2M
t − 2πTLφ . (164)

are related to the zero mode generators (H0, H̄0) by

H0 =
i

2πTR
∂φ + 2iM

TL

TR
∂t = i∂tR

, H̄0 = −2iM∂t = −i∂tL
. (165)

Taking these seriously as CFT generators, we can define a Hamiltonian H = H0 + H̄0 and
angular momentum J = H0 − H̄0 in the usual way. We find

H = H0 + H̄0 = i(∂tL
− ∂tR

) = i(∂t +Ω−∂φ)/κ− = iζ−/κ− ,

J = H0 − H̄0 = i(∂tR
+ ∂tL

) = i(∂t +Ω+∂φ)/κ+ = iζ+/κ+ .
(166)

From the above equations, we can see that ∂tL
+ ∂tR

and ∂tR
− ∂tL

are the Killing vec-
tors that vanish on the outer and inner horizons. Given the state dual to the scalar
Φ= R(r)S(θ )e−iωL tL−iωR tR , the eigenvalues of H and J are the monodromy parameters

HΦ= i(∂tL
− ∂tR

)Φ= 2α−Φ ,

JΦ= i(∂tR
+ ∂tL

)Φ= 2α+Φ .
(167)

This is again a direct consequence of the choice (161). For further discussion motivating (161),
see [45]. From (166) and (167), we can also see that 2α± are the conserved charges associated
with Wald’s Killing vectors (162) that vanish on the inner and outer horizons.
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[21] V. P. Frolov, P. Krtouš and D. Kubizňák, Black holes, hidden symmetries, and complete inte-
grability, Living Rev. Rel. 20, 6 (2017), doi:10.1007/s41114-017-0009-9.
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