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Abstract

We make a preliminary investigation into twisted A2n theories of class S. Contrary to
a common piece of folklore, we establish that theories of this type realise a variety of
models of Argyres-Douglas type while utilising only regular punctures. We present an
in-depth analysis of all twisted A2 trinion theories, analyse their interrelations via partial
Higgsing, and discuss some of their generalised S-dualities.
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1 Introduction and summary

The ecosystem of four-dimensional N = 2 superconformal field theories (SCFTs) is remark-
ably diverse. A particularly abundant species of such theories are those of class S. Discovered
over a decade ago in [1, 2], their characterisation as partially twisted compactifications of a
six-dimensional N = (2,0) theory on a punctured Riemann surface allows for a straightfor-
ward taxonomy: a theory is fully specified by a choice of a simply-laced Lie algebra j= an, dn,
or e6,7,8 labelling the parent N = (2, 0) theory, a Riemann surface of genus g with s marked
points, and a choice of s half-BPS, codimension-two defects to be inserted at said marked
points. For a particularly nice set of defects, referred to as regular or tame, the latter choice
amounts to specifying an embedding su(2) ,→ j up to conjugacy. Furthermore, one can in-
clude codimension-two twisted defects (also called monodromy defects), which introduce a
monodromy by an element of the outer automorphism group of j when encircled [3–5]. These
are labelled by an embedding su(2) ,→ g where g = j∨0 is the Langlands dual of the invariant
subalgebra j0 ⊂ j with respect to the action of the outer automorphism.1 Amongst the the-
ories of class S, the elementary taxa are those associated with three-punctured spheres—all
other theories can be obtained by exactly marginal gaugings thereof. These theories are often
referred to as trinion theories. The richness of class S stems largely from the wide variety of al-
lowed choices of triples of embeddings labelling their punctures. In a series of papers [5–14],
trinion theories of all types j with or without twisted punctures were scrutinised, with the
exception of theories of type a2n in the presence of Z2-twisted punctures. This paper should
motivate a more systematic study of this last class of theories.

Twisted A2n theories have not yet been subjected to a methodical investigation due to
difficulties that are expected to arise in such an endeavour due to the subtleties identified
in [15]. Consequently, very few results have been established up to now. In brief, the results
of investigations of which the authors are aware are as follows:2

(i) By means of an S-duality, the authors of [8] argued that the four-dimensional N = 2
SCFT with a one-complex-dimensional Coulomb branch and flavour symmetry C2×U(1),
whose existence had previously been proposed in [17, 18], can be realised as a twisted
A2 theory.

(ii) This theory and its higher-rank analogues were further analysed in [19] at the level of
their superconformal indices and Higgs branch chiral rings.

(iii) It was explained in [20] that the USp(2n) flavour symmetry of a full, twisted A2n punc-
ture carries a Witten anomaly.

In this paper we find that these theories may actually be investigated and understood quite
effectively. By bringing to bear an array of robust diagnostics—to wit, the a and c conformal
anomaly coefficients, flavour symmetries and their associated central charge, the supercon-
formal index, the Higgs branch chiral ring, and the associated vertex operator algebra—we
analyse in great detail the complete family of twisted A2 trinion theories. Table 1 summarises
some of their properties. We find that all but one of these trinion theories can be identified
with well-studied SCFTs. Strikingly, several members of the twisted A2 family are Argyres-
Douglas models, i.e., their Coulomb branch chiral rings include generators with non-integer
scaling dimensions,3 thus refuting an oft-repeated piece of folklore that states that class S the-

1Also, when twisted defects are present, a selection rule/consistency condition demands that they are present
in appropriate multiples. In particular, for Z2 twists they should come in even numbers.

2An analysis of irregular, twisted defects, including A2n monodromy defects, was carried out in [16]. See also
footnote 4.

3The name of these theories refers to the authors of the paper [21], in which the first such models were discov-
ered. See also [22].
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Table 1: Twisted A2 trinions. Gray punctures represent monodromy defects and are
connected by a Z2-twist line. The number of Coulomb branch chiral ring generators
of scaling dimension i is denoted by di . The a and c central charges and the flavour
symmetry groups GF of (the interacting parts of) the theories are indicated as well.
The subscript on the flavour symmetry groups denotes the corresponding flavour
central charge. In the identification of the theory described by the trinion, we denote
the rank-n su(3)-instanton SCFT as T (n)

su(3). In particular, T (1)
su(3) is the (A1, D4) Argyres-

Douglas theory. Finally, HM stands for hypermultiplet.

(d 3
2
, d3); (a, c) (0,2); (11

4 , 3) (1, 1); (47
24 , 13

6 ) (2,0); (7
6 , 4

3)

GF SU(3)6 × (SU(2)4)2 SU(3)6 × SU(2)4 SU(3)3 × SU(3)3

Description eT3 T (2)
su(3)

�

T (1)
su(3)

�⊗2

(d 3
2
, d3); (a, c) (0,1); (17

12 , 19
12) (1, 0); ( 7

12 , 2
3)

GF USp(4)4 × U(1) SU(3)3

Description rank-one C2U1 theory T (1)
su(3) ⊗HM

ories constructed with regular punctures can only accommodate integer scaling dimensions.
In other words, one need not introduce irregular (also called wild) punctures to construct
Argyres-Douglas theories in class S.4 On the other hand, the evidence before us suggests that
while twisted A2n theories allow for half-integer Coulomb branch scaling dimensions, more
general fractions cannot be realised.

The class S realisations of Table 1 expose a rich network of connections via partial Higgs-
ing operations. Indeed, the operation of partially closing a puncture has long been recognised
as a partial Higgsing triggered by a nilpotent vacuum expectation value for the moment map
operator associated with the flavour symmetry carried by that puncture [5,25–27]. Neverthe-
less, these partial Higgsings appear surprising when phrased in terms of the SCFTs identified
with the trinion theories; in fact, they anticipate and confirm instances of novel interrelations
between N = 2 SCFTs studied in [28–30]. Leveraging the recent insights of [31], the Higgsing
in these examples can be “undone” at the level of the Higgs branch geometry and associated

4See, for example, [16, 23, 24] for a systematic analysis of class S constructions of Argyres-Douglas theories
involving irregular punctures.
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vertex operator algebra, providing an efficient and effective tool to construct these quantities
for the un-Higgsed theories.

A central property of theories of class S is that their various (generalised) S-duality frames
are manifested geometrically as different degeneration limits of the corresponding punctured
Riemann surfaces (their UV curves). For twisted A2 theories this allows us to establish a number
of S-duality relations involving rank-one and rank-two su(3)-instanton SCFTs. In particular,
the S-duality studied in [32] is easily confirmed this way.

The remainder of this paper is organised as follows. In Section 2, we recall essential aspects
of the class S construction and review the determination of the various key quantities available
to us for the analysis of such theories. In section 3 we leverage these tools to identify all twisted
A2 theories. We study the interrelations via partial Higgsings among these theories in Section 4,
while in Section 5 we detail some paradigmatic S-dualities. Finally, in Section 6, we comment
on future directions for further study and present some motivational results in these directions.
We identify the entire infinite series of D2[SU(2n+1)] Argyres-Douglas fixed points as twisted
A2n theories, and make a proposal for how the half-integer scaling dimensions in these models
arise in this setting.

2 N = 2 SCFTs of class S

In this section, we briefly recall several key aspects of the class S construction of four dimen-
sional N = 2 superconformal field theories. We focus on the irreducible class S objects, the
trinion theories, and review universal formulae for their Weyl anomaly coefficients a and c,
and their flavour central charges. We recall the general, TQFT expression for the Macdonald
limit of their superconformal indices and briefly discuss the realisation of the SCFT/VOA cor-
respondence [33] in this setting. Readers familiar with the class S literature, salient features
of which were reviewed in [27,34], may safely skip this section.

Theories of class S were introduced in [1,2] and are most usefully thought of as the low-
energy limits of (partially) twisted compactifications of a six-dimensional N = (2,0) super-
conformal field theory on a Riemann surface. This setup is usually enriched with half-BPS,
codimension-two defects of the six-dimensional theory located at marked points on the Rie-
mann surface and spanning the four non-compact spacetime dimensions. The defining data
of the resulting four-dimensional superconformal field theory is thus as follows:

1. A simply-laced Lie algebra j ∈ {an,dn, e6,7,8}, which labels the above-lying six-dimensional
N = (2, 0) superconformal field theory.5

2. A Riemann surface Cg,s of genus g with s marked points. Of the geometric data for the
surface, only the complex structure moduli are retained in the low-energy limit—they
correspond to exactly marginal couplings of the four-dimensional SCFT.6

3. For each of the s marked points, a half-BPS, codimension-two defect. One often restricts
to regular or tame defects, which are labelled by an embedding Λ : su(2) ,→ j. One
can further consider defects that introduce a monodromy by an element σ of the outer-
automorphism group of j when encircled [3–5]. These twisted defects are labelled by an
embedding su(2) ,→ g, where g = j∨0 is the Langlands dual of the σ-invariant subalge-
bra j0 ⊂ j, see Table 2 for a list of cases. From twisted punctures emanate topological

5This ADE classification is, for example, manifest in the realisation of the (2,0) theory as the low-energy limit
of type IIB string theory on the corresponding ALE space [35].

6The theory may possess additional exactly marginal couplings at values frozen in the interior of their moduli
space [8].
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Table 2: Simple Lie algebras j whose Dynkin diagrams possess nontrivial discrete
symmetry groups generated by an element σ, the subgroups of the outer automor-
phism group 〈σ〉 that is generated by σ, the σ-invariant subalgebras j0 ⊂ j, and the
Langlands dual g= j∨0 .

j a2n−1 a2n dn d4 e6
〈σ〉 Z2 Z2 Z2 Z3 Z2
j0 cn bn bn−1 g2 f4
g bn cn cn−1 g2 f4

twist lines, which are codimension-one topological defect operators of the parent six-
dimensional theory. These keep track of the monodromies on the UV curve and can be
used to ensure that a given set of twisted defects is globally allowable, as well as af-
fecting the interpretation of degeneration limits when a twist line passes through the
degeneration.

Any Riemann surface Cg,s admits a variety of pants decompositions that deconstruct the
surface into 2g+s−2 three-punctured spheres glued together by connecting 3g+s−3 pairs of
punctures. Per the second item above, each such decomposition corresponds to a degeneration
limit in the complex structure moduli space of the UV curve, which in turn corresponds to a
regime in coupling space of the corresponding four-dimensional superconformal field theory
described by weakly coupled, exactly marginal gaugings of the SCFTs associated with the three-
punctured spheres. Generalised S-duality relates the different weakly coupled descriptions
corresponding to the different pants decompositions of Cg,s.

The study of theories of class S thus starts with the project of coming to grips with the
isolated, usually non-Lagrangian, trinion theories associated with three-punctured spheres.
This herculean task has been largely completed in a sequence of papers [5–14]. These papers
describe the trinions for all twisted and untwisted classes of theories with the exception of
twisted A2n models. The latter are the subject of this paper.

2.1 Trinion theories

Trinion theories are the basic building blocks of class S. Apart from the choice of simply-laced
Lie algebra j, they are specified by three embeddings Λi : su(2) ,→ j, i = 1,2, 3, or in the
twisted case, Λi : su(2) ,→ g. To uniformise the discussion, we will henceforth set g = j for
untwisted punctures. We denote trinion theories as TΛ1Λ2Λ3

j , where the choice of embeddings
specifies if the theory is twisted or untwisted.7

A puncture labelled by the embedding Λ contributes to the flavour symmetry of the trinion
theory a factor fΛ ⊂ g given by the commutant of the image of the embedding. The flavour
symmetry of TΛ1Λ2Λ3

j thus contains at least the algebra ⊕ifΛi
, which, in exceptional cases, may

be further enhanced. We will present a diagnostic for such enhancements below (see below
(2.13)).

For the computational recipes below, it will be useful to introduce notation for the decom-

7Not all choices of triples of embeddings correspond to physical, four-dimensional SCFTs. A diagnostic to
detect disallowed triples is to check the dimensions of the graded components of the Coulomb branch (viewed as
a graded vector space) of the putative theory using the algorithms of [5–14]. If any of them is negative, the theory
is unphysical. Alternatively, if the expression for the superconformal index presented below in (2.9) diverges, the
theory is designated as bad [36].
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position of the adjoint representation of g under the subalgebra Λ(su(2))⊕ fΛ,

g=
⊕

j∈ 1
2Z¾0

Vj ⊗R j , (2.1)

where Vj is the spin- j representation and R j is some (possibly reducible, possibly zero- dimen-
sional) representation of fΛ.

2.2 Central charges

The conformal anomaly coefficients a and c of TΛ1Λ2Λ3
j are conventionally expressed in terms

of the effective number of vector multiplets (nv) and hypermultiplets (nh),

a =
2nv + nh

12
, c =

5nv + nh

24
. (2.2)

These are then given in terms of our class S data by [5]

nv =
3
∑

i=1

nv(Λi)− (
4
3h∨j dim j+ rank j) , nh =

3
∑

i=1

nh(Λi)−
4
3h∨j dim j , (2.3)

where

nv(Λ) = 8( 1
12h∨j dim j−ρg ·

h
2) +

1
2
(rank j− dimg0) , (2.4)

nh(Λ) = 8( 1
12h∨j dim j−ρg ·

h
2) +

1
2

dimg1/2 . (2.5)

Here h∨j is the dual Coxeter number of j and ρg is the Weyl vector (i.e., half the sum of the
positive roots) of g. (Recall that if the defect is untwisted, we set g = j.) Furthermore, we
have h := Λ(σ3), the image of the Cartan element of su(2), and the formulae also involve the
quantities dimg0 and dimg1/2 defined as

dimg0 :=
∑

j∈Z¾0

dimR j , dimg1/2 :=
∑

j∈ 1
2+Z¾0

dimR j . (2.6)

These can be thought of as the dimensions of the 1
2h-eigenspaces of eigenvalues 0 and 1/2

respectively.
A simple factor f′ ⊂ fΛ has flavour central charge [5]

kf′ = 2
∑

j∈ 1
2Z¾0

T
�

R j|f′
�

, (2.7)

where T (R) denotes the Dynkin index of the representation R.8 The representations R j
are the ones appearing in the decomposition (2.1), and we are treating them as (potentially
reducible) f′ representations.9 In particular, the level of the flavour symmetry g of a puncture
labelled by the trivial embedding, often called a full puncture, is given by twice the dual Coxeter
number of g.

8The normalisation is such that the index of the adjoint representation equals the dual Coxeter number, i.e.,
T (g) = h∨

g
, for any Lie algebra g.

9Concretely, if fΛ = f′ ⊕ f̂′ for some (not necessarily simple) complementary factor f̂′ and R contains an n-fold
degenerate representation r ⊗ r̂, then R|

f′
contains the (n dim r̂)-fold degenerate representation r.
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Table 3: List of outer-automorphism invariant representations of j, specified by their
highest weight state λj, determined by representations λg =

∑rankg
i=1 λiωi of g, the

Langlands dual of the outer-automorphism invariant subalgebra. The highest weight
states are expressed in a basis of fundamental weights ωi (the coefficients are the
Dynkin labels of the representation) for which we follow the conventions of LieArt
[43,44].9

g j λj

bn a2n−1

n
∑

i=1
λiωi +

n−1
∑

i=1
λn−iωn+i

cn a2n

n
∑

i=1
λiωi +

n
∑

i=1
λn+1−iωn+i

cn dn+1

n
∑

i=1
λiωi +λnωn+1

g2 d4 λ2ω1 +λ1ω2 +λ2ω3 +λ2ω4

f4 e6 λ1ω1 +λ2ω2 +λ3ω3 +λ2ω4 +λ1ω5 +λ4ω6

2.3 Superconformal index

The Macdonald limit of the superconformal index of a four-dimensional N = 2 superconformal
field theory is defined as [37]

IM (q, t;a) = trM (−1)F qE−2R+r tR−r
∏

i

a fi
i , (2.8)

where the trace runs over states in the Hilbert space of the radially quantised SCFT satisfying
E − ( j1 + j2)− 2R = 0 and j1 − j2 + r = 0. Here E denotes the conformal dimension, ( j1, j2)
are the Cartans of the su(2)1 ⊕ su(2)2 rotational group, (R, r) are the Cartan elements of the
R-symmetry algebra su(2)R⊕ u(1)r , and fi are a basis of flavour symmetry Cartan generators.
The index is independent of exactly marginal couplings and hence, for theories of class S, it
is computed by a topological quantum field theory on Cg,s [38]. The relevant TQFT for the
index (2.8) has been identified as (t, q)-deformed two-dimensional Yang-Mills theory in the
zero-area limit. The Macdonald index of a trinion theory TΛ1Λ2Λ3

j is computed by that TQFT’s
structure constants and reads [37,39–42]

I j;Λ1Λ2Λ3
M (q, t;ai) =

∑

λ

∏3
i=1 KΛi

(ai) Pgi
λ
(t

1
2Λi(σ3) ⊗ ai)

Kρ P j
λ
(t

1
2ρ(σ3))

. (2.9)

Let us unpack this expression.

• In the untwisted case, the sum runs over all finite-dimensional representations λ of j. If
any of the punctures is twisted, then the sum instead runs over representations of the
algebra g associated with the twisted punctures (which come in pairs for Z2-twists and
in pairs or triples for Z3-twists). In this case, it will be useful to associate with each
representation λ of g an outer-automorphism invariant representation of j determined
by the same Dynkin labels, see Table 3. In a slight abuse of notation, we denote that
representation again by λ. In either case, we continue with the convention that for
untwisted punctures g= j.
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• In the summand one encounters Pg/j
λ

, which are unconventionally normalised Macdon-
ald polynomials associated to the representations λ of g/j [45]. The polynomials Pλ are
orthonormal under the measure

(q; q)r

(t; q)r
[dx]M = PE

�−q+ t
1− q

χadj(x)
�

[dx] , (2.10)

where [dx]M is the Macdonald measure and [dx] denotes the Haar measure.10 Further-
more, r denotes the rank of the relevant Lie algebra and χadj is its adjoint character. We
also used the infinite q-Pochhammer symbol (a; q) =

∏∞
j=0(1− aq j) and the plethystic

exponential PE[ f (x i)] = exp(
∑∞

n=1
1
n f (xn

i )).

The argument of the polynomials is a Lie(g/j) group element (conjugated into its max-
imal torus). In the numerator, reflecting the decomposition Λ(su(2)) ⊕ fΛ ⊂ g, it is
obtained as the direct product of an SU(2) group element—the exponentiated Cartan
generator—and a Lie(fΛ) element. In the denominator, its argument is determined sim-
ilarly in terms of the principal embedding ρ.

• Finally, again in terms of (2.1), the “K-factors” are given by

KΛ(a) = PE
�

∑

j

t1+ j

1− q
χR j
(a)
�

, (2.11)

where χR denotes the character of the representation R.

The Macdonald index provides a straightforward method to determine the number of free
hypermultiplets a theory contains and to find out if the flavour symmetry of a theory is en-
hanced. Expanding to order O(t, q), one finds

IM = 1+χ2n t
1
2 +χadj t + . . . . (2.13)

Here χ2n is the (possibly not fully refined) character of the fundamental representation of
usp(2n). If n > 0, the theory contains n free hypermultiplets. It is straightforward to probe
the index of only the interacting part of the theory by dividing out the contribution of these
free multiplets,

ĨM = PE
�

−
t

1
2

1− q
χ2n

�

IM . (2.14)

Furthermore, χadj is the (possibly not fully refined) character of the adjoint representation
of the flavour symmetry group of the theory. In the presence of free hypermultiplets it can
be written as χadj = χ̃adj + χadjusp(2n)

where χ̃adj captures the flavour symmetry of the inter-

acting part of the theory, i.e., it is the coefficient of t of ĨM . For trinion theories, one finds
χadj =

∑

i χadjfΛi
+. . . , and a nonempty ellipsis signals an enhancement of the manifest flavour

symmetry ⊕ifΛi
.

An important further limit of the index (2.8) is t → q. This limit is known as the Schur
limit, because the Macdonald polynomials in (2.9) simplify to characters, also known as Schur

9Unfortunately, these differ from the more established conventions of Bourbaki [46].
10Concretely,

[dx]M =
∏

j

d x j

2πi x j

∏

α6=0

(eα; q)
(teα; q)

, [dx] =
∏

j

d x j

2πi x j

∏

α6=0

(1− eα) , (2.12)

where the products run over the non-zero roots of the Lie algebra. The fugacities x j can be identified as the
exponentials x j = eb j of the elements b j of a basis of weights. Standard choices are the basis of fundamental
weights ωi or orthogonal weights εi .
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polynomials. Its particular usefulness stems from the fact that in this limit, the index takes the
form11

IM (q, q;a) = IS(q;a) = tr (−1)F qE−R
∏

i

a fi
i , (2.15)

which in particular means that the Schur index equals the vacuum character of the associated
vertex operator algebra of the four-dimensional superconformal field theory (up to a Casimir
prefactor) [33]. This equality is just one facet of the SCFT/VOA correspondence, to which we
briefly turn below. We also note that the limit q→ 0 of the Macdonald index returns the Hall-
Littlewood limit of the index. For trinion theories, this quantity equals the Hilbert series of the
Higgs branch chiral ring of the theory i.e., the ring of operators characterised by E = 2R [37].

2.4 SCFT/VOA correspondence

It was shown in [33], that to every four-dimensional N = 2 superconformal field theory one
can associate a vertex operator algebra (VOA), leading to a canonical map,

V : {4d N = 2 SCFTs} −→ {VOAs} . (2.16)

The correspondence encoded in this map enjoys a variety of remarkable features, many of
which were uncovered in the original paper [33], but of which we will only mention a select
few useful ones for our current purposes:

1. For local four-dimensional SCFTs, the corresponding vertex operator algebra has a Vira-
soro subalgebra with central charge c2d proportional to the four-dimensional c-anomaly
coefficient: c2d = −12c4d .

2. Higgs branch chiral ring generators give rise to strong generators of the associated vertex
operator algebra.12 In particular, the moment map operators of the four-dimensional
flavour symmetry map to affine Kac-Moody currents with affine level k2d determined in
terms of the flavour central charge k4d according to k2d = −

1
2 k4d .

In exceptional cases, the total Sugawara stress tensor constructed from the various affine
currents provides the conformal vector of the VOA. A simple criterion for when this
happens is whether the unitarity bound c2d ¾ cSug,tot is saturated, where cSug,tot is the
total Sugawara central charge [33,47].13

3. As stated above, the vacuum character of the VOA is computed by the Schur limit of the
superconformal index of the SCFT.14,15 In particular, the two-dimensional conformal
weight of the image of some operator O is given by hV(O) = EO − RO.

11The trace in this case runs over the full Hilbert space of states in radial quantisation, as in this limit pairwise
cancellations automatically ensure that only states satisfying E − ( j1 + j2)− 2R= 0 and j1 − j2 + r = 0 contribute.

12Strong generators are those operators in the VOA that cannot be written as normally ordered products of any
other operators.

13The Sugawara central charge for the affinisation of a simple factor f at level k2d is given by

cSug =
k2d dim f

k2d + h∨f
. (2.17)

For affine u(1) factors (i.e., Heisenberg vertex subalgebras) one has cSug = 1. The total Sugawara central charge is
the sum of the contributions from all factors.

14This statement was proved using localisation techniques for Lagrangian theories in [48] (see also [49]). Sim-
ilarly, using localisation techniques, one can attempt to carve out the full vertex operator algebra from the path
integral, see, e.g., [50]. Also, the VOA emerges by applying a suitable Ω-deformation, see [51,52].

15The operator product algebraic structure of the VOA does not preserve the grading by the SU(2)R Cartan
quantum number, although it does preserve its filtration [53]. Nevertheless, one can in principle refine the count
of states of the vertex operator algebra to recover the Macdonald index. An early recipe to do so can be found
in [54] (see also [55] for related work), and a universally applicable proposal based on free-field realisations was
put forward in [31,56], see also [28].
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4. The image of any SCFT under the correspondence V is independent of exactly marginal
couplings. Thus VOAs are associated to whole conformal manifolds in the four- dimen-
sional landscape.

Thanks to the fourth property, applying this map to theories of class S defines a TQFT on the
surface Cg,s that takes values in vertex operator algebras [57,58]. The resulting class of VOAs
have been called chiral algebras of class S. The basic such chiral algebras are those associated
with trinion theories. Exploratory studies and constructions of these VOAs were performed
in [58, 59], and a mathematical treatment of VOAs associated with untwisted trinions can
be found in [60]. The vertex operator algebra captures a fairly intricate, infinite subset of
the conformal data of an SCFT, and as such it is an indispensable structure in the study of
four-dimensional superconformal field theories.

3 The twisted A2 family

We now turn to our main objects of interest, the trinions for twisted A2 theories. We will
analyse in detail each of the five possible trinions and compute, using the general results from
the previous section, (i) their conformal anomaly coefficients a and c, (ii) their superconformal
indices, which in particular provides us with access to detailed information on their number of
free hypermultiplets and their possibly enhanced flavour symmetries, and (iii) their associated
vertex operator algebras. These data will prove sufficient to convincingly identify four out of
the five theories with well-studied SCFTs, while the fifth has not yet appeared in the literature
as far as the authors can tell. Surprisingly, our identifications include several Argyres-Douglas
theories, i.e., theories whose Coulomb branch chiral ring operators do not all have integer
scaling dimensions.

To specify a twisted A2 trinion theory TΛ1Λ2Λ3
a2

, we need to choose one embedding
Λ1 : su(2) ,→ a2, as well as two embeddings Λ2,Λ3 : su(2) ,→ c1. The options are quite
limited and are summarised in Table 4.16 All combinations of one untwisted and a pair of
twisted punctures define good physical theories, except for the case where Λ1 is subregular
and Λ2 = Λ3 are principal, see also footnote 7. Table 1 provides an overview of the members
of the twisted A2 family and their properties; we will analyse each one of them in turn.

3.1 Theory 1: T̃3

We start by considering the twisted A2 theory whose three punctured are labelled by trivial
embeddings Λ1 = 0= Λ2,3. We call this theory T̃3, i.e.,

T̃3 ←→ ,

where we depict the su(2) embeddings labelling the punctures by their corresponding Young
diagram as in Table 4. As far as we know, the theory T̃3 has not yet been investigated in the
literature. We will analyse it in some detail.

16The principal su(2) embedding into a2 does not appear as it does not enter in a physical trinion theory. In
fact, an untwisted puncture labelled by the principal embedding is simply absent. This is not the case for twisted
punctures, where the principal embedding leaves behind a flavourless puncture that still carries the appropriate
monodromy.

10

https://scipost.org
https://scipost.org/SciPostPhys.12.5.172


SciPost Phys. 12, 172 (2022)

Table 4: All su(2) embeddings that are relevant in defining twisted A2 trinions. The
first columns of subtables 4a and 4b give the names of the embeddings. The sec-
ond columns provide Young diagrammatic depictions of the decomposition of the
fundamental representation under the embedded su(2): the heights of the columns
of the Young diagrams encode the dimensions of the su(2) representations that ap-
pear in the decompositions. The third columns give the commutant of the embedded
su(2), which is the manifest flavour symmetry associated with the puncture. The
final columns provide the decompositions of the adjoint representation itself as in
(2.1). Boldface numbers denote dimensions of representations.

Λ1 3 fΛ a2

trivial a2 a2

subregular u1 Λ1(a1)⊕ u1 ⊕ 2+3 ⊕ 2−3

(a) Possible embeddings Λ1 : su(2) ,→ a2.

Λ2,3 2 fΛ c1

trivial c1 c1

principal ; Λ2,3(a1)
(b) Possible embeddings Λ2,3 : su(2) ,→ c1.

3.1.1 Central charges, Macdonald index, and Higgs branch chiral ring

It is straightforward to compute the Weyl anomaly coefficients using the formulae (2.2),

aT̃3
=

11
4

, cT̃3
= 3 . (3.1)

The Shapere-Tachikawa relation [61], which is expected to hold for all the theories under
investigation in this note, provides some insights into the Coulomb branch chiral ring of this
theory. Indeed, the relation states that

4(2aT̃3
− cT̃3

) = 10=
∑

i

(2∆i − 1) , (3.2)

where the sum runs over the generators of the Coulomb branch chiral ring and ∆i represents
their scaling dimensions/U(1)r charges. One immediately observes that this theory cannot be
of rank one, i.e., its Coulomb branch cannot have complex dimension one or, equivalently, its
chiral ring cannot be generated by a single generator, as ∆ = 11

2 is not an allowed value for a
scaling dimension at rank one [62]. We will argue below (3.29) that this theory has rank two,
with ∆1 =∆2 = 3.

The Macdonald index for this theory can be evaluated using the expression (2.9). One
finds17

I T̃3
M (q, t;a,b j) =

∑

λ

PE
� t

1−qχ
a2
adj(a)

�

Pa2
(λ,λ)(a)

∏2
j=1 PE

� t
1−qχ

c1
adj(b j)

�

Pc1
(λ)(b j)

PE
� t2+t3

1−q

�

Pa2
(λ,λ)(t, 1, t−1)

= PE
�

1
1− q

¦

�

χ
c1
adj(b1) +χ

c1
adj(b2) +χ

a2
adj(a)

�

t +
�

χ
c1
2 (b1)χ

c1
2 (b2)χ

a2
adj(a)− 2

�

t2 + qt

+χa1
2 (b1)χ

a1
2 (b2)qt2 −

�

χ
a1
2 (b1)χ

a1
2 (b2) + 3χa1

2 (b1)χ
a1
2 (b2)χ

a2
adj(a) + 1

�

t3 + . . .
©

�

. (3.3)

In the first line, the sum runs over all Dynkin labels λ of c1 representations, i.e., all positive
integers, and we used Table 3 to assign the a2 representation with Dynkin labels (λ,λ) to each

17Note that under the principal embedding ρ : su(2) ,→ su(3) one has ρ(σ3) =
� 2 0 0

0 0 0
0 0 −2

�

. Hence t
1
2 ρ(σ3) has diag-

onal entries t, 1, t−1, which we have indicated in the argument of the Macdonald polynomial in the denominator.
This is slightly redundant information, as their product is naturally constrained to be one.
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c1 representation with Dynkin label (λ).18 We have expressed the result in terms of a plethystic
exponential, which facilitates an analysis of generators and relations. Indeed, we immediately
see that no free hypermultiplets are present and that the flavour symmetry of the theory is not
enhanced beyond the manifest symmetry captured by the punctures. These punctures are all
full, thus their flavour central charges (2.7) equal twice the respective dual Coxeter numbers,

G T̃3
F = SU(2)(1)4 × SU(2)(2)4 × SU(3)6 . (3.4)

Each of the SU(2) factors carries a Witten anomaly. More importantly, we have access to a
wealth of information about the Higgs branch chiral ring generators and their relations, and
about any additional strong VOA generators.

Taking the q → 0 limit of (3.3) returns the Hilbert series of the Higgs branch of T̃3.

Analysing this expression shows that the moment map operators of the flavour symmetry G T̃3
F

are, as expected, among the generators of the Higgs branch chiral ring of T̃3. These opera-
tors have E = 2R = 2 and transform in the adjoint representation of the respective flavour
symmetry factors. We will denote them as µ(1)

su(2),µ
(2)
su(2),µsu(3). Moreover, there is an addi-

tional generator with E = 2R = 4, which transforms in the representation (2,2,8) of G T̃3
F . We

will denote this generator by ω. These generators satisfy a number of elementary relations,
the quantum numbers of which can be read off from the index. As explained in [53], the
explicit expressions for these relations can be deduced from null relations in the associated
vertex operator algebra, which we present below.19 The relations—organised by their SU(2)R
charges—are as follows,

R= 2:
�

µ
(1)
su(2)

�2�
�

(1,1,1) =
�

µ
(2)
su(2)

�2�
�

(1,1,1) =
1
4
µ2
su(3)

�

�

(1,1,1) , (3.5)

R= 3: µ3
su(3)

�

�

(1,1,1) = 0 , (3.6)

µsu(3)ω
�

�

(2,2,1) = 0 , (3.7)

µsu(3)ω
�

�

(2,2,8s)
= 0 , (3.8)

µsu(3)ω
�

�

(2,2,8a)
= 4µ(1)

su(2)ω
�

�

(2,2,8) = 4µ(2)
su(2)ω

�

�

(2,2,8) . (3.9)

Here the subscript s or a on 8 indicates whether the representation appears in the symmetric
or the antisymmetric tensor product of two adjoint representations of su(3), respectively. One
encounters further relations at R = 4, relating the square of ω and quartic expressions of
moment maps, transforming in the following representations,20

R= 4: (1,1,27⊕ 8s ⊕ 1) , (3.10)

(1,3,8a ⊕ 10⊕ 10)⊕ (3,1,8a ⊕ 10⊕ 10) , (3.11)

(3,3,8s ⊕ 1) . (3.12)

For example, ω2
�

�

(3,3,8s⊕1) ∼ µ
(1)
su(2)µ

(2)
su(2)µ

2
su(3)

�

�

(3,3,8s⊕1). We suspect this is the full list of ele-

mentary relations of the Higgs branch chiral ring of T̃3 We note that the relations (3.5)–(3.6)
are canonical Higgs branch relation in theories of class S (see, e.g., [27]), with the first being
a direct consequence of the “criticality” of the flavour central charges k = 2h∨ [47].

18We use interchangeably Dynkin labels and boldfaced dimensions to denote representations. In particular, we
have (1) = 2 and (2) = 3= adj for c1, and (1,0) = 3 and (1,1) = 8= adj for a2.

19The procedure amounts to setting to zero all composites operators containing derivatives as well as any opera-
tors that are nilpotent up to composites containing derivatives. This is equivalent to passing to the reduced version
of Zhu’s C2 algebra of the VOA.

20Note that 27 = (2,2) is the su(3) representation with Dynkin labels twice those of the adjoint representation.
Furthermore, 10= (3, 0) and 10= (0, 3).
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3.1.2 The T̃3 vertex operator algebra

The Higgs branch chiral ring generators µ(1)
su(2),µ

(2)
su(2),µsu(3) andω give rise to strong generators

of the vertex operator algebra V(T̃3). In particular, the moment maps turn into affine currents
of critical level k2d = −h∨. The Macdonald index indicates the presence of one additional
strong generator, namely the stress energy tensor, which descends from a component of the
SU(2)R conserved current multiplet and is captured by the+qt term in the plethystic logarithm
of the index.21 The Virasoro central charge is easily ascertained: c2d = −12cT̃3

= −36. What’s
more, the Macdonald index indicates that the relation (3.7) is not realised as a null relation in
the VOA, but instead leads to an operator of lower R-grading than expected in the R-filtration
of [53], see also [28,31]. Table 5 summarises our list of strong generators for V(T̃3).

We now turn to the task of constructing the vertex operator algebra V(T̃3). We do so by
bootstrapping the singular terms in the operator product expansions (OPEs) of the strong gen-
erators presented in Table 5. In practice, this means we formulate the most general expressions
for these singular OPEs that are compatible with the global symmetries in terms of a number
of undetermined numerical coefficients, and we then demand that the Jacobi identities hold
modulo null states. These constraints result in a set of algebraic equations for the numerical
coefficients that can be solved if the set of strong generators describes a consistent VOA.22 We
take a successful solution to be an indication that the VOA is correctly identified, although
strictly speaking we could be producing only a vertex operator subalgebra of the full VOA.

The Virasoro and affine current subalgebras take their canonical forms,

T (z) T (0) ∼
−18
z4
+

2T
z2
+
∂ T
z

, (3.13)

j(1)i j (z) j(1)kl (0) ∼
−2 εl(iε j)k

z2
+

2ε(i(k j(1)j)l)(0)

z
, (3.14)

j(2)
αβ
(z) j(2)

γδ
(0) ∼

−2 εδ(αεβ)γ
z2

+
2ε(α(γ j(2)

β)δ)(0)

z
, (3.15)

J a1
b1
(z) J a2

b2
(0) ∼

−3 ∆a1a2
b1 b2

z2
+

i f a1a2a
b1 b2 b J b

a (0)

z
. (3.16)

We have introduced realisations of the Killing form and structure constants of su(3) in terms
of our index conventions,

∆
a1a2
b1 b2

:= δa1
b2
δ

a2
b1
−

1
3
δ

a1
b1
δ

a2
b2

, f a1a2a3
b1 b2 b3

:= −i
�

δ
a1
b2
δ

a2
b3
δ

a3
b1
−δa1

b3
δ

a2
b1
δ

a3
b2

�

. (3.17)

The OPE of the stress tensor with the other strong generators also takes a canonical form

T (z) V(0) ∼
hV V(0)

z2
+
∂ V(0)

z
, (3.18)

while the affine currents from different simple factors of the flavour symmetry mutually com-
mute and their operator product expansions with the primary W are determined by its trans-

21Indeed, such a stress tensor generator must be present unless the stress tensor is the Sugawara vector of the
theory’s affine symmetry, and in this case all affine subalgebras are at their critical levels, so cannot provide a
normalised stress tensor.

22Here and in the remainder of the paper, the computational strategy for bootstrapping VOAs has been imple-
mented in Mathematica using the package OPEdefs [63].
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Table 5: Strong generators of the vertex operator algebra associated with T̃3. Our in-
dex convention is that the adjoint representation of su(2) is realised by a symmetrised
pair of fundamental indices and the adjoint representation of su(3) is realised by the
traceless combination of a fundamental and antifundamental index. Fundamental
indices of su(2)(1) are denoted as {i, j, k, . . .}, while those of su(2)(2) are denoted as
{α,β ,γ, . . .} and fundamental or anti-fundamental indices of su(3) are denoted as
lowered or raised {a, b, c, . . .}.

O V(O) hV(O) su(2)(1) × su(2)(2) × su(3)

µ
(1)
su(2) j(1)i j 1 (3,1,1)

µ
(2)
su(2) j(2)

αβ
1 (1,3,1)

µsu(3) J a
b 1 (1,1,8)

ω W a
iαb 2 (2,2,8)

J11
++̇ T 2 (1,1,1)

formation properties under the global su(2)(1) × su(2)(2) × su(3),

j(1)i j (z) W a
kαb(0) ∼

−1
2εk(i W a

j)αb (0)

z
, (3.19)

j(2)
αβ
(z) W a

iγb (0) ∼
−1

2εγ(α W a
iβ)b (0)

z
, (3.20)

J a1
b1
(z) W a2

iαb2
(0) ∼

i f a1a2a
b1 b2 b W b

iαa (0)

z
. (3.21)

Before presenting the W ×W OPE, it will be helpful to introduce one additional tensor,

da1a2a3
b1 b2 b3

:= δa1
b2
δ

a2
b3
δ

a3
b1
+δa1

b3
δ

a2
b1
δ

a3
b2
−

2
3
δ

a1
b1
δ

a2
b3
δ

a3
b2
−

2
3
δ

a2
b2
δ

a1
b3
δ

a3
b1
−

2
3
δ

a3
b3
δ

a1
b2
δ

a2
b1
+

4
9
δ

a1
b1
δ

a2
b2
δ

a3
b3

,

(3.22)

which is the cubic Casimir expressed in terms of (anti)fundamental indices. The
W ×W OPE now reads23

W a1

iαb1
(z) W a2

jβ b2
(0)∼

εi j εαβ ∆
a1a2

b1 b2

z4
+

1
z3

�1
2

�

εαβ j(1)i j + εi j j(2)
αβ

�

∆
a1a2

b1 b2
−

1
3
εi j εαβ i f a1a2a

b1 b2 b J b
a

�

+
1
z2

�1
4

�

εαβ ∂ j(1)i j + εi j ∂ j(2)
αβ

�

∆
a1a2

b1 b2
−

1
6
εi j εαβ i f a1a2a

b1 b2 b ∂ J b
a −

1
4
εi j εαβ ∆

a1a2

b1 b2
T

+
11
96
εi j εαβ ∆

a1a2

b1 b2
(J a

b J b
a ) +

1
8

da1a2a
b1 b2 b da4a5 b

b4 b5a (J
b4
a4

J b5
a5
)−

1
24
εi j εαβ

�

(J a1

b1
J a2

b2
) + (J a2

b2
J a1

b1
)
�

+
1
4
∆

a1a2

b1 b2
( j(1)i j j(2)

αβ
) +

1
6

i f a1a2a
b1 b2 b

�

εαβ ( j
(1)
i j J b

a ) + εi j ( j
(2)
αβ

J b
a )
�

+
3
8
εi j εαβ da1a2a

b1 b2 b ∂ J b
a

�

23All structures on the right-hand side have definite representation-theoretic properties under
su(2)(1) × su(2)(2) × su(3), with two exceptions. Instead of constructing the representation (2,2) = 27 in
the symmetrised product of two su(3) adjoint objects, we have used the symmetrised product itself. To obtain the
“pure” (2,2) contribution, one should subtract the contribution of the other two representations that appear in
that product, i.e., (1, 1) = 8s and (0, 0) = 1. Similarly, instead of constructing (3,0)⊕ (0, 3) in the antisymmetrised
product of two su(3) adjoint objects, we have used the antisymmetrised product itself, from which the contribution
of 8a can be subtracted.
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+
1
z

� 1
16

�

εαβ ∂
2 j(1)i j + εi j ∂

2 j(2)
αβ

�

∆
a1a2

b1 b2
−

1
24
εi j εαβ i f a1a2a

b1 b2 b ∂
2J b

a −
1
8
εi j εαβ ∆

a1a2

b1 b2
∂ T

−
1
8
∆

a1a2

b1 b2

�

εαβ ε
kl ( j(1)k(i ∂ j(1)j)l ) + εi j ε

γδ ( j(2)
γ(α∂ j(2)

β)δ)
�

+
11
96
εi j εαβ ∆

a1a2

b1 b2
(J a

b∂ J b
a )

+
1
8

da1a2a
b1 b2 b da4a5 b

b4 b5a (J
b4
a4
∂ J b5

a5
)−

1
24
εi j εαβ

�

(J a1

b1
∂ J a2

b2
) + (J a2

b2
∂ J a1

b1
)
�

−
1

12
εi j εαβ

�

(J a1

b1
∂ J a2

b2
)− (J a2

b2
∂ J a1

b1
)
�

+
1
8
∆

a1a2

b1 b2

�

( j(1)i j ∂ j(2)
αβ
) + (∂ j(1)i j j(2)

αβ
)
�

+
�

1
12 i f a1a2a

b1 b2 b +
3
16 da1a2a

b1 b2 b

� �

εαβ ( j
(1)
i j ∂ J b

a ) + εi j ( j
(2)
αβ
∂ J b

a )
�

+
1

12
i f a1a2a

b1 b2 b

�

εαβ (∂ j(1)i j J b
a ) + εi j (∂ j(2)

αβ
J b

a )
�

−
1
8

�

εαβ (T j(1)i j ) + εi j (T j(2)
αβ
)
�

∆
a1a2

b1 b2

−
1

12
εi j εαβ i f a1a2a

b1 b2 b (T J b
a ) +

1
12

i f a1a2a
b1 b2 b ( j

(1)
i j j(2)

αβ
J b

a ) +
1

24
∆

a1a2

b1 b2

�

εαβ ( j
(1)
i j J a

b J b
a ) + εi j( j

(2)
αβ

J a
b J b

a )

+
1

16
da1a2a

b1 b2 b da4a5 b
b4 b5a

�

εαβ ( j
(1)
i j J b4

a4
J b5

a5
) + εi j ( j

(2)
αβ

J b4
a4

J b5
a5
)
�

+
7

288
εi j εαβ i f a1a2a

b1 b2 b (J
b
a J a′

b′ J
b′
a′ )

−
1

48

�

εαβ
�

j(1)i j (J
a1

b1
J a2

b2
+ J a2

b2
J a1

b1
)
�

+ εi j

�

j(2)
αβ
(J a1

b1
J a2

b2
+ J a2

b2
J a1

b1
)
��

−
1

24
εi j εαβ

�

εb1 b2c ε
ac(d (J a1

d J a2)
b J b

a )− ε
a1a2c εac(d (J

d
b1

J b
b2)

J a
b )
�

�

. (3.23)

In this expression, we have omitted the positional argument of the operators on the right-
hand side—they are all inserted at the origin. There are also null operators that can be added
freely on the right-hand side. In particular, we have made the choice to include the term
proportional to (J a

b J b
a ) and no terms proportional to εik ε jl ( j(1)i j j(1)kl ) or εαγ εβδ ( j(2)

αβ
j(2)
γδ
), as

these are interchangeable due to null relations associated with the Higgs branch relations
(3.5). Indeed, the explicit null relations at conformal weight two are

1
4
(J a

b J b
a ) = ε

il εk j ( j(1)i j j(1)kl ) = ε
αδ εγβ ( j(2)

αβ
j(2)
γδ
) . (3.24)

At weight three, one finds in the representation (1,1,1) the null fields

(J a
b J b

c J c
a) = −

3
4
∂ (J d

e J d
e ) = −3εil εk j ∂ ( j(1)i j j(1)kl ) = −3εαδ εγβ ∂ ( j(2)

αβ
j(2)
γδ
) , (3.25)

while in representation (2,2,8), one has

0= (J c
b W a

iαc ) + (J
a
d W d

iαb )−
2
3
δa

b(J
c
d W d

iαc ) , (3.26)

and

εkl ( j(1)ik W a
lαb ) = ε

γδ ( j(2)αγ W a
iδb ) =

1
4

�

(J a
c W c

iαb )− (J
c
b W a

iαc )
�

. (3.27)

Recall also that the Higgs branch relation at R= 3 in the representation (2,2,1) is not realised
as a null relation.

3.2 Theory 2: rank-one C2U1 theory

We next turn to the twisted A2 trinion for which the untwisted puncture is specified by the
subregular embedding Λ1 : su(2)→ su(3), while the twisted punctures are still full punctures.
In [8], exploiting an S-duality argument, this theory was identified as one of the “new rank-
one SCFTs” discovered in [17, 18]. Some of its properties were further analysed in [19], and
ultimately this theory was incorporated into the classification of [64]—it is the IV ∗ theory in
the I4 series. We will refer to it as the rank-one C2U1 theory, in reference to its C2 × U(1)
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flavour symmetry,

rank-one C2U1 theory ←→ . (3.28)

Let us expand on the analysis already available in the literature by, in particular, showcasing
the full set of relations of its Higgs branch chiral ring and constructing its associated vertex
operator algebra.

3.2.1 Central charges, Macdonald index, and Higgs branch chiral ring

The Weyl anomaly coefficients of the rank-one C2U1 theory are well-known and can be easily
verified using (2.2),

aC2U1
=

17
12

, cC2U1
=

19
12

. (3.29)

The unique Coulomb branch chiral ring generator for this theory has scaling dimension∆= 3,
in agreement with the Shapere-Tachikawa relation. Knowledge of the Coulomb branch spec-
trum of this theory immediately grants access to the Coulomb branch spectrum of the T̃3 theory
of the previous subsection. Indeed, while remaining agnostic regarding the local contributions
of twisted punctures to the Coulomb branch dimensions, it is known (see, e.g., [6]) that modi-
fying an untwisted A2 puncture from subregular to trivial has the effect of introducing one new
Coulomb branch operator of dimension three. We thus see that T̃3 has rank two and Coulomb
branch scaling dimensions ∆1 =∆2 = 3, as advertised above.

The Macdonald limit of the superconformal index of the C2U1 theory is straightforward to
compute using (2.9)

IC2U1
M (q, t; a,b) =

∑

λ

PE
�

t+t2+(a3+a−3)t
3
2

1−q

�

Pa2
(λ,λ)

�

a
p

t, ap
t
, a−2

�

2
∏

j=1
PE
� t

1−qχ
c1
adj(b j)

�

Pc1
(λ)(b j)

PE
� t2+t3

1−q

�

Pa2
(λ,λ)(t, 1, t−1)

= PE
�

1
1− q

¦

�

1+χc2
adj(b)

�

t +
�

(a3 + a−3)χc2
5 (b)

�

t
3
2 −

�

1+χc2
5 (b)

�

t2

+ qt −
�

(a3 + a−3)
�

χ
c2
adj(b) +χ

c2
5 (b)

��

t
5
2

+
�

− (a6 + a−6)− 1−χc2
14(b)−χ

c2
adj(b) +χ

c2
5 (b)

�

t3 + . . .
©

�

. (3.30)

We observe that the trinion does not contain free hypermultiplets and that the manifest
U(1) × USp(2)4 × USp(2)4 flavour symmetry is indeed enhanced to U(1) × USp(4)4. The
level of the latter is determined by the levels of the USp(2) factors which are embedded in
USp(4) with embedding index one. We have written the result in terms of characters of this
enhanced flavour symmetry. The USp(2)4 factors each carry a Witten anomaly, and so does
their enhancement USp(4)4 [20].

From the q → 0 limit of (3.30) we deduce that the Higgs branch chiral ring is generated
by moment map operators µu(1) and µc2

of R-charge R = 1 and by R = 3/2 generators trans-
forming as 5±3, which we denote w±. The quantum numbers of their relations can also be
discerned from (3.30). The explicit expressions of the elementary relations up to R = 3, as
obtained from null operators in the vertex operator algebra to appear below, are

R= 2: µ2
c2

�

�

10
= −

1
9
µ2
u(1)

�

�

10
, (3.31)

µ2
c2

�

�

50
= 0 , (3.32)
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R= 5
2 : µc2

w±
�

�

10±3
= 0 , (3.33)

µc2
w±
�

�

5±3
= −

1
3
µu(1)w±

�

�

5±3
, (3.34)

R= 3: w±w±
�

�

1±6
= 0 , (3.35)

w+w−
�

�

10
= −

2
81
µ3
u(1)

�

�

10
, (3.36)

w+w−
�

�

100
= −

1
27
µ2
u(1)µc2

�

�

100
, (3.37)

w+w−
�

�

140
= −

2
9
µu(1)µ

2
c2

�

�

140
. (3.38)

The term +χc2
5 (b)t

3 in the plethystic logarithm of IC2U1
M (q, t; a,b) is an artefact of that log-

arithm and does not indicate the presence of an additional generator. Indeed, the plethystic
exponential is designed to subtract all composites of the generators and the elementary rela-
tions. In particular it subtracts the composites of µc2

and the relation µ2
c2

�

�

50
= 0, which reside

in the representations 10 ⊗ 5 = 35 ⊕ 10 ⊕ 5. However, the symmetric product of three mo-
ment map operators µc2

does not contain the representation 5, hence it needs to be added
back in the plethystic logarithm. Additionally, the relations at R = 2 are a consequence of the
saturation of the unitarity bounds of [33,47], as was also observed in [19].

3.2.2 The C2U1 vertex operator algebra

The strong generators of the VOA associated with the rank-one C2U1 theory are in one-to-
one correspondence with the Higgs branch chiral ring generators. Indeed, the singlet Higgs
branch relation at R = 2 (see (3.31)) is tantamount to the statement that c2d = cSug,tot and
so the conformal stress tensor is identified with the Sugawara stress tensor. This accounts for
the +qt contribution in the plethystic logarithm of the the Macdonald index. Table 6 lists the
complete set of strong generators.

Table 6: Strong generators of the vertex operator algebra associated with the rank-
one C2U1 theory. The c2 adjoint representation 10 is realised by a symmetrised pair
of fundamental indices, while the 5 is realised as an Ω-traceless, antisymmetrised
pair of fundamental indices.

O V(O) hV(O) c2 × u(1)

µu(1) j 1 10

µc2
JI J 1 100

w WI J 3/2 53

w̃ fWI J 3/2 5−3

Bootstrapping the vertex operator algebra follows the same template as in the previous
subsection. Denoting by Ω the symplectic form of C2, we have the following canonical OPEs
involving the affine currents,

j(z) j(0) ∼
−9
z2

, (3.39)

JI J (z) JK L(0) ∼
−2 ΩL(IΩJ)K

z2
+

2 Ω(I(K JJ)L)(0)

z
, (3.40)
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j(z) WI J (0) ∼
+3 WI J (0)

z
, (3.41)

j(z) fWI J (0) ∼
−3 fWI J (0)

z
, (3.42)

JI J (z) WK L(0) ∼
2 Ω(I[K WJ)L](0)

z
, (3.43)

JI J (z) fWK L(0) ∼
2 Ω(I[K fWJ)L](0)

z
, (3.44)

and the additional non-zero OPE is W ×fW , which is given by

WK1 L1
(z) fWK2 L2

(0) ∼
∆

5,5
K1 L1;K2 L2

z3
+

1
z2

�

−
1
3
∆

5,5
K1 L1;K2 L2

j + 2Ω[K1[K2
JL1]L2]

�

+
1
z

�

−
1
6
∆

5,5
K1 L1;K2 L2

∂ j +Ω[K1[K2
∂JL1]L2] +

1
18
∆

5,5
K1 L1;K2 L2

( j j)

−
2
3
Ω[K1[K2

( jJL1]L2]) +
1
10
∆

5,5
K1 L1;K2 L2

ΩPQΩRS (JPRJQS)

+
2
3

�

(J[K1[K2
JL1]L2])|Ω-traceless

�

�

, (3.45)

where

∆
5,5
K1 L1;K2 L2

:= ΩK1K2
ΩL1 L2

+ΩK1 L2
ΩK2 L1

−
1
2
ΩK1 L1

ΩK2 L2
, (3.46)

and we have omitted the positional arguments for the operators on the right-hand side, which
are all evaluated at the origin. The stress energy tensor is provided by the Sugawara construc-
tion for the full flavour symmetry, and is thus given by

T (z) = −
1
18
( j j)(z)−

1
2
ΩPQΩRS (JPRJQS)(z) , (3.47)

with the expected central charge c2d = −19.
Null relations can be easily derived. At conformal weight two we find a relation in the

representation 50,

0= (JL[K JM]N )Ω
LN +

1
4
ΩKMΩ

PQ(JP L JQN )Ω
LN . (3.48)

At weight h= 5
2 , one computes

0= −(JK[I WJ]L)Ω
K L +

1
4
ΩI JΩ

MN (JMK WLN )Ω
K L +

1
6
( j WI J ) +

1
2
∂WI J , (3.49)

0=
�

(JIK WLJ ) + (JJK WLI)
�

ΩK L , (3.50)

transforming in 5+3 and 10+3, respectively. Their conjugates are of course also null. Next, at
h= 3 one can verify the following null relations,

0= (WI JWK L)Ω
IKΩJ L , (3.51)

0= (WK L fWMN )Ω
KMΩLN +

5
81
( j j j)−

5
9
(∂ j j) +

1
3
(JK L JMN j)ΩKMΩLN

− (JK L ∂JMN )Ω
KMΩLN +

5
9
∂ 2 j , (3.52)

0=
1

18
(JK L j j)− (WM(K WL)N )Ω

MN +
2
9
(J(KM JNO JP L))Ω

MNΩOP

+
2
9
(JK L JMNJOP)Ω

MOΩN P , (3.53)
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0=
2
3
(J(KM JNO JP L))Ω

MNΩOP +
1
6
(JK L JMNJOP)Ω

MOΩN P , (3.54)

0= (W fW )|140
+

2
9
( jJ J )|140

−
2
3
(J ∂J )|140

. (3.55)

3.3 Theory 3: rank-two su(3)-instanton SCFT

So far, the identification of twisted A2 theories has not been particularly surprising, with one
entry previously studied and the second a new theory. This changes as we turn our attention
to the next theory of the twisted A2 family. To start with the conclusion, we find that

rank-two su(3)-instanton SCFT ←→ . (3.56)

See, for example, [28] for a review of some properties of the rank-two su(3)-instanton SCFT,
which we will also sometimes denote as T (2)

su(3). The surprising feature of this identification was
mentioned already in Section 1. It has often been asserted that only in the presence of irregular
(wild) punctures can non-integer Coulomb branch dimensions occur, but the Coulomb branch
spectrum of T (2)

su(3) is ∆1 =
3
2 ,∆2 = 3. Comparing to the Coulomb branch spectrum of T̃3, we

see that apparently, changing a twisted trivial embedding into c1 to a principal embedding
replaces a dimension-three generator from the Coulomb branch spectrum with a dimension 3

2
generator.

We now provide evidence for the identification (3.56). First, the Weyl anomaly coefficients,
once again computed using (2.2), match those of the rank-two su(3)-instanton SCFT,

a =
47
24

, c =
13
6

. (3.57)

Second, the Macdonald index

IM (q, t;a,b) =
∑

λ

PE
� t

1−qχ
a2
adj(a)

�

Pa2
(λ,λ)(a) PE

� t
1−qχ

c1
adj(b)

�

Pc1
(λ)(b) PE

� t2

1−q

�

Pc1
(λ)(t

1
2 , t−

1
2 )

PE
� t2+t3

1−q

�

Pa2
(λ,λ)(t, 1, t−1)

= PE
�

1
1− q

¦

�

χ
a1
adj(b) +χ

a2
adj(a)

�

t +χa1
2 (b)χ

a2
adj(a)t

3
2 − t2 + qt −χa1

2 (b)
�

1+ 2χa2
adj(a)

�

t
5
2

+χa1
2 (b)qt

3
2 −

�

1+χa1
adj(b) +χ

a1
adj(b)χ

a2
adj(a) +χ

a2
adj(a) +χ

a2
10(a) +χ

a2

10
(a)
�

t3 + . . .
©

�

, (3.58)

shows that the trinion does not contain free hypermultiplets and that the flavour symmetry is

GF = SU(2)4 × SU(3)6 , (3.59)

as expected. The class S realisation immediately confirms the result of [32] that the SU(2)4
factor carries a Witten anomaly. Third, its Hall-Littlewood index—the q→ 0 limit of (3.58)—
agrees with the Hilbert series of M(2)

su(3), the centred instanton moduli space of two su(3)

instantons, i.e., the Higgs branch of T (2)
su(3), as computed in [65,66] and whose generators and

relations were decoded already in [28]. Fourth, its Schur limit (t → q) agrees perfectly with
the expression found in [28] (see equation (5.4) in that paper).24 The vertex operator algebra

24See also (5.26) of [67], and (4.10) of [32], after identifying TX of that reference with T (2)
su(3) [28]. Note also that,

taking a cue from [59] (where the TQFT-expression of the indices of (untwisted) trinion theories was reorganised
in terms of characters of the critical-level current algebras residing at the punctures), reference [32] proposed an
expansion of the T (2)

su(3) Schur index in terms of critical characters, see their (7.1). This result can now be easily
recognised and understood as simply being the TQFT-expression of the index of the twisted trinion theory (3.56).
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V(2)
su(3) of this theory was constructed in [28, 32]. It is strongly generated by the operators

descending from the Higgs branch chiral ring generators—the critical affine a1 × a2 currents
and an h= 3

2 generator transforming in the representation (2,3) of a1×a2—together with the
Virasoro stress tensor.

3.4 Theory 4: (A1, D4) Argyres-Douglas theory plus hypermultiplet

Our next entry will be the trinion . If we apply the tentative lesson learned below (3.56)
about the change in the Coulomb branch spectrum that arises by making the replacement
→ , but now starting with the rank-one C2U1 theory, we expect this theory to be a rank-

one theory whose unique Coulomb branch chiral ring generator has scaling dimension∆= 3
2 .

According to the classification of rank-one theories of [64], there exists just one theory that
fits the bill: the (A1, D4) Argyres-Douglas theory. However, the trinion theory may contain
additional hypermultiplets that, of course, do not contribute to the Coulomb branch spectrum.
Indeed, we will verify momentarily that the trinion carries an additional single hypermultiplet,
and thus we find

(A1, D4) Argyres-Douglas theory⊗ free hypermultiplet ←→ . (3.60)

Once again we encounter a theory with fractional scaling dimensions for Coulomb branch
chiral ring operators. As always, our first checks are the a and c central charges. We can easily
compute them to be

a =
5
8
=

7
12
+

1
24

, c =
3
4
=

2
3
+

1
12

. (3.61)

In the second equality, we have split off the contribution from a single free hypermultiplet
(a, c)HM = (

1
24 , 1

12), and indeed recognise the central charges of the (A1, D4) Argyres-Douglas
theory.

The computation of the Macdonald index is by now familiar. Its result for the trinion of
interest in this subsection is

IM (q, t; a,b) = PE
�

1
1− q

¦

χ
a1
2 (b)t

1
2 +χa2

adj(a,b)t − (1+χa2
adj(a,b))t2 + qt + . . .

©�

. (3.62)

We spot a free hypermultiplet transforming as a doublet of SU(2)HM in the t
1
2 term, while the

interacting part of the theory has flavour symmetry SU(3), of which the punctures of the trinion
only make manifest an SU(2)int×U(1) subgroup, under which the fundamental representation
decomposes as 3 → 2−1 + 12. More precisely, the trinion only makes manifest the diagonal
symmetry group SU(2)diag = diag(SU(2)HM, SU(2)int). The flavour central charge of SU(2)int
can be deduced by observing that SU(2)diag has flavour central charge equal to four, while
SU(2)HM has kHM = 1. The flavour central charge of SU(2)int is thus three, which implies that
the flavour central charge of SU(3) is also three, as SU(2)int is embedded with embedding
index one. Hence, for the flavour symmetry of the interacting part, we find GF = SU(3)3 as
expected. The SU(2)HM factor (and thus also the SU(2)diag factor) carries a Witten anomaly.
From the q→ 0 limit of (3.62) we find that the Higgs branch chiral ring of the interacting part
of the theory is generated entirely by the moment map operators of this flavour symmetry.
They satisfy the quadratic relations corresponding to the Joseph ideal, i.e., µ2

�

�

1 = µ
2
�

�

adj = 0.
This is as it should be, since the Higgs branch of the (A1, D4) Argyres-Douglas theory is the
minimal nilpotent orbit of SU(3), also known as the one-instanton moduli space of SU(3)
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instantons. In fact, the values of the c central charge and flavour central charge guaranteed
these relations [33].

The vertex operator algebra associated with the (A1, D4) Argyres-Douglas theory is simply
the affine current VOA Ösu(3)− 3

2
[33, 68, 69]. (The stress tensor is provided by the Sugawara

construction as c = cSug). One can verify that the Schur index agrees to very high order in a
series-expansion in q with the vacuum character of this vertex operator algebra. It is useful
for this comparison to recall that the latter quantity is given by [32,70]

χ0(q; a,b) = q
1
3 PE

�

q
1− q2

χ
a2
adj(a,b)

�

. (3.63)

The Casimir prefactor q−c2d/24 of the character is omitted in the Schur index, as the latter
quantity is normalised to start with 1 in a series expansion.

3.5 Theory 5: two copies of (A1, D4) Argyres-Douglas theory

The final member of the twisted A2 family turns out to decompose into a tensor product theory,

�

(A1, D4) Argyres-Douglas theory
�⊗2 ←→ . (3.64)

The usual checks can be performed. First, from our rule for understanding reduced twisted
A2 punctures we expect this trinion to describe a theory with two Coulomb branch chiral
ring generators of equal scaling dimension ∆1 = ∆2 =

3
2 , which indeed is compatible with

our identification above. Second, the conformal anomaly coefficients, computed using (2.2),
agree with the proposal,

a = 2×
7
12

, c = 2×
2
3

. (3.65)

Third, the Macdonald index can be massaged into the form

IM (q, t;a) = PE
�

1
1− q

¦

χ
a2
adj(a)t − (1+χ

a2
adj(a))t

2 + qt + . . .
©�2

, (3.66)

which manifestly captures the double copy structure of the theory and shows that the global
symmetry is enhanced to

GF = SU(3)3 × SU(3)3 . (3.67)

The punctures of the trinion only make manifest the diagonal subgroup of the full flavour
symmetry. Each factor of the Macdonald index correctly matches that of the (A1, D4) Argyres-
Douglas theory. See the previous subsection for some more details. Finally, we identify the
vertex operator algebra for this trinion theory as two commuting level −3/2 affine a2 current
algebra, and indeed, to very high order in q, the Schur limit of (3.66) matches the product of
two vacuum characters presented in (3.63).

4 Interconnections between twisted A2 trinions

So far, we have analysed each of the five members of the twisted A2 family individually. How-
ever, the class S realisations of these theories reveal interesting interconnections between
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them, which are established by performing partial Higgsings.25 Indeed, partially closing a
(full) puncture, i.e., replacing a puncture specified by the trivial embedding with one labelled
by some other embedding, can be implemented field-theoretically by giving a nilpotent vacuum
expectation value to the moment map for the flavour symmetry carried by the full puncture
and flowing to the IR [5,25–27]. In Table 1, all horizontally or vertically neighbouring theories
are related to one another in this manner. In this section we explore these relations in some
more detail. In doing so, we will recover instances of the more general framework developed
in [28–30]. In particular, these references exploit and fully bring to bear the insights of [31]
that these types of interrelation via Higgsing of a theory TUV and a theory TIR suggest a free-
field realisation of the vertex algebra V(TUV) in terms of the vertex algebra V(TIR) together
with additional free fields.

We start by considering the theory T̃3 from Section 3.1. From the relations (3.5)–(3.12)

we see that the Higgs branch of this theory, MT̃3
H , contains the subvarieties

Nsu(3) ⊂MT̃3
H , and Nsu(2) ×Nsu(2) ⊂MT̃3

H , (4.1)

where we set to zero {ω,µ(1)
su(2),µ

(2)
su(2)} and {ω,µsu(3)}, respectively.26 Here Ng is the nilpotent

cone (of the complexification) of the Lie algebra g, i.e., the subset of gC containing all nilpotent
elements.27 Each nilpotent cone is associated to one of the full punctures. For example,

Nsu(2) =
�

µ=
� p e

f −p

� �

� trµ2 = 0
	∼=

�

(p, e, f ) ∈ C3 | p2 + e f = 0
	∼= C2/Z2 . (4.2)

The nilpotent cone Ng itself is stratified, with the strata being the nilpotent orbits Oe = GC · e
for e a nilpotent element of gC. The Jacobson-Morozov theorem states that these are in one-
to-one correspondence with conjugacy classes of embeddings Λ : su(2) → g via e = Λ(σ+).
The reappearance of su(2)-embeddings is of course no coincidence. A partial Higgsing along
OΛ(σ+) ⊂Ng is tantamount to partially closing a full puncture to one labelled by the embedding
Λ [5,25,26].

In the case at hand, we are interested in performing a partial Higgsing of T̃3 along the
nilpotent orbit OΛ1(σ+) ⊂ Nsu(3), where Λ1 : su(2)→ g is the subregular embedding specified
in Table 4a. This is the minimal nilpotent orbit. The class S realisation tells us that the theory

flows in the infrared to the rank-one C2U1 theory: → . In particular, this implies that

the vertex operator algebra we obtained in Section 3.2.2 is the subregular quantum Drinfel’d-
Sokolov reduction of V(T̃3) with respect to the Ösu(3) affine subalgebra [58]. The Higgs branch
chiral ring of the rank-one C2U1 theory can be similarly deduced from the one of T̃3.

More intriguing are the partial Higgsing operations of T̃3 along either one of the fac-

tors Nsu(2) ×Nsu(2) ⊂MT̃3
H . The nilpotent cone of su(2) has just two strata: the origin and

Nsu(2) \ {0}. The origin corresponds to performing no Higgsing at all. The nontrivial Higgsing
of interest is thus triggered by a vacuum expectation value along the unique (nontrivial) nilpo-
tent orbit of su(2), i.e., Nsu(2) \{0}. For concreteness and without loss of generality, we choose

an expectation value 〈(µ(1)
su(2))++〉 6= 0. Our class S realisation indicates that the low-energy

result of this Higgsing is the rank-two su(3)-instanton SCFT, → . What’s more, the

type of Higgsing at work here has been analysed in detail in [28, 29, 31], and we can adapt

25It is tautological, but nevertheless important, to state that a partial Higgsing of the theory corresponds to giving
a vacuum expectation to Higgs branch chiral ring operators corresponding to a point on a singular subvariety of
the Higgs branch. This point of view was recently re-emphasised in [29,31,71]. The terminology is borrowed from
the Lagrangian literature where partial Higgsings are characterised by the property that they do not fully Higgs
the gauge group.

26The relations with representation-theoretic data in (3.10) are consistent with these statements.
27Nilpotent elements of gC can be characterised by the requirement that all their Casimir invariants vanish.
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the results obtained in those works to our current setting. In particular, we describe a dense,
open set of the Higgs branch of T̃3 as28

MT̃3
H ⊃

�

ÝM(2)
su(3) × T ∗(C∗)

�

/Z2 . (4.3)

Here T ∗(C∗) has coordinates (e
1
2 ,h), while the coordinate ring of the centred two-instanton

moduli space of su(3) instantons ÝM(2)
su(3) is generated by moment map operators µ̃su(2), µ̃su(3)

of R-charge R = 1 and an additional generator ω̃ of R = 3 that transforms as (2,8) under
su(2)×su(3). The action of theZ2 quotient can be understood by noting that it should act as the
centre of the SU(2) flavour symmetry associated with the c1-puncture that has been Higgsed.
As explained in [72], this centre symmetry is identified amongst the different punctures, so
in particular it is identified with that of the other c1-puncture of T̃3 which we can easily keep
track of along the flow. The conclusion is that the Z2 acts by simultaneous negation of e

1
2 and

ω̃. The generators of C[MT̃3
H ] can then be built from the ingredients present in the open set

(4.3). For the moment map operators, we have

�

µ
(1)
su(2)

�

++
= e ,

�

µ
(1)
su(2)

�

+−
=

1
2
h ,

�

µ
(1)
su(2)

�

−−
=
�

S\ −
1
4
h2
�

e−1 , (4.4)

where S\ = −1
2(µ̃su(2))

2
�

�

1, and, rather trivially,

µ
(2)
su(2) = µ̃su(2) , µsu(3) = µ̃su(3) . (4.5)

For the additional Higgs branch chiral ring generator ω, we have

ω+ = ω̃e
1
2 , ω− =

�

−µ̃su(2)ω̃
�

�

(2,adj) −
1
2ω̃h

�

e−
1
2 , (4.6)

where the± denotes the su(2)(1) index and other indices have been kept implicit. As in [28,31],
this realisation of the Higgs branch chiral ring can be affinised with only moderate ingenuity.
Doing so, one obtains a generalised free-field realisation of the vertex operator algebra V(T̃3)
in terms of two chiral bosons and the VOA V(2)

su(3) associated with the two-instanton theory. This
construction, together with its analogues for all two-instanton SCFTs of Lie algebras belonging
to the Deligne series of exceptional Lie algebras, will be presented in [30]. Finally, the fact
that Higgsing T̃3 along the locus Nsu(2) ×Nsu(2) does not decrease the dimensionality of the
Coulomb branch indicates that T̃3 in fact possesses a mixed branch over each point of its two-
complex-dimensional Coulomb branch which intersects the Higgs branch precisely along the
locus Nsu(2)×Nsu(2). This theory therefore has an extended Coulomb branch in the terminology
of [64]. See [29,30] for more details.

Let us move on to analyse Higgsings of the rank-two su(3)-instanton SCFT. The class S
picture indicates that its Higgs branch ÝM(2)

su(3) contains the subvarieties

Nsu(3) ⊂ ÝM
(2)
su(3) , and Nsu(2) ⊂ ÝM

(2)
su(3) . (4.7)

Interestingly, our class S realisation shows that Higgsing T (2)
su(3) along the su(3) nilpotent orbit

inside Nsu(3) labelled by the subregular embedding results in the (A1, D4) Argyres-Douglas the-

ory plus one free hypermultiplet: → . We expect similar Higgsings of two-instanton
SCFTs to one-instanton SCFTs triggered by giving a vacuum expectation value to the moment
map operator of the g-symmetry of the two-instanton SCFT to exist for all Lie algebras g in the

28The cotangent bundle of C∗ arises by solving the relation defining C2/Z2 for f in the patch where e 6= 0. The
coordinate h then provides the cotangential direction.
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Deligne series of exceptional Lie algebras. We leave a detailed study to future work. On the
other hand, giving a Higgs branch vacuum expectation value along a nonzero point in Nsu(2)
in (4.7) has been studied in great detail in [28], and our class S pictures handily confirm
the results obtained there. Indeed, we see that the Higgsed theory flows to two copies of the

(A1, D4) Argyres-Douglas theory: → . As a result, one can see that a dense open patch

of ÝM(2)
su(3) is given by

ÝM(2)
su(3) ⊃

�

ÝM(1)
su(3) ×ÝM

(1)
su(3) × T ∗(C∗)

�

/Z2 . (4.8)

The Z2 now acts by negating the C∗ coordinate and exchanging the two copies of the one-
instanton moduli space of su(3) instantons, which we denoted by ÝM(1)

su(3).
29 This realisation

was similarly presented and successfully affinised in [28]. As above, this result indicates that
the rank-two su(3)-instanton theory has an extended Coulomb branch that intersects the Higgs
branch along C2/Z2.

Finally, we turn our attention to Higgsing the rank-one C2U1 theory. In terms of the
c1 × c1 ⊂ c2 that is manifest in the class S realisation, we would like to give one of the c1 mo-
ment maps a nilpotent expectation value. The low-energy theory one obtains in this manner is

predicted to be the (A1, D4) Argyres-Douglas theory plus one hypermultiplet: → . By

a parallel argument to that presented above, one can describe a dense open set of the Higgs
branch of the rank-one C2U1 theory according to

MC2U1
H ⊃

�

ÝM(1)
su(3) ×C

2 × T ∗(C∗)
�

/Z2 , (4.9)

where the coordinate ring C[M(1)
su(3)] is generated by the su(3) moment map operator sub-

ject to the Joseph relations. Like below (4.3), the Z2 acts according to the charge under the
centre of the manifest SU(2) symmetry of the infrared trinion. Upon decomposing the en-
hanced flavour symmetry su(3) in terms of the flavour symmetry carried by the punctures as
su(3)→ su(2)⊕ u(1)⊕ 2+3 ⊕ 2−3 (see below (3.62)), we see that the moment map operators
associated with su(2)⊕u(1) are even, while those transforming in the representation 2+3⊕2−3
are odd under Z2. For the same reason, the Z2 also acts with a minus sign on the factor C2

describing the free hypermultiplet. Of course, it also negates the coordinate e
1
2 of T ∗(C∗).

All ingredients are then in place to construct C[MC2U1
H ] and to perform an affinisation of this

realisation. This Higgsing is actually just one instance of a much more general analysis of
interconnections between rank-one SCFTs studied in [29]. We refer the reader to that work
for all details.

5 Dualities involving twisted A2 theories

An elegant feature of theories of class S (briefly recounted in Section 2) is that their exactly
marginal couplings are encoded as the complex structure moduli of their UV curve. Pair-of-
pants decompositions of this Riemann surface correspond to weakly coupled gaugings of the
trinion theories associated with the three-punctured spheres occurring in the decomposition,

29Note that the superconformal index can be enriched with a fugacity s for the Z2 symmetry of our interest [72].
Its effect is most easily described in the TQFT expression for the index as a sum over representations λ of c1. It
simply introduces a factor s|λ| in the summand, where |λ| is the 2-ality of the representation, i.e., the number of
boxes in its Young diagram modulo two. Refining the index of “Theory 5” in this manner, one easily confirms the
existence of an even and odd adjoint-valued operator with R= 1. The even operator is the diagonal combination of
the currents; it arises from the λ= 0 term in the sum from the K-factor of the full puncture. The odd combination
can then be identified as the difference of the two currents.
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and so the distinct field theoretic descriptions of the different degeneration limits are all unified
by a generalised S-duality. In this section we consider two paradigmatic examples of such
generalised S-dualities involving the twisted A2 theories presented earlier in the paper.

Let us start with the N = 2 superconformal field theory described by an SU(3) gauge
theory with (generalised) matter given by three fundamental hypermultiplets and two copies
of the (A1, D4) Argyres-Douglas theory, which we have denoted earlier as T (1)

su(3). This gauging
is exactly marginal as the β-function vanishes, because the sum of the (four-dimensional)
flavour central charges of the matter involved equals four time the dual Coxeter number of
SU(3): ktot = 6 + 3 + 3 = 12. This theory was called T3,2, 3

2 , 3
2

in [73]. Recalling that the
untwisted A2 trinion with two full punctures and one minimal puncture encodes 3 × 3 free
hypermultiplets and using the realisation of two copies of T (1)

su(3) identified in (3.64), it is now
obvious that this theory has a twisted A2 class S realisation depicted below.

T (1)
su(3) SU(3) T (1)

su(3)

3

←→ . (5.1)

The gauging takes place along a full A2 puncture. Upon driving the exactly marginal cou-
pling constant to an strongly coupled cusp of the conformal manifold, a novel weakly-coupled
description emerges. From the class S picture, we can identify the two alternative different
degeneration limits of the surface, which are in fact equivalent. The result is shown in (5.2).
The gauging takes place along a full twisted puncture, and using (3.60) and (3.56), we find
an S-dual description in terms of both rank-one and rank-two su(3)-instanton theories.

T (1)
su(3) SU(2) T (2)

su(3)

1/2

←→ (5.2)

In words, the S-dual description of (5.1) is an SU(2) gauge theory with one fundamental half-
hypermultiplet, one copy of the (A1, D4) Argyres-Douglas theory, of which an SU(2)3 ⊂ SU(3)3
flavour symmetry is gauged, and one copy of the rank-two su(3)-instanton theory, of which
the SU(2)4 flavour factor is gauged. It is easy to verify that this gauging is exactly marginal:
ktot = 1 + 3 + 4 = 8 = 4 × 2. It is also clear that the Witten anomaly of the SU(2) flavour
symmetries of the half-hypermultiplet and the rank-two su(3)-instanton theory cancel. The
study of precisely this S-duality relating (5.1) and (5.2) was the subject of the paper [32].30

Our class S description confirms their findings and provide a particularly intuitive explanation
of their result.

The second theory we consider is intricately self-dual. It is described by an SU(2) gauge
theory with one fundamental hypermultiplet and two copies of the (A1, D4) Argyres-Douglas
theory, of both of which an SU(2)3 ⊂ SU(3)3 subgroup is gauged. This gauging is exactly

30Their theory TX was identified as the rank-two su(3)-instanton theory in [28], see also footnote 24. Note that
in our class S realisation the extra hypermultiplet is incorporated into the trinion that also includes the (A1, D4)
Argyres-Douglas theory. In [32], the hypermultiplet was grouped together with the rank-two theory to give what
the authors of [73] work dubbed the T3, 3

2
theory.

25

https://scipost.org
https://scipost.org/SciPostPhys.12.5.172


SciPost Phys. 12, 172 (2022)

marginal as ktot = 2 + 3 + 3 = 8 = 4 × 2. Before describing the class S realisation, let us
recall from the canonical example of Argyres-Seiberg duality in class S that a degeneration
limit of the Riemann surface of an A2 theory that pinches off a pair of minimal punctures is
described by one fundamental hypermultiplet coupled to an SU(2) gauge theory that is also
gauging an SU(2) ⊂ SU(3) subgroup of the flavour symmetry associated with the full puncture
along which the degeneration takes place [1].31 With this insight, it is easy to see that we can
give two different class S descriptions of the gauge theory of interest (in one of which the
hypermultiplet is interpreted as two half-hypermultiplets), and that these descriptions are in
fact S-dual to one another. The situation is illustrated in (5.3).

←→
T (1)
su(3) SU(2) T (1)

su(3)

1

←→ . (5.3)

6 Future directions

We have seen that even the simplest family of twisted Aeven class S constructions contains
a rich assortment of SCFTs, including (surprisingly) certain Argyres-Douglas type theories.
This should be a good motivation for further study into this interesting corner of the class
S biosphere. We conclude in this section with a couple of more specific comments about
immediate extensions of this work.

6.1 Twisted A2n theories for n> 1

We see no obstruction in principle to directly pursuing an investigation of twisted A2n theories
for n> 1 using the assorted diagnostics marshalled for the task in this paper. Though we leave
such an examination for future work, to pique the reader’s interest and to showcase the wealth
of theories that remains to be uncovered amongst twisted A2n constructions,32 we present here
a realisation of the infinite series of theories dubbed D2[SU(2N + 1)], which were introduced
in [74,75] and of which the (A1, D4) Argyres-Douglas theory is the N = 1 instance. The basic
properties of the D2[SU(2N + 1)] theories are as follows:

• The D2[SU(2N + 1)] theory has rank N . Its Coulomb branch spectrum is ∆i =
2i+1

2 ,
i = 1, . . . , N .

• The Weyl anomaly coefficients are given by a = 7
24 N(1+ N) and c = 1

3 N(1+ N).

• The flavour symmetry group is SU(2N+1)with flavour central central charge k = 2N+1.

• The Schur limit of the superconformal index was conjectured in [70] to take the form

IS(q;a) = PE
� q

1− q2
χ
a2N
adj (a)

�

. (6.1)

31In the parlance of [5–14] this involves an “irregular” puncture, though this should not be confused with our
use of “irregular” elsewhere in this paper.

32In [19], a series of twisted A2n theories generalising the rank-one C2U1 theory was analysed. These theories
were dubbed R2,2N and arise by considering a trinion specified by two full twisted punctures and one untwisted
puncture labelled by the subregular embedding (often called a minimal puncture).
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• The associated vertex operator algebra is conjectured to be the affine current algebra
[70]:

V
�

D2[SU(2N + 1)]
�

= Ûsu(2N + 1)− 2N+1
2

. (6.2)

Generalising the realisation (3.64) of the (A1, D4) Argyres-Douglas theory plus one hypermul-
tiplet, the above properties are reproduced (insofar as can be checked) by the identification

D2[SU(2N + 1)]⊗ (free hypermultiplet)⊗N ←→ [N + 1, N]

[12N]

[2N]

, (6.3)

where the untwisted A2N puncture is labelled by the embedding specified by the decomposition
2N+ 1→ (N+ 1)⊕N of the fundamental representation of A2N into SU(2) representations,
while one twisted puncture is labelled by the trivial embedding and the other one by the prin-
cipal embedding. The Witten anomaly for the USp(2N) symmetry at the full twisted puncture
is carried by the hypermultiplets, while the full SU(2N+1) flavour symmetry of the interacting
part is an enhancement of the class S symmetries.

Furthering the analogy, two copies of the D2[SU(2N+1)] theory can be reproduced by the
following twisted trinion,

(D2[SU(2N + 1)])⊗2 ←→ [12N+1]

[2N]

[2N]

. (6.4)

with only a diagonal subgroup of the two SU(2N + 1) symmetries made manifest. With these
two trinions identifies, we can deduce a nice family of self-S-dualities involving the theories
D2[SU(2N + 1)] that generalises (5.3). The theory of interest is a USp(2N) gauge theory
with one fundamental hypermultiplet and two copies of the D2[SU(2N + 1)] theory, of both
of which a USP(2N)2N+1 ⊂ SU(2N + 1)2N+1 subgroup is gauged. Note that this gauging is
exactly marginal as ktot = 2+(2N+1)+(2N+1) = 4(N+1). In terms of the class S realisations
given above, this gauge theory can be constructed as in the left-hand side of (6.5).

[N + 1, N] [N + 1, N]

[2N] [2N]
←→ D2[SU(2N + 1)] USp(2N) D2[SU(2N + 1)]

1

←→

[N + 1, N] [N + 1, N]

[2N] [2N]

.

(6.5)
The S-dual description is depicted on the right-hand side of (6.5), and involves colliding
two [N + 1, N] punctures. In [6], such a degeneration of the UV curve was described ex-
plicitly for the cases N = 1,2, and here we take the natural generalisation for granted. It
amounts to a USp(2N) gauge theory coupled to one fundamental hypermultiplet along with a
USp(2N) ⊂ SU(2N + 1) symmetry associated with the full puncture along which the degen-
eration takes place. Thus the right-hand class S configuration again describes the same gauge
theory.

27

https://scipost.org
https://scipost.org/SciPostPhys.12.5.172


SciPost Phys. 12, 172 (2022)

Table 7: Proposal for pole structure and constraints for punctures arising in twisted
A2 theories. For the untwisted punctures this assignment is well-established. No
constraints occur for untwisted A-type punctures. For the twisted punctures, this
proposal correctly reproduces the scaling dimensions of all twisted A2 theories, but
at present lacks a first-principles derivation or independent verification.

Λ p2(Λ) p3(Λ) constraints

1 2 −
1 1 −

1 5
2 −

1 5
2 a-type of d = 3

6.2 Coulomb branch spectrum

In this work we have diligently avoided the question of how the Coulomb branch spectrum
is encoded in twisted A2n theories. However, as we have emphasised above, the occurrence
of half-integer Coulomb branch scaling dimensions is unexpected and deserving of further
study. The conventional method to determine the spectrum, discussed and applied in great
detail in [5–14] for all cases but twisted Aeven, involves two steps. We consider a (twisted)
theory of class S of type j associated to a genus g surface with punctures labelled by the
embeddings Λi . Its Seiberg-Witten curve Σ is the spectral curve of the associated Hitchin
system. Hence, it can be written in terms of meromorphic da-differentials φ(da)(z), where
da, for a = 1, . . . , rank j are the degrees of the Casimir invariants of j. The scaling dimension
of φ(da) is precisely da. The Hitchin field has prescribed singular boundary conditions at the
location of each puncture. For regular (tame) punctures, the singularity is a well-understood
simple pole, possibly with subleading fractional poles if the puncture is twisted. As a result,
the differentials φ(da) develop poles of order pda

(Λi) at each of the punctures. The numbers
pda
(Λ) are called the pole structure of the puncture. Note that if the puncture is twisted these

numbers may be fractional. The first step is then to compute the number of degrees of freedom
in the meromorphic da-differential φ(da)(z),

∑

i

pda
(Λi) + (g − 1)(2da − 1) . (6.6)

This quantity gives a naive count of the dimension of the graded component of the Coulomb
branch of degree da. Note that the scaling dimension da is naturally integer. Apart from the
global contribution (g − 1)(2da − 1), this expression suggests that each puncture adds pda

(Λ)
Coulomb branch operators of scaling dimension da; these can be identified with the coefficients
of the poles ofφda

near the puncture. The reason the count is naive stems from the existence of
constraints among the (leading) coefficients of the poles. The second step is to determine and
take into account these constraints. Two types of constraints can occur. The so-called “c-type
constraints” relate one coefficient to an expression in terms of other coefficients, effectively
removing the operator corresponding to the original coefficient. It does not introduce new
parameters. An “a-type constraint”, on the other hand, states that a coefficient of scaling
dimension d can be expressed in terms of the square of a new coefficient of degree d/2. These
a-type constraints thus provide a mechanism for the theory to acquire Coulomb branch chiral
ring generators of scaling dimensions other than the degrees of the j invariants. In all cases in
the literature, the initial scaling dimension d is an even number.
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A natural candidate for a mechanism to account for the half-integer scaling dimensions
would thus be the existence of a-type constraints for coefficients of odd scaling dimension.
While we leave an in depth exploration of this possibility for future work, we content ourselves
here with pointing out that the pole structures and constraints proposed in Table 7 do indeed
reproduce the scaling dimensions as reported in Table 1.
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