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Abstract

The Kitaev model on the honeycomb lattice, while being integrable via the spin-fermion
mapping, has generally resisted an analytical treatment of the far-from-equilibrium dy-
namics due to the extensive number of relevant configurations of conserved charges.
Here we study a close proxy of this model, the isotropic Kitaev spin-1/2 model on the
Bethe lattice. Instead of relying on the spin-fermion mapping, we take a straightforward
approach of solving Heisenberg equations for a tailored subset of spin operators. The
simplest operator in this subset corresponds to the energy contribution of a single bond
direction. As an example, we calculate the time-dependent expectation value of this ob-
servable for a factorized translation-invariant (or staggered-translation-invariant) initial
state with arbitrary initial (staggered) polarization.

Copyright O. Gamayun and O. Lychkovskiy.
This work is licensed under the Creative Commons
Attribution 4.0 International License.
Published by the SciPost Foundation.

Received 27-10-2021
Accepted 04-05-2022
Published 25-05-2022

Check for
updates

doi:10.21468/SciPostPhys.12.5.175

Contents

1 Introduction 1

2 Strings on the Bethe lattice 3
2.1 Routes 3
2.2 Strings 4

3 Deriving Heisenberg equations 5
3.1 Heisenberg representation 5
3.2 Time derivative of string operators 6
3.3 Summing over lattice sites 7
3.4 Summing over strings of equal length 7
3.5 Heisenberg equations 8

4 Solution of Heisenberg equations 8

1

https://scipost.org
https://scipost.org/SciPostPhys.12.5.175
mailto:o.lychkovskiy@skoltech.ru
http://creativecommons.org/licenses/by/4.0/
https://crossmark.crossref.org/dialog/?doi=10.21468/SciPostPhys.12.5.175&amp;domain=pdf&amp;date_stamp=2022-05-25
https://doi.org/10.21468/SciPostPhys.12.5.175


SciPost Phys. 12, 175 (2022)

5 Dynamics of the bond operator for a product initial state 9

6 Summary and outlook 10

References 11

1 Introduction

Integrability of a quantum many-body model does not automatically imply that its dynamics
can be easily tracked. Quite the opposite, the dynamics of many models, whose spectrum and
eigenstates have been found decades ago, is still under active investigation. Among techniques
used in such studies are the quench action approach [1,2], generalized hydrodynamics [3–5]
and advanced machinery for summing form factor expansions [6–19]. Recently one of us has
explored a straightforward approach to integrable dynamics based on solving an infinite set of
coupled Heisenberg equations [20]. For a nonintegrable system this set is generally believed to
be intractable without approximations, with the complexity of the involved operators growing
unwieldy [21–23]. In contrast, for an integrable system one may hope to find a relatively small
subset of relatively simple operators closed with respect to commutation with the Hamiltonian,
and analytically solve the resulting system of linear differential equations. This approach has
been successfully applied to integrable systems with Onsager algebra – the transverse-field
Ising model and the superintegrable chiral Potts models [20].

Here we apply this approach to yet another model – the isotropic Kitaev spin-1/2 model
on the Bethe lattice of degree 3. It is a close proxy to the Kitaev model on the honeycomb
lattice [24]. Kitaev has demonstrated that his spin model with N spins can be mapped to
a fermionic model that becomes quadratic after fixing the values of ∼ N/2 explicitly known
integrals of motion (IoMs). In fact, an analogous model with a similar integrability structure
can be defined on a large class of regular tricoordinate lattices (i.e. lattices with every vertex
attached to 3 links) that can be divided in two sublattices, A and B [25–28]. In such lattices
each link connects vertexes from different sublattices, and all links can be classified in three
types – X -, Y - and Z-links. The Bethe lattice of degree 3 falls in this category, see Fig. 1. The
Kitaev Hamiltonian reads

H = Jx

∑

X−links

σx
jAσ

x
j′B + Jy

∑

Y−links

σ
y
jAσ

y
j′B + Jz

∑

Z−links

σz
jAσ

z
j′B , (1)

where σx ,y,z
jA and σx ,y,z

j′B are Pauli matrices of the spins residing on sublattices A and B, re-
spectively, each link gives rise to a two-spin interaction term, and Jx , Jy and Jz are coupling
constants. In our work, we will focus on the isotropic case with

Jx = Jy = Jz = −1 . (2)

An important difference between the honeycomb and Bethe lattices is that the latter lacks
closed loops, in contrast to the former. The lack of loops will prove instrumental for obtaining
a tractable system of equations.

When the Kitaev’s spin-fermion mapping is employed, the complexity of describing the
dynamics starting from a non-equilibrium initial state depends on the complexity of decompo-
sition of this state in the joined eigenbasis of∼ N/2 IoMs fixed in the course of diagonalization:
One has to solve a free-fermionic problem for each element of this decomposition separately.

2

https://scipost.org
https://scipost.org/SciPostPhys.12.5.175


SciPost Phys. 12, 175 (2022)

In particular, if the initial state is an eigenstate of all these IoMs, a single free-fermionic prob-
lem should be solved, and analytical results can be obtained [29–33]. On the other hand, if the
initial state is a superposition of an exponential number of these eigenstates (this is the case
e.g. for product initial states), one faces a challenge of solving an exponential number of dif-
ferent disordered free-fermionic problems. Up to date, this challenge has been addressed only
numerically by stochastic sampling the effective disorder produced by different configurations
of values of IoMs [34,35].

The approach we undertake in the present paper is completely different. It does not involve
any spin-fermion mapping. Instead, we craft an infinite yet manageable subset of operators
that is described by a closed system of Heisenberg equations. This construction is based on
the algebra of string operators known to be closed with respect to the commutation [36, 37].
We solve the Heisenberg equations and obtain explicit expressions for each of the Heisenberg
operators from the set. The simplest operator corresponds to the contribution to the total
energy from a single bond direction. We calculate time-dependent expectation value of this
operator for the initial translation-invariant or staggered-translation-invariant product state
with an arbitrary (staggered) polarization.

The paper is organised as follows. In the next section we introduce the notion of strings
and string operators. In Section 3 we derive a system of Heisenberg equations for a tailored
set of operators, and in Section 4 these equations are solved. In Section 5 we calculate the
time-dependent expectation value of the bond operator for a product initial state. We compare
it to the analogous quantity calculated numerically for the honeycomb lattice [34] and find
that they are quite similar, consistent with the physical intuition. The last section is devoted
to the summary and outlook.

2 Strings on the Bethe lattice

2.1 Routes

We remind that a path on a graph is a sequence of links joining a sequence of vertices (of
course, in the latter sequence any two consecutive vertices should be neighbouring). Bethe
lattice supports only self-avoiding paths where all links and vertices are distinct.

A path on the Bethe lattice of degree three (or, in fact, on any graph with every vertex
having degree 3) can be conveniently specified with the help of a route – a sequence of turns,
left or right. The formal definition of a route and some related definitions are listed below.

• A route is a sequence containing two elements (“turns”), l (left turn) and r (right turn).
We reserve calligraphic capital letters V and W for routes. As an example, we consider
two specific routes,

V = r l l and W = l r . (3)

These two routes will be used to exemplify various notions and definitions in what fol-
lows. In addition, we define the empty route ; containing no turns.

• |V | is the length (i.e. the number of turns) of the route V . For the example (3)

|V |= 3 , |W |= 2 .

By definition, |;|= 0.

• We define a function
signV = ±1.
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It admits the value −1 when the route V contains an odd number of left turns, l, and
+1 otherwise. For routes (3)

signV = +1, signW = −1 . (4)

• One can add a turn, l or r, to the route V from the right. The resulting route is denoted
as V l or V r, respectively. E.g. for routes (3) one has

V l = r l l l, V r = r l l r, W l = l r l, W r = l r r . (5)

• One can remove the last (i.e. the rightmost) turn from the route V . The resulting route
is denoted as V .̌ E.g. for routes (3) one obtains

Vˇ= r l, Wˇ= l . (6)

• One can remove the first (i.e. the leftmost) turn from the route V . The resulting route
is denoted as V̌ . E.g. for routes (3) one obtains

V̌ = l l, ˇW = r . (7)

• V1 is the first turn of the route. For routes (3)

V1 = r, W1 = l . (8)

It will be important in what follows that

sign (V )̌
sign (V )

(9)

equals +1 or -1 whenever the last turn of V is r or l, respectively. Analogously, the ratio
sign (̌ V )/sign (V ) is determined by the first turn of V .

2.2 Strings

In the present subsection a central concept of our construction – a string – is introduced. But
first we need to settle the enumeration of vertices and links of the Bethe lattice. To this end
we choose the following procedure. First we enumerate the vertices of the sublattice A by the
index j. The precise way of such enumeration will not be important and thus is not specified.
The j’th vertex of the sublattice A is attached to one X -link, one Y -link and one Z-link. We
enumerate these three links by the same index j: X

j
, Y

j
, Z

j
. Finally, we enumerate the vertex of

the sublattice B attached to the link Z
j

by the same index j.1

We will also use a general notation Q
j
, where Q can assume the values X , Y or Z .

Each vertex is associated with a two-dimensional local Hilbert space of a spin 1/2. The
corresponding Pauli matrices are denoted as σαjA or σαjB (with α= x , y, z), depending on which
sublattice the vertex belongs to.

A string
QVW
j

(10)

1The reader should be alerted that while the link Z
j

connects vertexes of the sublattices A and B carrying the

same index j, this is not the case for the links X
j

and Y
j
. E.g. the link X

j
in Fig. 1 connects the j’th vertex of the

sublattice A to the j2’th vertex of the sublattice B.
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j

j

j2 j3

j6 j5

j1 j4

j2 j3

j6 j5

j7

Σ
x

Σ
y

Σ
y

Σ
x

Σ
x

Σ
z

Σ
y

r

l

l

l

r

Figure 1: The string Z r l l
l r

j
= σ y

j7Aσ
x
j5Bσ

y
j5Aσ

y
jBσ

x
jAσ

x
j3Bσ

z
j3A on the Bethe lattice. Ver-

tices of sublattices A and B are shown as open and gray-filled circles, respectively.
The X -, Y - and Z-links are shown in blue, green and red, respectively. The links
belonging to the string are highlighted.

is a path on the lattice constructed as follows (see Fig. 1 for illustration). Start from the
link Q

j
. Add to it |W | consecutive links, the first one being attached to the A-vertex of Q

j
. At

each step, choose either “left” or “right” turn of the path according to the route W . Then
proceed analogously by adding |V | consecutive links attached to the B-vertex of the link Q

j
.

Thus obtained string consists of |V |+ |W |+ 1 links.
Each string corresponds to a specific operator, which will be also called “string” and de-

noted by the same symbol (10). This operator is a product of |V | + |W | + 2 Pauli matrices
residing on the vertices of the string. The choice of a Pauli matrix (σx , σy or σz) on a specific
site is made as follows (see Fig. 1 for illustration). For an end vertex of the string, the Pauli
matrix type coincides with the type of the corresponding edge link. For an inner (i.e. non-end)
vertex, the Pauli matrix type coincides with that of the link connected to this vertex but not
belonging to the string.

Note that a given operator can be represented as a string in multiple ways. For example,
for the enumeration of Fig. 1, strings

Z l r r l l
;

j3

, Y r
r r l l

j
, Z r l l

l r
j

, X l l r
l l

j5

, Z l
r l l r

j5

, Y r r l l r
;
j7

(11)

represent the same operator σ y
j7Aσ

x
j5Bσ

y
j5Aσ

y
jBσ

x
jAσ

x
j3Bσ

z
j3A.

Strings of unit length are products of two Pauli matrices residing on the neighbouring
vertices, for example Z;;

j

= σz
jAσ

z
jB. They are the building blocks of the Kitaev Hamiltonian (1).

The isotropic version of this Hamiltonian, eq. (2), which is studied in the present paper, can
be represented as

H = −
∑

j

�

X ;;
j

+ Y ;;
j

+ Z;;
j

�

. (12)

5

https://scipost.org
https://scipost.org/SciPostPhys.12.5.175


SciPost Phys. 12, 175 (2022)

It should be kept in mind that although the three terms X ;;
j

, Y ;;
j

, Z;;
j

carry the same index j, they

actually belong to different links.

3 Deriving Heisenberg equations

3.1 Heisenberg representation

We remind that for an arbitrary Schrödinger operator O one can define a Heisenberg operator
Ot according to

Ot = eiH tO e−iH t . (13)

The Heisenberg operator satisfies the Heisenberg equation of motion,

∂tOt = i[H, Ot] , (14)

with the initial condition O0 = O. Given the initial state of the system, ρ0, the corresponding
time-dependent expectation value reads

〈O〉t = trρ0 Ot . (15)

Since [H, Ot] = eiH t[H, O] e−iH t , taking the time derivative of a Heisenberg operator essen-
tially amounts to commuting the corresponding Schrodinger operator with the Hamiltonian.
To avoid further complication of already complex notations, in the next three subsections we
will not explicitly introduce the Heisenberg representation, but instead quote the results of
commutation of the Schrodinger operators with iH.

3.2 Time derivative of string operators

An important property of strings is that, as one can easily verify, they form an algebra with
respect to commutation. This implies, in particular, that commuting the Hamiltonian (12)
with a string always results in a linear combination of strings. These resulting strings can be
either shorter or longer by one link than the original string. Explicitly,

[iH,QVW
j
] =Ex

�

QVW
j

�

+ 2
sign (V )̌
sign (V )

QVˇ
W

j
+ 2

sign (W )̌
sign (W )

QVWˇ
j

, |V |, |W | ≥ 1, (16)

[iH,Q;;
j

] =Ex
�

Q;;
j

�

, (17)

where

Ex
�

QVW
j

�

= 2

�

−QV r
W

j
+QV l

W
j
−QVW r

j
+QVW l

j

�

(18)

is a shorthand notation for expanded strings, and the remaining terms are shortened strings.
In the case when one of the routes is empty and another is not we get more complex

6

https://scipost.org
https://scipost.org/SciPostPhys.12.5.175


SciPost Phys. 12, 175 (2022)

formulae:

[iH, XV;
j
] =Ex

�

XV;
j

�

+ 2
sign (V )̌
sign (V )

XVˇ
;

j
− 2

sign (̌ V )
sign (V )

×



















Y ;
V̌

j1

, V1 = r ,

Z;
V̌

j2

, V1 = l ,
(19)

[iH, Y V;
j
] =Ex

�

Y V;
j

�

+ 2
sign (V )̌
sign (V )

Y Vˇ
;

j
− 2

sign (̌ V )
sign (V )

×



















Z;
V̌

j3

, V1 = r ,

X ;
V̌

j4

, V1 = l ,
(20)

[iH, ZV;
j
] =Ex

�

ZV;
j

�

+ 2
sign (V )̌
sign (V )

ZVˇ
;

j
− 2

sign (̌ V )
sign (V )

×



















X ;
V̌

j5

, V1 = r ,

Y ;
V̌

j6

, V1 = l .
(21)

Here j1, j2, ... j6 enumerate vertices around the vertex j, as shown in Fig. 1. Analogous
formulae are obtained for X ;W

j
, Y ;W

j
, Z;W

j
. Eqs. (16),(17) and (19)–(21) are straightforwardly

obtained by performing commutations. Remind that the ratios of type (9) equal to ±1, see the
explanation below eq. (9). They are used in these equations to account for a sign emanating
from the commutations between Pauli matrices.

Let us make a brief remark on deriving analogous equations for Kitaev models on lattices
with loops (such as the honeycomb lattice). Direct calculation shows that the equations need
to be modified to account for loops. Namely, one needs to modify any equation that involves
a string that is one link different from a string with a loop. This is a significant complication,
since even simply counting the number of such strings of a given length is a complex problem
[38,39].

3.3 Summing over lattice sites

While strings form only a subset of all possible operators, they are still too many to handle.
We would like to introduce some sums of strings that can be more tractable. To this end we
proceed in two steps. The first one is a straightforward sum over j. In order to obtain well-
defined quantities in the thermodynamic limit, we simultaneously perform the normalization:

∑′

j

· · · ≡ lim
N→∞

(1/N)
∑

j

· · · . (22)

Here N is the number of sites of one sublattice. This way we define

QVW =
∑′

j

QVW
j

. (23)

One can easily see that the commutation of the Hamiltonian with operators QVW are given by
eqs. (16)–(21) with all subscripts j, j1–j6 removed.
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3.4 Summing over strings of equal length

The second summation is crucial for obtaining tractable Heisenberg equations. We define

Qm n =
1
2

�

1
p

2

�n+m ∑

V ,W :
|V |=m
|W |=n

signV signW
�

QVW +QWV
�

, (24)

where m, n= 0, 1,2, . . . Obviously, Qm n =Qn m.
From eqs. (16),(17) we obtain

[iH,Qm n] =− 2
p

2
�

Q(m+1)n +Qm (n+1) −Q(m−1)n −Qm (n−1)
�

m, n≥ 1, (25)

[iH,Q00] =− 2
p

2
�

Q1 0 +Q0 1
�

= −4
p

2Q01. (26)

When m= 0 but n≥ 1, we need to use eqs. (19),(20),(21). This way we obtain

[iH, Z0 n] =− 2
p

2
�

Z1 n + Z0 (n+1) − Z0 (n−1) +
1
2

�

Y 0 (n−1) + X 0 (n−1)
�

�

(27)

and analogous equations for X 0 n and Y 0 n.

3.5 Heisenberg equations

From now on, we switch to the Heisenberg representation according to eq. (13). We introduce
Heisenberg operators

Xm n
t ≡ X m n

t −
1
2

�

Y m n
t + Zm n

t

�

,

Ym n
t ≡ Y m n

t −
1
2

�

Zm n
t + X m n

t

�

,

Zm n
t ≡ Zm n

t −
1
2

�

X m n
t + Y m n

t

�

. (28)

From eqs. (25), (26), (27) we obtain the following system of Heisenberg equations:

∂tQm n
t = −2

p
2
�

Q(m+1)n
t +Qm (n+1)

t −Q(m−1)n
t −Qm (n−1)

t

�

, m, n≥ 1,

∂tQ0 n
t = −2

p
2
�

Q1 n
t +Q0 (n+1)

t −
3
2
Q0 (n−1)

t

�

, n≥ 1,

∂tQ0 0
t = −2

p
2
�

Q10
t +Q0 1

t

�

= 4
p

2Q01
t . (29)

Here Qm n
t is a general notation for Xm n

t , Ym n
t and Zm n

t .
Note that Qm n

t =Qn m
t . For this reason it suffices to find Qm n

t for m ≤ n, which is done in
the next section.

4 Solution of Heisenberg equations

The solution of the system (29) reads

Qm n
t =

∑

0≤m̃≤ñ

Gm n
m̃ ñ(t)Q

m̃ ñ, m≤ n . (30)

8
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Here Qm̃ ñ = Qm̃ ñ
t=0 refers to the corresponding Schrödinger operator, and Gmn

m̃ñ(t) is the prop-
agator given by

Gmn
m̃ñ(t) =

∫ π

0

∫ π

0

dp
π

dq
π

e−iE(p,q) tχm̃ñ(p, q)ξm n(p, q) , (31)

with
E(p, q) = 4

p
2 (cos p+ cos q), (32)

ξm n(p, q) = e
iπ
2 (m+n)

�

�

sin(mp) sin(nq)− 2sin
�

(m+ 1)p
�

sin
�

(n+ 1)q
�

�

+ {m↔ n}
�

, (33)

χm̃ ñ(p, q) = −(2−δm̃ ñ) e
− iπ

2 (m̃+ñ)
∞
∑

l=1

1
2l

�

sin
�

(m̃+ l)p
�

sin
�

(ñ+ l)q
�

+ {m̃↔ ñ}
�

. (34)

This is the main general result of the paper.
Let us briefly explain how the solution (30)-(34) has been found. One can verify that,

for any fixed p and q, the column vector ||ξm n(p, q)|| is a right eigenvector of the infinite
matrix of the system of equations (29), with E(p, q) being the corresponding eigenvalue. Its
form has been guessed based on the experience in solving similar problems [40–43]. As a
consequence, e−iE(p,q)tξm n(p, q) (multiplied by an arbitrary, time-independent operator) is a
solution of the system (29) for any p and q (disregarding the initial conditions). Eq. (30) is
a linear combination of such solutions with coefficients χm̃ ñ(p, q) chosen to satisfy the initial
conditions. Indeed, one can straightforwardly verify that

Gm n
m̃ ñ(0) = δ

m n
m̃ ñ, 0≤ m≤ n, 0≤ m̃≤ ñ , (35)

where δm n
m̃ ñ = 1 if m= m̃, n= ñ, and zero otherwise.

Note that the sum in eq. (34) can be calculated explicitly. For general m̃ and ñ the result
is, however, quite bulky; therefore we do not report it here. The result for the particular case
m̃= ñ= 0 is presented in the next section.

5 Dynamics of the bond operator for a product initial state

In the present section we focus on the dynamics of a particular observable for a particular type
of the initial state.

The initial state we consider is the translation-invariant or staggered-translation-invariant
product state

ρ0 =
∏

j

�

1
2
(1+ pσjA)

��

1
2
(1+ηpσjB)

�

, (36)

where p= (px , py , pz) is the polarization vector inside the Bloch sphere (hence, p2 ≤ 1), η= 1
corresponds to the translation-invariant “ferromagnetic” initial state and η= −1
– to the staggered “antiferromagnetic” initial state with opposite polarizations on the sublat-
tices A and B.

The operator we focus on is the bond operator Z00
t . Due to the (staggered) translation

invariance of the initial state, 〈Z00〉t = 〈σz
jAσ

z
jB〉t for arbitrary j.

It is easy to see that for the initial state (36) 〈X 00〉 = η p2
x , 〈Y 00〉 = η p2

y , 〈Z0 0〉 = η p2
z ,

and all other 〈Qm n〉 vanish. Indeed, whenever n> 0, the expectation values of any two terms
in eq. (24) with W differing solely by the last turn cancel one another.
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Figure 2: Expectation value of the bond operator for the antiferromagnetic product
initial state polarized in the z-direction. Solid blue line – the analytical result of the
present paper for the Bethe lattice, dashed magenta line – numerical calculations
of ref. [34] for the hexagonal lattice. Dotted gray line marks the asymptotic value
(−1/3) of the bond operator on the Bethe lattice at t →∞.

Plugging these expectation values to the general solution (30)-(34) and using the identity
Z00

t = (2/3)Z
00
t − 1/(3N)H, we finally obtain

〈σz
jAσ

z
jB〉t =

2
3
η

∫ π

0

∫ π

0

dp
π

dq
π

e−iE(p,q) tχ00(p, q)ξ00(p, q)
�

p2
z −

1
2
(p2

x + p2
y)
�

+
1
3
η (p2

x + p2
y + p2

z ) , (37)

where E(p, q) is given by eq. (32), ξ00(p, q) = −4sin p sin q according to eq. (33), and
χ00(p, q) can be compactly written as

χ00(p, q) = −12
sin p sin q

�

5− 4 cos(p− q)
��

5− 4cos(p+ q)
� . (38)

Eq. (37) is the main result of the present section. In Fig. 2 we plot 〈σz
jAσ

z
jB〉t for the antifer-

romagnetic initial condition with η= −1, pz = 1, px = py = 0.
The asymptotic value of the bond operator at t → ∞ is given by the second term in

the right hand side of eq. (37). We note that it would be interesting to compare it to the
predictions from the generalized Gibbs ensemble (GGE) [44]. However, we are not aware of
any such predictions. Applying the GGE to the Kitaev model might be difficult in practice, since
calculating the GGE partition function is expected to be a complex task due to the emergent
disorder [45].

For comparison, we also show the evolution of the analogous observable for the same
initial condition in the isotropic Kitaev model on the hexagonal lattice, calculated numerically
in ref. [34]. One can see that initially the two curves almost coincide, at intermediate times a
small discrepancy appear, and at late times this discrepancy almost fades away. The short- and
intermediate-time behavior is expectable on physical grounds: at short times the dynamics of
the bond operator is determined by the immediate vicinity of the bond, where the two lattices
are indistinguishable; the difference in lattice topologies shows up only when the strings of
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length six and higher come into play. The closeness of the asymptotic values indicates that the
overall contribution of longer strings distinguishing between the two lattices remains limited
and quite insignificant.

We would like to emphasize that the formula (37) is equally applicable to arbitrary initial
spin polarization p. Amazingly, for p2

z = (p
2
x + p2

y)/2 the expectation value of the z-bond
operator does not evolve. Furthermore, for |pz| = |px | = |py | the expectation values of all
three bond operators do not evolve. The latter fact alternatively follows from the symmetry of
the Hamiltonian (12) with respect to rotating the spin axes around the (1/

p
3,1/

p
3,1/

p
3)

unit vector by 2π/3 combined with spatial rotation of the lattice by the same angle.

6 Summary and outlook

To summarise, we have solved an infinite system of Heisenberg equations for a tailored set of
operators in the Kitaev model on the Bethe lattice. These operators are constructed as certain
sums of string operators. Wisely composing these sums is crucial for obtaining a tractable
system of equations. The solution (30)-(34) of the Heisenberg equations expresses time-
dependent Heisenberg operators through time-independent Schrödinger ones. This can be
immediately translated to the dynamics of corresponding observables, as soon as the expec-
tation values of the Schrödinger operators in the initial state are given. As an example, we
describe the dynamics of the bond operator for a product initial state, see eq. (37) and Fig. 2.

It should be emphasised that we work directly with spin operators and do not resort to the
Kitaev’s spin-fermion mapping. This way we completely avoid difficulties related to emergent
disorder from multiple configurations of IoM values.

Our solution is valid for the isotropic Kitaev Hamiltonian (1),(2). Away from the isotropic
point (2), our construction should be refined: while in eq. (24) we sum all strings with V
andW of given lengths, in the anisotropic case strings with different types of end links should
be considered separately. As a result, the set of operators closed with respect to commutation
will be much larger, and the Heisenberg equations – more involved. Pursuing this calculation
seems feasible, however requires a considerable extra amount of work.

On physical grounds, the dynamics of local observables in the Kitaev model on the Bethe
lattice should be close to that on the honeycomb lattice. This intuition is confirmed by com-
paring our results to the numerical results of ref. [34], see Fig. 2. Extending our method to the
honeycomb lattice may prove nontrivial: in contrast to the Bethe lattice, some paths on the
honeycomb lattice form closed loops, and this should be accounted for. The latter task can be
challenging, since even simply counting the number of self-avoiding paths of a given length on
the honeycomb lattice is a complex problem at the frontier of modern mathematics [38,39].
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