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Abstract

We provide a systematic method to deduce the global form of flavor symmetry groups
in 4d N = 2 theories obtained by compactifying 6d N = (2, 0) superconformal field
theories (SCFTs) on a Riemann surface carrying regular punctures and possibly outer-
automorphism twist lines. Apriori, this method only determines the group associated to
the manifest part of the flavor symmetry algebra, but often this information is enough to
determine the group associated to the full enhanced flavor symmetry algebra. Such
cases include some interesting and well-studied 4d N = 2 SCFTs like the Minahan-
Nemeschansky theories. The symmetry groups obtained via this method match with the
symmetry groups obtained using a Lagrangian description if such a description arises in
some duality frame. Moreover, we check that the proposed symmetry groups are consis-
tent with the superconformal indices available in the literature. As another application,
our method finds distinct global forms of flavor symmetry group for pairs of interacting
4d N = 2 SCFTs (recently pointed out in the literature) whose Coulomb branch dimen-
sions, flavor algebras and levels coincide (along with other invariants), but nonetheless
are distinct SCFTs.
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1 Introduction

Traditionally, when studying a continuous flavor (0-form [1]) symmetry of a quantum field
theory (QFT) T, one studies only the Lie algebra f associated to the symmetry. However,
recent studies have shown that a lot of important data about the QFT T is encoded in its flavor
symmetry group, which is a Lie group F whose associated Lie algebra is the flavor symmetry
algebra f 1. For example:

• F determines the space of possible background bundles for flavor symmetry that T can
be coupled to. These backgrounds allow the characteristic classes of F to be turned on,
but a characteristic class of some other global form F ′ of f which is not a characteristic
class of F is not allowed to be turned on.

• The knowledge of F is crucial to the determination of the set of possible discrete ‘t Hooft
anomalies involving the 0-form flavor symmetry of T. This is because the characteristic
classes of F can enter into various discrete ‘t Hooft anomalies, and different global forms
of f have different characteristic classes. The presence of such discrete ‘t Hooft anomalies
in T can be revealed by observing phase anomaly in the correlation functions of T in the
presence of a background for F that turns on characteristic classes associated to F .

• The knowledge of F is also crucial to the determination of 2-group and higher-group
symmetries of T involving the 0-form flavor symmetry group. Some higher-group sym-
metries can be understood as deformations of the space of possible backgrounds for some
other p-form symmetry of T in the presence of non-trivial backgrounds of F , with the
precise form of deformation being captured by characteristic classes of F . Thus different
forms of F for a fixed f allow different possible higher-group symmetry structures for T.

• All the local operators in T must transform in those representations of f that are also
allowed representations of F . 2

In this paper, we provide a method to determine the flavor symmetry group3 F of an
arbitrary 4d N = 2 theory obtained by compactifying a 6d N = (2, 0) SCFT on a Riemann
surface of arbitrary genus g, carrying arbitrary regular punctures which can be both twisted
and untwisted, and arbitrary closed outer-automorphism twist lines. These 4d N = 2 theories
form a subclass of the 4d N = 2 theories of Class S [3]. More general Class S theories can be
obtained by including irregular punctures, which we do not address in this work.

We begin in Section 2.1 by reviewing the definition of flavor symmetry group in terms of
the allowed classes of representations of local operators in the theory. We also discuss that

1Often, one also says that F is the ‘global form’ of the flavor symmetry f.
2Thus knowledge of F can potentially be used to constrain and simplify conformal bootstrap approaches to

study T.
3See also a recent paper [2] determining the global forms of flavor symmetry groups of 5d SCFTs using their

M-theory constructions.
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this definition can be understood as encoding the space of background flavor bundles that
the theory can be coupled to. We shift to the discussion of flavor symmetry groups of gauge
theories in Section 2.2, where the matter content can include generalized matter in the form
of interacting conformal theories. We emphasize that the flavor symmetry group captures
the representations of the gauge-invariant local operators. We also discuss a Pontryagin dual
way of defining the flavor symmetry group of gauge theories, which provides an alternate
point of view for the flavor symmetry group as being consisted of those elements that act non-
trivially on the matter content and cannot be undone by a gauge transformation. In Section
2.3, we consider situations in which one knows the flavor symmetry group associated to a
subalgebra of the full flavor symmetry algebra. We discuss the constraints imposed on the full
flavor symmetry group from the knowledge of the flavor symmetry group associated to the
subalgebra. Such a situation occurs frequently in the study of flavor symmetries of 4d N = 2
Class S theories.

In Section 3, we discuss manifest flavor symmetry groups in 4d N = 2 theories of Class S
containing arbitrary untwisted and twisted regular punctures and arbitrary closed twist lines.
A key role in the analysis is played by the surface defects of the 6d (2, 0) theory. We review some
properties of these defects and discuss their circle compactification in Section 3.1, focusing on
the correspondence between surface defects in the 6d (2, 0) theory and gauge Wilson line
defects in the 5d N = 2 SYM theory resulting from circle compactification. In Section 3.2,
we view regular punctures in Class S construction as boundary conditions in 5d N = 2 SYM
theory, which allows us to determine a set of local operators contributed to the 4d Class S
theory ‘locally’ by each puncture. In Section 3.3, we discuss additional local operators in the
4d Class S theory that arise from wrapping surface defects of the 6d theory along the Riemann
surface, which can be thought of as the ‘global’ contribution to the set of local operators in the
4d theory. We propose that the local operators discussed in Sections 3.2 and 3.3 account for
the flavor center charges of all the local operators in the 4d Class S theory. Then, the manifest
flavor symmetry group is obtained by applying the analysis of Section 2.1.

Section 4 illustrates the procedure of Section 3 with a variety of examples. The examples
have been chosen such that there is an alternative method for verifying the manifest flavor
symmetry group. The examples appearing in Section 4.1 are free hypers transforming in vari-
ous representations of the manifest flavor symmetry algebra, and hence one can deduce their
manifest flavor symmetry groups in two ways: using the method of Section 3 and the method
of Section 2.2 with trivial gauge group. The examples appearing in Section 4.2 admit a duality
frame where the 4d N = 2 theory becomes a weakly coupled 4d N = 2 gauge theory and
hence one can again deduce their manifest flavor symmetry groups in two ways: using the
method of Section 3 and the method of Section 2.2. The examples appearing in Section 4.3
are strongly coupled interacting 4d N = 2 SCFTs where the local operator representations
deduced using the analysis of Section 3 are checked against the representations appearing in
superconformal indices of these SCFTs available in the literature. The examples discussed in
this section include E6, E7 Minahan-Nemeschansky theories, the TN trinion theories and the
recently discussed eT3 trinion theory [4] which arises from less well-studied twisted A2 com-
pactifications.

In Section 4.3, we also illustrate how the manifest flavor symmetry group is often enough to
determine uniquely the full, true flavor symmetry group. In addition to this, in this section we
also consider a pair of interacting 4d N = 2 SCFTs whose Coulomb branch dimensions, Weyl
anomaly coefficients, flavor symmetry algebras and levels coincide, but nonetheless they are
two distinct SCFTs. Such examples were recently pointed out in [5] and it was also proposed
there that the two SCFTs have distinct global forms of flavor symmetry groups by studying the
Schur index. Applying our method to the pair, we find the same flavor symmetry groups as
proposed in [5].
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Beyond these examples, the methods of this paper can be used to deduce manifest, and
in many cases true, flavor symmetry groups of arbitrary 4d N = 2 Class S theories with reg-
ular punctures and outer-automorphism twists. It would be an interesting future direction to
incorporate irregular punctures into this analysis.

2 Generalities about Flavor Symmetry Groups

2.1 Definition of Flavor Symmetry Group

Consider a theory T with a flavor symmetry algebra f. The local operators of T transform in
various representations of f. We want to study the representations of f that are or aren’t carried
by local operators of T. First of all, independent of the specifics of T, we have a current op-
erator associated to the flavor symmetry in T which transforms in the adjoint representation
of f. Taking the OPE of the current with itself, we can generate local operators transform-
ing in all representations of f that can be generated by taking tensor products of the adjoint
representation with itself.

Now depending on T, we might have local operators carrying other representations of
f. To characterize such representations, let us decompose f = fna ⊕ u(1)a such that fna is
a non-abelian semi-simple Lie algebra and u(1)a is the abelian part of f. Now let us define
F = Fna × U(1)a to be a group whose associated Lie algebra is f, such that Fna is the simply
connected group associated to fna and U(1)a is a group whose associated Lie algebra is u(1)a.
Moreover, let ZF denote the center of F , which can be written as ZF = ZF,na × U(1)a where
ZF,na is the center of the simply connected group Fna.

A theory-specific local operator O can then be associated to an element αO of the Pontrya-
gin dual bZF of ZF . This element αO captures the charge of the representation R of O under the
center ZF of F . The elements of bZF associated to all the local operators in T define a subgroup
YF of the abelian group bZF due to the following reasons:

• If a local operator O1 is associated to an element αO1
∈ bZF and a local operator O2 is

associated to an element αO2
∈ bZF , then by taking the OPE of O1 and O2 we can find a

local operator associated to the element4 α1 +α2 ∈ bZF .

• If a local operator O is associated to an element α ∈ bZF , then the CPT conjugate local
operator O∗ is associated to the element5 −α ∈ bZF .

• The identity local operator and the current operator are associated to the element 0 ∈ bZF
since they have a trivial charge under the center ZF of F .

Now, let us define
ÒZ = bZF/YF , (1)

which comes with a projection map
bZF → ÒZ . (2)

Taking the Pontryagin duals, we obtain an injection

Z → ZF , (3)

which identifies Z as a subgroup of ZF . The flavor symmetry group F of the theory is then

F = F/Z . (4)

4Addition denotes the group law of bZF .
5Here −α denotes the inverse of α in bZF .
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Thus, the flavor symmetry group F of a theory T with flavor symmetry algebra f is defined to
be a group with the following properties:

• The Lie algebra associated to F is f.

• All the representations of f formed by local operators of T are allowed representations
of F .

• Any allowed representation of F is realized by some local operator of T.

The relevance of this definition can be understood by noticing that a theory T with flavor
symmetry group F can be coupled to a background flavor bundle for F . A local operator O
transforming in a representation R of F lives at the end of a flavor Wilson line in representation
R. If, instead, we try to couple T to a background gauge bundle for some other global form
F ′ of f which does not allow a representation R appearing in T, then the corresponding local
operator O cannot be inserted as there is no corresponding flavor Wilson line available. On
the other hand, we can couple T to a background gauge bundle for a global form F ′′ of f

which allows all the representations appearing in T but also allows some representations not
appearing in T, but such F ′′ bundles are all special cases of F bundles.

2.2 Flavor Symmetry Groups of Gauge Theories

Consider a gauge theory with gauge group G whose center is ZG . Let the flavor symmetry
associated to the matter content of the theory form a flavor algebra f = fna ⊕ u(1)a as in the
previous subsection. Let us also define F = Fna × U(1)a with center ZF as in the previous
subsection.

The charges of matter content6 of the gauge theory under ZG × ZF generate a sub-lattice
M ⊆ bZG× bZF . This sub-lattice M captures the representations of local operators in the theory.
That is, consider a representation RG of G having charge αG ∈ bZG and a representation RF
of F having charge αF ∈ bZF , such that the element (αG ,αF ) ∈M. Then there exists a local
operator O in the theory that transforms in representation RG ⊗ RF of G × F and lives at the
end of a gauge Wilson line defect carrying the representation RG of G 7.

The group YF defined in the previous subsection is obtained as

YF =M∩ bZF . (5)

That is, YF is the subgroup of M formed by elements of the form (0,∗) ∈ bZG × bZF . Then YF
captures the charges under ZF of gauge-invariant local operators of the theory8. The flavor
symmetry group F of the gauge theory is then given by (4).

One point to note is that YF and hence F depend only on the gauge algebra g and not on
the precise global form of g used. That is, if we use some other global form G′ of g to perform
the above computation, then we obtain the same YF . This is because changing G to G′ scales
the gauge charges αG , but the matter content contributing to YF has αG = 0 and hence YF is
left invariant by the scaling.

6This matter content may be standard perturbative matter or include generalized matter in the form of confor-
mal theories whose (part of) flavor symmetry is gauged by G. In the latter case of generalized matter, the “charges
of matter content” refers to the charges of genuine local operators in the conformal theory describing generalized
matter. In any case, in Section 4, we will use the contents of this section with perturbative matter only.

7If RG is non-trivial, then such a local operator is often called a “non-genuine” local operator of the theory.
For the purposes of this paper, a non-genuine local operator O is one that is constrained to live at the end of a
non-trivial line defect L, and cannot exist independently without the presence of L. In the previous subsection,
and in the rest of this paper, we use the term ‘local operator’ for a genuine local operator, unless otherwise clear
from the context.

8Gauge invariant local operators in a gauge theory are genuine local operators, as they do not need to be
inserted at the end of a non-trivial gauge Wilson line to be well-defined.
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An equivalent way of computing these groups is as follows. Let S denote the full structure
group of the gauge theory that acts non-trivially on the matter content, which can be written
as

S = G × F
E

, (6)

where E ⊆ ZG × ZF under which the matter content does not transform. We then obtain Z as

Z = πF (E) , (7)

where πF (E) ⊆ ZF is the image of E under the projection map

πF : ZG × ZF → ZF , (8)

which projects onto the second factor of ZG × ZF . Stated more physically, the group Z can be
identified as the subgroup of ZF whose elements either act trivially on the matter content or
act like an element of ZG (and hence an element of the gauge group G). The elements of the
former type do not act on the theory, while the elements of the latter type are part of the gauge
group and hence should not be regarded as genuine flavor symmetries of the theory. Thus,
the flavor symmetry group F of the gauge theory should be F = F/Z, which indeed coincides
with the general definition (4).

2.3 Relationship Between Manifest and True Flavor Symmetry Groups

In this paper, we study flavor symmetry groups of 4d N = 2 Class S theories which are pro-
duced by compactifying 6d N = (2,0) theories on a Riemann surface with punctures. In such
a compactification, a part of the flavor symmetry algebra fPi

⊆ f is associated to each puncture
Pi . Thus, the manifest flavor symmetry is fm =

⊕

i fPi
⊆ f, but it is often the case that the

manifest flavor symmetry fm is a proper subalgebra of the true flavor symmetry algebra f, i.e.
fm ⊂ f. In such a situation, the methods presented in this paper can be used to study only the
flavor group associated to fm, which constrains the flavor group associated to the full flavor
symmetry f but might not uniquely fix it. See the discussion below for more details.

We can apply the analysis of the previous two subsections to obtain the manifest flavor
symmetry group Fm associated to the manifest flavor symmetry algebra fm. The group Fm is
related to the true flavor symmetry group F as follows:

• The manifest flavor symmetry group Fm is a subgroup of the true flavor symmetry group
F .

• If some other global form F ′m of fm is also a subgroup of F , then we have

Fm = F ′m/Z
′
m , (9)

where Z ′m is a subgroup of the center of the group F ′m.

In other words, Fm is the “minimal” global form of fm which is a subgroup of F . The manifest
flavor symmetry group Fm captures the allowed background bundles that one can turn on for
the manifest part of flavor symmetry.

The above two conditions can also be viewed as constraining the possible forms of the true
flavor symmetry group F using the knowledge of Fm. That is, let Fα be the various global
forms of f such that Fm ⊆ Fα for each α, and if F ′m is some other global form of fm satisfying
F ′m ⊆ Fα then F ′m is such that Fm = F ′m/Z

′
m with Z ′m being a subgroup of the center of F ′m.

Then, the knowledge of Fm allows us to deduce that the true flavor symmetry group F must be
one of the groups Fα. In case there is a single choice of Fα satisfying the above two conditions,
then we can determine that the true flavor symmetry group must be F = Fα.

For practical use, let us phrase the above two conditions in terms of representations:

6
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Surface defect “in R” Wilson line in R

Figure 1: Compactifying a surface defect of 6d (2, 0) theory of type g along S1 direc-
tion in spacetime leads to a gauge Wilson line defect in 5d N = 2 g SYM. Equivalently,
a gauge Wilson line in the 5d theory lifts to a circle compactified surface defect of
the 6d theory. If the Wilson line transforms in representation R of g, then we label
the the corresponding surface defect by the representation R.

• Take an irrep R of F and decompose it as R =
⊕

i Ri where Ri are irreps of fm. If each
Ri for each R is also an irrep of Fm, then Fm ⊆ F .

• Consider all the irreps Ri of fm descending from all irreps R of F . These irreps Ri form a
sublattice YFm

⊆ bZFm
where ZFm

is the center of the group Fm associated to fm as explained
in Section 2.1. Then, Fm is the global form of fm determined by (4) (with input group
F taken to be Fm).

3 Flavor Symmetry Groups in Class S

3.1 Surface Defects in 6d (2, 0) SCFTs and Their Circle Compactification

A 6d N = (2, 0) SCFT is specified by a finite A, D, E Lie algebra g. Consider such a 6d SCFT and
compactify it on a circle of non-zero size. The resulting theory is 5d N = 2 pure super Yang-
Mills (SYM) theory with gauge algebra9 g. The gauge Wilson lines of the 5d theory arise from
the circle compactification of dimension-2 surface operators of the 6d theory. Consequently,
we can characterize the surface defects of the 6d theory in terms of representations of g. See
Figure 1. Similarly, local operators screening10 gauge Wilson lines of the 5d theory can be
understood as arising from circle compactification of line defects11 screening the dimension-2
surface defects of the 6d theory. See Figure 2. The gauge Wilson line defects of 5d N = 2
SYM with gauge algebra g are characterized, modulo screenings, by elements of bZ(G) which
is the Pontryagin dual of the center Z(G) of the simply connected group G associated to the
gauge algebra g 12. Consequently, the dimension-2 surface defects of a 6d N = (2, 0) SCFT of
type g can be characterized, modulo screenings, by elements of bZ(G).

A 6d N = (2, 0) SCFT of type g admits a discrete 0-form symmetry group Og formed
by outer-automorphisms (modulo inner automorphisms) of g. See Table 1. These outer-

9Notice that we are not specifying the gauge group. Thus the 5d theory has mutually non-local operators and
it is an example of what is known as a relative QFT.

10A line defect L is “screened” in a theory T if there exists a non-genuine local operator O in T that lives at the
end of L.

11Akin to above, these line defects are non-genuine in the sense that they are constrained to live at the ends of
surface defects.

12As we will discuss later, this statement is modified for 5d N = 2 sp(n) SYM theory with discrete theta angle
π. But, since in our current context, g is of A, D, E type, this modification does not concern us at the moment.
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Surface defect “in R” Wilson line in R

Non-genuine
line defct

Non-genuine
local operator in R

Figure 2: A surface defect ending at a non-genuine line defect in the 6d theory leads
to, upon circle compactification, to a gauge Wilson line defect ending at a non-gauge-
invariant local operator in the 5d theory. Equivalently, a gauge Wilson line defect
ending at a non-gauge-invariant local operator in the 5d theory lifts in the 6d theory
to a surface defect ending at a non-genuine line defect compactified along the circle.

automorphisms act on the nodes of the Dynkin diagram of g as follows:

1 2 (n− 1) n (n+ 1) (2n− 2) (2n− 1)· · · · · ·

su(2n), 〈o〉= Z2:

1 2 n (n+ 1) (2n− 1) 2n· · · · · ·

su(2n+ 1), 〈o〉= Z2:

1 2 3 (n− 3) (n− 2)

(n− 1)

n

· · ·

so(2n), n≥ 5, 〈o〉= Z2:
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1 2

3

4

so(8), 〈o〉= Zv
2:

3 2

1

4

so(8), 〈o〉= Zs
2:

4 2

3

1

so(8), 〈o〉= Zc
2:

1 2

4

3

so(8), 〈o〉= Z3:

1 2 3 54

6

e6, 〈o〉= Z2:

When we compactify the theory on a circle, we can turn on a non-trivial holonomy for the
background gauge field associated to Og along the circle. This is often referred to as compact-
ifying the 6d theory with an outer-automorphism “twist” along the circle. The holonomy is
specified by an element o ∈ Og to which is associated a subalgebra13 ho of g left invariant by
the action of o.

Upon circle compactificatication with an o-twist, we obtain 5d N = 2 pure SYM theory
with gauge algebra h∨o which is the Langlands dual of ho. The action of Langlands duality on
the Dynkin diagram is such the direction of edges is reversed. This action is non-trivial on the
following algebras 14 :

1 2 (n− 1) n· · ·

sp(n):

1 2 (n− 1) n· · ·

so(2n+ 1):

1 2 3 4

f4:

1 2 3 4

f4:

1 2

g2:

1 2

g2:

In all other cases, the action of Langlands duality is trivial.
Gauge Wilson line defects of the 5d theory descend by wrapping surface defects of 6d

theory along the circle. A surface defect of the 6d theory characterized by representation R of

13We actually pick a particular outer-automorphism in the class o of outer-automorphisms and ho is the subal-
gebra left invariant by this particular outer-automorphism.

14Notice that the action can be non-trivial even if the initial and final algebras are the same.
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g can be wrapped along the circle only if R is left invariant by the action of o. This is ensured
if the highest weights of the representation are left invariant by o, which means the following.
Let w be a highest weights and let wi be its Dynkin coefficients where i labels the nodes in
the Dynkin diagram of g. Now o acts on node i and sends it to another node o(i). R is left
invariant by the action of o if we have wi = wo(i) for all of its highest weights w.

Now suppose R is a representation of g left invariant by o, then it descends to a represen-
tation Ro of ho as follows. For each highest weight w of R, we have a highest weight w′ of
Ro such that w′i′ = wi where i′ is a node in the Dynkin diagram of ho and i is a node in the
Dynkin diagram of g which projects to i′ under the identification of Dynkin nodes induced by
the action of o on Dynkin nodes of g.

Now wrap a surface defect of the 6d theory characterized by a representation R of g left
invariant by o. The resulting gauge Wilson line in the 5d theory is characterized by representa-
tion R∨o of h∨o whose highest weights have the same Dynkin coefficients as the highest weights
of the representation Ro of ho, but now these highest weights are associated to the nodes in
the Dynkin diagram of the Langlands dual algebra h∨o according to the action of Langlands
duality displayed above.

Let us discuss this relationship between gauge Wilson lines of 5d h∨o theory and the surface
defects of the 6d g theory in more detail for every case:

• Compactifying 6d g = su(2n) theory with Z2 outer-automorphism twist results in 5d
h∨o = so(2n+1) gauge theory. The gauge Wilson lines of the 5d theory can be generated
by taking products of the gauge Wilson line in the spinor irrep of so(2n + 1) gauge
algebra. This gauge Wilson line is produced by compactifying the surface defect in the
6d theory associated to the n-index antisymmetric irrep Λn of su(2n). Notice that the
square of this spinor gauge Wilson line is screened in the 5d theory, since the squared
line has a trivial charge under the center of simply connected group Spin(2n+1). This is
consistent with its 6d lift as the square of the Λn surface defect has trivial charge under
the center of simply connected group SU(2n), and hence the squared surface defect is
screened in the 6d theory.

• Compactifying 6d g= so(2n); n≥ 5 theory with Z2 outer-automorphism twist results in
5d h∨o = sp(n−1) gauge theory. The gauge Wilson lines of the 5d theory can be generated
by taking products of the gauge Wilson line in the fundamental irrep of sp(n−1) gauge
algebra. This gauge Wilson line is produced by compactifying the surface defect in the 6d
theory associated to the vector irrep of so(2n). Notice that the square of this fundamental
gauge Wilson line is screened in the 5d theory, since the squared line has a trivial charge
under the center of simply connected group Sp(n− 1). This is consistent with its 6d lift
as the square of the vector surface defect has trivial charge under the center of simply
connected group Spin(2n), and hence the squared surface defect is screened in the 6d
theory.

• Compactifying 6d g = so(8) theory with a Z2 outer-automorphism twist results in 5d
h∨o = sp(n − 1) gauge theory with discrete theta angle 0. There are three different Z2
twists15, which can be characterized by the 8-dimensional irrep R of so(8) left invariant
by o. R can be either the vector irrep, or the spinor irrep, or the cospinor irrep. The
gauge Wilson lines of the 5d theory can be generated by taking products of the gauge
Wilson line in the fundamental irrep of sp(3) gauge algebra. This gauge Wilson line is
produced by compactifying the surface defect in the 6d theory associated to the irrep

15Actually these three twists are all equivalent for 6d to 5d compactification as they are related to each other by
gauge transformations for background discrete gauge field associated to the Og bundle. When we consider to 6d
to 4d compactifications, these three twists become apriori inequivalent (but can be equivalent depending on the
global structure of the Riemann surface and other twists). For this reason, we consider all three of them here.
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Table 1: Various data used throughout the paper. g is a Lie algebra of A, D, E type that
specifies the (2,0) theory. Og denotes the outer-automorphism group of g. A dash
denotes a trivial Og. S3 denotes the permutation group of 3 objects. 〈o〉 denotes the
subgroup of Og generated by the outer-automorphism o. A dash denotes a trivial
choice of o. Zv

2,Zs
2,Zc

2 are the subgroups of Og generated by outer-automorphisms
that leave invariant the vector, spinor and co-spinor irreps of so(8) respectively. ho
is the subalgebra of g left invariant by o. h∨o is Langlands dual of ho. R∨o is a rep-
resentation of h∨o and Ro is a representation of g that descends to R∨o . F denotes
the fundamental irrep of su(n), sp(n), the vector irrep of so(n), the 27-dimensional
irrep of e6, the 56-dimensional irrep of e7, the 26-dimensional irrep of f4, and the
7-dimensional irrep of g2. Λm denotes the m-index antisymmetric irrep of su(n). S
denotes a spinor irrep of so(n) and C denotes the co-spinor irrep of so(2n). A de-
notes the adjoint irrep. Note that for a trivial choice of o, we have g = ho = h∨o and
R∨o = Ro. For g= so(4n) and trivial o case, we also define R∨o,s = S and R∨o,c = C by
splitting R∨o = S⊕C.

g Og 〈o〉 ho h∨o R∨o Ro

su(2) − − su(2) su(2) F F

su(2n); n≥ 2 Z2
− su(2n) su(2n) F F
Z2 sp(n) so(2n+ 1) S Λn

su(2n+ 1) Z2
− su(2n+ 1) su(2n+ 1) F F
Z2 so(2n+ 1) sp(n) F A

so(4n+ 2) Z2
− so(4n+ 2) so(4n+ 2) S S
Z2 so(4n+ 1) sp(2n) F F

so(4n); n≥ 3 Z2
− so(4n) so(4n) S⊕C S⊕C
Z2 so(4n− 1) sp(2n− 1) F F

so(8) S3

− so(8) so(8) S⊕C S⊕C
Zv

2 so(7) sp(3) F F
Zs

2 so(7) sp(3) F S
Zc

2 so(7) sp(3) F C
Z3 g2 g2 F A

e6 Z2
− e6 e6 F F
Z2 f4 f4 F A

e7 − − e7 e7 F F
e8 − − e8 e8 A A

R of so(8). Notice that the square of this fundamental gauge Wilson line is screened
in the 5d theory, since the squared line has a trivial charge under the center of simply
connected group Sp(3). This is consistent with its 6d lift as the square of surface defect
characterized by irrep R has trivial charge under the center of simply connected group
Spin(8), and hence the squared surface defect is screened in the 6d theory.

• Compactifying 6d g= e6 theory with Z2 outer-automorphism twist results in 5d h∨o = f4
gauge theory. The gauge Wilson lines of the 5d theory can be generated by taking prod-
ucts of the gauge Wilson line in the 26-dimensional irrep of f4 gauge algebra. This gauge
Wilson line is produced by compactifying the surface defect in the 6d theory associated
to the adjoint irrep of e6. Notice that this gauge Wilson line in the 26-dimensional irrep
is screened in the 5d theory, since the center of simply connected group F4 is trivial and
hence this irrep has trivial charge under the center. This is consistent with its 6d lift as
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Untwisted Puncture o-twisted Puncture

o

Figure 3: An untwisted puncture vs. a twisted puncture. An untwisted puncture
is a genuine codimension-2 defect in the 6d theory that lives at a point on the Rie-
mann surface used to compactify the 6d theory down to 4d. An o-twisted puncture
is a non-genuine codimension-2 defect that is constrained to live at the end of a
codimension-1 topological defect corresponding to an element o of the Og 0-form
symmetry group of the 6d theory. The codimension-2 defect lives at a point on the
Riemann surface which lies at the end of an open line on the Riemann surface along
which the codimension-1 topological operator is inserted. We refer to such a line
where a codimension-1 topological operator (corresponding to an element of Og) is
inserted as an outer-automorphism twist line.

the adjoint surface defect has trivial charge under the center of simply connected group
E6, and hence this surface defect is screened in the 6d theory.

• Compactifying 6d g = so(8) theory with Z3 outer-automorphism twist results in 5d
h∨o = g2 gauge theory. The gauge Wilson lines of the 5d theory can be generated by
taking products of the gauge Wilson line in the 7-dimensional irrep of g2 gauge algebra.
This gauge Wilson line is produced by compactifying the surface defect in the 6d theory
associated to the adjoint irrep of so(8). Notice that this gauge Wilson line in the 7-
dimensional irrep is screened in the 5d theory, since the center of simply connected group
G2 is trivial and hence this irrep has trivial charge under the center. This is consistent
with its 6d lift as the adjoint surface defect has trivial charge under the center of simply
connected group Spin(8), and hence this surface defect is screened in the 6d theory.

• Compactifying 6d g= su(2n+1) theory with Z2 outer-automorphism twist results in 5d
h∨o = sp(n) gauge theory with discrete theta angle π [6]. The gauge Wilson lines of the
5d theory can be generated by taking products of the gauge Wilson line in the fundamen-
tal irrep of sp(n) gauge algebra. This gauge Wilson line is produced by compactifying the
surface defect in the 6d theory associated to the adjoint irrep of su(2n+ 1). Notice that
the adjoint surface defect is screened in the 6d theory, and so consistency requires that
the fundamental gauge Wilson line must also be screened in the 5d theory even though
it carries a non-trivial charge under the Z2 center of the simply connected group Sp(n).
In fact, it is known that the 5d N = 2 sp(n) gauge theory with discrete theta angle π
has a BPS instanton particle carrying a non-trivial charge under the center of Sp(n) (see
for example [7]). The local operator associated to this particle is a non-genuine local
operator that can be inserted at the end of a gauge Wilson line in fundamental irrep of
sp(n). Thus, the fundamental gauge Wilson line of the 5d theory is also screened, and
the 5d and 6d pictures are consistent with each other.

Let us denote as R∨o the representation of h∨o generating all the other representations via tensor
products. The representation of g corresponding to R∨o is denoted by Ro. See Table 1.

3.2 Local Operators in 4d Arising from Punctures

Consider a regular puncture P for (2,0) theory of type g living at the end of an o outer-
automorphism twist line. An untwisted regular puncture corresponds to the case when o is

12
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P
P

o

6d N = (2,0) theory of type g 5d N = 2 SYM with gauge algebra h∨o
with o-twisted puncture P and boundary condition P

Figure 4: Compactifying 6d N = (2, 0) theory of type g on a cigar-like non-compact
surface with an o-twisted puncture P placed at the tip of the cigar is equivalent to 5d
N = 2 SYM theory on a half-line with gauge algebra h∨o and a boundary condition
associated to P (which, by an abuse of notation, we label by P in the figure) placed
at the end of the half-line.

trivial. See Figure 3. The puncture P is associated to a homomorphism

ρ : su(2)→ h∨o , (10)

where h∨o = g if o is trivial. We can regard the puncture as a boundary condition in the 5d
N = 2 h∨o SYM. See Figure 4. This boundary condition is such that the gauge algebra h∨o
reduces to a flavor algebra fP at the 4d boundary where fP is the commutant in h∨o of the
image ρ

�

su(2)
�

⊆ h∨o . Let us write fP = fna,P ⊕u(1)aP where fna,P is a non-abelian semi-simple
Lie algebra and u(1)aP is the abelian part. We associate a group FP = Fna,P × U(1)aP to such
a puncture P . FP is a group whose associated Lie algebra is fP , where Fna,P is the simply
connected group associated to fna,P and U(1)aP is a group whose associated Lie algebra is
u(1)aP . We denote the center of FP as ZF,P and its Pontryagin dual as bZF,P .

A representation R∨o of h∨o becomes a representation R∨o,P of fP , where R∨o,P is simply the
representation R∨o viewed from the point of view of fP ⊆ h∨o .

If h∨o 6= so(4n), the 5d theory contains a local operator in the representation

R∨o ⊗R∨o (11)

of h∨o where R∨o is the complex conjugate of R∨o . This is because the representation R∨o ⊗R∨o
is uncharged under the center of the simply connected group H∨o associated to the algebra

h∨o , and hence the representation R∨o ⊗R∨o can be generated from tensor products of adjoint
representation. For h∨o = so(4n), we have R∨o = S⊕C, i.e. R∨o is the direct sum of spinor and
cospinor irreps of so(4n). Let us define R∨o,s = S and R∨o,c = C. For h∨o = so(4n), the 5d theory
contains a local operator transforming in the representation

�

R∨o,s ⊗R∨o,s

�

⊕
�

R∨o,c ⊗R∨o,c

�

(12)

of h∨o = so(4n).
For h∨o 6= so(4n), when this local operator is moved to the 4d boundary associated to P ,

then it becomes a local operator OP charged in representation

R∨o,P ⊗R∨o,P (13)

of the flavor algebra fP . On the other hand, for h∨o = so(4n), OP is charged in representation
�

R∨o,s,P ⊗R∨o,s,P

�

⊕
�

R∨o,c,P ⊗R∨o,c,P

�

(14)
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oP1 P2

P1 P2

Figure 5: Compactifying 6d N = (2, 0) theory of type g on a sphere-like surface with
an o-twisted puncture P1 and o−1-twisted puncture is equivalent to compactifying 5d
N = 2 SYM theory with gauge algebra h∨o on an interval with boundary conditions
associated to P1 and P2 inserted at the two ends of the interval.

of the flavor algebra fP .
The representations (13) and (14) apriori contain a number of irreps of fP . The local

operator OP decomposes into local operators transforming in these irreps. The charges under
ZF,P of these local operators generate a sub-lattice YF,P of bZF,P .

Consider a 4d N = 2 class S theory arising from the compactification of a 6d N = (2,0)
theory carrying regular (untwisted and twisted) punctures Pi and closed twist lines. Then,
the manifest flavor symmetry of the 4d theory is16 f =

⊕

i fPi
which has an associated lattice

of charges bZF =
⊕

i bZF,Pi
. From the above consideration, we find that the sub-lattice

Y ′F =
⊕

i

YF,Pi
⊆ bZF (15)

of charges is realized by local operators in the 4d theory.

3.3 Local Operators in 4d Arising from Surface Defects in 6d

Notice that the local operators discussed above carry charges only under the center associated
to a single puncture. Now we turn to a discussion of other local operators that can carry
charges under centers associated to multiple punctures. We start with a simple situation in
which we compactify 6d type g (2, 0) theory on a sphere with two punctures P1 and P2, such
that P1 lives at the end of an o twist line while P2 lives at the end of an o−1 twist line. Then
we have an o twist line running from P1 to P2. See Figure 5. This setup can be equivalently
represented as a compactification of 5d N = 2 SYM with gauge algebra h∨o on a segment with
the boundary condition corresponding to P1 placed at one boundary of the segment, and the
boundary condition corresponding to P2 placed at the other boundary of the segment. The
gauge Wilson line in representation R∨o of ho

∨ can be inserted along the segment such that
its end points lie at the two boundaries of the segment. This Wilson line gives rise to a local
operator OP1,P2

in the 4d theory charged in representation

R∨o,P1
⊗R∨o,P2

(16)

of the flavor algebra fP1
⊕ fP2

. In a similar way, the local operators associated to (13) and (14)
can also be understood as the contribution of R∨o Wilson line whose both ends lie at the same
boundary P . Note that, unlike (13), there is no complex conjugate appearing in the above
equation (16). This is due to the fact that a Wilson line traveling from the boundary P to itself
is akin to a Wilson line traveling from P1 = P to P2 = P , where P is the boundary obtained
by changing the orientation of P (so that it lies at the other end of the segment).

16Note the use of f to denote the manifest flavor symmetry. This usage is in contrast with the earlier subsections,
where f is used to denote the full flavor symmetry algebra and manifest flavor symmetry algebra is denoted as fm
instead. We hope that in the rest of the paper, it would be clear from the context whether f refers to the manifest
or to the full flavor symmetry algebra.
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oP1 P2

P1 P2

Figure 6: Inserting a Wilson line in rep R∨o stretched between the two boundaries
(denoted by red) in the 5d theory is equivalent to compactifying the Ro surface defect
along the whole sphere (denoted by red background) in the 6d theory.

The above R∨o Wilson line inserted between the two boundaries corresponding to P1 and
P2 lifts in the 6d theory to a Ro surface defect wrapped along the whole sphere. See Figure
6. It is possible to wrap this surface defect because the representation Ro of g is left invariant
by the action of o. We can now generalize to a more general compactification as follows.
Along the whole Riemann surface, we can wrap a surface defect of the 6d theory that is left
invariant by all outer-automorphism twist lines. From this we obtain a local operator O in
the 4d theory transforming in a representation R of the flavor symmetry algebra f =

⊕

i fPi
.

The precise form of R depends on the type of compactification and is discussed later in this
subsection. We can decompose this representation as

R=
⊕

α

Rα , (17)

such that each Rα is an irrep of f. Then the local operator O decomposes into local operators
Oα transforming in irreps Rα which generate a lattice of charges

eYF ⊆ bZF =
⊕

i

bZF,Pi
. (18)

Thus, the total sub-lattice YF of bZF formed by charges of local operators appearing in the 4d
theory is

YF =



Y ′F ∪ eYF

�

, (19)

which is the sublattice generated by the union of sublattices Y ′F and eYF . See (15) for the
definition of the sublattice Y ′F . Now one can use this YF to compute the flavor symmetry group
of the 4d theory as in (4).

We now turn to a discussion of the precise form of the representation R for various kinds
of compactifications:

Untwisted : If all the regular punctures Pi are untwisted and there are no (homologically
non-trivial) closed twist lines, then we can wrap the surface defect carrying representation R∨o
corresponding to h∨o = g along the whole Riemann surface. For g 6= so(4n), this leads to a local
operator O transforming in representation

R=
⊗

i

R∨o,Pi
(20)

of the flavor symmetry algebra f =
⊕

i fPi
. For g = so(4n), this leads to a local operator O

transforming in representation

R=
�

⊗

i

R∨o,s,Pi

�

⊕
�

⊗

i

R∨o,c,Pi

�

(21)

of the flavor symmetry algebra f=
⊕

i fPi
.
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Single type of twist lines : Consider the situation when the outer-automorphism elements
associated to all the closed twist lines and the open twist lines associated to twisted regular
punctures lie in a Z2 or a Z3 subgroup of Og. Then all the twist lines are associated to the
same h∨o . Let us define two index sets T and U by the following criteria. A puncture Pi such
that i ∈ T is a twisted regular puncture, while a puncture Pi such that i ∈ U is an untwisted
regular puncture. In such a situation, we can wrap the surface defect carrying representation
Ro of g corresponding to the representation R∨o of h∨o along the whole Riemann surface. This
leads to a local operator O transforming in representation

R=
⊗

i∈T
R∨o,Pi

⊗

i∈U
Ro,Pi

(22)

of the flavor symmetry algebra f =
⊕

i fPi
=
⊕

i∈T fPi

⊕

i∈U fPi
. Here Ro,Pi

is the representa-
tion Ro of g viewed from the point of view of the flavor symmetry algebra fPi

⊆ g associated
to an untwisted regular puncture Pi .

Multiple types of twist lines : Consider the situation when the outer-automorphism ele-
ments associated to all the closed twist lines and the open twist lines associated to twisted
regular punctures lie in either multiple Z2 subgroups of Og, or a Z2 and Z3 subgroup of Og,
or a Z3 subgroup and multiple Z2 subgroups of Og. This kind of a situation is possible only
for g= so(8) for which we have Og = S3 the permutation group of three objects. Let us define
index sets U , T3 and T2 by the following criteria. A puncture Pi such that i ∈ U is an untwisted
regular puncture, a puncture Pi such that i ∈ T3 is a twisted regular puncture living at the end
of a twist line carrying an outer automorphism element o of order three, and a puncture Pi
such that such that i ∈ T2 is a twisted regular puncture living at the end of a twist line carrying
an outer automorphism element o of order two. In such a situation, we can wrap the surface
defect carrying the adjoint representation of g = so(8) along the whole Riemann surface. Let
us label the adjoint representation by R. This leads to a local operator O transforming in
representation

R=
⊗

i∈T3

R∨o,Pi

⊗

i∈U
RPi

⊗

i∈T2

R∨o,Pi
(23)

of the flavor symmetry algebra f =
⊕

i fPi
=
⊕

i∈T3
fPi

⊕

i∈U fPi

⊕

i∈T2
fPi

. Here RPi
is the

adjoint representation R of g = so(8) viewed from the point of view of the flavor symmetry
algebra fPi

⊆ so(8) associated to an untwisted regular puncture Pi . The representation R∨o,Pi

is the 2-index antisymmetric irrep of h∨o = sp(3) (associated to a Z2 twisted puncture) viewed
from the point of view of the flavor symmetry algebra fPi

⊆ sp(3) associated to a Z2 twisted
regular puncture Pi .

4 Illustrative Examples and Consistency Checks

In this section, we illustrate using various examples the above discussed procedure for deter-
mining manifest flavor symmetry groups of 4d N = 2 Class S theories. See the end of Section
1 for an overview of this section.

We label punctures using the notation of [8–18], [4] which captures the homomorphism
(10) associated to each puncture. We refer the reader to these papers for more details about
the notation and corresponding homomorphisms.
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4.1 Free-field Fixtures

Simplest example – T2 theory :

g= su(2)

P1

P2

P3

Consider compactifying g = su(2) 6d N = (2,0) theory on a sphere with three regular punc-
tures. Let us label the three punctures by Pi with i = 1,2, 3. The puncture Pi has an
fPi
= su(2)i flavor symmetry algebra associated to it. The representation R∨o is the funda-

mental representation of h∨o = g = su(2) and thus R∨o,Pi
is the fundamental representation Fi

of su(2)i . The local operators in the 4d theory contributed locally by Pi are generated by the
representation (13) which is Fi ⊗ Fi which has a trivial charge under the center ZF,Pi

' Z2
of the simply connected group FPi

= SU(2)i associated to su(2)i . Thus YF,Pi
= 0 and hence

Y ′F = 0. We still need to consider 4d local operators arising from the compactification of sur-
face defect in fundamental representation of g = su(2) along the sphere. This leads to a local
operator in 4d transforming in representation (20)

R= F1 ⊗ F2 ⊗ F3 (24)

of su(2)1⊕su(2)2⊕su(2)3. Thus eYF ' Z2 generated by the element (1, 1,1) ∈ bZF,P1
⊕bZF,P2

⊕bZF,P3
.

Since Y ′F = 0, we have YF = eYF , from which we compute that the manifest flavor symmetry
group is

F =
SU(2)1 × SU(2)2 × SU(2)3

Z1,2
2 ×Z

2,3
2

, (25)

where Zi, j
2 is the diagonal Z2 subgroup of ZF,Pi

× ZF,P j
.

We can confirm this result using the analysis of Section 2.2 since the resulting 4d N = 2
theory admits a Lagrangian description. The 4d theory is a bunch of free hypers transforming
as a half-hyper in trifundamental representation (24). Thus we have M = eYF which leads to
precisely the same result (25).

Bifundamental hyper :

· · ·
P1

··
·

P3

· · ·
P2

g= su(n)
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The puncture Pi has an fPi
= su(n)i flavor symmetry algebra associated to it for i = 1,2, and

P3 has fP3
= u(1). The representation R∨o is the fundamental representation of h∨o = g= su(n)

and thus R∨o,Pi
is the fundamental representation Fi of su(n)i for i = 1,2. On the other hand,

for the minimal puncture the representation R∨o,P3
= (n− 1) · 11 ⊕ 11−n where 1q denotes the

charge q representation of FP3
= U(1). From this we compute that, for i = 1, 2, we have

YF,Pi
= 0 as R∨o,Pi

⊗R∨o,Pi
= Fi ⊗ Fi has zero charge under ZF,Pi

. On the other hand, because

R∨o,P3
⊗Ro,P3

contains FP3
= U(1) charges equal to n,−n, 0, we have YF,P3

= nZ if we represent
bZF,P3

= Z. Thus, Y ′F is generated by the element (0,0, n) ∈ bZF,P1
⊕ bZF,P2

⊕ bZF,P3
.

The representation (20) becomes

F1 ⊗ F2 ⊗
�

(n− 1) · 11 ⊕ 11−n

�

, (26)

implying that eYF is generated by the element (1, 1,1) ∈ bZF,P1
⊕ bZF,P2

⊕ bZF,P3
. The other element

(1, 1,1−n) ∈ bZF,P1
⊕bZF,P2

⊕bZF,P3
is included in eYF because it is (1−n) times the element (1,1, 1).

Notice that n times (1, 1,1) is the generator of Y ′F , so Y ′F is a sub-lattice of eYF and from (19)
we have YF = eYF .

Now let us compute the manifest flavor symmetry group F . We have

F = SU(n)1 × SU(n)2 × U(1) , (27)

with center (Zn)1 × (Zn)2 × U(1). Let us represent the elements of (Zn)i as k
n (mod 1)

and the elements of U(1) as living in R/Z. Then we are looking for elements
(α,β ,γ) ∈ (Zn)1 × (Zn)2 × U(1) such that its scalar product with (1,1,1) is zero. That is,
we are looking for solutions to

(1,1, 1) · (α,β ,γ) = 0 . (28)

The solutions to this equation form a groupZ1,2
n ×Z

2,3
n , whereZ1,2

n is theZn subgroup generated
by the element

� 1
n ,− 1

n , 0
�

of the (Zn)1×(Zn)2×U(1) center and Z2,3
n factor is the Zn subgroup

generated by the element
�

0, 1
n ,− 1

n

�

of the Z1
n ×Z

2
n × U(1) center. Thus,

F =
SU(n)1 × SU(n)2 × U(1)

Z1,2
n ×Z

2,3
n

(29)

is the manifest flavor group.
We can confirm this result using the analysis of Section 2.2 since the resulting 4d N = 2

theory admits a Lagrangian description. The 4d theory is a bunch of free hypers transforming
as a hyper in the bifundamental representation F1⊗F2 of the manifest flavor symmetry algebra
su(n)1 ⊕ su(n)2. The third manifest flavor algebra u(1) rotates the bifundamental hyper. We
can represent the 4d N = 2 Lagrangian theory as a quiver diagram of the form

�

su(n)1
� �

su(n)2
�

�

u(1)
�

FF

F

, (30)

where an algebra in brackets denotes a flavor algebra and F for u(1) denotes its charge +1
representation. For this Lagrangian description, we have M= eYF which leads to precisely the
same result (29).
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Example including non-minimal and non-maximal punctures :

P1

P2

P3

g= su(4)

The puncture P3 has an fP3
= su(4) flavor symmetry, P2 has fP2

= su(2)2, and P1 has
fP1
= su(2)1⊕u(1). The representationR∨o is the fundamental representation of h∨o = g= su(4).

We have R∨o,P3
= F the fundamental representation of su(4), R∨o,P2

= 2 · F with F being the
fundamental representation of su(2)2, and R∨o,P1

= F−1⊕2·11 where F−1 is the representation
F⊗1)−1 of fP1

= su(2)1⊕u(1) and 11 is the representation 1⊗1)1 of fP1
= su(2)1⊕u(1). From

this we compute that YF,Pi
= 0 for i = 2,3 but YF,P1

is the sub-lattice generated by (1,−2) in
bZF,P1

= (Z/2Z)⊕Z. Thus, Y ′F is generated by the element (1,−2,0, 0) ∈ bZF,P1
⊕ bZF,P2

⊕ bZF,P3
.

The local operators in representation (20) imply that eYF is generated by the elements
(0,1, 1,1) and (1,−1, 1,1) in bZF,P1

⊕ bZF,P2
⊕ bZF,P3

. Notice that Y ′F ⊂ eYF and so YF = eYF .
Moreover, notice that the generators of YF can also be chosen to be (1,0, 0,2) and (0, 1,1, 1).
Using YF , we compute that the manifest flavor symmetry group is

F =
SU(2)1 × U(1)× SU(2)2 × SU(4)

Z4 ×Z2
, (31)

where Z4 factor is generated by the element
�1

2 ,−1
4 , 0, 1

4

�

∈ ZF,P1
⊕ ZF,P2

⊕ ZF,P3
' Z2×R/Z×

Z2×Z4. TheZ2 factor is generated by the element
�

0,0, 1
2 , 1

2

�

∈ ZF,P1
⊕ZF,P2

⊕ZF,P3
' Z2×R/Z×

Z2 ×Z4.
We can confirm this result using the analysis of Section 2.2 since the resulting 4d N = 2

theory admits a Lagrangian description. The 4d theory is a bunch of free hypers transforming
as

�

su(2)2
� �

su(4)
�

�

u(1)
�

�

su(2)1
�1

2 FΛ2FF

F

, (32)

where half-hypers are denoted by inserting a 1
2 in front of one of the reps that the half-hyper

transforms in. In total, we have a full-hyper transforming in F ⊗ F ⊗ 11 representation of
su(2)2⊕ su(4)⊕ u(1) and a half-hyper transforming in Λ2⊗F representation of su(4)⊕ su(2)1
where Λ2 denotes the 2-index antisymmetric irrep of su(4). For this Lagrangian description,
we have M = eYF as one can notice that the two hypers correspond to the two generators
(1, 0,0, 2) and (0, 1,1, 1) of eYF . Thus we are lead to precisely the same result (31).
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D2n example – Appearance of reducible R∨o :

P1

P2

P3

g= so(8)

The punctureP3 has an fP3
= so(8) flavor symmetry, P2 has fP2

= sp(2), andP1 has fP1
= su(2).

The representationR∨o = S⊕C is the direct sum of spinor and cospinor irreps of h∨o = g= so(8).
We have R∨o,s,P3

= S and Ro,c,P3
= C, R∨o,s,P2

= 2 · F and R∨o,c,P2
= 2 · F with F being the fun-

damental representation of fP2
= sp(2), and R∨o,s,P1

= A⊕ 5 · 1 and R∨o,c,P1
= 4 · F where A is

the adjoint of fP1
= su(2). From this we compute that YF,Pi

= 0 for all i. Thus, Y ′F = 0.
The local operators in representation (21) imply that eYF is generated by the elements

(0, 1,1, 0) and (1,0, 1,1) in bZF,P1
⊕ bZF,P2

⊕ bZF,P3
' Z/2Z⊕Z/2Z⊕ (Z/2Z)s ⊕ (Z/2Z)c . Since

Y ′F = 0, we have YF = eYF using which we compute that the manifest flavor symmetry group is

F =
SU(2)× Sp(2)× Spin(8)

Z2 ×Z2
, (33)

where one Z2 factor is generated by the element
�1

2 , 0, 0, 1
2

�

∈ ZF,P1
⊕ ZF,P2

⊕ ZF,P3
' Z2×Z2×

(Z2)s×(Z2)c . The otherZ2 factor is generated by the element
�

0, 1
2 , 1

2 , 1
2

�

∈ ZF,P1
⊕ZF,P2

⊕ZF,P3
'

Z2 ×Z2 × (Z2)s × (Z2)c .
We can confirm this result using the analysis of Section 2.2 since the resulting 4d N = 2

theory admits a Lagrangian description. The 4d theory is a bunch of free hypers transforming
as

�

sp(2)
� �

so(8)
� F �

su(2)
�1

2 F1
2 F S

, (34)

where any the representation F of so(8) is the vector irrep. For this Lagrangian description,
we have M= eYF and we are lead to precisely the same result (33).

D2n+1 example – All R∨o are irreducible in contrast with D2n :

P2

P3

P1

g= so(10)

The puncture P1 has an fP1
= so(10) flavor symmetry, P2 has fP2

= sp(2)⊕ u(1), and P3 has
a trivial flavor symmetry. The representation R∨o is the spinor irrep S of h∨o = g = so(10). We
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have R∨o,P1
= S of fP1

= so(10), R∨o,P2
= Λ2

1 + 2 · F−1 + 3 · 11 of fP2
= sp(2)⊕ u(1) where Λ2

is the 2-index antisymmetric irrep of sp(2) and subscripts specify the u(1) charges. From this
we compute that YF,P1

= 0 and YF,P2
is the sub-lattice generated by (1,2) in bZF,P2

= Z/2Z⊕Z.
Thus, Y ′F is generated by the element (0, 1,2) ∈ bZF,P1

⊕ bZF,P2
' Z/4Z⊕Z/2Z⊕Z.

The local operators in representation (20) imply that eYF is generated by the elements
(1, 0,1) in bZF,P1

⊕ bZF,P2
. From this, we compute that the manifest flavor symmetry group is

F =
Spin(10)× Sp(2)× U(1)

Z4
, (35)

where Z4 is generated by the element
�1

4 , 1
2 ,−1

4

�

∈ ZF,P1
⊕ ZF,P2

' Z4 ×Z2 ×R/Z.
We can confirm this result using the analysis of Section 2.2 since the resulting 4d N = 2

theory admits a Lagrangian description. The 4d theory is a bunch of free hypers transforming
as

�

u(1)
� �

so(10)
� F �

sp(2)
�1

2 FF S

. (36)

For this Lagrangian description, we can compute M to find that it is precisely the sub-lattice
of bZF generated by the generators of Y ′F and eYF discussed above. Thus we are lead to precisely
the same result (35).

First twisted example :

P3

P2

P1

g= su(4)

Consider compactifying g = su(4) 6d N = (2, 0) theory on a sphere with three regular punc-
tures – one untwisted and maximal labeled P1, one twisted and maximal labeled P2, and one
twisted and minimal labeled P3. The dashed line between the two twisted punctures is the
open outer-automorphism twist line joining the two punctures.

The puncture P1 has an fP1
= su(4) flavor symmetry, P2 has fP2

= sp(2), and P3 has a
trivial flavor symmetry. For P1 we have h∨o = g = su(4), R∨o = F of h∨o = g = su(4), and
R∨o,P1

= F of fP1
= su(4). For P2 we have h∨o = sp(2), R∨o = F of h∨o = sp(2), and R∨o,P2

= F of
fP2
= sp(2). From this we compute that YF,P1

= YF,P2
= 0 and thus Y ′F = 0.

All twist lines are of the same type and they are associated to h∨o = sp(2) which has corre-
spondingR∨o = F of h∨o = sp(2) and Ro = Λ2 of g= su(4). The local operators in representation
(22) imply that eYF is generated by the element (2, 1) in bZF,P1

⊕ bZF,P2
' Z/4Z⊕ Z/2Z. From

this, we compute that the manifest flavor symmetry group is

F =
SU(4)× Sp(2)
Z4

, (37)

where Z4 is generated by the element
�1

4 , 1
2

�

∈ ZF,P1
⊕ ZF,P2

' Z4 ×Z2.
We can confirm this result using the analysis of Section 2.2 since the resulting 4d N = 2

theory admits a Lagrangian description. The 4d theory is a bunch of free hypers transforming
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as
�

su(4)
� Λ2 �

sp(2)
�1

2 F

. (38)

For this Lagrangian description, we can compute M to find that it is precisely equal to eZF
discussed above. Thus we are lead to precisely the same result (37).

Example including non-minimal and non-maximal twisted punctures :

P2

P1

P3

g= su(4)

The punctureP1 has an fP1
= sp(2) flavor symmetry, P2 has fP2

= su(2), andP3 has fP3
= u(1).

For P1 we have h∨o = sp(2), R∨o = F of h∨o = sp(2), and R∨o,P1
= F of fP1

= sp(2). For P2 we
have h∨o = sp(2), R∨o = F of h∨o = sp(2), and R∨o,P2

= F⊕ 2 · 1 of fP2
= su(2). For P3 we have

h∨o = g = su(4), R∨o = F of h∨o = g = su(4), and R∨o,P3
= 3 · 11 ⊕ 1−3 of fP3

= u(1). From this

we compute that YF,P1
= 0, YF,P2

= bZF,P2
and YF,P3

= 4Z if we represent bZF,P3
= Z.

All twist lines are of the same type and they are associated to h∨o = sp(2) which has corre-
sponding R∨o = F of h∨o = sp(2) and Ro = Λ2 of g = su(4). The representation (22) becomes
R= F⊗ (F⊕2 ·1)⊗ (3 ·1−2⊕3 ·12) of fP1

⊕ fP2
⊕ fP3

. From this, we conclude that the full YF

is generated by the elements (0,1, 0) and (0, 1,2) in bZF,P1
⊕ bZF,P2

⊕ bZF,P3
' Z/2Z⊕Z/2Z⊕Z.

The manifest flavor symmetry group is then

F = SU(2)×
Sp(2)× U(1)
Z4

= SU(2)×
Sp(2)× U(1)/Z2

Z2
' SU(2)×

Sp(2)× U(1)
Z2

, (39)

where the Z4 in SU(2)× Sp(2)×U(1)
Z4

is generated by the element
�1

2 , 0, 1
4

�

∈ ZF,P1
⊕ZF,P2

⊕ZF,P3
'

Z2×Z2×R/Z. The square of this element only acts on the U(1) part, which allows us to write
F as SU(2)× Sp(2)×U(1)/Z2

Z2
. Redefining U(1)/Z2 ' U(1) we obtain F = SU(2)× Sp(2)×U(1)

Z2
.

We can confirm this result using the analysis of Section 2.2 since the resulting 4d N = 2
theory admits a Lagrangian description. The 4d theory is a bunch of free hypers transforming
as

�

su(2)
� �

sp(2)
� F �

u(1)
�F1

2 F Λ2

. (40)

From this Lagrangian description, we can compute

F = SU(2)×
Sp(2)× U(1)
Z2

, (41)

which matches (39).
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Half-hyper in bifundamental; Twisted D2n+1 example :
Consider compactifying g = so(4n + 2) 6d N = (2, 0) theory on a sphere with three reg-
ular punctures – one untwisted and maximal labeled P1, one twisted and maximal labeled
P2, and one twisted and minimal labeled P3. The puncture P1 has an fP1

= so(4n + 2) fla-
vor symmetry, P2 has fP2

= sp(2n), and P3 has a trivial flavor symmetry. For P1 we have
h∨o = g = so(4n+ 2), R∨o = S of h∨o = g = so(4n+ 2), and R∨o,P1

= S of fP1
= so(4n+ 2). For

P2 we have h∨o = sp(2n), R∨o = F of h∨o = sp(2n), and R∨o,P2
= F of fP2

= sp(2n). From this
we compute that YF,P1

= YF,P2
= 0 and thus Y ′F = 0.

All twist lines are of the same type and they are associated to h∨o = sp(2n) which has
corresponding R∨o = F of h∨o = sp(2n) and Ro = F which is the vector irrep of g = so(4n+ 2).
The local operators in representation (22) imply that eYF is generated by the element (2,1) in
bZF,P1

⊕ bZF,P2
' Z/4Z⊕Z/2Z. From this, we compute that the manifest flavor symmetry group

is

F =
Spin(4n+ 2)× Sp(2n)

Z4
=

Spin(4n+ 2)/Z2 × Sp(2n)
Z2

=
SO(4n+ 2)× Sp(2n)

Z2
, (42)

where Z4 in Spin(4n+2)×Sp(2n)
Z4

is generated by the element
�1

4 , 1
2

�

∈ ZF,P1
⊕ ZF,P2

' Z4 ×Z2.
We can confirm this result using the analysis of Section 2.2 since the resulting 4d N = 2

theory admits a Lagrangian description. The 4d theory is a bunch of free hypers transforming
as

�

so(4n+ 2)
� F �

sp(2n)
�1

2 F

. (43)

For this Lagrangian description, we can compute M to find that it is precisely equal to eZF
discussed above. Thus we are lead to precisely the same result (42).

The case of g = so(4n) with same punctures can be performed easily in a similar fashion
as above and we obtain

F =
SO(4n)× Sp(2n− 1)

Z2
. (44)

Twisted D2n example :

P1

P3

P2

g= so(8)

The puncture P1 has an fP1
= su(2)1 flavor symmetry, P2 has fP2

= su(2)2, and P3 has
fP3
= sp(2). For P1 we have h∨o = g = so(8), R∨o,s = S and R∨o,c = C of h∨o = g = so(8),

and R∨o,s,P1
= A⊕5 ·1 and R∨o,c,P1

= 4 ·F of fP1
= su(2)1. For P2 we have h∨o = sp(3), R∨o = F

of h∨o = sp(3), and R∨o,P2
= 2 · A of fP2

= su(2)2. For P3 we have h∨o = sp(3), R∨o = F of
h∨o = sp(3), and R∨o,P3

= F⊕ 2 · 1 of fP3
= sp(2). From this we compute that YF,P1

= YF,P2
= 0

and YF,P3
= bZF,P2

.
All twist lines are of the same type and they are associated to h∨o = sp(3) which has corre-

sponding R∨o = F of h∨o = sp(3) and Ro = F of g = so(8). The representation (22) becomes
R = (4 · F)⊗ (2 ·A)⊗ (F⊕ 2 · 1) of fP1

⊕ fP2
⊕ fP3

. From this, we conclude that the full YF is
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generated by the elements (0, 0,1) and (1, 0,0) in bZF,P1
⊕ bZF,P2

⊕ bZF,P3
' Z/2Z⊕Z/2Z⊕Z/2Z.

The manifest flavor symmetry group is then

F = SU(2)1 × SO(3)2 × Sp(2) . (45)

Note that by moving the puncture through the Z2 outer-automorphism twist line, it is

converted into . So the “color” of the puncture should not influence the flavor symmetry

group F . Indeed this is the case and is in-built into the way the calculation of F is performed.
We can confirm the above result (45) using the analysis of Section 2.2 since the resulting

4d N = 2 theory admits a Lagrangian description. The 4d theory is a bunch of free hypers
transforming as

�

su(2)1
� �

sp(2)
�

A

�

su(2)2
�

A

1
2 F

Λ21
2 F

1
2 F

. (46)

From this Lagrangian description, we can verify (45).

E6 example : Consider compactifying g = e6 6d N = (2, 0) theory on a sphere with three
untwisted regular punctures – one maximal specified by Nahm Bala-Carter (BC) label 0 and
labeled P1, one specified by Nahm BC label A2 + 2A1 and labeled P2, and one specified
by Nahm BC label E6(a1) and labeled P3. The puncture P1 has an fP1

= e6 flavor sym-
metry, P2 has fP2

= su(2) ⊕ u(1), and P3 has a trivial flavor symmetry. The representa-
tion R∨o is the 27-dimensional irrep F of h∨o = g = e6. We have R∨o,P1

= F of fP1
= e6,

R∨o,P2
= 12 ⊕ 1−4 ⊕ 2 · 4−1 ⊕ 3 · 32 ⊕ 4 · 2−1 of fP2

= su(2) ⊕ u(1) where n denotes the n-
dimensional irrep of su(2) and subscripts specify the u(1) charges. From this we compute that
YF,P1

= 0 and YF,P2
is the sub-lattice generated by (1, 3) in bZF,P2

= Z/2Z ⊕ Z. Thus, Y ′F is
generated by the element (0,1, 3) ∈ bZF,P1

⊕ bZF,P2
' Z/3Z⊕Z/2Z⊕Z.

Accounting for the local operators in representation (20), we find that the full YF is gener-
ated by the element (−1, 1,1) in bZF,P1

⊕ bZF,P2
. From this, we compute that the manifest flavor

symmetry group is

F =
E6 × SU(2)× U(1)

Z6
, (47)

where Z6 is generated by the element
�1

3 , 1
2 , 1

6

�

∈ ZF,P1
⊕ ZF,P2

' Z3 ×Z2 ×R/Z.
We can confirm this result using the analysis of Section 2.2 since the resulting 4d N = 2

theory admits a Lagrangian description. The 4d theory is a bunch of free hypers transforming
as

�

e6

� �

su(2)
�

�

u(1)
�

FF

F

. (48)

From this Lagrangian description, we can easily confirm (47).
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E7 example : Consider compactifying g = e7 6d N = (2, 0) theory on a sphere with three
untwisted regular punctures – one maximal specified by Nahm Bala-Carter (BC) label 0 and
labeled P1, one specified by Nahm BC label A3 + A2 + A1 and labeled P2, and one specified
by Nahm BC label E7(a1) and labeled P3. The puncture P1 has an fP1

= e7 flavor symmetry,
P2 has fP2

= su(2), and P3 has a trivial flavor symmetry. The representation R∨o is the 56-
dimensional irrep F of h∨o = g = e7. We have R∨o,P1

= F of fP1
= e7, R∨o,P2

= 2 · 5⊕ 4 · 7⊕ 6 · 3
of fP2

= su(2) where n denotes the n-dimensional irrep of su(2). From this we compute that
YF,P1

= YF,P2
= 0.

Accounting for the local operators in representation (20), we find that the full YF is gen-
erated by the element (1, 0) in bZF,P1

⊕ bZF,P2
' Z/2Z⊕Z/2Z. From this, we compute that the

manifest flavor symmetry group is

F = E7 × SO(3) . (49)

We can confirm this result using the analysis of Section 2.2 since the resulting 4d N = 2
theory admits a Lagrangian description. The 4d theory is a bunch of free hypers transforming
as

�

e7

� 1
2 F �

su(2)
�A

. (50)

From this Lagrangian description, we can easily confirm (49).

4.2 Theories Having Weakly-coupled Duality Frames

SU(n) + 2nF SCFT : Consider compactifying g = su(n) 6d N = (2,0) theory on a sphere
with four untwisted regular punctures – two maximal labeled P1,P2 and two minimal labeled
P3,P4. The punctures P1,P2 have fPi

= su(n)i , and P3,P4 have fPi
= u(1)i . The representa-

tion R∨o is the fundamental representation of h∨o = g= su(n) and thus R∨o,Pi
is the fundamental

representation Fi of fPi
= su(n)i for i = 1,2, and R∨o,Pi

= (n− 1) · 11 ⊕ 11−n of fPi
= u(1)i for

i = 3, 4. From this we compute that YF,Pi
= 0 for i = 1, 2, but YF,Pi

= nZ for i = 3, 4 if we
represent bZF,Pi

= Z.
The representation (20) becomes

F1 ⊗ F2 ⊗
�

(n− 1) · 11 ⊕ 11−n

�

⊗
�

(n− 1) · 11 ⊕ 11−n

�

, (51)

implying that eYF is generated by the element (1, 1,1, 1) ∈ bZF,P1
⊕ bZF,P2

⊕ bZF,P3
⊕ bZF,P4

. From
this we compute that the manifest flavor symmetry group is

F =
SU(n)1 × SU(n)2 × U(1)3 × U(1)4

Z1,2
n ×Z

2,3
n ×Z

3,4
n

, (52)

where Z1,2
n is the Zn subgroup generated by the element

� 1
n ,− 1

n , 0, 0
�

of the (Zn)1 × (Zn)2 ×
(R/Z)3× (R/Z)4 center. The Z2,3

n factor is generated by the element
�

0, 1
n ,− 1

n , 0
�

and the Z3,4
n

factor is generated by the element
�

0,0, 1
n ,− 1

n

�

.
We can confirm this result using the analysis of Section 2.2 since the resulting 4d N = 2

theory admits a duality frame with the following Lagrangian description

�

su(n)1
�

su(n)

�

u(1)3
�

FF

F

�

su(n)2
�

�

u(1)4
�

F

F

F

, (53)
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where an algebra not in brackets denotes a gauge algebra. For this Lagrangian description,
we have E ' Z3

n generated by elements
�

− 1
n , 1

n ,− 1
n , 0, 0

�

,
�

0,0, 1
n ,− 1

n , 0
�

and
� 1

n , 0, 0, 1
n ,− 1

n

�

in
ZG × ZF ' Zn × (Zn)1 × (Zn)2 × (R/Z)3 × (R/Z)4. Projecting E onto ZF we find precisely the
subgroup Z ' Z1,2

n ×Z
2,3
n ×Z

3,4
n ⊂ ZF and we are lead to precisely the same result (52).

Example: Higher genus; Twisted A2n, A2n−1 for large enough n : Consider compactifying
g = su(n) 6d N = (2, 0) theory on a torus with an untwisted minimal regular puncture
labeled P and a closed Z2 twist line wrapping a non-trivial cycle of the torus. We have
fP = u(1). For the puncture P , we have h∨o = g = su(n), R∨o = F of h∨o = g = su(n), and
R∨o,P = (n− 1) · 11 ⊕ 11−n of fP = u(1). From this we compute that YF,P = nZ if we represent
bZF,P = Z.

For further analysis we need to distinguish whether n is even or odd. Let us first consider
n= 2m. All twist lines are of the same type and they are associated to h∨o = so(2m+1) which
has corresponding R∨o = S of h∨o = so(2m+ 1) and Ro = Λm i.e. the m-index antisymmetric
irrep of g= su(2m). The representation (22) becomesR= 1

2

�2m
m

�

·1m⊕
1
2

�2m
m

�

·1−m of fP = u(1).
From this, we find that the full YF = mZ if we represent bZF = bZF,P = Z. The manifest flavor
symmetry group is then

F = U(1)
Zm

, (54)

where U(1) appearing in the numerator is the global form of fP = u(1) for which various
charges above were listed. This U(1)will also appear naturally in the gauge theory description
that we will study below.

Now consider n = 2m + 1. The twist lines are now associated to h∨o = sp(m) which has
corresponding R∨o = F of h∨o = sp(m) and Ro = A of g= su(2m+ 1). The representation (22)
becomes R = 2m · 12m+1 ⊕ 2m · 1−2m−1 ⊕ (4m2 + 1) · 10 of fP = u(1). From this, we find that
the full YF = (2m+1)Z if we represent bZF = bZF,P = Z. The manifest flavor symmetry group is
then

F = U(1)
Z2m+1

, (55)

where U(1) appearing in the numerator is the global form of fP = u(1) for which various
charges above were listed. This U(1)will also appear naturally in the gauge theory description
that we will study below.

The above 4d N = 2 theory admits a duality frame with the following Lagrangian descrip-
tion

su(n)
�

u(1)
�F

F

F , (56)

i.e. the su(n) gauge theory with a hyper transforming in F ⊗ F which is rotated by
the flavor u(1). For this Lagrangian description, we have M generated by the element
(2,1) ∈ bZG × bZF ' Z/4Z × Z where the charges under ZF are charges under the U(1) ap-
pearing in the numerators of (54) and (55) 17. From this we compute that E generated by the
element

�

− 2
n , 1

n

�

∈ ZG × ZF ' Zn ×R/Z. For n = 2m, this leads to (54), and for n = 2m+ 1,
this leads to (55).

17This follows from the fact that the U(1) appearing in the numerator of (29) is the same as the U(1) under
which the bifundamental hyper in (30) has charge +1. The theory (56) is obtained by gauging the diagonal su(n)
of the two su(n) flavor symmetries present in (30) which corresponds to stitching the sphere along the maximal
punctures into a torus with a closed outer-automorphism twist line wrapping the homologically non-trivial cycle
created by the stitching. These operations do not touch the U(1) symmetry appearing in (30) and the minimal
puncture on the sphere, thus leaving the equality of the two U(1)s intact.

26

https://scipost.org
https://scipost.org/SciPostPhys.12.6.183


SciPost Phys. 12, 183 (2022)

Twisted E6 example : Consider compactifying g= e6 6d N = (2, 0) theory on a sphere with
four regular punctures – one twisted with Nahm BC label B3 and labeled P1, one untwisted
with Nahm BC label A2 + 2A1 and labeled P2, one untwisted with Nahm BC label E6(a1) and
labeled P3, and one twisted with Nahm BC label F4 and labeled P4. The puncture P1 has
an fP1

= su(2)1 flavor symmetry, P2 has fP2
= su(2)2 ⊕ u(1), and P3 and P4 have a trivial

flavor symmetry. For P1 we have h∨o = f4, R∨o is the 26-dimensional irrep F of h∨o = f4, and
R∨o,P1

= 5⊕ 7 · 3 of fP1
= su(2)1. For P2 we have h∨o = g = e6, R∨o = F of h∨o = g = e6, and

R∨o,P2
= 12 ⊕ 1−4 ⊕ 2 · 4−1 ⊕ 3 · 32 ⊕ 4 · 2−1 of fP2

= su(2)2 ⊕ u(1). From this we compute that

Y ′F is generated by the element (0, 1,3) ∈ bZF,P1
⊕ bZF,P2

' Z/2Z⊕Z/2Z⊕Z.
All twist lines are of the same type and they are associated to h∨o = f4 which has cor-

responding R∨o = F of h∨o = f4 and Ro = A of g = e6. The representation (22) becomes
R = (5⊕ 7 · 3)⊗ (4 · 10 ⊕ 9 · 30 ⊕ 2 · 43 ⊕ 2 · 4−3 ⊕ 3 · 50 ⊕ 4 · 23 ⊕ 4 · 2−3)F of fP1

⊕ fP2
. From

this, we conclude that the full YF equals Y ′F . The manifest flavor symmetry group is then

F = SO(3)1 ×
SU(2)2 × U(1)
Z6

= SO(3)1 ×
SU(2)2 × U(1)/Z3

Z2

' SO(3)1 ×
SU(2)2 × U(1)
Z2

= SO(3)1 × U(2) ,
(57)

where the Z6 factor is generated by the element
�

0, 1
2 , 1

6

�

∈ ZF,P1
⊕ZF,P2

' (Z2)1×(Z2)2×R/Z
where (Z2)i is the center of SU(2)i .

We can confirm this result using the analysis of Section 2.2 since the resulting 4d N = 2
theory admits a duality frame with the following Lagrangian description

su(6)
�

su(2)2
�

�

u(1)
�

FΛ2 ⊕ 2F̄

F

�

su(2)1
�

, (58)

where su(2)1 does not act on the gauge theory. From this Lagrangian description, we see that
E is generated by

�

−1
3 , 0, 1

2 , 1
6

�

∈ ZG × ZF ' Z6 × (Z2)1 × (Z2)2 × R/Z. This leads us to the
flavor symmetry group displayed in (57).

S3 Twisted D4 example :

P3

P1

g= so(8)

a

b

P4

P2

b

Here a and b denote two outer-automorphism elements in Og = S3. b is the element of order
2 whose action keeps the vector irrep of so(8) invariant. a is an order 3 element. The a line is
a closed twist line that wraps around the sphere as shown above.
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The punctures Pi for i = 1, 2 have fPi
= sp(3)i flavor symmetry, and the punctures Pi

for i = 3,4 have trivial flavor symmetry. For every puncture we have h∨o = sp(3), R∨o = F
of h∨o = sp(3). For i = 1, 2, we have R∨o,Pi

= Fi of fPi
= sp(3)i . From this we compute that

Y ′F = 0.
In this example, we have multiple kinds of twist lines, so the global contribution is provided

by the representation (23) which becomes

(Λ2)1 ⊗ (Λ2)2 , (59)

where (Λ2)i for i = 1, 2 is the 2-index antisymmetric irrep for fPi
= sp(3)i . Thus eYF is also

trivial, and hence the full YF = 0. Thus, the manifest flavor symmetry group is

F = PSp(3)1 × PSp(3)2 , (60)

where PSp(3)i = Sp(3)i/Z2.
We can confirm this result using the analysis of Section 2.2 since the resulting 4d N = 2

theory admits a duality frame with the following Lagrangian description [19]

�

sp(3)1
�

so(8) F �

sp(3)2
�1

2 F1
2 F S

. (61)

Clearly the Z2 center of each Sp(3) is gauged by a Z2 factor in the center of Spin(8) gauge
group. This leads us to the flavor symmetry group displayed in (60).

4.3 Interacting SCFT Fixtures

TN and E6 MN Theories : Consider compactifying g = su(n) 6d N = (2,0) theory on a
sphere with three untwisted regular maximal punctures Pi . Each puncture has fPi

= su(n)i .
The representation R∨o is the fundamental representation of h∨o = g = su(n) and thus R∨o,Pi

is
the fundamental representation Fi of fPi

= su(n)i . From this we compute that Y ′F = 0.
The representation (20) becomes

F1 ⊗ F2 ⊗ F3 , (62)

implying that eYF is generated by the element (1,1, 1) ∈ bZF,P1
⊕ bZF,P2

⊕ bZF,P3
' (Z/nZ)1 ⊕

(Z/nZ)2 ⊕ (Z/nZ)3. From this we compute that the manifest flavor symmetry group is

F =
SU(n)1 × SU(n)2 × SU(n)3

Z1,2
n ×Z

2,3
n

, (63)

where Z1,2
n is the Zn subgroup generated by the element

� 1
n ,− 1

n , 0
�

of the (Zn)1×(Zn)2×(Zn)3
center. The Z2,3

n factor is generated by the element
�

0, 1
n ,− 1

n

�

.
For n≥ 4, the manifest flavor symmetry algebra f= fP1

⊕fP2
⊕fP3

= su(n)1⊕su(n)2⊕su(n)3
is true flavor symmetry algebra. Consequently, the manifest flavor symmetry group (63) is the
true flavor symmetry group.

On the other hand, for n= 3, we obtain the E6 Minahan-Nemeschansky (MN) theory [20]
whose true flavor symmetry algebra is ftrue = e6. In this case, following the analysis of Section
2.3, let us try to determine possible global forms Ftrue of ftrue with the constraint that the
global form corresponding to manifest flavor symmetry f = su(3)3 is given by (63) for n = 3.
We have two possibilities to consider: E6 and E6/Z3. Let us decompose the representations of
e6 in terms of the su(3)3 subalgebra:
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• The adjoint A = 78 of e6 breaks as (A,1,1) ⊕ (1, A,1) ⊕ (1,1, A) ⊕ (F, F, F) ⊕ (F̄, F̄, F̄)
of su(3)3. This generates a sub-lattice YF which is the same as eYF (for n = 3) discussed
above. Thus, Ftrue = E6/Z3 would lead to manifest F being the one provided by (63)
for n= 3.

• On the other hand, the fundamental representation F = 27 of e6 breaks as (F̄,1, F) ⊕
(F, F̄,1) ⊕ (1, F, F̄) of su(3)3. The lattice YF corresponding to it is generated by the
elements (1,−1,0) and (0,1,−1) in bZF = (Z/3Z)1⊕(Z/3Z)2⊕(Z/3Z)3. Thus, Ftrue = E6
would lead to F = SU(3)3/Z3 where Z3 is the diagonal of the Z3

3 center of SU(3)3. This
manifest F is different from the manifest F appearing in (63) for n= 3.

Thus, the knowledge of the manifest flavor group (63) leads us to conclude that the true flavor
group for E6 MN theory is

Ftrue =
E6

Z3
. (64)

We can also confirm this result by studying the representations of e6 appearing in the super-
conformal index of E6 MN theory. From the result of [21], we find irreps of dimension 78 and
650, where the latter irrep is found in the irrep decomposition of the representation F⊗ F̄ of
e6. Both of these representations carry trivial charge under the Z3 center of E6. Thus, the pro-
posed true flavor symmetry group (64) is consistent with the superconformal index appearing
in [21]. In a similar fashion, we see that the index of Tn theory presented in [22] is comprised
of the adjoint representations and the representations of the form R⊗R⊗R of f= su(n)3 such
that R is an irrep of su(n), which verifies our result (63).

E7 MN Theory :

P1

P3

P2

g= su(4)

We have fPi
= su(4)i for i = 1,2 and fP3

= su(2). The representation R∨o is the fundamental
representation of h∨o = g = su(4). We have R∨o,Pi

is the fundamental representation Fi of
fPi
= su(4)i and R∨o,P3

= 2 · F of fP3
= su(2). From this we compute that Y ′F = 0.

The representation (20) becomes

F1 ⊗ F2 ⊗ (2 · F) , (65)

implying that eYF is generated by the element (1, 1,1) ∈ bZF,P1
⊕ bZF,P2

⊕ bZF,P3
' (Z/4Z)1 ⊕

(Z/4Z)2 ⊕Z/2Z. From this we compute that the manifest flavor symmetry group is

F =
SU(4)1 × SU(4)2 × SU(2)

Z1,2
4 ×Z

2,3
2

, (66)

where Z1,2
4 is the Z4 subgroup generated by the element

�1
4 ,−1

4 , 0
�

of the (Z4)1 × (Z4)2 × Z2

center. The Z2,3
2 factor is generated by the element

�

0, 1
2 , 1

2

�

.
This theory is the E7 MN theory whose true flavor symmetry algebra is ftrue = e7. In this

case, following the analysis of Section 2.3, let us try to determine possible global forms Ftrue
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of ftrue with the constraint that the global form corresponding to manifest flavor symmetry
f = su(4)2 ⊕ su(2) is given by (66). We have two possibilities to consider: E7 and E7/Z2. Let
us decompose the representations of e7 in terms of the su(4)2 ⊕ su(2) subalgebra:

• The adjoint A= 133 of e7 breaks as (A,1,1)⊕ (1, A,1)⊕ (1,1, A)⊕ (F, F, F)⊕ (F̄, F̄, F)⊕
(Λ2, Λ2,1) of su(4)2 ⊕ su(2). This generates a sub-lattice YF which is the same as eYF
discussed above. Thus, Ftrue = E7/Z2 would lead to manifest F being the one appearing
in (66).

• On the other hand, the fundamental representation F = 56 of e7 breaks as (Λ2,1, F)⊕
(F, F̄,1) ⊕ (1, Λ2, F) ⊕ (F̄, F,1) of su(4)2 ⊕ su(2). The lattice YF corresponding to it is
generated by the elements (1,−1,0) and (0,2, 1) in bZF = (Z/4Z)1 ⊕ (Z/4Z)2 ⊕ Z/2Z.
Thus, Ftrue = E7 would lead to F = SU(4)2×SU(2)

Z4
where Z4 is generated by the element

�1
4 , 1

4 , 1
2

�

. This manifest F is different from the manifest F appearing in (66).

Thus, the knowledge of the manifest flavor group (66) leads us to conclude that the true flavor
group for E7 MN theory is

Ftrue =
E7

Z2
. (67)

We can also confirm this result by studying the representations of e7 appearing in the index of
E7 MN theory studied in [22–24].

Rank-1 SU(4)14 SCFT – Z3 twisted D4 example : Consider compactifying g = so(8) 6d
N = (2,0) theory on a sphere with three regular punctures: one Z3 twisted emitting a Z3
twist line, carrying BC label A1, and labeled P1; one Z3 twisted absorbing the Z3 twist line,
carrying BC label A1, and labeled P2; and one untwisted specified by the Nahm YD which is
the transpose of labeled P3. We have fPi

= su(2)i for i = 1, 2 and fP3
is trivial. The

representation R∨o = 7 of h∨o = g2 which reduces to R∨o,Pi
= A⊕2 ·F of fPi

= su(2)i for i = 1,2.

From this we compute that Y ′F = bZF = bZF,P1
⊕ bZF,P2

' (Z/2Z)1 ⊕ (Z/2Z)2.
Thus full YF = bZF implying that the manifest flavor symmetry group is

F = SU(2)1 × SU(2)2 . (68)

The true flavor symmetry algebra of this theory is ftrue = su(4) such that the adjoint rep of
su(4) breaks as (A,1)⊕ (1, A)⊕ (F, F)⊕ (1,1) under f= su(2)2 subalgebra. There global form
(68) of the manifest flavor symmetry implies that the global form of the true flavor symmetry
must be

Ftrue = SU(4) . (69)

This result can be confirmed using the index for this theory computed in [16].

eT3 theory :

P2

P1

P3

g= su(3)
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We have fPi
= su(2)i for i = 1, 2 and fP3

= su(3). For Pi i = 1, 2 we have h∨o = su(2)
with corresponding R∨o = F of h∨o = su(2) and R∨o = Fi of fPi

= su(2)i . For P3, we have
h∨o = g = su(3) with associated R∨o = F of h∨o = g = su(3) and R∨o,P3

= F of fP3
= su(3). From

this we compute that Y ′F = 0.
All twist lines are of the same type and they are associated to h∨o = su(2) which has corre-

sponding R∨o = F of h∨o = su(2) and Ro = A of g = su(3). The representation (22) becomes
R = F1 ⊗ F2 ⊗A of fP1

⊕ fP2
⊕ fP3

= su(2)1 ⊕ su(2)2 ⊕ su(3). From this, we conclude that the
full YF is generated by the element (1, 1,0) ∈ bZF,P1

× bZF,P2
× bZF,P3

' (Z/2Z)1×(Z/2Z)2×Z/3Z
which implies that the manifest flavor group is

F =
SU(2)1 × SU(2)2

Z1,2
2

× PSU(3) = SO(4)× PSU(3) , (70)

where Z1,2
2 is the diagonal Z2 of the (Z2)1 × (Z2)2 center of SU(2)1 × SU(2)2. This result

matches with the index for this theory appearing in [4].

Distinguishing 4d N = 2 SCFTs : Now we consider a pair of interacting 4d N = 2 SCFTs
with very similar Class S constructions. These SCFTs have the same set of invariants, but were
predicted to be distinguished by subtle differences in the global forms of flavor groups of these
two SCFTs [5]. We will only consider the first pair, namely “Theory I”, appearing in [5], but
the other pairs can also be discussed in the same fashion. We will find complete agreement
with the flavor symmetry groups proposed in [5] by studying the Schur index.

The first theory in the pair is described by

P2

P1

P3

g= so(8)

We have fPi
= sp(3)i for i = 1,2 and fP3

= sp(2). For Pi i = 1,2 we have h∨o = sp(3)
with corresponding R∨o = F of h∨o = sp(3) and R∨o = Fi of fPi

= sp(3)i . For P3, we have
h∨o = g = so(8) with associated R∨o,s = S and R∨o,c = C of h∨o = g = so(8), and R∨o,s,P3

= 2 · F
and R∨o,c,P3

= 2 · F of fP3
= sp(2). From this we compute that Y ′F = 0.

All twist lines are of the same type and they are associated to h∨o = sp(3) which has corre-
sponding R∨o = F of h∨o = sp(3) and Ro = A of g = so(8). The representation (22) becomes
R= F1⊗F2⊗(3·1⊕Λ2) of fP1

⊕fP2
⊕fP3

= sp(3)1⊕sp(3)2⊕sp(2). From this, we conclude that
the full YF is generated by the element (1, 1,0) ∈ bZF,P1

×bZF,P2
×bZF,P3

' (Z/2Z)1×(Z/2Z)2×Z/2Z
which implies that the manifest flavor group is

F =
Sp(3)1 × Sp(3)2

Z2
× SO(5) , (71)

where Z2 appearing in the denominator is the diagonal Z2 of the (Z2)1 × (Z2)2 center of
Sp(3)1×Sp(3)2, and SO(5) is the non-simply-connected group Sp(2)/Z2. This result matches
with the prediction of [5].
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The second theory in the pair is described by

P2

P1

P3

g= so(8)

We again have fPi
= sp(3)i for i = 1, 2 and fP3

= sp(2). For Pi i = 1,2 we again have
h∨o = sp(3) with corresponding R∨o = F of h∨o = sp(3) and R∨o = Fi of fPi

= sp(3)i . For P3,
we now have h∨o = g = so(8) with associated R∨o,s = S and R∨o,c = C of h∨o = g = so(8), and
R∨o,s,P3

= 3 · 1⊕Λ2 and R∨o,c,P3
= 2 · F of fP3

= sp(2). From this we compute that Y ′F = 0.
All twist lines are again of the same type and they are associated to h∨o = sp(3) which has

correspondingR∨o = F of h∨o = sp(3) and Ro = A of g= so(8). The representation (22) now be-
comesR= F1⊗F2⊗(2·F) of fP1

⊕fP2
⊕fP3

= sp(3)1⊕sp(3)2⊕sp(2). From this, we conclude that
the full YF is generated by the element (1,1, 1) ∈ bZF,P1

×bZF,P2
×bZF,P3

' (Z/2Z)1×(Z/2Z)2×Z/2Z
which implies that the manifest flavor group is

F =
Sp(3)1 × Sp(3)2 × Sp(2)

Z1,2
2 ×Z

2,3
2

, (72)

where Z1,2
2 is the diagonal Z2 of the (Z2)1 × (Z2)2 center of Sp(3)1 × Sp(3)2, and Z2,3

2 is the
diagonal Z2 of the (Z2)2 × Z2 center of Sp(3)2 × Sp(2). This result again matches with the
prediction of [5].
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A Glossary of Notation

• T: A quantum field theory.

• F : 0-form symmetry group or flavor symmetry group.

• f: 0-form symmetry algebra or flavor symmetry algebra.

• F : A Lie group with Lie algebra being the flavor algebra f, which in general is a central
extension of the flavor group F .

• ZF : Center of the group F .

• bZF : Pontryagin dual of ZF .
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• YF : Subgroup of bZF capturing the “flavor center charges” of genuine local operators
under ZF .

• Z: Subgroup of ZF under which all genuine local operators have zero charge.

• ÒZ: Pontryagin dual of Z.

• G: Gauge group of a gauge theory.

• ZG: Center of the group G.

• bZG: Pontryagin dual of ZG .

• M: Subgroup of bZG × bZF capturing the gauge and flavor center charges of matter fields
in a gauge theory.

• E: Subgroup of ZG × ZF under which all matter fields have zero charge.

• fm: Manifest flavor symmetry algebra of a Class S theory.

• Fm: Manifest flavor symmetry group of a Class S theory.

• Pi: A puncture in a Class S compactification.

• g: An A, D, E Lie algebra associated to a 6d N = (2,0) theory. Can also be a semi-simple
Lie algebra describing gauge algebra of a gauge theory.

• G: Simply connected group associated to the A, D, E Lie algebra g associated to a 6d
N = (2,0) theory.

• Z(G): Center of G.

• bZ(G): Pontryagin dual of Z(G).

• Og: Group of outer automorphisms modulo inner automorphisms of the A, D, E Lie
algebra g associated to a 6d N = (2,0) theory. Acts as 0-form symmetry group of the
associated 6d N = (2, 0) theory.

• o: An element of Og.

• ho: Subgroup of g left invariant by an outer-automorphism lying in the class o ∈Og. See
Table 1 for the possible ho.

• h∨o : Langlands dual of ho.

• Ro: Representation of ho descending from a representation R of g left invariant by the
action of o.

• R∨o : Representation of h∨o exchanged with representation Ro of ho under Langlands du-
ality.

• R∨o : Specific representation of h∨o . Table 1 specifies the representation for each choice
of o and g.

• Ro: Representation of g that descends to representation R∨o .

• fP : Flavor algebra associated to a puncture P .

• FP : A Lie group with algebra fP .
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• ZF,P : Center of FP .

• bZF,P : Pontryagin dual of ZF,P .

• R∨o,P : Representation of fP obtained by viewing the representation R∨o of h∨o from the
point of view of fP ⊆ h∨o .

• YF,P : Subgroup of bZF,P capturing the charges under ZF,P of the irreps of fP (and their
tensor products) arising in the irrep decomposition of the representation R∨o,P of fP .

• Y ′F : Subgroup of bZF of a Class S theory obtained by taking the direct sum over all punc-
tures P of groups YF,P . See equation (15).

• R: Representation of f associated to a Class S compactification. See Section 3.3 for
details.

• eYF : Subgroup of bZF of a Class S theory capturing the charges under ZF of the irreps of
f (and their tensor products) arising in the irrep decomposition of the representation R
of f. The group YF of a Class S theory can be expressed in terms of groups Y ′F and eYF as
in equation (19).
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