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Abstract

We investigate the onset of a not-decaying asymptotic behavior of temporal magnetic cor-
relations in the Hubbard model in infinite dimensions. This long-term memory feature
of dynamical spin correlations can be precisely quantified by computing the difference
between the zero-frequency limit of the Kubo susceptibility and the corresponding static
isothermal one. Here, we present a procedure for reliably evaluating this difference start-
ing from imaginary time-axis data, and apply it to the testbed case of the Mott-Hubbard
metal-insulator transition (MIT). At low temperatures, we find long-term memory effects
in the entire Mott regime, abruptly ending at the first order MIT. This directly reflects
the underlying local moment physics and the associated degeneracy in the many-electron
spectrum. At higher temperatures, a more gradual onset of an infinitely-long time-decay
of magnetic correlations occurs in the crossover regime, not too far from the Widom line
emerging from the critical point of the MIT. Our work has relevant algorithmic implica-
tions for the analytical continuation of dynamical susceptibilities in strongly correlated
regimes and offers a new perspective for unveiling fundamental properties of the many-
particle spectrum of the problem under scrutiny.
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1 Introduction

The emergence of time/energy scales of different orders of magnitude often represents a piv-
otal aspect in shaping the physics of many-particle systems. This is certainly the case for the
textbook situation of electronic and lattice degrees of freedom in standard materials: The mass
difference between electrons and nuclei is directly reflected in the different timescales of the re-
spective dynamics, which underlie the widespread applicability of the adiabatic approximation
in solid state physics and of the Migdal theorem for conventional superconductors. Another
relevant example is provided by the slowing-down of quantum critical fluctuations, which is
intrinsically associated to the occurrence of second-order (quantum) phase transitions.

In the case of correlated systems, the repeated scattering process between electrons repre-
sents an additional, but not less important, source of differentiation for the timescales of the
relevant fluctuations. For instance, the proximity to a Mott-Hubbard [1, 2] or to a Hund’s-
Mott [3, 4] metal-insulator transition (MIT) is known to be associated with a progressive
slowing-down [5, 6] of the local spin fluctuations, heralding the formation of local magnetic
moments in the Mott insulating phases. Generally, one expects a slowing-down of fluctuations
to be reflected in a softening [7] of the corresponding peak in the absorption spectra. A similar
evolution of the lowest energy absorption peak has been identified [8,9] in the spectral func-
tions describing orbital fluctuations in systems with an effective local attraction. Indeed, as it
has been recently pointed out [10], a correlation-driven dilatation of characteristic timescales
can have a significant impact onto spectroscopic measurements of correlated systems, such
as, e.g., the iron pnictides/chalcogenides. An accurate estimation of the size of the magnetic
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moment on their Fe atoms by means of inelastic neutron scattering experiments becomes only
possible in the most correlated families of this class of materials [10], when a sufficiently strong
slowing-down of local magnetic fluctuations makes the corresponding timescale larger [10–13]
than the characteristic one of the neutron spectroscopy probe.

Generally speaking, the significant slowing-down of local spin correlations associated with
strong electronic scattering may play an important role for the applicability of the adiabatic
spin dynamics (ASD) approach, recently used [14] to investigate anomalous precession effects
in semiclassical spin-fermion models, to correlated quantum matter systems. Further, it also
yields the necessary timescale separation underlying the insightful description á la Landau-
Ginzburg of the local moment formation in the Hubbard model, which has been recently pro-
posed in Ref. [15].

By sufficiently large interaction values, however, it is conceivable that a qualitative change
in the asymptotic behavior of temporal correlations may occur on top of this typical trend
[16, 17]: Slowing down effects could become so pronounced that a complete decay of the
corresponding fluctuations is no longer observed even for t → ∞. From a spectroscopic
perspective, this would correspond to a complete softening of the lowest absorption peak,
eventually collapsing into a δ-function with zero weight at zero frequency [7].

Heuristically, one could associate an asymptotically not decaying part of a given (e.g.,
magnetic) correlation function to the persistence of “long-term memory” information in the
fluctuations of the corresponding sector. On a more formal level, as already noted in some of
the earliest works on the linear response theory [18, 19], such a long-term memory behavior
of temporal fluctuations precisely reflects the existence of a finite difference (C 6= 0) between
the values of the static isothermal susceptibility and the zero-frequency limit of the standard
Kubo response function in the same system [18, 20]. At the same time, it is important to
stress how long-term memory effects are directly linked to intrinsic properties of the many-
particle energy spectrum of the problem under consideration. For example, under certain
conditions (discussed in Sec. II), a non vanishing C can be associated with the presence of
(at least) one degenerate many-electron eigenstate. Hence, studying the possible appearance
of a long-term memory behavior of temporal correlations in actual model calculations might
unveil fundamental information about the many-electron system under investigation.

Eventually, it is also clear that the presence of finite values of C must be taken carefully
into account also from an algorithmic perspective. This is certainly the case, for instance, when
extracting physical information from a many-body calculation via post-processing approaches
like analytic continuation or fluctuation diagnostic schemes.

In this paper, we will first concisely summarize the multi-faceted formal aspects underly-
ing the onset of a long-term memory behavior of temporal correlations and of their mutual
interconnections, as addressed in a collection of different literature works. Starting from these
considerations, we will illustrate a specific procedure to quantitatively estimate the value of
a non-vanishing C from many-body correlation functions computed on the imaginary time.
Eventually, by exploiting this procedure we will investigate an emerging long-term memory
behavior of the local magnetic fluctuations in the phase diagram of the half-filled Hubbard
model solved by means of dynamical mean-field theory (DMFT). In particular, we will discuss
the relation of long-term memory effects with the Mott-Hubbard metal insulator transition
described by DMFT, and with the associated crossover regime at higher temperature. Finally,
relying on a critical analysis of the results obtained, we outline relevant physical and algo-
rithmic implications of the possible emergence of long-term memory effects in many electron
systems.
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2 Theoretical Background

2.1 General relationship between measurements and long-time decay

Starting point for our considerations is the intrinsic difference between (i) the zero-frequency
limit of the standard Kubo (or: isolated) susceptibility χR(ω = 0+), (ii) the static isothermal
susceptibility χT , and (iii) the isentropic susceptibility χS . These functions define the linear
response to an external perturbation in three distinct experimental set-ups: (i) for a system
which is (or can be assumed to be) isolated from its environment during the action of the
external perturbation, (ii) for a system in thermal equilibrium with its environment, (iii) for a
system adiabatically isolated (i.e., kept at fixed entropy S), respectively.

In practice, the set-up (i) can be realized by considering dynamical perturbations whose
characteristic timescales are faster than the thermalization processes between the probe and
the environment. Formally, this allows for the application of the conventional Kubo-Nakano
response theory [18, 21–23], whose derivation relies on the von Neumann equation for the
time-dependent density matrix of the perturbed system:

ρ̂t =
∑

N

e−βEN

Z
|ΨN (t)〉〈ΨN (t)| , (1)

where EN and Z are the eigenenergies and the partition function of the unperturbed Hamil-
tonian H, while |ΨN (t)〉 represents the time-evolved N−th eigenstate in the presence of the
external perturbation F(t) [21]. This expression implicitly implies the isolation of the system
during the action of the perturbation, as the Maxwell-Boltzmann weights of ρ̂t remain frozen
to the corresponding values of the unperturbed system.

The set-ups (ii) and (iii), instead, can be directly linked to the application of a purely static
perturbation F(t) = const. (e.g., a static magnetic field). One thus has: Ĥ = Ĥ−FÂ, where Â
is an observable of the system directly coupled with the external perturbation, while the linear
susceptibilities associated to measurement of a generic system observable B̂ is given by [19]:

χT = ∂ 〈B〉F
∂F

�

�

�

T
and χS = ∂ 〈B〉F

∂F

�

�

�

S
where

〈B̂〉F = Tr [ρ̂HB̂] and ρ̂H = exp(−βĤ)/Tr [exp(−βĤ)] .
(2)

The Maxwell-Boltzmann weights to be considered in this case are those of the (statically)
perturbed Hamiltonian, which evidently corresponds to the assumption of a full thermalization
of the system in the presence of the perturbation.

Not surprisingly, the fundamental distinction between these setups may reflect in different
values of the corresponding susceptibilities at zero-frequency. In particular, though not often
mentioned in the most recent literature, it is known from the earliest works [18] on linear re-
sponse theory (LRT) and rigorously shown by Wilcox [19], that the zero-frequency limit of the
dynamical Kubo susceptibility χR(ω= 0) is bound from above by the isentropic susceptibility
χS , which in turn is bound from above by the static isothermal susceptibility χT :

χT ≥ χS ≥ χR(ω= 0) . (3)

The difference between the isothermal and the zero-frequency limit of the Kubo susceptibility
can be also regarded as a measure of the (non-) ergodicity. In particular, one can show (see
[18,24]) that for two generic hermitian operators Â and B̂

χT −χR(ω= 0) = β limt→∞ 〈B̂Â(t)〉 − β 〈A〉 〈B〉
= β limT→∞

1
T
∫ T

0 〈∆B∆A(t)〉dt ,
(4)
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where ∆Â = Â− 〈Â〉. Further we employ the usual notation for the thermodynamic aver-
age 〈...〉 = 1

Z Tre−β Ĥ ... , Z = Tr e−β Ĥ , β = 1
T is the inverse temperature (kB = 1), and Ĥ

the (unperturbed) Hamiltonian. For convenience we define the difference between the two
susceptibilities as βC+.

βC+ := χT −χR(ω= 0) . (5)

The analogous constant for negative times is referred to as C−

C+ = limt→+∞ 〈B̂Â(t)〉 − 〈A〉 〈B〉 ,
C− = limt→−∞ 〈B̂Â(t)〉 − 〈A〉 〈B〉 .

(6)

Evidently, the equation above highlights the direct link between the (infinitely) long-term cor-
relations (between A and B) and the discrepancies between the static isothermal susceptibility
and the zero-frequency limit of the dynamical Kubo response. Note that in general C+ and C−
do not have to be equal, also differing from their averaged value:

C :=
1
2
(C+ + C−) . (7)

However, Kwok [20] showed that if the (unperturbed) Hamiltonian is invariant under
time-reversal and additionally the operators Â and B̂ have the same sign under time-reversal 1

the two constants are the same
C+ = C− = C . (8)

Clearly, this applies to the case we consider in our work: the spin-spin susceptibility
(Â= B̂ = Ŝz) in the Hubbard model.

As we discuss later, the precise value of C is intimately related to the symmetries of the
many-body system under investigation and to the relation of the specific observable Â B̂ con-
sidered to that symmetries. In this respect, it is not surprising that the determination of C
might encode insightful information about the many-particle energy spectrum of the problem
studied, e.g. about the presence of degeneracies.

Eventually, for the sake of clarity, we will assume without loss of generality that 〈B̂〉 = 0.
This choice is fully in the spirit of the LRT, as we will explicitly consider the fluctuations with
respect to the equilibrium value.

2.2 Formalization of the problem

2.2.1 Susceptibilities and correlation functions

Several related susceptibilities and correlation functions are commonly used in the context of
the LRT. For the generic hermitian operators Â and B̂ they are defined as:

χ c
AB(t) = 〈[Â(t), B̂(0)]〉 ,
ΨAB(t) = i 〈{Â(t), B̂(0)}〉 ,
χR

AB(t) = iθ (t) 〈[Â(t), B̂(0)]〉 ,
χA

AB(t) = −iθ (−t) 〈[Â(t), B̂(0)]〉 ,

(9)

where the operators are expressed in the Heisenberg representation Â(t) = eiĤ t Âe−iĤ t . The
last two expressions, χR and χA, correspond to the well-known definition of the retarded
and advanced susceptibilities in the Kubo formalism, respectively. All of them can be formally
rewritten in terms of two fundamental “building blocks":

χ<AB(t) = i 〈B̂(0)Â(t)〉 ,
χ>AB(t) = i 〈Â(t)B̂(0)〉 .

(10)

1in the sense that TÂT−1 = εAÂ; T B̂T−1 = εB B̂ and εAεB = +1.
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For the theoretical background of our paper it is instructive to illustrate their general properties
and connections, see e.g. [20]. To this end, we resort to the Lehmann representation [23,25],
where the lesser and the greater susceptibility have the following spectral representation:

χ<AB(t) = i
∑

n,m e−βEn BnmAmneiEmn t ,
χ>AB(t) = i

∑

n,m e−βEm BnmAmneiEmn t ,
(11)

where |En〉 are the eigenstates of the Hamiltonian (Ĥ |En〉= En |En〉), Enm := En − Em denotes
the difference between eigenenergies, and Anm := 〈En| Â |Em〉 the matrix-elements of Â in the
eigenbasis of Ĥ.

For the following formal derivation, it is useful to consider the time t as a complex variable
(ℜt + iℑt). From the exponents in Eq. (11) it is clear that since the spectrum of Ĥ is bound
from below, but not necessarily from above, the corresponding region of analyticity is

χ<AB(t) : 0≤ ℑt < β ,
χ>AB(t) : −β < ℑt ≤ 0 .

(12)

From Eq. (11) it is also evident that

χ<AB(t + iβ) = χ>AB(t) , (13)

or equivalently for the Fourier transform

χ>AB(ω) = χ
<
AB(ω)e

βω . (14)

This allows to express the commutator Green’s function as

χ c
AB(ω) =

1
i
(eβω − 1)χ<AB(ω) . (15)

However, one should be careful when inverting Eq. (15) to express χ<AB(ω) in terms of χ c
AB(ω).

As pointed out by [20], there is no guarantee that the Fourier-transform of χ< converges at
ω = 0. This possible problem can however be circumvented by explicitly treating the long-
term asymptotic of χ<(t): limt→±∞χ

<(t) = iC+/−. Subtracting this asymptotics, we obtain
a quantity which is guaranteed to have a well behaved Fourier transform in the vicinity of
ω= 0:

χ̃<(t) := χ<(t)− iθ (t)C+ − iθ (−t)C− . (16)

Its Fourier transform is then given by

χ̃<(ω) = χ<(ω) + C+
ω+i0+ −

C−
ω−i0−

= χ<(ω) + (C+ − C−)P 1
ω − 2πiδ(ω)C ,

(17)

where P denotes the Cauchy principal value and C is defined in Eq. (7). Inserting Eq. (17) for
χ<(ω) into Eq. (15) gives2

χ c(ω) =
1
i
(eβω − 1)

�

χ̃<(ω)− (C+ − C−)P
1
ω

�

. (18)

From Eq. (18) we see that also the commutator susceptibility is well behaved at ω = 0 and
equals χ c(ω= 0) = iβ(C+ − C−). Solving Eq. (18) for χ̃<(ω) gives

χ̃<(ω) = iP
χ c(ω)

eβω − 1
+ (C+ − C−)P

1
ω

, (19)

2The δ(ω) term in Eq. (17) does not contribute to Eq. (18) because eβω−1= 0 forω= 0. See also Appendix C
for an alternative derivation where this term∝ωδ(ω) is treated in a limit procedure. This leads to the same final
results.
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Inserting Eq. (19) into Eq. (17) gives the desired inverse relationship of Eq. (15):

χ<(ω) = 2πiCδ(ω) + iP χ c(ω)
eβω−1 ,

χ<(t) = iC + i 1
2πP

∫∞
−∞

χ c(ω)
eβω−1e−iωtdω .

(20)

Equation (14) together with Eq. (20) also establishes:

χ>(ω) = 2πiCδ(ω) + iP χ c(ω)eβω

eβω−1 ,

χ>(t) = iC + i 1
2πP

∫∞
−∞

χ c(ω)eβω

eβω−1 e−iωtdω .
(21)

Note that the delta distribution does not appear in the commutator susceptibility as it can-
cels χ c(ω) = 1

i (χ
>(ω)−χ<(ω)). This is not the case for the anti-commutator (or Keldysh

component) of the Green’s function:

ΨAB(ω) = χ
>(ω) +χ<(ω) = 4πiCδ(ω) + iPχ c(ω) coth(βω/2) . (22)

Equation (22) can be regarded as an extension of the fluctuation-dissipation theorem [26] to
a specific case of nonergodic systems in the sense of Eq. (6) (see also [24]). If present C 6= 0
the singular term should be treated explicitly. It has been noted in a recent analysis performed
on the real frequency axis by the Schwinger-Keldysh formalism that incorporating this term
into the retarded or advanced component leads to wrong results even for the simplest case of
the atomic limit [27, App. E].

2.2.2 Thermal Green’s function

The thermal- or Matsubara- Green’s function for the (bosonic) observable Â, B̂ is defined as

χ th(τ) = 〈T Â(τ)B̂(0)〉 , (23)

where τ denotes the Wick-rotated imaginary time (t →−iτ such that Â(τ) = eτĤ Âe−τĤ), and
T is the corresponding (imaginary) time-ordering operator. The thermal Green’s function is
defined for τ ∈ [−β ,β] and fulfills

χ th(τ < 0) = χ th(τ+ β) , (24)

which corresponds to Eq. (13). It can be expanded in a Fourier-series

χ th(τ) = 1
β

∑∞
n=−∞χ

th(iωn)e−iτωn ,

χ th(iωn) =
∫ β

0 dτχ th(τ)eiτωn

=
∫ β

0 dτ 〈Â(τ)B̂(0)〉eiτωn ,

(25)

where ωn = 2πT n are the (bosonic) Matsubara frequencies (with n ∈ Z). For deriving an
integral representation of χ th(iωn), it is useful to reverse the Wick-rotation by the variable
substitution τ = it. By exploiting the analytic properties of χ>(t), inserting Eq. (21) and
performing the integration over the complex time variable yields the desired integral repre-
sentation 3:

χ th(iωn) = Cβδn,0 −
1

2π
P
∫ ∞

−∞

χ c(ω)
iωn −ω

dω . (26)

The Matsubara or thermal susceptibility contains information on both, the static isothermal
susceptibility χT = χ th(iωn = 0) (cf. [19, Sec. 2]) and the Kubo dynamical susceptibility
χR(ω).

3There is an error in [20, Eq. 4.4-4.5]. The correct result is given in Eq. (26)
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It should be noted that the regular part (second term in Eq. (26)) can be analytically
continued to the entire complex plane, except for the real axis where it has a branch cut.
Hence, in general it is not correct to simply replace iωn withω+i0+ for the full thermal Green’s
function χ th(iωn) (see also [20, 28]). The correct procedure for the analytic continuation
requires to first remove the anomalous part, and then make the replacement:

χR/A(ω) =
�

χ th(iωn)− βCδn,0

�

iωn→ω±i0+ (27)

or equivalently

χ c(ω) =
�

χ th(iωn)− βCδn,0

�

iωn→ω+i0+ −
�

χ th(iωn)− βCδn,0

�

iωn→ω+i0− . (28)

For the case considered in this work, Â= B̂ and with time-inversion symmetry, the Cauchy
principal value in Eq. (26) is not necessary. From the definitions in Eq. (10) it is also easy
to see that for this case χ c(t) ∈ iR and χ c(−t) = −χ c(t) and therefore χ c(ω) ∈ R and
χ c(−ω) = −χ c(ω). By symmetry it follows that χ c(ω) = 2ℑχR(ω). Thus Eq. (26) simplifies
to

χ th(iωn) = Cβδn,0 +
2
π

∫ ∞

0

ω

ω2
n +ω2

ℑχR(ω)dω . (29)

This is the expression we use later on for the spin-spin susceptibility in the Hubbard model.

2.2.3 Lehmann representation of C

The thermal Green’s function may also be written as

χ th(iωn) = χ th
reg(iωn) +δn,0βC , (30)

where the explicit expression of the singular (Kronecker-delta) term reads

C =
1
Z

∑

l,m
El=Em

e−βEl AlmBml , (31)

where the Lehmann summation includes only the terms with El = Em, encoding, beyond the
diagonal contributions, all the possible degeneracies in the energy spectrum. As mentioned
before, we assume here and thereafter that 〈B̂〉 = 0. If this is not the case an additional term
〈Â〉 〈B̂〉 needs to be subtracted from Eq. (31). While being consistent with the spirit of the LRT,
adopting this definition also allows to identify insightful links between the coefficent C and
the intrinsic properties of the underlying many-particle energy spectrum. For instance, it can
be readily seen that at zero temperature only a degenerate groundstate can lead to C 6= 0,
as any nondegenerate groundstate results in C = A00B00 − 〈A〉〈B〉 = A00B00 − A00B00 = 0. At
finite temperatures, instead, a rigorous relation between a non-vanishing C and the presence
of degeneracies cannot be established in general, because diagonal elements (l = m) of the
excited part of the many-electron spectrum might also contribute to a C 6= 0. However, if either
〈Â〉 or 〈B̂〉 is independent of temperature prior to its redefinition (Â→ Â−〈Â〉)4 then the purely
diagonal terms l = m in Eq. (31) cannot yield any contribution to C . Indeed, in such cases
the condition 〈Â〉=

∑

l
e−βEl

Z Al l = 0 for all temperatures implies that for each energy-subspace
one must have

∑

l ′ Al ′ l ′ = 0. Hence, in the non-degenerate case, when the energy-subspace
is spanned by a single eigenstate, one will always find Al l = 0, with the following relevant
implication: If C 6=0 the many-electron Hamiltonian must have at least one degenerate energy

4Or, equivalently the matrix elements of Â (or B̂) do not depend on temperature after the subtraction of 〈Â〉
(or 〈B̂〉).
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level. It is important to emphasize, here, that the condition of a temperature independence
of 〈A〉 (or of 〈B〉), under which a direct link between a non-vanishing C and the degeneracies
of the many-electron Hamiltonian holds at all temperatures, being tied to the symmetries of
the problem under investigation, is verified in several situations relevant for the condensed
matter theory, such as, e.g., for both the uniform and the local magnetic or density responses
of non long-range ordered many-electron systems. Evidently, this also applies to the specific
case considered in our work, where Â= B̂ corresponds to the local magnetic moment operator
M̂z = gŜz = n↑−n↓ (with g=2) of the Hubbard model, for which 〈Ŝz〉= 0 at all temperatures,
due to the SU(2)-symmetry of the problem.

The regular part of Eq. (30) is given by

χ th
reg(iωn) =

∑′
lm e−βEl AlmBml

eβElm−1
iωn+Elm

, (32)

where the symbol
∑′ denotes the (corresponding) exclusion of all singular terms with El = Em

at zeroth Matsubara frequency.
The link between the value of C and the possible presence of degeneracies of the many-

body Hamiltonian reflects, more in general, the role played by the symmetries in trigger-
ing non-ergodic behaviors [24]. Specifically, if Ω̂ j are all constants of motion of a system
( d

d t Ω̂ j(t) = i[Ĥ, Ω̂ j] = 0 for all j) then

C = lim
T→∞

1
T

∫ T

0

dt 〈ÂB̂(t)〉=
∞
∑

j=1

〈ÂΩ̂ j〉 〈B̂Ω̂ j〉

〈Ω̂2
j 〉

. (33)

One operator that always commutes with the Hamiltonian is ∆Ĥ = Ĥ −〈Ĥ〉. This “trivial"
symmetry is conventionally associated with the first term ( j = 1) in the sum of the r.h.s. of
Eq. (33). In fact, one can show [19,24] that this term is precisely the one responsible for the
difference between the isentropic and the isothermal susceptibility

χT −χS = β
〈Â∆Ĥ〉 〈B̂∆Ĥ〉
〈(∆Ĥ)2〉

, (34)

generally described by Eq. (3).
This aspect has important implications for the case mostly considered in our work

(Â = B̂ = Ŝz): Since 〈n̂↑∆Ĥ〉 = 〈n̂↓∆Ĥ〉, we obtain that χT = χS , i.e., the measurement
of the local spin response of the Hubbard model does not distinguish between adiabatic and
thermal processes. The same conclusion does not necessarily apply, as we will see below, to
the case of the Kubo (i.e., isolated) measurements.

2.2.4 Atomic limit

Considering the limiting case of a single site with local repulsion (Hat = U n̂↑n̂↓ −µ (n̂↑ + n̂↑))
provides a first, simple but instructive example for applying the formalism introduced above
and for understanding its physical implications. (Where the chemical potential µ = U/2
at half-filling.) We consider the operators Â = B̂ = gŜz (where g = 2). Indeed, since
[Ĥat, Ŝz] = 0, all the susceptibilities involving Ŝz only are purely static. The corresponding
commutator susceptibility (χ c) is thus identically zero. Hence, it follows that the advanced
and retarded Kubo susceptibility as well as the regular part of the thermal Green’s function
χR(t) = χA(t) = χ c(t) = χ th

reg(iωn) ≡ 0 . From the imaginary time perspective this reflects
into the following behavior:

χ th(τ) = g2 〈Ŝ2
z 〉 ⇔ χ th(iωn) = β g2 〈Ŝ2

z 〉δn,0 .
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Then, the only not-vanishing contribution on the Matsubara frequency axis is the singular part
C = g2 〈Ŝ2

z 〉. Physically, this encodes the physics of a “perfect" isolated magnetic moment,
whose isothermal susceptibility, given by the zeroth Fourier component (ω0 = 0) of the ther-

mal Green’s function, shows the corresponding Curie behavior χT =
g2〈Ŝ2

z 〉
T . The Keldysh or

anti-commutator component of the Green’s function reads in time as Ψ(t) = const.= 2g2i 〈Ŝ2
z 〉

and in frequency Ψ(ω) = 4πiCδ(ω) = 4πig2 〈Ŝ2
z 〉δ(ω). Equation (33) demonstrates that this

behavior is linked, logically, to SU(2)-symmetry of the problem, and precisely to the constant
of motion Sz itself.

3 Model and Methods

3.1 Model

For our numerical study, whose results are shown in Section 4, we consider the half-filled
Hubbard model on a Bethe lattice. This can be solved exactly at finite temperature T by
means of Dynamical Mean Field Theory (DMFT) [2], which features a prototypical descrip-
tion [29,30] of the nonperturbative [31–34] physics of the Mott-Hubbard MIT. Here, we only
consider paramagnetic DMFT solutions, disregarding the onset of antiferromagnetic order at
low-temperatures.5

The Hamiltonian reads:

Ĥ = −
∑

〈i j〉,σ

t i j

�

ĉ†
iσ ĉ jσ + ĉ†

jσ ĉiσ

�

+ U
∑

i

n̂i↑n̂i↓ , (35)

where t i j =
t
z is the nearest-neighboring hopping amplitude from site i to j of the lattice, z is

the coordination number and U is the local interaction. In the limit of large z (where DMFT
becomes exact) the corresponding density of states is semi-circular

N (ε) = 1
2πt2

p

4t2 − ε2, |ε|< 2t . (36)

Throughout the paper, we fix t = 0.5, so that the half-bandwidth (W/2 = 1) of the DOS sets
our energy units.

3.2 DMFT

The DMFT simulation was performed with a continuous-time quantum Monte Carlo (QMC) al-
gorithm implemented in the code package w2dynamics [35]. For converging the one-particle
properties symmetric improved estimators [36] where used. After converging the DMFT cal-
culations on the one particle-level for each parameter set, we have measured the (thermal)
spin-spin susceptibility in imaginary time in the segment implementation [35]. More details on
the specific parameters and settings are reported in Appendix B. All real frequency data was ob-
tained by analytic continuation. The input to the analytic continuation procedure, χ th

SzSz
(iωn),

came from the QMC-solver which gives intrinsically noisy results. In the following we describe
the details of the analytic continuation.

5We note that this assumption, which is often made within DMFT studies of the Mott-Hubbard MIT, would
rigorously hold for a Bethe lattice with random hopping, which has the same density of states and thus DMFT
solution as the regular Bethe lattice in the paramagnetic phase [2].
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3.3 Numerical analytic continuation of χSzSz
(iωn)

For the analytic continuation of a (possibly) non-ergodic system (i.e., with C > 0), the main
task is evidently to separate the anomalous part (∝ C) from the regular part χ th

reg(iωn). For-
mally this goal can be achieved by computing

C =
1
β

�

χ th(iωn = 0)−ℜχR(ω= 0)
�

. (37)

At ω= iωn = 0 the integral representation of the regular part of the thermal Green’s function
is equivalent to the Kramers-Kronig relation

ℜχR(ω= 0) = χ th
reg(iωn = 0) =

1
π

∫ ∞

−∞
dω′
ℑχR(ω′)
ω′

. (38)

Analytically, this amounts to replace iωn with ω+ i0+ in χ th(iωn) for the positive Matsubara
frequencies only.

Numerically, this would correspond to extrapolating the Matsubara frequency data from
ωn > 0 to ωn = 0 6.

χ th(iωn > 0) =
2
π

∫ ∞

0

dω
ω

ω2 +ω2
n
ℑχR(ω) . (39)

While it is well-known that the problem of analytic continuation of numerical data from the
Matsubara to the real frequency axis is formally ill-defined, highly precise calculations at very
low Matsubara frequencies might allow to invert Eq. (39) at an acceptable degree of precision
in physically relevant real-frequency intervals, by exploiting the Padé interpolation procedure
[38] or more advanced, recently introduced [39] approaches. In those cases, if the results of,
e.g. the Padé approximation, significantly change depending on whether the zeroth Matsubara
frequency is excluded or included, the presence of an anomalous (or non-ergodic) contribution
C > 0 in the data should be supposed. Its magnitude can be then directly quantitatively
estimated by evaluating Eq. (37) through the corresponding Padé approximants.

For less precise or intrinsically noisy numerical data other methods for the analytic con-
tinuation are needed. Indeed, a variety of methods [40–43] are available. In principle all of
them work in both cases, i.e., including or excluding the zeroth Matsubara frequency, which
is an essential prerequisite for our study. In practice, as our DMFT calculations exploit a QMC
impurity solver, we have mostly used the Maximum Entropy (MaxEnt) method.

While the general MaxEnt procedure is broadly known [40], it is worth to discuss here its
specific adaption to the precise scopes of our analysis. Formally, we try to solve a Fredholm
integral of the first kind

χ th(iωn) =

∫ ∞

0

dωK(ωn,ω)A(ω) n> 0 , (40)

where the l.h.s. of the equation is the (statistically noisy) input of our QMC solver and the
kernel K(ωn,ω) is precisely know a priori, to determine the spectral function A(ω). Note that,
for a better numerical treatment, a factor of ω−1 was absorbed into A to make both quantities
finite for all ω,ωn:

A(ω) :=
2
π

ℑχR(ω)
ω

and K(ωn,ω) :=
ω2

ω2
n +ω2

. (41)

6In the Kondo-Bose model also a finite C was found [37, Fig. 3] which was extracted by a quadratic fit through
the first three positive Matsubara frequencies.
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In this respect, the norm of A is of interest as C = 1
β

�

χ th(ωn = 0)−
∫∞

0 A(ω)dω
�

. The main
challenge to the applications of this procedure is, however, that the rigorous exclusion of the
purely static termχ th(0) from Eq. (40) intrinsically limits the definition of the spectrum A(ω) in
the lowest-frequency regime: A(ω) is defined only up to peak-structures located at |ω| � 2πT
with a width� 2πT , as their presence would only affect the zeroth Matsubara frequency term.
At sufficiently low T , this problem of the MaxEnt scheme can be remedied by only allowing for
peaks with a width larger than 2πT . In the context of image reconstruction, this procedure
was introduced by Skilling [44, Ch. 2.4] and Gull [45, p. 53-73]. Specifically, one requires the
spectral function A(ω) to be a convolution of a hidden spectral function h(ω) with a Gaussian
broadening gb(ω):

A(ω) = gb(ω) ∗ h(ω) with gb(ω) =
1

p
2πb

exp[−ω2/(2b2)] , (42)

which described the effective “blurring" of our spectral function associated with the finite pre-
cision of our input data. In our case, the corresponding blur width b must be required to be
larger than πT . This corresponds, in practice, to evaluate the entropy term of MaxEnt on the
hidden spectrum h. Following this approach, known as preblur scheme, one minimizes Q[h]
with respect to h, where

Q[h] = 1
2χχ

2
reg[gb ∗ h] +αS[h] ,

χχ2
reg[A] =

∑

n>0

�

�

�

�

χ th(iωn)−
∫∞

0 dωK(ωn,ω)A(ω)
σ(ωn)

�

�

�

�

2

,

S[h] =
∫∞

0

�

h(ω)− D(ω)− h(ω) log h(ω)
D(ω)

�

.

(43)

For computing the results shown in the next section, we used the open-source implementation
of MaxEnt (including the preblur) of [41]. In particular, the hyper-parameter α has been
determined though the chi2kink method of [41] and references therein. In Eq. (43) σ(ωn)
is the QMC estimate of the error 7. As a default model D(ω) for the MaxEnt a constant has been
assumed, after verifying that the final results do not appreciably change by using Lorenzian
and Gaussian default models.

Extraction of the maximally allowed peak width – In order to distinguish the regions of the
phase diagram where C 6= 0 from those where C = 0, which is one of the main goals of our
numerical study, it is crucial to verify whether the (full) QMC data set, including the zeroth
Matsubara frequency, can also be explained by regular contributions only. In practice, one
has to carefully check the effect of a finite blur width on the fitting procedure: If the blur
width has little influence on the quality of the fit for b < aπT with e.g. a = 0.5, one should
conclude that the obtained QMC data can also be explained in terms of a regular contribution
only (i.e., C = 0). On a more quantitative perspective, by finding the point at which the
smallest obtainable value of χχ2 rises steeply, one can set a lower bound for the life-time of the
excitations under consideration (spin-excitations in our case).

Note on general case – While we will focus in the following on the case Â = B̂ ∝ Sz , the
procedure described here could be also applied to the generic case of two different observables
Â and B̂. In such a case, one should consider that the spectral function in Eq. (26) contains
a real as well as an imaginary part. Using the Kramers-Kronig relations one can show that
the imaginary part gives the same contribution as the real part. The imaginary part of the
χR(ω)/ω is, in contrast to the case where Â= B̂, not positive semi-definite. MaxEnt as well

7In general the covariance matrix can be obtained by a bootstrap algorithm (see for instance [46]). For our
case this was however unfeasible. We used a constant for σ(iωn) instead. This corresponds to uncorrelated QMC
noise in imaginary time (by Gaussian error propagation). Note also that using chi2kink for the hyper-parameter
determination makes the MaxEnt result invariant under rescaling the error.
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Figure 1: Left: Schematic DMFT phase diagram of the half-filled Hubbard model on
a Bethe lattice with unitary half bandwidth. The thick solid blue line marks the first
order MIT, Uc(T ), the gray-shadowed the coexistence region between Uc1(T ) and
Uc2(T ), both taken from [29]. The local moment formation, as estimated in [15]9, is
marked by the azure dashed line; the Widom line (blue dashed) is taken from [48],
while the opening of the Mott gap (olive dashed) has been estimated by [49]. The
black double arrow marks the parameter paths we focus on in our work. Right:
Evolution of the local spectral function (upper panel) and of the double occupancy
(lower panel) computed in DMFT along the path shown in the phase diagram on the
left.

as the preblur method can however also be used for the general case. Skilling [44, Ch. 2.5]
argued that the hidden image h should be related to A by an orthogonal transformation. One
can then split the hidden image into two positive semi-definite parts h+(ω) and h−(ω) each
with an entropy term given by Eq. (43). The orthogonal transformation A(ω) = h+(ω)−h−(ω)
is contained as a special case in class of transformations Skilling proposed. MaxEnt is there-
fore also applicable to a general susceptibility. The problem of a possible jump in the zeroth
Matsubara frequency needs to be addressed the same way we do in this paper 8.

4 Numerical results within the coexistence region

In order to place our analysis of the long-term memory spin-correlations in the proper physical
context, we concisely summarize in Fig. 1 the Mott-Hubbard metal-insulator (MIT) transition,
as described by DMFT. In the main panel of the figure, we sketch the paramagnetic phase
diagram of the Hubbard model on a Bethe-lattice, highlighting the essential features known
to characterize the Mott MIT: The first order transition is marked by a blue solid line ending
at the critical point (red dot) and the gray-shadow area corresponds to the coexistence region,
where two independent DMFT solutions associated to the hysteresis of the transition are found.
The data for the first order phase transition were determined [29] through the criterion of

8For very precise data one could also utilize an interpolation algorithm based on the Carathéodory functions
[47]. Also there one has to be aware of the effect of the possible jump of the zeroth Matsubara frequency.

9Converted from 3D lattice to Bethe lattice by resealing with 1
2
p

6
to obtain a density of states with the same

variance.
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the equality of the free energies in the insulating and in the metallic solution. Consistent
with the recent literature [15, 48, 49], the smooth high-T crossover from a good metallic to
a bad metallic, and eventually to an insulating behavior has been characterized through the
progressive fulfillment of specific conditions (dashed lines), describing (i) the formation of the
local moments (light blue) [15], (ii) the onset of well-defined Mott properties (olive) [49],
and (iii) the so-called Widom condition (blue) [48], respectively. The latter is defined by the
parameters above the critical point corresponding to a relative minimum of the thermodynamic
stability of the system, i.e., more precisely, via the condition to be equally close to both the
metallic and the insulating phase. In practice, the fulfilment of the Widom condition can be
determined from the curvature of the free-energy functional at its minimum [48] and, hence,
via the analysis of the Jacobian of the DMFT fix point function [50]. Physically, the Widom line
represents a natural prolongation of the true MIT line at higher temperatures. Other criteria
based on the double-occupancy are also possible and lead to similar results [49].

On a more quantitative level, we illustrate the well-know [2] evolution of the Mott MIT
physics occurring along the parameter paths marked by the double-headed black arrow (fixed
low T : β = 200, and 2.1 < U < 3.8) by hands of our DMFT calculations of the local spectral
function (upper right panel) and of the double occupancy (lower right panel). The consid-
erably different evolution of such quantities along the chosen paths highlights the 1st order
nature of the MIT: In the whole coexistence region along the path of slowly increasing U val-
ues (M → I) both the spectral function at the Fermi level and the double occupancy yield
significantly larger (i.e., “metallic"-like) values, compared to the results obtained for the same
parameter along the reversed path (I → M).

Eventually, before presenting our numerical results, we want to emphasize that DMFT
for the Hubbard model corresponds to its exact solution in the limit of infinite dimensions
(or lattice coordination number). Certain aspects of the underlying physics are expected to
qualitatively change in finite dimensional cases. This certainly applies to the nature of the
Mott insulating ground state, which is highly degenerate in paramagnetic DMFT calculations.
Nonetheless, the clear-cut nature of the DMFT description in infinite dimensions makes it an
ideal test bed for illustrating the applications of our algorithmic procedure and the physical
interpretation of obtained results, paving the way for future studies including the effects of
non-local correlations e.g., via cluster [51] and diagrammatic [52] extensions of DMFT and/or
the onset of long-range ordering at low-T [53,54].

4.1 Calculations on imaginary time axis

Starting from our converged DMFT solution, we calculated the local spin-susceptibility in
the imaginary time domain χ th(τ) = 〈T M̂ z(τ)M̂ z(0)〉 with M̂ z = gŜz and Sz =

1
2(n̂↑ − n̂↓)

(with ħh = 1 and the electronic gyromagnetic factor set to g = 2) as well as its Fourier trans-
form in Matsubara and real frequencies. We begin by discussing our results in (imaginary)
time domain, reported on the left panels of Fig. 2, as they represent the typical output of a
DMFT(QMC) calculation. We recall that, as the two observables in our correlation function co-
incide (Â= B̂ = M̂z), χ th(τ) will be symmetric with respect to β/2 in the interval τ ∈ [0,β), s.
e.g. [13, Ch. 2.3]- [54, App. B], allowing us to restrict the analysis to the interval [0,β/2]. The
upper (bottom) panel of the left part of Fig. 2 shows the evolution of χ th(τ) along the M → I
(M ← I) parameter path cutting the coexistence region at a fixed T (β = 200) for increas-
ing (decreasing) interaction values, highlighted by the black arrow in Fig. 1. The underlying
first order MIT, as well as its associated hysteresis, directly reflect into the abrupt changes
displayed by χ th(τ). Specifically, even at first glance, the results display two qualitatively dif-
ferent behaviors: (i) for the U values highlighted by red-colours, which correspond in both
panels to the insulating solutions, χ th(τ) is characterized by a rapid decay [2, 5] to a rather
large constant offset, while (ii) for lower U (bluish colors) a significantly slower decay [2, 5]
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Figure 2: Spin susceptibility computed in DMFT as a function of imaginary time (left)
and Matsubara frequencies (right) for T = 1

200 through the coexistence region of the
Mott MIT in the half-filled Hubbard model. For χ th(τ) the colorscale encoding the
different values of U was set such that the grey color marks the crossing of the cor-
responding transition lines, i.e. Uc2(T =1/200) for the M → I path (top panel) and
Uc1(T =1/200) for the M ← I path (bottom panel). The presence of an anomalous
term C 6= 0 should be suspected if a constant contribution to χ th(τ) (left) or a dis-
continuity of the value at the zeroth Matsubara frequency (right) is identifiable in
the data.

towards much smaller values of the dynamical susceptibility at τ= β
2 is observed. The values

of χ th(τ= β
2 ) display, nonetheless, a sizable increase for the highest U ¯ Uc2 values along the

first path (M → I), where a (metastable) metallic solution can be still obtained (bluish-grey
colors). Evidently, the two classes of well distinct susceptibility behaviors directly encode the
different dynamic properties of local magnetic moments in the Mott insulating and correlated
metallic phases and, in particular, the completely different impact of screening processes in
these two cases.

In order to go beyond these qualitative considerations, one needs to quantify the size of
possibly emergent long-term memory (or non-ergodic) effects in the parameter region of the
phase diagram, where the screening mechanisms are working poorly. In general, this piece of
information cannot be extracted directly10 from the corresponding value of χ th(τ= β

2 ), which
is always finite at finite T even for U = 0. The value at τ= β/2 is in general given by

χ th(τ= β/2) = C +
1

4π
P
∫ ∞

−∞
dωχ c(ω) sech(βω/2) , (44)

i.e. it also has a contribution (for finite temperature) if C = 0.
In this perspective, it may be more convenient to extract the anomalous part (C) from the

Matsubara frequency behavior of χ th. In the Matsubara representation, the differences be-
tween normal part and anomalous part of the dynamic susceptibility can be directly visualized
by including/excluding χ th(iωn = 0) from the data analysis.

10For a detailed discussion of the regime of applicability of this procedure s. Ref. [5]
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4.2 Data on Matsubara frequency axis and analytic continuation

In the right part of Fig. 2 we show our DMFT results for the thermal spin-susceptibility Fourier-
transformed to Matsubara frequencies. For low temperatures, as T = 1/200 considered here,
Fig. 2, it is possible to estimate the magnitude of C from the discontinuity of χ th(iωn) at
iωn = 0 quite reliably even by the naked eye. However, for higher temperatures and/or more
border-line cases (e.g., where C is small), more refined treatments are needed. In such cases,
it would be first necessary to determine in the most rigorous way, whether an anomalous
contribution C 6= 0 is present in the data. To this aim, we will introduce a specific procedure,
based on a detailed inspection of the evolution of the minimal value of the fit-loss functional

χχ2[A, b] =
∑

n≥0

�

�

�

�

�

χ th(iωn)−
∫∞

0 dωK(ωn,ω)
�

gb ∗ A
�

(ω)

σ(ωn)

�

�

�

�

�

2

, (45)

as the blur width b is varied (minimized with respect to A(ω)). In contrast to Eq. (43) the
zeroth Matsubara frequency is now included. The functions (K , gb and σ) are the same as in
Section 3.3.

The idea behind this approach is the following: Mathematically, any observed difference
between the value ofχ th at the zeroth (iω0 = 0) and the first (iω1 = iπT) Matsubara frequency
can always be formally explained either by a true anomalous term (C > 0) or by a sufficiently
narrow (� πT) low-energy peak in A(ω)∝ℑχR(ω). However, if the former feature (C > 0)
is actually present in the raw data, by tuning the blur parameter b over the scale πT , the
nonzero Matsubara frequencies should also become progressively affected by its presence. As
no anomalous term is included in the regular part of the spectrum, this would then prevent
the possibility of performing a good fit, corresponding to a steep increase of minχχ2[A, b] for
b § πT . On the contrary, if C = 0, A(ω) already includes the whole spectral weight small
modulations of b will not have significant effects on the fit accuracy, featuring a rather smooth
behavior of minχχ2[A, b].

Hence, by inspecting the behavior of minχχ2[A, b] as a function of b, one can clearly dif-
ferentiate between contributions to χ th(iωn = 0) arising from the anomalous term (C > 0)
and those purely explained by low-energy features of the regular spectral function.

In Fig. 3 we show the application of this procedure to one of the parameter paths (i.e.,
M → I) in the coexistence region discussed above. In particular, we report there the varia-
tion of the minimum of fit loss expression as a function of blur width b, for the temperature
T = 1/200 and four different U-values, of which two have been chosen very close to the corre-
sponding Uc2(T = 1/200) = 2.66 threshold. We observe that only for the insulating solutions,
i.e. those found for U ≥ 2.675, minχχ2[A, b] becomes strong b-dependent, indicating the im-
possibility of a reliable fit when b is increased. On the contrary, for the other two values of
U ≤ Uc2(T = 1/200) the behavior minχχ2[A, b] is essentially unaffected by the modulation of
b over a quite large scale. On the basis of these results, we conclude that, our low-T data are
consistent with the presence of an anomalous term (C 6= 0) exclusively in the Mott insulating
solutions.

4.3 Spectral functions and spectral weights

By exploiting the information gained about the anomalous term, we can now proceed to per-
form the analytic continuation onto the real-frequency axis in the most rigorous way. In partic-
ular, by analytically continuing our data along the path at T = 1/200, we have set C ≡ 0 for all
thermodynamically stable metallic solutions (i.e. for all U < Uc(T=1/200) shown in the left
panel of Fig. 4), which corresponds to include the zeroth Matsubara frequency in the data set.
Obviously, the same assumption does not hold for the insulating cases for U > Uc(T=1/200),
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Figure 3: Minimum values of the fit loss as a function of the blur parameter b for
different interaction values and T = 1/200. A strong(very weak) dependence of this
quantity as a function of b is a reliably rigorous marker for the presence(absence) of
an anomalous term in the response function.

right panel. The spin absorption spectra reported in Fig. 4 evidence the progressive softening
(as well as the simultaneous narrowing) of the peak by increasing U in the metallic phase,
which hints at the progressive slowing-down of the local spin fluctuations expected [5, 7] by
approaching the MIT at low-T . However as T , though small, is finite, the Mott MIT is still of
first-order and we cannot expect a smooth collapse of the peak into the anomalous contribu-
tion at zero frequency as that reported [5,7] at T = 0: On the insulating side of the MIT (right
panel), the regular part of the absorption spectrum changes abruptly featuring a large gap
with a rather broad (Hubbard-bands-like) bump located at ω ∼ U . This bump already starts
to develop on the metallic side outside the frequency region displayed in Fig. 4; also note the
very different y-axis scales. Evidently, as one can easily suppose by comparing the different
axis-scales between the two panels of Fig. 4, the regular spectral weight is not the same on
both sides of the MIT, reflecting the abrupt appearance of a finite anomalous term (C > 0) on
the insulating side.

In this context, a reliable quantitative estimate of the value of C can be obtained by ex-
ploiting the associated sum rule, which for our case explicitly reads:

πχT =

∫ ∞

−∞
dω
ℑχR(ω)
ω

+πβC , (46)

which we used to determine C(β , U) in this work. Here ℑχR(ω) came from analytic continua-
tion of χ th(iωn) for the positive Matsubara frequencies only (see Eq. (43)) and
χT = χ th(iωn = 0). Equivalently one can also use:

g2

4
〈Ŝ2

z 〉=
�

1
π

∫ ∞

−∞
dωℑχR(ω) fBE(ω)

�

+ C , with fBE(ε) =
1

eβ(ε−µ) − 1
. (47)

Our quantitative estimates of the anomalous term C , identified as the missing spectral
weight [7], is shown in Fig. 5 for the whole path at T = 1

200 . For U < Uc1, this procedure

17

https://scipost.org
https://scipost.org/SciPostPhys.12.6.184


SciPost Phys. 12, 184 (2022)

0.0 0.2 0.4 0.60

10

20

30
(

)
[

2 B
]

U=2.35
U=2.4
U=2.45
U=2.5
U=2.55
U=2.575

0 1 2 3 4 5 60.00

0.02

0.04

0.06

0.08

0.10

(
)

[
2 B
]

U=2.6
U=2.65
U=2.7
U=2.75
U=2.8

Figure 4: Absorption part of the local spin spectral functions obtained by analytically
continuing the DMFT spin-susceptibilities for different U values at T = 1/200 in the
metallic phase (left) and the insulating phase (right). Notice the different axis-scales
used in the two panels.

yields, unsurprisingly C u 0 as we do expect for a Fermi liquid at low-T . In the coexistence
region the obtained values for C were finite (although small) in the metallic phase (M→I
path). We consider this an artefact of the numerical procedure of calculating C. Indeed, a
close inspection of the fit loss Fig. 3 shows that C = 0 is within the error bars as is a small
value of C 6= 0, see Appendix D.

In the Mott insulating phase, at large interaction values (U > Uc2(T = 1/200)) the local
magnetic moment is within 5% of the atomic limit (C = 1) reflecting an almost "frozen" spin
dynamics [16] . These qualitatively different features are essentially retained by the two-class
of solutions within the coexistence region. In particular, for M ← I one only finds a further
slight reduction of the anomalous term and the associated long-term memory effects, with
values of C still larger than 0.8 even at U ∼ Uc1(T = 1/200). At the same U , for M → I , the
numerical estimate of C , through the missing weight procedure, features very small values.
Numerically these are compatible with C ≡ 0, which is supported by the close inspection
of the fit-loss function previously discussed11. A vanishing C at the Mott-transition can also
be confirmed from two different methods [7, 55] at T = 0, reflecting the appearance of a
degenerate groundstate in the MIT.

4.4 A map of the coexistence region

Finally, by repeatedly applying the procedure illustrated above for the T = 1
200 case to several

other temperature paths within the coexistence region, we can construct an intensity map of
the values of C , quantifying the expected long-term-memory effects for the whole parameter
region around the first-order MIT. In particular, our results for C(β , U) as a function of inverse
temperature and interaction strength are shown for β ≥ 1

Tc
in the three panels of Fig. 6, for

the different cases considered (left: M → I), (center: M ← I) and (right: thermodynamically
stable solutions).

Evidently, the different colors of the intensity plots strongly suggest that at all temperatures
within the coexistence region, detectable long-term memory effects can only be found in the
insulating solutions. Indeed, this conclusion is quantitatively supported by the more rigorous
analysis based on the variation of the blur parameter b. In this respect, the different colored
lines shown in Fig. 6 correspond, for each temperature, to the U values above which our QMC
data can no longer be explained by normal contributions only (C = 0) if a given minimal

11As an additional check we also obtained very accurate data for (M→I); U = 2.625; β = 100 and performed
a Padé interpolation as described in Section 3.3, which confirmed that C u 0 up until the phase transition. (The
numerical result for this point in the phase diagram was C = −0.001.)
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Figure 5: Hysteresis of the double occupancy (left panel, reproduced from Fig. 1)
and of the estimated anomalous term in the local spin susceptibility (right) along
the chosen U-path at fixed T = 1/200 across the coexistence region (grey-shadowed
area) of the Mott MIT in the half-filled Hubbard model. The black vertical line at
Uc [29], which marks the interaction value where the thermodynamic first-order
MIT takes place, is defined by the equality condition of the free energies of the two
phases.
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Figure 6: Quantitative estimate of the value of C as a function of U and of the in-
verse temperature β along the whole coexistence region of the Mott MIT. The first
two panels encode the results obtained along paths of the kind M → I (left panel),
M ← I (central panel), while the rightmost panel provides the same estimates for the
thermodynamically stable phases. The colored lines show the (U ,β) tuples at which
the fit loss minχχ2(b) starts to rise steeply. (Marked as squares in the right part of
Fig. 11.)

width b for the blurring of the regular part of the spectrum is set. All the lines associated with
different values of b shown in the three panels of Fig. 6 collapse to the corresponding transition
lines of the calculation considered (respectively: Uc2(T ), Uc1(T ) and Uc(T )), confirming the
emergence of detectable long-term memory effects in the local spin response only after crossing
the first-order MIT.
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Figure 7: Left: Estimate of the anomalous term C(T, U) as a function of temperature
and interaction strength over a broader portion of the DMFT phase diagram than the
strict Mott MIT regime considered in Fig. 6. Data for the Widom line have been taken
from [48]. The other colored curves mark the T and U values above which the QMC
data are no longer compatible with only a (sharp) regular low-energy peak, consistent
with a blurring of width b (see text). Uc1, Uc and Uc2 curves taken from [29]. Right:
Evolution of the anomalous coefficient C (top panel) as well of the regular part of
the absorption spectrum ℑχR(ω) (central and bottom panels) for increasing values
of the interaction U at fixed temperature (T = 1/24' 0.042> Tc).

5 Phase diagram and underlying physics

While the rather sharp behavior of C in the coexistence region appears consistent to the 1st
order nature of the Mott-Hubbard MIT, it is interesting to study what happens by raising the
temperature above the Tc of the critical point. To this aim, we have repeated the procedure
described in the previous section along several paths for T > Tc including a larger interval of
U values beyond the extension of the coexistence region.

The obtained results are reported in Fig. 7, whose main panel (on the left side) considerably
enlarges the representation of the rightmost part of Fig. 6. As it is apparent from the reported
data, the region of significantly large long-term memory effects of local spin correlation does
not quickly disappear at, or right above, the critical point of the MIT, but it extends over a large
region of the high-T crossover regime. There, however, the overall behavior of C along U-paths
becomes gradually smoother by further increasing the temperature. On a qualitative level this
is evidenced by the progressively milder change of the color tone associated to the magnitude
of C , found in the high-temperature/crossover region of the phase diagram of Fig. 7. More
quantitative information can be gained by inspecting the colored lines, which, similarly as in
Fig. 6, mark the U values above which a nonzero value of C can be considered numerically
proved for a given blurring threshold b. While the lines corresponding to different values of
b were essentially collapsing in a single one along the 1st-order MIT, they depart from each
other at the critical point of the transition and display a progressively larger spread by further
increasing the temperature. Eventually, it is also worth observing that the gradual increase of C
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through the crossover region appears to stop in the proximity of the coloured line associated to
b = 0.2πT , after which C reaches plateau values not too different (C ≥ 0.85) from the atomic
limit case12. Interestingly, the onset of such an (essentially constant) behavior of C roughly
corresponds to the crossing of the so-called Widom line (blue dashed line [48]) in the phase
diagram. As already mentioned in Sec. 4, we recall that the Widom line can be regarded a
natural prolongation of the true Mott-MIT line at higher temperatures above the critical point.

Our numerical analysis can be further refined by inspecting the spectral properties of the
system along one specific path above the critical point. To this aim, we performed a similar
analysis as that shown for T = 1/200 = 0.005 in Figs. 4 and 5 at the higher temperature of
T = 1/24' 0.042. The corresponding results are summarized in the right panels of Fig. 7: The
upper one shows our quantitative estimate of C via the determination of the missing spectral
weight, while in the two other panels we report the corresponding absorption spectra of the
local spin susceptibility, computed following the same procedure illustrated in the previous
section, for increasing values of U along the selected path. On the basis of the results obtained,
it is interesting to note how the smoother increase of the long-memory effects encoded in C
corresponds to a somewhat “non-monotonous" evolution of the low energy spectral features
of ℑχR(ω). In particular, for the smallest U values considered in the middle panel of Fig. 7,
associated to a still rather coherent electronic behavior, one observes the gradual formation
and the progressive softening of a low-energy absorption peak, similarly as in the low-T data
of the metallic solutions in the coexistence region (upper panel of Fig. 4). At intermediate
(e.g. U ≥ 2), instead, the softening trend of the lowest absorption peak gets reversed in Fig. 7
(right panels), while this starts displaying a significant broadening. In fact, at high-T it is this
latter feature and not the softening, which drives the progressive spectral weight shift from
the low-energy sector of the regular spin absorption to the anomalous part responsible of the
long-term memory behavior. In the real-time domain this would correspond to a rather quick
decay [5] of the local spin-correlation function to the large asymptotic long-term memory term
βC .

The analysis of our DMFT results is suggestive of several physical considerations. In par-
ticular, the numerical evaluation of C can be interpreted in the light to the exact Lehmann
expression of C , reported in Eq. (31) for the general case:

C = 1
Z

En=Em
∑

n,m
e−βEn

�

�M z
nm

�

�

2

≡
∑

n
e−βEn

Z Cn =
∑

n
e−β(En−E0)

Z̃
Cn ,

(48)

whereas Z̃ = eβE0 Z ' N0 + N1e−β(E1−E0) + · · · (Nn being the degeneracy of the eigenstate En).
Indeed, Eq. (48) directly links the quantification of the long-term memory effects to intrinsic
properties of the underlying (and typically unknown) many-electron energy-spectrum. In par-
ticular, if we now consider different temperature-cuts in the phase diagram for fixed values of
U > Uc2(T = 0), it is clear that the broad plateau of large C values characterizing the entire
Mott insulating phase identifies the ground state term, C0, in Eq. (48) as major contribution
to the anomalous spin-response of the Mott insulator. At the same time, a finite C0, which
is physically consistent with the Curie behavior of the corresponding isothermal susceptibil-
ity (χT ∼ βC0), also implies that the ground state of the full many-electron problem under
consideration must be degenerate. In fact, consistent to our discussion after Eq. (31), if the
ground-state were non-degenerate, C0 in Eq. (48) would reduce to the square of the expec-
tation value of the observable of interest (i.e., | 〈A〉 |2 = | 〈M z〉 |2), which in our case yields
obviously zero.

12For a concise discussion of the expected trend in high-T regime of the Mott insulating phase, we refer the
reader to the Appendix E.
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While it is known [2] that the ground-states of Mott-insulating phases computed in DMFT
are indeed highly degenerate13, as also signalled by their large entropy of order ∼ N ln 2 14, it
is interesting to underline, here, the intrinsic three-fold relation, encoded in Eq. (48) among
(i) the ground-state degeneracy in the Mott phase, (ii) the Curie behavior of the isothermal
magnetic response and (iii) long-term memory of local spin correlations in time, i.e. if a local
magnetic moment is measured at a given site and then again later after an arbitrarily long
time the Mott-insulating system will still largely remember the spin-configuration of the first
measurement lim

t→∞
〈M̂z(t)M̂z(0)〉=

C0
T 6= 〈M̂z〉 〈M̂z〉 =0.

The situation appears rather different for lower interaction values, namely for U less than
Uc2(T = 0). In this case, the observed vanishing of C in the low-T regime, which implies
C0 = 0 in Eq. (48), and is clearly consistent with the non-degenerate nature of the underlying
Fermi-liquid ground state. At the same time, the appearance of sizable long-term memory ef-
fects above a certain temperature (to which we will refer as T̄ (U)) in the crossover regime can
be rationalized by postulating the presence of a finite (and large) term (Cn > 0) in Eq. (48)
associated with degenerate excited-states in the many-electron energy spectrum of the lat-
tice model, namely at the energy of En ∼ T̄ (U) > E0. This would indeed correspond to an
activated behavior of C(T ) ∼ e−(En−E0)/T . Hence, a plausible interpretation of our results in
the whole correlated metallic regime is the following: By increasing U , long-term memory
effects are linked to excited states of the many-electron spectrum, whose energy difference
w.r.t. the (Fermi-Liquid) ground state En − E0 tends to decrease with increasing U . This sug-
gests that the Hubbard interaction may first drive the formation of (quasi-)degenerate levels
at the relatively high energy En and, then their progressive descent in the many-electron spec-
trum. These specific eigenstates could then be regarded as high-energy precursors of the local
moment formation in the full many-electron problem. After crossing Uc(Tc), the interaction
value corresponding to the critical point, the first order nature of the Mott MIT separates the
Hilbert-spaces of the metallic and the insulating phase. As for U ≤ Uc2(T = 0), the ground-
state is a non-degenerate Fermi-liquid, C ≈ 0 in the whole region below the MIT instability
line. Above the transition, the grand canonical partition sum over the many-electron eigen-
states effectively gets restricted to the insulating ones, which explains the observed jump to
large, and essentially temperature independent C values.

The second-order nature of the transition at its two endpoints at zero (for U = Uc2(T=0)
and finite T (i.e., for U = Uc(Tc)) is associated, instead, to a continuous evolution of the
physical properties. This is consistent to a value of En coinciding with the energy of the Mott-
insulating state at U = Uc(Tc) and becoming the true ground state of the full-many electron
problem at U ≥ Uc2(T=0).

Eventually, while we have inspected here the case of local magnetic correlations, be-
cause of their relevance for the Mott MITs, it is worth emphasizing that long-term mem-
ory behaviors might affect, in rather different fashions, the time dependence of other cor-
relations functions. This multifaceted aspect evidently reflects the intrinsic link between the
anomalous/long-term memory response and the underlying symmetries of systems, encoded
in Eq. (33). For instance, one can easily relate the anomalous response associated to the total
charge [n̂tot =

∑

i,σ ĉ†
iσ ĉiσ] and/or the total spin [e.g., Ŝtot

z = 1
2

∑

i,σ(ĉ
†
i ↑ ĉi ↑− ĉ†

i ↓ ĉi ↓)] observ-
ables, which are conserved quantities for several non-magnetic many-electron Hamiltonians,

13This is intuitively understood as in the Mott phase each lattice-site is only occupied (approximately) by a
single electron of spin 1/2 as double-occupancies are energetically unfavorable. The formed local moments are,
however, randomly oriented with respect to one another at different sites.

14We briefly recall here that the ground-state degeneration of the Mott insulating phase, as well the apparent
violation of third thermodynamic principle related to the non-vanishing T → 0 entropy, are automatically resolved
in DMFT by the spontaneous breaking of the SU(2)-symmetry associated to the onset of AF-long range order. As we
only consider here the case of paramagnetic DMFT calculations, we will not explicitly discuss further this aspect,
which anyway does not affect our general considerations on the many-electron energy-spectrum.
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to the well-known jump of the corresponding charge/magnetic uniform responses between
the static (q→0, iωn≡0) and the dynamic (q ≡ 0, iωn→0) limit, yielding respectively χT

q=0

and χR
q=0(ω= 0), whose relevance has been recently discussed also in a DMFT context [56].

Analogous discontinuities in the zero-frequency limit of the q = 0 spin response have been
recently noted [53] also in DMFT calculations of the antiferromagnetically ordered Hubbard
model in presence/absence of a external uniform magnetic field.

Evidently, the link encoded in Eq. (31) between the anomalous part of a response function
and intrinsic properties of the energy spectrum will generally hold independently of the ob-
servable considered. Hence, analyzing the long-term memory effects of different response
functions might allow to gain complementary insightful information about the underlying
eigenstate structure of the many-electron problem.

6 Conclusions

We have investigated the multifaceted algorithmic and physical implications of an anomalous
term (C) in the response functions of interacting electron systems. Its presence corresponds
to a jump-discontinuity between the static isothermal susceptibility and zero-frequency limit
of the dynamical Kubo response function, directly reflecting the emergence of a non-decaying
behavior of the corresponding correlations in the real time domain (“long-term memory" ef-
fect). This phenomenon is formally linked to the underlying symmetries of the many-electron
Hamiltonian, and it can be shown that under certain conditions, a finite value of C directly
reflects the existence of degeneracies in the many-particle energy spectrum. Through C and
its temperature evolution we can thus gain some indirect information on the many-particle
spectral density.

The algorithmic procedure, we presented in Sec. III of our paper, has been thus designed for
reliably detecting the presence of anomalous contributions in a given many-electron response
and to evaluate their size. The performance of the proposed scheme has been then successfully
verified in Sec. IV-V by hands of its application to a DMFT-based analysis of the long-term
memory features of the local magnetic response across the Mott MIT of the Hubbard model.

Beyond the interesting insights gained on temporal and spectral aspects of this testbed
problem, our scheme is directly applicable to any kind of response function of many-electron
systems. From an algorithmic point of view, a reliable estimate of the value of C might
considerably help a subsequent analytic continuation for the regular part of the system re-
sponse, improving the quality of the calculated absorption spectra. In the most challenging
intermediate-coupling regimes, in particular, a preliminary estimate of C might represent an
essential prerequisite for an accurate analytic continuation. At the same time, the study of
long-term memory effects in different response functions can yield complementary new pieces
of information about the fundamental properties of the many-electron Hamiltonians under
investigation, possibly useful also in perspective of experimental observations made beyond
the thermodynamic equilibrium.
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A Considerations on nonlinear response

Similar complications as those arising for the bosonic two-point correlation function at zero
frequency also appear for three- or more general l−point functions. In this respect a spec-
tral representation, including anomalous terms, was to our knowledge originally published
in [57,58] for the three and four point functions. Recently Kugler et al. [27] gave an elegant
description for the l−point functions.

These formal results have a direct relation with nonlinear response theory (NLR). As Kubo
already remarked [18] his formalism is not limited to the first order term in the external field.
If the full time-dependent Hamiltonian is given by

Ĥ(t) = Ĥ −F(t)Â , (49)

where F(t) is an external (classical) field, which is zero for t < 0, the fluctuations in the
expectation value of any system observable 〈B̂(t)〉 are given by

〈δB̂(t)〉 = 〈B̂(t)〉F − 〈B̂(t)〉F=0
=

∑∞
l=1

∫ t
−∞ dt1

∫ t1

−∞ dt2...
∫ t l−1

−∞ dt l

· il

��

...
�

B̂(t), Â(t1)
�

, Â(t2)
�

, ..., Â(t l )
��

0
·F(t2)F(t2)...F(t l ) .

(50)

Absorbing the integration boundaries into the commutator of commutators defines a NLR sus-
ceptibility. The lth order contribution in F is given by

〈δB̂(t)〉
(l) ≡

�

∏l
i=1

∫∞
−∞ dt i F(t i)

�

χBAl R
(t,t1,t2,...,t l )

=
�

∏l
i=1

∫∞
−∞ dt i F(t i+t)

�

χBAl R
(0,t1,t2,...,t l )

,
(51)

where time-translation in-variance has been used in the second line. Fourier-transforming
gives

〈δB̂(ω)〉
(l)
=

1
(2π)l−1

� l
∏

i=1

∫ ∞

−∞
dωi F(ωi)

�

χBAl R
(0,−ω1,−ω2,...,−ωl )

δ(ω−
∑l

i=1ωi) , (52)

which evidently corresponds to the generation of higher harmonics. [59] showed, quite ele-
gantly, that there is a simple relation to the corresponding l + 1-point thermal susceptibility:

χ th
BAl (τ1,τ2, ...,τl) = (−1)l

l! 〈T Âl(−τl)...Â2(−τ2) Â1(−τ1)B̂(0)〉 ,
χ th

BAl (iωn1, iωn2, ..., iωnl) =
1
β l

∫ β

0 ...
∫ β

0 dτ1 dτ2...dτl eiτ1ωn1+iτ2ωn1+...+iτlωnl

·χ th
BAl (τ1,τ2, ...,τl) .

(53)

One simply has to replace all Matsubara frequencies in Eq. (53) by the corresponding real
frequencies plus the same infinitesimal imaginary shift δ→ 0+:

χBAl R
(0,ω1,...,ωl )

= χ th
BAl (iωn1→ω1 + iδ, ..., iωnl →ωl + iδ) . (54)
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However, it appears that it was implicitly assumed in their derivation that no degeneracies are
present for the zeroth Matsubara frequency/-ies (see [59, Eq. 32]). Naturally, this excludes all
anomalous terms. In real time/frequencies no such assumption was made. Hence, their results
in real frequencies can be considered general. In Eq. (54) one should use for the right hand
side only the regular contributions. (In analogy to Eq. (27).) This is also reasonable when
comparing it to the two-point function, (or linear response), case. Indeed, the commutator
exactly removes the anomalous term which only contributes to the anti-commutator but not
to a commutator of commutators as in Eq. (50).

B Computational details

Dynamical Mean Field Theory – The DMFT simulations were performed with a continuous-
time quantum Monte Carlo (QMC) algorithm implemented in the code package w2dynamics
[35]. For the convergence of the self-consistency cycle worm-sampling with symmetric-im-
proved estimators [36]was employed SelfEnergy=symmetric_improved_worm. As a con-
vergence criterion a Hotelling test [60] of the self-energy of consecutive DMFT iterations on
the first 20 Matsubara frequencies was used. Additionally the results were checked by visual
inspection considering the last 5 iterations. Depending on the parameters 20 to 150 DMFT
iterations were necessary for the convergence. (e.g. close to the phase transition in the coex-
istence region more iterations were necessary.) For computing the one-particle quantities we
used Nmeas=5 · 105 to 107 QMC measurements (depending on temperature) on each of the
64 cores, where the calculation was done in parallel. Particle-hole symmetry was obtained by
choosing a chemical potential equal to the Hartree term µ= U/2.

On top of the converged DMFT-solution we then calculated with a single statistic-step (fixed
one-particle quantities) the thermal susceptibility χ th(τ) with the segment solver. The calcu-
lation was again done in parallel with 64 cores. For Nmeas 105 was used T > 1/10 and 106

otherwise.

C Approximate analytic forms for χR

Several analytic forms for the regular term are possible. A particularly simple expression with
Lorentzian shape was suggested in [61, Eq. (2)], where it was successfully applied to study
the effective local magnetic moment in α- and γ-iron. The proposed function reads

χR
L (ω) = A iδ

ω+iδ = A δ2

ω2+δ2 + iAω δ
ω2+δ2 , (55)

where A=
µ2

eff
3T in the local moment regime [61]. It is interesting to note [61] that this heuristic

form can be used to capture the anomalous terms by taking the δ → 0 limit 15. In particu-
lar, one can derive all our expressions involving C by separating the Kubo susceptibility into
χR(ω) = A iδ

ω+iδ +χ
R
reg.(ω). For instance, our form of the fluctuation dissipation theorem (for

Â= B̂) can be re-derived as

ΨAA(ω) = 2iℑχR(ω) coth(βω/2)
= 2iAδ ω

ω2+δ2 (
1

β/2ω +O(βω)) + 2iℑχR
reg.(ω) coth(β/2ω)

δ→0+

= 4πiA/β δ(ω) + 2iℑχR
reg.(ω) coth(β/2ω) ,

where one identifies A= Cβ and C = µ2
eff/3.

15See also our answer to point 4 of the Referee report (A) which is available online.
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Table 1: Fit-parameters of χ th
HO(iωn) for selected U-values at β = 200.

fit parameters

U ω0 γ A

2.35 0.093 0.100 0.259

2.55 0.051 0.053 0.137

At the same time, it should be stressed that, in the framework of our calculations, the
simplified form of Eq. (55) (with a finite δ) could not be applied to express the regular part of
the magnetic response. Indeed, fitting the analytic continuation (to the upper complex half-
plane) of Eq. (55): χ th

L (ωn) = Aδ/(|ωn|+δ) to the QMC data did not yield a good fit for our
case (not shown). One possible reason is that the boundary condition for t = 0+ is not satisfied
by Eq. (55). More specifically, from the definition in Eq. (9) is is clear that (i) χR

AB(t) ∈ R (ii)
χR

AA(t → 0+)∝ 〈[Â(t → 0+), Â]〉 = 0+. (iii) χR
AB(t < 0) = 0. Property (iii) is equivalent to the

fact that χR(ω) has no poles in the upper complex half plane.
It should be noticed that properties (i)+ (ii) cannot be fulfilled simultaneously by a χR(ω)

that has only a single (first order) pole in the lower complex half-plane. For instance, the
Fourier-transform of Eq. (55) is: χR

L (t) = Aδθ (t)e−δ t . In frequencies one needs a function
with at least two (first order) poles16 in the lower complex half plane.

It should, however, be noted that (ii) assumes Â = B̂. For cases where the two operators
are different (ii) will be in general not fulfilled. This might allow for a broader applicability of
Eq. (55).

A particularly simple example of an expression guaranteeing two poles in the lower com-
plex half plane is given by the mathematical form of the fundamental solution to the harmonic-
oscillator differential equation:

�

∂ 2
t + 2γ∂t +ω2

0

�

χR
HO(t) = Aδ(t) which reads

χR
HO(ω) =

A
−ω2 − 2iγω+ω2

0

(56)

= −A
1

ω−Ω+
1

ω−Ω−
, with Ω± = −iγ±

q

ω2
0 − γ2 ,

χR
HO(t) = Aθ (t)

i
Ω+ −Ω−

�

e−iΩ+ t − e−iΩ− t
�

, (57)

χ th
HO(iωn) =

A
ω2

n + 2γ|ωn|+ω2
0

. (58)

Evidently this expression fulfills the properties (i)-(iii). This phenomenological model was
actually used by some of us to analyze the timescales of spin-dynamics for prototypical Fe-
based superconductors in the paramagnetic phase [10]. In fact, it can also be used as an
approximate expression of the regular term in the present case. In Fig. 8 we show the QMC-
data compared to a fit, which was performed for the first 80 positive Matsubara frequency
points by minimizing the least-square deviation of Eq. (58). The fit parameters are given
in Table 1. We conclude that in this parameter regime17 spin-fluctuations can be described
reasonably well by this simplified expression.

16or one second order pole
17See [62, Ch. 4] for a more detailed analysis at larger temperatures as well as in the insulating phase.

26

https://scipost.org
https://scipost.org/SciPostPhys.12.6.184


SciPost Phys. 12, 184 (2022)

0.0 0.1 0.2 0.3 0.4 0.5
n

0

10

20

30
th

(i
n)

[
2 B
]

U=2.35  th
QMC

U=2.35  th
HO fit

U=2.55 th
QMC

U=2.55  th
HO fit

0.0 0.2 0.4 0.60

10

20

30

(
)

[
2 B
]

U=2.35
U=2.55
U=2.35  HO fit
U=2.55  HO fit

Figure 8: Left: Comparison of QMC-data with χ th
HO for the fit-parameters of Table 1.

Right: MaxEnt results compared to evaluating Eq. (56) for the fit parameters obtained
from fitting Eq. (58).
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Figure 9: Test of the extraction method with "artificial" data for the exactly known
atomic limit case. Relative error in the predicted C (left); Minimal value fit loss χχ2

as a function of blur-width b for different temperatures (right).

D Details on the minimal allowed peak width and simple error
estimate

Test case atomic limit: To double-check our method for extracting the maximally allowed
peak width compatible with the QMC data (see discussion before and after Eq. (45)) we
tested it for the atomic limit. The artificial test data was generated by using the analytic
result χ th(iωn) = δn,0β 〈M̂2

z 〉 and adding some white noise for the higher Matsubara frequen-
cies with magnitude 10−4. Continuing the positive frequencies and comparing the result to
χ th(iωn = 0) has yielded a very accurate prediction for C . As expected the problem gets
harder for higher temperatures: Increasing T leads to a larger relative error for C; see left
part of Fig. 9. A relative error of less than 1% is, however, good enough for most purposes.

Test case harmonic oscillator: It is expected that the error of estimating C does not only de-
pend on the temperature but also on the regular signal from which C needs to be distinguished.
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Figure 10: Harmonic oscillator test case. Error estimate and fit loss vs. blur width.
Left: HO parameters corresponding to β = 24, U = 2 Right: HO parameters corre-
sponding to β = 24, U = 3.

More realistic test data than for the atomic limit can be generated by exploiting the harmonic-
oscillator formulas Eqs. (56) to (58) as a regular contribution in addition to an anomalous part
(C 6= 0). For (A,ω0,γ) we considered two test cases corresponding to fitting QMC data for
β = 24, U = 2.0 and β = 24, U = 3.0. The former leads toω0 = 0.18,γ= 0.27, A= 0.40 while
the later gives ω0 = 2.45,γ = 0.33, A = 0.19. For both cases we then added Gaussian white
noise with standard-deviation of 10−3. This noise amplitude is rather large, but realistic18.

In Fig. 10 the resulting error estimations are shown for both cases. The reason for the
large error estimate for the left part of Fig. 10 is that in this case the width of the regular
part becomes comparable to the temperature. In particular, close to M → I phase transition,
where the preformed local moment is signaled by a narrow (regular) contribution, an accurate
prediction for C may become quite challenging. Indeed, this explains why in Fig. 5 a small
but finite value for C is estimated for M → I close to the phase transition, although a closer
analysis of the fit loss showed that C ≈ 0 in this regime: The finite estimated value is an artifact
of the numerical procedure in a situation where the first peak in the regular part is very sharp
and located at very low frequencies. In fact, a similar analysis as the one presented in Fig. 10
showed that for M → I U = 2.6, β = 200 the error estimate is of the order of the estimated
value for C = 0.06± 0.05 (not shown).

Eventually, we should also note that other factors which were not considered for our gen-
erated test data (e.g. no white noise due to off-diagonal covariance matrix) might further
increase the error estimate.

Detailed analysis for T=const. and U=const.: In the left part of Fig. 11 we show the fit
loss as a function of temperature in the insulating phase. Demanding even a very small value
for the minimal peak width leads to a large increase in the fit loss. This behavior does not
depend strongly on temperature for the range of temperatures we considered. We conclude
that in the insulating phase the anomalous term is the most reasonable explanation of our
numerical data. Its magnitude does not depend strongly on the temperature for U = 3 and is
roughly C=0.94. As discussed in section V, we interpret the temperature-independence of C
as a manifestation of the ground-state degeneracy.

In the right part of Fig. 11 we show the minimal value of the fit loss (χχ2) as a function of
blur width for T=1/24. Which is larger than the temperature Tc = 0.027 of the critical point.

18It is expected that a systematic way of decreasing the error of an analytic continuation is to obtain better data
with less QMC-noise. This is however not always possible, especially for a multi-orbital calculations.
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Figure 11: Left: various temperatures in the insulating phase with the onsite inter-
action U = 3. Right: Minimum value of the fit loss for a range of interaction values
at a temperature above the critical point T = 1/24.

Changing the interaction value U trough the crossover region shows that differently than in
the Mott insulator region our results depend strongly on U . After a certain value of the chosen
blur width we are no longer able to obtain a good fit. These values (marked as squares in
Fig. 11) are the basis for the additional lines we showed in the phase diagram in Section 4.

E On the high temperature limit for C

Equation (31) can be simplified in the large temperature limit. The asymptotic value of C
for β → 0 (which practically corresponds to temperatures much larger than all other relevant
energy scales of the systems) reduces to the following expression:

C(β) =
1
Z

∑

l,m
El=Em

e−βEl |Alm|2
β → 0
=

1
dimH

∑

l,m
El=Em

|Alm|2, (59)

where we considered the case with Â= B̂ and 〈A〉 = 0, Alm = 〈l|Â|m〉, and dimH, i.e., the di-
mension of Ĥ, defines the partition function in the large temperature limit [Z(β → 0)]. Hence,
in this regime, the corresponding value of C is simply given by the sum over all degenerate
states, weighted with the corresponding matrix elements.

It is however important to remark that, at very large temperatures, finite values of C will
not have any relevant consequence for susceptibility-measurements in different experimental
setups, as

χT −χR(ω= 0) = βC , (60)

so that we find in the large temperature limit for any finite C > 0:

χR(ω= 0) = χS = χT . (61)

As a pertinent example, one can consider the atomic limit at half-filling. Here, for
Â= B̂ = M̂z one indeed obtains a finite value of C(T ) = 1

e−βU/2+1 > 0 at all temperature, with

a non-vanishing high-T asymptotic value of 1
2 . The full temperature dependence is shown in

Fig. 12.
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Figure 12: Temperature dependence of the long-term memory coefficient C for the
local spin-susceptibility in the atomic limit for µ= U/2.

Consistent with the discussion above, the finite value of C(β = 0) = 1
2 does not reflect a

finite difference the between χT and χR(ω = 0) in the β → 0 limit, as one finds χT ' β and
χR(ω= 0) = 0.

A final remark is due about the relation of the high-T results for the atomic limit, where
C(β →∞) = 1

2 and the DMFT calculations in the Mott phase shown at the end of Sec. 5. In
this respect, it should be stressed that, as clearly illustrated in Fig. 12, the asymptotic high-T
value of C sets in only for T � U

2 , i.e., at temperatures larger than the characteristic energy
gap of the half-filled atomic limit problem (∆E = U

2 ). Hence, while one might expect to find
C ' 1

2 in the high-T regimes of both the Mott phase computed in DMFT and the atomic limit,
this only holds at much higher temperatures than those characterizing the Mott MIT itself.

In particular, the largest temperature considered in the phase diagrams of Sec. 5 is
T = 0.1 � U

2 . Hence, we are still much closer here to the T = 0 regime of the atomic
limit (where C ' 1), than to its T →∞ regime. For this reason, in the Mott phase of DMFT
we only observe a slight decrease of C(T ) by increasing the temperature up to T = 0.1.

F Additional results

It was not the purpose of this work to redetermine the Mott metal-insulator phase transition
with high accuracy. This was already done in previous work [29]. Figure 13, however, confirms
that our data is in reasonably good agreement with earlier works. The error-bars show the
distance to the next U−value for which a calculation was preformed by us. As a handy criterion
to check whether a DMFT solution belongs to the insulation or the metallic phase we used the
ration between the first two values of the self energy

Σ(iωn = iπT )
Σ(iωn = i3πT )

≶ 1 ,

which at low temperature yields a simple, reasonably reliable estimate for the parameters in
the phase diagram at which the single-particle scattering-rate becomes significantly enhanced
close to the Fermi-surface.

Figures 6 and 7 suffer from the common problem that such a heat map lacks quantitative
information and the color bar may mislead the eye. Hence we also plot in Fig. 14 the actual
values of C(β , U) obtained in our calculation.
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U−values for which a calculation was done.
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Figure 14: Annotated estimation of C(β , U) of our DMFT calculations. In the insu-
lating phase C is almost independent of temperature. This shows that for large in-
teraction values U > Uc2(T = 0) C 6= 0 is due to a degeneracy of the Mott-insulating
ground state (see Section 5 and [7,55]).
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