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Abstract

We study the twisted index of 3d N = 2 supersymmetric gauge theories on S1×Σ in the
presence of a real FI parameter deformation. This parameter induces a 1d FI parame-
ter for the effective supersymmetric quantum mechanics on S1. Using supersymmetric
localisation, the twisted index can be expressed as a contour integral. We show that
the contour prescription is modified in the presence of the 1d FI parameter, leading to
wall-crossing phenomena for the twisted index. In particular, we derive a general wall-
crossing formula for abelian gauge theories. We also examine the origin of wall-crossing
as change of stability condition in the algebro-geometric interpretation of the twisted
index. These ideas are illustrated for abelian theories with N = 4 supersymmetry and in
a non-abelian example that reproduces wall-crossing phenomena associated to moduli
spaces of stable pairs.
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1 Introduction

This paper concerns the twisted index of 3d N = 2 gauge theories on S1 × Σ, where Σ is a
closed Riemann surface of genus g. The twisted index was first studied in the context of the
Bethe/gauge correspondence [1], while contour integral formulae for the twisted index were
derived using supersymmetric localisation for g = 0 in [2] and extended to g > 0 in [3,4]. This
has subsequently found beautiful applications to exact microstate counting for supersymmetric
black holes in AdS4 [5–7].

It is natural to regard a twisted 3d N = 2 theory on S1×Σ as an N = (0, 2) supersymmetric
quantum mechanics on S1. The twisted index is then identified with the Witten index [8] of
the supersymmetric quantum mechanics. Provided the spectrum is gapped, the twisted index
can be expressed as

I =
∑

d∈π1(G)

qd TrHd
(−1)F yGF , (1)

for any compact connected gauge group G. The summation is over the topological class
d ∈ π1(G) of the principal G-bundle on Σ, weighted by a fugacity q for the topological global
symmetry. The trace is over supersymmetric ground states Hd in each topological sector,
graded by any additional flavour symmetry GF with fugacity y .

Gauged N = (0, 2) quantum mechanics exhibit wall-crossing phenomena in the space of
1d FI parameters, τ. This is an exact parameter and so the Witten index is independent of
τ provided the spectrum remains gapped. However, it may jump across real codimension-1
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loci where a non-compact Coulomb branch opens up and the space of supersymmetric ground
states Hd changes discontinuously. This wall-crossing phenomenon has found important ap-
plications. For example, D-particles in Type II superstring theory enjoy an effective description
in terms of quiver quantum mechanics, and the BPS spectrum of boundstates jumps according
to the quantum mechanical wall-crossing [9]. In [10] the quantum-mechanical wall-crossing
was systematically studied from the point of view of supersymmetric localisation.

The purpose of this paper is to evaluate the twisted index on S1 ×Σ in the presence of a
real 1d FI parameter τ and explore wall-crossing in this context based on different localisation
schemes. The 1d FI parameter can in principle be induced by a real 3d FI parameter, but one
can also treat it as an independent parameter. The dependence on this parameter is new and
should be distinguished from the known dependence of the twisted index on the complexified
3d FI parameter ζ, which does not display wall-crossing phenomena [11]. One motivation to
perform this study is to obtain an effective quantum-mechanical description that is valid for
each topological sector d. This effective description should put the evaluation of the twisted
index in the same realm of wall-crossing phenomena in quasi-map theory [12,13].

The first goal is to explain how the contour integral formulae derived in [2–4] are modified,
if at all, in the presence of τ. For illustration, we will focus here on G = U(1). The twisted
index is expressed using a Jeffrey-Kirwan residue prescription,

I =
∑

d∈Z
qd
∑

x∗

JK-Res
x=x∗

(Q x∗ ,η)
d x
x

gd(x , y) , (2)

where the integrand gd(x , y) is a rational function that includes contributions from 1-loop
determinants and a gaugino zero-mode integral. The summation runs over d ∈ Z and poles
x∗ of the integrand. The Jeffrey-Kirwan residue depends on a charge Q∗ associated to each
pole and an auxiliary parameter η 6= 0.

Following arguments akin to [10], we will show that in the presence of the 1d FI parameter
τ ∈ R the charges Q+,Q− assigned to the poles at the boundary x → 0,∞ are

Q± =

¨

∓keff
± if keff

± 6= 0

d − eτ if keff
± = 0

, (3)

where keff
± denote effective supersymmetric Chern-Simons levels and eτ is related τ by a con-

stant positive normalisation. This differs from the prescription of [2–4] when keff
± = 0 and

leads to the wall-crossing formula

∆I = qd∗
h

δkeff
+ ,0 Res

x=0
+δkeff

− ,0 Res
x=∞

i d x
x

gd∗(x , y) , (4)

when eτ crosses the integer d∗ ∈ Z from below.
An important consequence is that all charges Q∗ are non-vanishing provided eτ /∈ Z. This

means the twisted index is independent of the auxiliary parameter η for each individual flux,
without needing to sum over d ∈ Z as in [2–4]. This feature is necessary if there is to be
an effective supersymmetric quantum mechanics for each d ∈ Z. The original JK residue
prescription of [2–4] is recovered in the limits eτ→ +∞ with fixed η > 0 or eτ→ −∞ with
fixed η < 0, with the equivalence of these two limits amounts to the relation

∑

d∈Z qd = 0 for
q 6= 0.

This opens up the possibility of an alternative localisation scheme leading to an effective
supersymmetric quantum mechanics for each individual d ∈ π1(G). This is the approach to
the twisted index taken in our previous papers [14, 15]. For illustration, we continue with
G = U(1). Provided eτ /∈ Z, the path integral localises to two types of configurations. The first
are solutions of the vortex equations on Σ,

∗FA+ e2 (µ(φ)−τ) = 0 , ∂̄Aφ = 0 , (5)

3

https://scipost.org
https://scipost.org/SciPostPhys.12.6.186


SciPost Phys. 12, 186 (2022)

where φ is non-vanishing and the gauge group is broken to a discrete subgroup. Here φ
denotes the scalar components of chiral multiplets and µ(φ) the moment map for the gauge
action. The second are topological solutions where φ = 0 and the gauge group is unbroken.

We denote the moduli space of solutions with fixed d ∈ Z by Mτ,d . Algebraically, this
parametrises a holomorphic line bundle E of degree d together with a holomorphic section
φ of an associated holomorphic vector bundle, subject to a stability condition depending on
τ. For example, existence of the solutions to the vortex equations (5) maps to ‘τ-stability’
for the pair (E,φ). This correspondence has been extensively studied in the mathematical
literature [16–19].

In line with the existence of an effective supersymmetric quantum mechanics in each sector
d ∈ Z, the twisted index can be expressed as a generating function

I =
∑

d∈Z
qd

∫

Â(Mτ,d)Ch(Eτ,d) , (6)

where Eτ,d is in general a complex of coherent sheaves encoding contributions from Fermi
multiplet zero modes and Chern-Simons terms. The moduli space Mτ,d should really be un-
derstood as an algebraic stack and equation (6) is an integral of virtual characteristic classes
against the virtual fundamental class.

Sticking with G = U(1), the moduli space Mτ,d can jump accross the wall eτ= d. From an
algebraic perspective, this is due to a change of stability condition. If a non-compact Coulomb
branch opens up, the twisted index can undergo wall-crossing. We show that this happens
when keff

± = 0, in agreement with the modified JK residue prescription (3). For abelian theories
with N = 4 supersymmetry, which admit only vortex saddle points in our localisation scheme,
we demonstrate precise agreement between the geometric picture (6) and the modified JK
residue prescription in equation (2). The extension to more general N = 2 theories with
topological saddle points is discussed in [20].

We also study the generalisation of these ideas for non-abelian G, although less systemat-
ically. We consider a class of theories with G = U(N), in which Mτ coincides with the moduli
space of rank N stable pairs [17]. This is known to have an intricate chamber structure in the
parameter space τ ∈ R. For N = 2, the moduli space has been constructed explicitly in [18]
and further studied in [19,21]. We show that the twisted index recovers the Hirzebruch genus
of the moduli space of stable pairs [22] and is consistent with wall-crossing. We also comment
on the generalisation to N > 2.

The paper is organised as follows. In section 2, we summarise the Lagrangians used in
supersymmetric localisation and discuss how the twisted index depends on the parameters
appearing in them. In section 3, we revisit the Coulomb branch localisation scheme of [5–7] in
the presence of the 1d FI parameter and derive the modified JK residue prescription and abelian
wall-crossing formula. In section 4, we consider an alternative localisation scheme leading to
the algebro-geometric interpretation of the twisted index and demonstrate compatibility with
wall-crossing. In section 5, we consider the example of abelian N = 4 gauge theories, while in
section 6, we explore a non-abelian example with a connection to the moduli spaces of stable
pairs.

2 The Twisted Index

We consider a 3d N = 2 gauge theory on S1×Σwith twist along an closed orientable Riemann
surface Σ of genus g using an unbroken R-symmetry. This setup preserves two supercharges
Q, Q̄ generating a supersymmetric quantum mechanics on S1. The supermultiplets are of the
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type obtained by dimensional reduction of 2d N = (0,2) and we therefore refer to this as
N = (0, 2) quantum mechanics.

In this section, we review how 3d N = 2 supermultiplets decompose under 1d N = (0, 2)
supersymmetry and the Lagrangians used in supersymmetric localisation. We also discuss how
the twisted index depends on parameters appearing in these Lagrangians, including the 1d FI
parameter τ that plays an important role in this paper. We generally follow the notation of
reference [4].

2.1 Preliminaries

We consider a theory with compact connected gauge group G. Principal G-bundles on the
Riemann surface Σ are classified topologically by the fundamental group π1(G). The UV topo-
logical symmetry is then

GT = Hom(π1(G), U(1)) , (7)

which is also the centre of the Langlands dual group, Z(LG). Here we are assuming that
dF = 0 identically, excluding theories with monopole operators in the superpotential. Given
d ∈ π1(G), we denote the corresponding homomorphism Hom(GT , U(1)) by q 7→ qd for any el-
ement q ∈ GT . Our canonical example will be G = U(N), in which case π1(G)∼= Z, GT

∼= U(1)
and the notation qd is obvious.

2.2 Standard Lagrangians

Let us first consider a 3d N = 2 vectormultiplet (σ, Aµ,λα, λ̄α, D) for the gauge group G. After
twisting on Σ, this decomposes into two 1d N = (0,2) supermultiplets:

• A vector multiplet (σ + iA0,λ, λ̄, D1d) for the group Aut(P) of smooth gauge transfor-
mations of a principal G-bundle P on Σ. It is important in the following that the 1d
auxiliary field is D1d = D− 2F11̄.

• A chiral multiplet (A1̄, Λ̄1̄) valued in Ω0,1(Ad P) where Ad P = P ×G g is the associ-
ated vector bundle in the adjoint representation. More invariantly, the chiral multiplet
parametrises the complex structure ∂̄A on Ad P induced by the gauge connection.

The supersymmetric Yang-Mills Lagrangian for the vectormultiplet is

LYM =tr
�

1
2

F01F01̄ +
1
2
(−2iF11̄)

2 +
1
2

D2 +
1
2
|Dµσ|2 − iλ̄D0λ− iΛ̄1̄D0Λ1

+ 2iΛ̄1̄D1λ− 2iΛ1D1̄λ̄− iΛ̄1̄[σ,Λ1] + iλ̄[σ,λ]
�

(8)

and coincides with the sum of the standard vectormultiplet and chiral multiplet Lagrangians
for the 1d N = (0,2) supermultiplets above.

We can introduce a supersymmetric Chern-Simons term with level k ∈ H4(BG,Z). The
Lagrangian is written schematically as

LCS =
k

4π
Tr
�

iεµνρ
�

Aµ∂νAρ −
2i
3

AµAνAρ

�

− 2Dσ+ 2iλ̄λ+ 2iΛ̄1̄Λ1

�

, (9)

where Tr is shorthand for a positive-definite bilinear form on g. For example, for G = U(N)
with N > 1 there are two independent levels associated to the simple and abelian summands
in g = u(N). We can also introduce a 3d FI parameter ζ valued in the Lie algebra of the
topological symmetry GT . The Lagrangian can be written as

LFI = −
i

2π
ζ · D , (10)
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where we use that gT = Z(g∗) ⊂ g∗ and the natural pairing between g and g∗. As discussed
further below, this is complexified by a background Wilson line for the topological symmetry
along S1.

We now consider a 3d N = 2 chiral multiplet Φ = (φ,ψα, F) transforming in a faithful
unitary representation R of G and R-charge r. After the topological twist this decomposes into
two 1d N = (0, 2) supermultiplets:

• A chiral multiplet (φ,ψ) valued in Ω0,0 (PΦ).

• A Fermi multiplet (η, F) valued in Ω0,1 (PΦ).

Here we write
PΦ := K r/2

Σ ⊗ (P ×G R) , (11)

for the associated vector bundle in the representation R, twisted by a power of the canonical
bundle KΣ, if necessary choosing a spin structure on Σ. The chiral multiplet Lagrangian is then

LΦ = tr
�

φ̄(−D2
0 − 4D1D1̄ +σ

2 + iD− 2iF11̄)φ − F̄ F

−
i
2
ψ̄(D0 +σ)ψ− 2iη̄(D0 −σ)η+ 2iψ̄D1η− 2iη̄D1̄ψ

−iψ̄λ̄φ + iφ̄λψ− 2iφ̄Λ1η+ 2iη̄Λ̄1̄φ
�

(12)

and coincides with the standard Lagrangians for the above 1d N = (0,2) supermultiplets
together with a J -term superpotential J = ∂̄Aφ.

Suppose there is a flavour symmetry GF acting on the chiral multiplets. Then we can
introduce real mass parameters m ∈ tF by coupling to a background vectormultiplet for GF
and turning on a constant expectation value for the real scalar. As discussed further below,
this is complexified by a background Wilson line around S1.

Integrating out charged massive chiral multiplets generates an effective Chern-Simons level
keff(σ) that depends in a piecewise constant fashion on σ. For G = U(1) and chiral multiplets
Φ j transforming with weights Q j ,

keff(σ) = k+
1
2

∑

j

Q2
j sgn(Q jσ+m j) , (13)

where m j denote the real mass parameter of Φ j . In this situation, the bare Chern-Simons level
k is allowed to be a half-integer provided keff(σ) is integer valued. More generally, in the
presence of charges chiral multiplets we require that keff(σ) ∈ H4(BG,Z) in order to cancel
the parity anomaly.

Finally, the vectormultiplet Lagrangian (8) and chiral multiplet Lagrangian (12) are ex-
act with respect to both of the supercharges Q, Q̄. On the other hand, the Lagrangians for
the supersymmetric Chern-Simons term, FI and real mass parameters are not exact for any
combination of these supercharges.

2.3 The 1d FI Parameter

The Lagrangian (10) for the 3d FI parameter ζ is not equal to the standard Lagrangian for a 1d
FI parameter due to the relation D1d := D− 2F11̄ between the vectormultiplet auxiliary fields
in one and three dimensions. Instead we find

LFI = L1,ζ − L2,ζ , (14)

where the first term

L1,ζ =
iζ
2
·
�

Q+ Q̄
� �

λ+ λ̄
�

= −iζ · D1d

(15)
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is the exact Lagrangian of a 1d FI parameter, while the second term

L2,ζ = 2iζ · F11̄ (16)

is not exact and will weight contributions from different magnetic fluxes on Σ.
For supersymmetric localisation it is convenient to treat the parameter in L1,ζ as indepen-

dent. We will call this parameter τ, and the Lagrangian L1,τ. This is an exact deformation
which does not preserve 3d N = 2 supersymmetry, similar to those used in [23–25] to localise
the path integral of A-twisted 2d N = (2,2) gauge theories onto vortex solutions. It will play
the same role here in section 4.

From the perspective of supersymmetric quantum mechanics and localisation, τ and ζ can
be considered to be independent from each other. The former is real and exact, while the latter
can be complexified by a Wilson line for the topological symmetry and is not exact. However,
to recover 3d N = 2 supersymmetry at the end, we must set τ= ζ.

2.4 Parameter Dependence

As above, it is natural to regard a twisted 3d N = 2 theory as an N = (0, 2) supersymmetric
quantum mechanics. From this perspective, the twisted index is identified with the Witten
index of this supersymmetric quantum mechanics [8]. Provided the spectrum is gapped, the
twisted index can be expressed as

I =
∑

d∈π1(G)

qd TrHd
(−1)F y JF . (17)

In this expression, the summation is over the topological class d ∈ π1(G) of the principal G-
bundle on Σ and the trace is then over supersymmetric ground states Hd in each topological
sector. The parameters appearing in this expression are

y := e−2πβ(m+iaF ) , q := e−2πβ(ζ+iaT ) , (18)

where m, ζ denote the mass and FI parameters and aF , aT are background holonomies for the
associated global symmetries GF , GT along S1. The parameters y , q are then valued in the
complexified maximal tori TF,C, TT,C and the twisted index is a meromorphic function of them.

Note that the dependence on q arises from the second non-exact contribution to the La-
grangian (14). This contribution, as well as the piece of the Lagrangian containing the real
mass m, are not exact with respect to any combination of the supercharges generating the
N = (0,2) supersymmetric quantum mechanics and are naturally complexified. The twisted
index depends explicitly on m, ζ as a meromorphic function of the complexified parameters
y , q.

In contrast, the Lagrangian Lτ containing an independent 1d FI parameter τ is exact with
respect to the linear combination Q + Q̄. Standard arguments ensure the twisted index is
invariant under small deformations of τ, but may jump across codimension-1 walls where the
spectrum of the supersymmetric quantum mechanics is not gapped. Importantly, the locations
of the walls depend on other parameters of the theory such as e2 and Vol(Σ). This wall-crossing
can be studied following the localisation techniques developed for gauged supersymmetric
quantum mechanics in [10]. This is the route we follow in section 3.

3 Coulomb Branch Localisation

In this section, we reconsider the Jeffrey-Kirwan (JK) contour integral formula for the twisted
index, which was derived using the Coulomb branch localisation scheme in [2–4]. We show

7
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that the 1d FI parameter τ modifies the residue prescription for singularities at the boundary
of the moduli space of supersymmetric saddle points in this localisation scheme and provide
a general formula for G = U(1).

This modification ensures that the contour integral formula is well-defined and indepen-
dent of the auxiliary parameter in each individual topological sector d ∈ π1(G), at least away
from codimension-1 walls in the parameter space of τ. This is a pre-requisite for the existence
of an effective supersymmetric quantum mechanics whose Witten index captures the contribu-
tion from each topological sector; this observation will be important in section 4. Furthermore,
it leads to wall-crossing of the twisted index, for which we provide a general formula in the
case G = U(1).

3.1 Contour Integral Formula

The Coulomb branch localization scheme of [2–4] starts from the Lagrangian

L =
1
e2

LY M +
1
g2

LΦ + LCS + LFI , (19)

with parameters e2, g2 multiplying the exact terms. Schematically, one sends e2→ 0 to localise
onto saddle points of the vectormultiplet Lagrangian and then g2→ 0 to evaluate the contri-
butions from fluctuations of chiral multiplets. This is problematic: additional chiral multiplet
zero modes and the non-compactness of the moduli space of vectormultiplet saddles mean
that the e2 → 0 limit is subtle. A careful analysis, following the similar computations in two
dimensions [26,27], leads to a Jeffrey-Kirwan contour integral formula for the twisted index.

The contour integral formula for the twisted index is

I = 1
|W |

∑

m∈ΛG

qTr(m)

∫

Γ

rk(G)
∏

a=1

d xa

xa
Z(x ,m) H(x)g . (20)

The summation is over the cocharacter lattice ΛG of G and Tr : ΛG → π1(G) denotes the
natural projection onto the fundamental group. The contour integral is in the complexified
maximal torus of G, parametrised by

x = e−2πβ(σ+ia0) . (21)

For example, if G = U(N)we have m= (m1, . . . ,mN ) ∈ ZN and Tr(m) =
∑N

j=1 m j with Coulomb
branch coordinates x = (x1, . . . , xN ).

Finally, the integrand is constructed from a 1-loop contribution Z(x ,m) and the Hessian
H(x)g , which arises from integration over the 1-form gaugino zero modes. They also depend
on flavour parameters y which are suppressed in the notation.

The computation requires a choice of contour Γ . As discussed in [2–4] and building on
computations in two dimensions [26,27], the contour is fully determined by zero mode integral
over the components of the auxiliary field

D̂ := iD1d = i(D− 2F11̄) (22)

of the 1d vectormultiplet. The contour for the auxiliary field is given by

ΓD̂ = t+ iδ , (23)

where the vector δ ∈ t deforms the contour away from the real slice. After performing the
integral over the auxiliary field, the contour Γ is given by a JK residue prescription. This
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requires choosing an auxiliary parameter η ∈ t∗, which determines a choice of the vector δ
through relations including η ·δ < 0.

Let us spell this out for G = U(1). In this case, the JK residue operation is

JK-Res
x=0

(Q,η)
d x
x
= Θ(Qη)sgn(Q) , (24)

where η 6= 0 is an auxiliary parameter and Q 6= 0 is the JK charge. The the twisted index can
then be expressed

I =
∑

d∈Z
qd
∑

x∗

JK-Res
x=x∗

(Q x∗ ,η)
d x
x

Z(x , d)H(x)g , (25)

where for G = U(1) the first summation is over d = m ∈ Z. The second summation runs over
poles x∗ ∈ C∗ of the integrand with JK charges defined as follows.

• First, there are poles at interior points solving equations of the form xQ yQ f = 1, which
arise from chiral multiplets of U(1) charge Q and flavour charge Q f . The associated JK
charge is simply Q.

• Second, there are poles at the boundary points x = 0,∞, which arise from monopole
operators of ‘t Hooft charge +1, −1 and U(1) gauge charge Q± = ∓keff

± respectively,
where we define

keff
± := keff(σ→±∞) . (26)

The associated JK charges are Q±.

This is ill-defined as it stands when keff
± = 0. References [2–4] adopt a further regulator such

that the pole at x = 0,∞ is not taken when keff
+ , keff

− = 0. A consequence is that while the
twisted index is independent of η after summing over d ∈ Z, this is not always the case
in individual topological sectors. This is not compatible with the existence of an effective
supersymmetric quantum mechanics in each topological sector and resolving this issue is one
motivation for introducing the parameter τ below.

There is a similar but more intricate story for non-abelian G. At genus g > 0, one difficulty
is that the integrand of (20) has poles at xα = 1 for non-zero roots α, for which the JK residue
operation is ill-defined. The prescription adopted in [2–4] is to exclude such poles, which is
again problematic for independence of η in individual topological sectors. Resolving this issue
is beyond the scope of this paper.

3.2 Modification due to τ

We now introduce the 1d FI parameter τ and consider the Lagrangian

L =
1
t2

�

1
e2

LY M + L1,τ

�

+
1
g2

LΦ + LCS + L2,ζ , (27)

in the limit t → 0 with e2 finite.
We will show below that this changes the residue prescription for the boundary contribu-

tions to the twisted index. For simplicity, we focus on G = U(1). In this case, the JK charges
associated to the poles at x = 0,∞ become

Q± =

¨

∓keff
± if keff

± 6= 0

d − eτ if keff
± = 0

, (28)

where

eτ=
e2Vol(Σ)

2π
τ (29)
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is a normalised 1d FI parameter. These charges differ from the previous JK residue prescription
when keff

± = 0.
Importantly, with the new prescription the charges Q± are always non-vanishing provided

eτ /∈ Z. Therefore, away from these walls the JK residue prescription is independent of η in
each individual topological sector d ∈ Z, before the summation over fluxes. On the other
hand, whenever keff

± = 0 it introduces the potential for wall-crossing in the topological sector
d ∈ Z across the wall eτ= d.

The argument follows that outlined in appendix B of [14]. As previously, the boundary
contribution is determined by the zero mode integral of the auxiliary field D̂. In the new
localisation scheme, the boundary contribution to the twisted index is

I± =
∑

d∈Z
qd lim

t→0
Res

x=0,∞

d x
x

∫

R+iδ

dD̂

D̂
Z(x , d, D̂)H(x , D̂)g

exp

�

βvol(Σ)
2t2e2

D̂2 −
iβ
t2

�

−
2πd
e2
+ vol(Σ)τ+

keff
±

2π
t2σvol(Σ)

�

D̂

�

,

(30)

where δ is a regulator for the D̂ integral that satisfies ηδ < 0. The first line of the integrand
is the 1-loop and gaugino zero mode contribution in the presence of D̂. When evaluated at
D̂ = 0, it reduces to the integrand of (20).

To evaluate this contribution, we need to compute the D̂-integral in the limit t → 0 with
t2σ → ±∞. This integral is performed by rescaling D̂ → t2D̂ such that in the limit t → 0,
it is determined by the dominant D̂-linear contribution to the exponential. The result can be
expressed

I± =
∑

d∈Z
qd JK-Res

x=0,∞
(Q±,η) ,

d x
x

Z(x , d)H(x)g (31)

where the charge Q± is determined by the dominating contribution to the D̂-linear term in
the exponential. If keff

± 6= 0, this term dominates and we find Q± = ∓keff
± , in agreement

with [2–4]. However, when keff
± = 0 we find instead Q± = d − eτ. This is summarised in the

residue prescription (28).

3.3 Wall-Crossing Formula

The dependence of Q± on τ leads to wall-crossing of the twisted index when keff
± = 0. Let

us again take G = U(1) and consider the change in the twisted index as the normalised 1d
parameter crosses an integer value eτ∗ := d∗ ∈ Z. A straightforward consequence of the residue
prescription (28) is

I(τ∗ − ε)− I(τ∗ + ε) = qd∗
h

δkeff
+ ,0 Res

x=0
+δkeff

− ,0 Res
x=∞

i d x
x

Z(x , d∗)H(x)
g , (32)

where ε → 0+. We will explore this wall-crossing formula in a large class of examples in
section 5 and demonstrate precise agreement with the geometric interpretation of the twisted
index to be introduced momentarily in section 4.

3.4 Relation to Previous JK Prescription

Let us now use the wall-crossing formula to examine the precise relationship with the original
JK residue prescription introduced in [2–4].

The original prescription differs in its treatment of the poles at x = 0 and x =∞ when
keff
+ = 0 and keff

− = 0 respectively. In these case, the original prescription is to not include the
residue at these points. This prescription is not consistent, meaning not independent of the
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auxiliary parameter, in each topological sector d ∈ Z. However, it is consistent after summing
over topological sectors provided

∑

d∈Z
qd
h

δkeff
+ ,0 Res

x=0
+δkeff

− ,0 Res
x=∞

i d x
x

Z(x , d)H(x)g (33)

for q 6= 1 is re-summed to zero. An example is that an expression of the form
∑

d∈Z qd repre-
sents a formal delta function and vanishes for q 6= 1.

On the other hand, the residue prescription (28) is well defined in every topological sector
independently provided eτ /∈ Z. However, the original residue prescription can be recovered
by formally sending either eτ→ +∞ with η > 0, or eτ→ −∞ with η < 0. The equivalence
of these two limits amounts to same condition that the sum over topological sectors (33) is
re-summed to zero.

We will not write down a wall-crossing formula for a general compact connected group
G, although this can be studied following techniques from [10]. As mentioned above, one
obstacle to doing this systematically is additional poles at xα = 1 for roots α. Instead, in
section 6 we explore the twisted index of the simplest non-abelian examples with G = U(N)
that display wall-crossing phenomena.

4 Higgs Branch Localisation

Introducing the 1d FI parameter τ opens up an alternative localisation scheme leading to an
algebro-geometric interpretation of the twisted index as proposed in [14]. In this section, we
review how to compute the twisted index in this localisation scheme and explain how wall-
crossing arises from change of stability condition in the algebro-geometric context. This is
explored further in examples in sections 5 and 6.

4.1 Localisation and Saddle Points

We now consider the Lagrangian

L =
1
t2

�

1
e2

LY M + L1,τ + LΦ

�

+ LCS + L2,ζ , (34)

which is obtained from that used in the Coulomb branch localisation scheme (27) by setting
g = t. The strategy is to consider the limit t → 0 with e2 fixed. The first step is to enumerate
the saddle points in this limit.

Up to boundary terms, the bosonic part of the Lagrangian (34) can be expressed as a sum
of complete squares

t2 L ⊃
1
e2

�

�

�

�

D+ ie2

�

µ(φ)−
kt2σ

2π
−τ

��

�

�

�

2

+
1
e2

�

�

�

�

−2iF11̄ + e2

�

µ(φ)−
kt2σ

2π
−τ

��

�

�

�

2

+
1
e2
|Dµσ|2 +

1
e2
|F01|2 + 4|D1̄φ|

2 + |D0φ|2 + |σ ·φ|2 −
i t2

2π
ζ · D ,

(35)

where µ(φ) ∈ g∗ is the moment map for the action of G on the unitary representation R. In the
limit t → 0, we can ignore ζ for the purpose of enumerating saddle points. However, we keep
the Chern-Simons level k in anticipation of saddle points where |σ| becomes large as t → 0.
After integrating out the auxiliary field and imposing reality conditions on the physical fields,
the saddle points are

− 2iF11̄ + e2

�

µ(φ)−
kt2σ

2π
−τ

�

= 0 ,

Dµσ = 0 , F01 = 0 , D1̄φ = 0 , D0φ = 0 , σ ·φ = 0 .

(36)
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Equivalently, they are time-independent solutions to

∗ FA+ e2

�

µ(φ)−
kt2σ

2π
−τ

�

= 0 ,

dAσ = 0 , ∂̄Aφ = 0 , σ ·φ = 0 ,

(37)

where we have translated to an index free notation.
These equations admit a rich spectrum of solutions depending on τ and the choice of

theory. For G = U(1) there is a trichotomy of solutions mirroring the three classes of super-
symmetric vacua in flat space considered in [11]. We summarise them below.

1. Vortex Solutions
These are solutions where σ remains finite in the limit t → 0. The Chern-Simons level
k can be omitted from equations (37) leaving

∗ FA+ e2 (µ(φ)−τ) = 0 , ∂̄Aφ = 0 , σ ·φ = 0 , (38)

with constant σ. Integrating the first equation over Σ leads to a constraint: to avoid
solutions where φ vanishes identically and σ can become infinitely large, we require
that eτ 6= d in the topological sector with flux

d =
1

2π

∫

Σ

FA ∈ Z . (39)

This in turn implies σ = 0 and therefore equations (38) reduce to abelian vortex equa-
tions on Σ.

2. Topological Solutions.
These are solutions where |σ| →∞ such that the combination σ0 = t2σ remains finite
and non-zero as t → 0. This requires φ = 0 identically and the U(1) gauge symmetry is
unbroken. Integrating out the massive fluctuations of φ generates a shift k→ keff

± when
±σ0 > 0. The problem is therefore reduced to

∗FA+ e2

�

−
keff
± σ0

2π
−τ

�

= 0 , ±σ0 > 0 . (40)

Integrating over Σ, there is a unique solution for σ0 provided eτ 6= d and the further
conditions keff

± 6= 0 and sgn(keff
± ) = ± sgn(d − eτ) are satisfied.

3. Coulomb Solutions.
If keff

± = 0, there are no topological vacua with ±σ0 > 0. However, a non-compact
Coulomb branch parametrised by ±σ0 > 0 then opens up the wall eτ= d.

In summary, in the topological sector d ∈ Z, there may be vortex and topological solutions for
eτ 6= d, while Coulomb solutions can arise on the wall eτ= d. For a general compact connected
group G, equations (37) admit a rich variety of solutions combining characteristic features of
the three classes introduced above.

We can introduce real mass parameters m ∈ tF for the flavour symmetry GF acting on the
chiral multiplets. This modifies the equation σ ·φ = 0 to

(σ+m) ·φ = 0 , (41)

where it is understood that σ, m act in the appropriate representations of G, GF . This has
no effect on the above description of topological and Coulomb solutions where φ = 0, but
restricts vortex solutions to configurations that are invariant under the infinitesimal flavour
transformation generated by m.
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4.2 Moduli and τ-Dependence

We denote the bosonic moduli space of solutions to equations (37) modulo gauge transforma-
tions by Mτ. From the perspective of N = (0,2) supersymmetric quantum mechanics, this
moduli space parametrises chiral multiplet zero modes. This decomposes as a disjoint union
of topologically distinct sectors

Mτ =
⊔

d∈π1(G)

Mτ,d . (42)

The moduli space has an intricate dependence on τ and may jump discontinuously across co-
dimension one walls in the parameter space gT . If a non-compact Coulomb branch opens up
on this wall, the twisted index may undergo wall-crossing. We therefore distinguish two types
of discontinuity.

• Type I. The moduli space Mτ,d jumps discontinuously across a wall where a Coulomb
branch opens up and the twisted index can undergo wall-crossing. For G = U(1) there
is such a discontinuity at eτ= d when keff

+ = 0 or keff
− = 0 or both.

• Type II. The moduli space Mτ,d jumps discontinuously without a Coulomb branch open-
ing up and the twisted index remains unchanged. For G = U(1) there is such a discon-
tinuity at eτ= d when both keff

+ 6= 0 and keff
− 6= 0.

This is consistent with the wall-crossing formula (32) in predicting when wall-crossing of the
twisted index can occur in theories with G = U(1). To illustrate the difference between the
two types of discontinuity, we consider a couple of examples.

First consider G = U(1) with a pair of chiral multiplets X± of charge ±1 and vanishing R-
charge. In this case, keff

+ = keff
− = 0 so there are no topological solutions, while vortex solutions

satisfy
∗FA+ e2

�

|X+|2 − |X−|2 −τ
�

= 0 , ∂̄AX± = 0 . (43)

Let us assume d > 0. If eτ > d, the vortex equations require X− = 0 and Mτ,d = SymdΣ. If
eτ < d, the vortex equations have no solutions and Mτ,d = ;. At eτ = d, a Coulomb branch
opens up. We therefore have a type I discontinuity at eτ= d.

Second, consider G = U(1) supersymmetric Chern-Simons theory at level k ∈ Z≥0+
1
2 and

a chiral multiplet X of charge +1 and vanishing R-charge. In this case, keff
± = k ± 1

2 and as
usual k = 1

2 and k > 1
2 behave differently.

• If k = 1
2 , there are vortex solutions when eτ > d, topological solutions when eτ < d and

a Coulomb branch at eτ= d. The discontinuity is therefore type I.

• If k > 1
2 , there are both vortex and topological solutions when eτ > d, topological solu-

tions only when eτ < d, and no Coulomb branch at eτ= d. The disccontinuity is therefore
type II.

4.3 Algebro-Geometric Construction

In order to match the wall-crossing formula (32) precisely, we should evaluate the twisted
index in the current localisation scheme. This leads to an effective N = (0, 2) supersymmetric
quantum mechanics for each d ∈ π1(G), which is schematically a sigma model whose target
space Mτ,d parametrises chiral multiplet zero modes. The contribution to the twisted index is
captured by the Witten index of this supersymmetric quantum mechanics: schematically the
index of a Dirac operator on Mτ,d .

To make this precise, it is useful to introduce an algebraic description of the moduli space
Md,τ as parametrising the following data:
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• A holomorphic G-bundle E of degree d ∈ π1(G).

• A holomorphic sections of the associated bundle K r/2
Σ ⊗ ER.

This is supplemented by ‘τ-stability’, which depends in a piecewise constant fashion on τ.
From an algebraic perspective, the discontinuities across walls in the parameter space of τ
arise from a change of this stability condition.

Let us first assume τ is chosen such that there are only vortex saddle points where G is
completely broken and the moduli space Mτ,d is smooth. Then the effective supersymmetric
quantum mechanics is a sigma model, with target space Mτ,d parametrising the N = (0, 2)
chiral multiplet zero modes. The contribution to the twisted index is

qd

∫

Â(Mτ,d)Ch(Eτ,d) , (44)

where Eτ,d is a complex of coherent sheaves on Mτ,d encoding N = (0, 2) Fermi multiplet zero
modes and supersymmetric Chern-Simons terms. The examples presented in section 5 are of
this type.

More generally, the gauge group may not be completely broken at points on Mτ,d and it
should be understood as an algebraic stack. For example, for topological solutions in theories
with G = U(1) it is the Picard stack of holomorphic line bundles on Σ of degree d. Neverthe-
less, the supersymmetric field theory equips the moduli space Mτ,d with a perfect obstruction
theory and equation (44) must be understood in a virtual sense. This more general setup is
studied in [20].

Finally, in the presence of mass parameters m ∈ tF everything should be understood equiv-
ariantly with respect to GF . If the moduli space Mτ,d is non-compact away from walls where
a Coulomb branch opens up, it is necessary to turn on such mass parameters. In such cases,
provided the fixed locus of the infinitesimal TF transformation generated by m is compact,
equation (44) is defined by equivariant localisation to this fixed locus.

5 Abelian N = 4 Theories

In this section, we explore the wall-crossing formula (32) for 3d N = 4 supersymmetric QED
with N hypermultiplets and demonstrate a precise match with wall-crossing in the algebro-
geometric construction summarised in section 4, expanding on the proposal of [14]. 1

5.1 Twisted Index

From a 3d N = 2 perspective, we have G = U(1) and chiral multiplets transforming in the
following representations,

U(1)R G PSU(N)F 2U(1)t
X r 1 N̄ 1
Y r −1 N 1
Φ 2− 2r 0 1 −2

, (45)

where the final two columns are the representations under the N = 2 flavour symmetry
GF = PSU(N)F × U(1)t . The topological symmetry is GT = U(1).

1The analysis of this section can be generalised to abelian quiver gauge theories that have isolated massive
vacua in the presence of generic mass and FI parameters. See [14] for more detail.
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In the above table, r = 1, 0 denotes a choice of integer N = 2 R-symmetry inside the
N = 4 R-symmetry SU(2)H × SU(2)C . If the Cartan generators of each factor in the N = 4 R-
symmetry are TH , TC , then the integer N = 2 R-symmetry U(1)R is generated by 2TH , 2TC for
r = 1,0 respectively. The remaining independent combination TH − TC generates the N = 2
flavour symmetry U(1)t .

The two choices r = 1, 0 generate distinct twisted theories on S1 ×Σ, which we refer to
the H-twist and C-twist respectively. In both cases, the contribution to the twisted index can
be expressed in the standard form,

I =
∑

m∈Z
qm
∑

x∗

JK-Res
x=x∗

(Q x∗ ,η)
d x
x

Z(x , d)H(x)g , (46)

where

Z(x , d) = (t1/2−t−1/2)(1−2r)(1−g)
N
∏

j=1

 

x y−1
j − t1/2

1− x y−1
j t1/2

!d 



x y−1
j t1/2

(1− x y−1
j t1/2)(x y−1

j − t1/2)





(1−r)(1−g)

(47)
and

H(x) =
1
2

N
∑

j=1

 

1+ x y−1
j t1/2

1− x y−1
j t1/2

+
1+ x−1 y j t

1/2

1− x−1 y j t1/2

!

(48)

and for convenience we have introduced a shift q→ (−1)N q. The fugacities y1, . . . , yN , t obey
∏N

j=1 y j = 1 and parametrise the complexified maximal torus of the N = 2 flavour symmetry.

We now specify the residue prescription. First, there are poles at x = y j t
−1/2, y j t

1/2

for all j = 1, . . . , N arising from the chiral multiplets X , Y . They are therefore assigned JK
charges +1, −1 respectively. Second, since the effective Chern-Simons level vanishes iden-
tically with N = 4 supersymmetry, keff

+ = keff
− = 0 and the poles at x → 0,∞ are assigned

charge Q± = d − eτ. This residue prescription can be summarised as follows:

• η > 0: sum the residues at x = t−1/2 y j for all j = 1, . . . , N , together with the residues
at x = 0 and x =∞ if eτ < d.

• η < 0: sum minus the residues at x = t1/2 y j for all j = 1, . . . , N , together with minus
the residues at x = 0 and x =∞ if eτ > d.

These two choices are equivalent away from eτ = d by Cauchy’s theorem and the residue
prescription is independent of the auxiliary parameter η for each d ∈ Z.

The twisted index can potentially now jump across the wall at eτ∗ := d∗ according to the
formula

I(eτ∗ − ε)− I(eτ∗ + ε) = qd∗
h

Res
x=0
+ Res

x=∞

i d x
x

Z(x , d∗)H(x)
g . (49)

with ε → 0+. We must therefore evaluate the residues at x → 0,∞. First note that due to
a cancelations between the the two chiral multiplets, the Hessian H(x) has a simple zero as
x → 0,∞. Combining with the behaviour of the 1-loop determinant

Z(x , d)∼

¨

O(x+N r(1−g)) x → 0

O(x−N r(1−g)) x →∞
, (50)

we can draw the following conclusions:
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• H-twist (r = 1): There is no wall-crossing for g > 0. For g = 0, we find the following
closed formula for wall-crossing of the twisted index,

I(eτ∗ − ε)− I(eτ∗ + ε) = (−1)Ndqd∗ tNd∗/2 − t−Nd∗/2

t1/2 − t−1/2
, (51)

where ε→ 0+. The appearance of the Hirzebruch genus of the complex projective space
P|Nd∗|−1 can be understood from the algebro-geometric interpretation of the twisted in-
dex discussed below.

• C-twist (r = 0). There is no wall-crossing for g = 0 and g = 1. For g > 1, there is
wall-crossing if N > 1. We look at some individual cases below.

5.2 Geometric Picture

We now show that the wall-crossing formula agrees with the algebro-geometric interpretation
of the twisted index summarised in section 4. In the case of N = 4 supersymmetry, the algebro-
geometric interpretation of the twisted index was studied in our previous paper [14], to which
we refer the reader for further background.

First note that keff(σ) = 0 identically so there are no topological saddle points in the
localisation scheme of section 4. The vortex saddle points are solutions to the equations

1
e2
∗ F +

N
∑

j=1

(|X j|2 − |Yj|2)−τ= 0 ,

∂̄AX i = ∂̄AYi = 0 ,
N
∑

j=1

X jYj = 0 ,

dσ = 0 , σ · X i = σ · Yi = 0 ,

(52)

for all i = 1, . . . , N , modulo the U(1) gauge transformation. The moduli space of solutions
decomposes into topologically distinct sectors

Mτ =
⊔

d∈Z
Mτ,d , (53)

where d ∈ π1(U(1)) = Z is the degree of the gauge bundle on Σ.
Provided eτ 6= d, we have σ = 0 and the moduli space Mτ,d has an algebraic description

parametrising the data:

• a holomorphic line bundle L of degree d,

• N holomorphic sections X j ∈ H0(L ⊗ K r/2
Σ ) and N holomorphic sections

Yj ∈ H0(L−1 ⊗ K r/2
Σ ) satisfying the constraint

∑N
j=1 X jYj = 0,

supplemented by a stability condition arising from the top equation of (52). The latter depends
in a piecewise constant fashion on τ. This is the moduli space of ‘τ-stable’ twisted quasi-maps
to the Higgs branch, MH = T ∗CPN−1.

However, as discussed in section 4.2, when eτ = d ∈ Z there are saddle points where
X j = Yj = 0 for all j = 1, . . . , N and a non-compact Coulomb branch opens up. The stability
condition for the algebraic description of Mτ,d can jump across this wall, which is the source
of wall-crossing of the twisted index in this localisation scheme.

Let us return to computing the contribution to the twisted index for eτ 6= d. The moduli
space Mτ,d is not necessarily compact, so the evaluation of the twisted index is problematic.
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This is remedied by turning on real mass parameters m1, . . . , mN and mt valued in a Cartan
subalgebra TF of the N = 2 flavour symmetry. This modifies the bottom line of (52) to

�

σ−m j +
mt

2

�

X j = 0 ,
�

−σ+m j +
mt

2

�

Yj = 0 . (54)

The outcome is that vortex saddle points now must now be invariant under the flavour trans-
formation generated by m1, . . . , mN and mt . For generic masses, the moduli space of such
configurations is compact.

The moduli space of vortex solutions in the presence of generic mass parameters has an
algebraic description as the fixed locus of the induced TF,C-action on Mτ,d . This is straightfor-
ward to evaluate explicitly. Let us define d± := ±d + r(g − 1). Then we find that

Mfixed
τ,d =

N
⊔

i=1

Md,i (55)

where

Md,i =

�

Symd+Σ , d+ ≥ 0
; d+ < 0

if eτ > d ,

Md,i =

�

Symd−Σ , d− ≥ 0
; d− < 0

if eτ < d .

(56)

We can see here clearly that the moduli space can jump accross the wall eτ= d.
The contribution to the twisted index from Mτ,d is then expressed via equivariant locali-

sation as a sum of contributions from each component of the fixed locus

qd
N
∑

i=1

∫

Md,i

Â
�

Md,i

�

Ch
�

b∧•N∨d,i

� , (57)

where Nd,i denotes a virtual normal bundle to Md,i arising from the fluctuations of massive
chiral and Fermi multiplets in the N = (0, 2) supersymmetric quantum mechanics, the details
of which depend on r = 1, 0. In either case, this can be interpreted as a virtual equivariant
Euler characteristic (or rather index of Dirac operator) of Mτ,d defined via virtual localisation.

The contributions to the integral (57) can be evaluated explicitly using intersection theory
on symmetric products and converted into a contour integral using techniques from [18,28].
The relevant computations are performed in [14]. The result is that this contribution can be
expressed as

qd

∫

Γ

d x
x

Z(x , d)H(x)g , (58)

where the contour Γ is given by

• eτ > d: evaluate the residues at x = t−1/2 y j , j = 1, . . . , N

• eτ < d: evaluate minus the residues at x = t1/2 y j , j = 1, . . . , N

This coincides with the JK residue prescription of section 5.1, where the auxiliary parameter
is chosen such that sign(η) = sign(τ− d). It therefore correctly reproduces the wall-crossing
of the twisted index. We now present some interesting features in each twist.
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5.3 H-twist

We have already observed that there is no wall-crossing of the twisted index for g > 0. Cor-
respondingly, while the moduli space Md−eτ jumps discontinuously across the wall eτ = d, its
contribution to the twisted index (57) is unchanged

It is interesting to turn the problem around and ask which fluxes d contribute to the twisted
index for a given τ. The description of the fixed locus of the total moduli space Mτ splits into
three characteristic regions:

(i) eτ > g − 1

Mfixed
τ =

N
⊔

I=1

beτc
⊔

d=1−g

Symd+g−1Σ . (59)

(ii) 1− g < eτ < g − 1

Mfixed
τ =

N
⊔

I=1

beτc
⊔

d=1−g

Symd+g−1Σ t
N
⊔

I=1

g−1
⊔

d=beτc+1

Sym−d+g−1Σ . (60)

(iii) eτ < 1− g

Mfixed
τ =

N
⊔

I=1

g−1
⊔

d=beτc+1

Sym−d+g−1Σ . (61)

In region (i) it is clear that the twisted index vanishes for d < 1− g since the moduli space is
empty. In region (ii) it is similarly clear that the twisted index vanishes for d > g−1. Since the
twisted index is invariant under wall-crossing, this is true for any τ. We therefore conclude
that when g > 0 the twisted index truncates to a finite Laurent polynomial in q supported in
degrees 1− g < d < g − 1. This is indeed the case.

When g = 0, the moduli space Mτ in the absence of mass parameters has an explicit
description as a disjoint union of projective spaces:

(i) eτ > 0

Mτ =
beτc
⊔

d=1

PNd−1 , (62)

(ii) eτ < 0

Mτ =
−1
⊔

d=beτc+1

P−Nd−1 . (63)

Therefore a component of the moduli space disappears or appears as we vary eτ from d∗ + ε
to d∗ − ε. This should reproduce the wall-crossing formula (51). To see this, we note that the
twisted index computes the generating function of Hirzebruch-genera of the components of
the moduli space,

I =



















beτc
∑

d=1

qd
bχt

�

PNd−1
�

eτ > 0

−1
∑

d=beτc+1

qd
bχt

�

P−Nd−1
�

eτ < 0

, (64)

where
χ̂t(M) := (−1)DimM t−

DimM
2 χ−t(M) (65)

denotes the ‘symmetrised’ Hirzebruch χy -genus.
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In particular, we find the wall-crossing formula

I(eτ∗ − ε)− I(eτ∗ + ε) =











−qd∗
bχt

�

PNd∗−1
�

d∗ > 0

0 d∗ = 0

+qd∗
bχt

�

P−Nd∗−1
�

d∗ < 0

, (66)

with ε→ 0+, which agrees with the expression (51) obtained from the contour integral for-
mula.

5.4 C-twist

The description of the fixed locus of the total moduli space Mτ can again be split into two
characteristic regions:

(i) eτ > 0

Mfixed
τ =

N
⊔

i=1

beτc
⊔

d=0

SymdΣ , (67)

(ii) eτ < 0

Mfixed
τ =

N
⊔

i=1

0
⊔

d=beτc+1

Sym−dΣ . (68)

The contribution (57) from each topological sector can be converted to a contour integral in full
agreement with (46). However, without performing any computations, we see immediately
that the twisted index may only receive contributions from powers qd with d ≥ 0 when τ > 0
and d ≤ 0 when τ < 0. Since the twisted index can only undergo wall-crossing if g > 1
and N > 1, this implies that in all other cases there is only a non-vanishing contribution
proportional to q0. This is indeed the case.

It is also interesting to note that in the limit t → 1, the twisted index should reproduce
the Rozansky-Witten invariant of the Higgs branch MH in the same chamber as τ [14]. Cor-
respondingly, in this limit the contributions from d 6= 0 cancel for any genus g and there is no
wall-crossing.

6 A Non-Abelian Example

In this section, we study non-abelian examples with G = U(N) that exhibit wall-crossing
phenomena. The relevant moduli spaces Mτ in such theories have an algebraic description
parametrising pairs (E,φ) consisting of a rank N holomorphic vector bundle E and a holomor-
phic section φ. These data are subject to a stability condition known as ‘τ-stability’ [16–18].
We will also encounter the moduli space Mτ(Λ) of τ-stable pairs with fixed determinant
Det(E) = Λ. These moduli spaces have been studied extensively [18,19,21]. In particular, the
Poincaré polynomial of Mτ was computed in [18] for N = 2 and the Hodge polynomials for
N = 2,3 were computed in [22,29].

As discussed in section 4, the twisted index will compute the holomorphic Euler char-
acteristic of Mτ, valued in a holomorphic vector bundle E . For concreteness, we construct
supersymmetric gauge theories that gives rise to E = O and E = T ∗Mτ. The second case,
which arises from a theory with N = 4 supersymmetry, computes a symmetrised version of
the Hirzebruch χy -genus. Applied to such theories, the contour integral formula from section 3
provides an alternative method to compute such geometric invariants and their wall-crossing
formulae.
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6.1 Stable Pairs

Since they are perhaps more unfamiliar than moduli spaces of abelian vortices, we begin with
a short review of the moduli spaces of τ-stable pairs from an algebraic perspective. How these
moduli spaces arise from supersymmetric gauge theory is discussed in subsequent sections.

We focus for concreteness on N = 2. Let us consider a rank-2 holomorphic vector bundle
E over Σ with fixed determinant ∧2E = Λ, where Λ is a holomorphic line bundle of degree
d > 0. In addition, we have a non-zero holomorphic section φ ∈ H0(E). A pair (E,φ) is
τ-semi-stable if for all line subbundles L ⊂ E,

d−deg(L)≥ eτ if φ ∈ H0(Σ, L) ,

and deg(L)≤ eτ if φ /∈ H0(Σ, L) ,
(69)

where we define eτ as in the abelian case (29). A pair is τ-stable if these inequalities hold
strictly. We denote the moduli space of such stable pairs by Mτ(Λ). The correspondence
between stable pairs and vortices is summarised in appendix A.

Let us assume d > 0. The moduli space Mτ(Λ) is non-empty if and only if

d
2
< eτ < d . (70)

Furthermore, the τ-stability condition is constant and equivalent to τ-semistability within each
of the chambers

max
�

d
2

, d − i − 1
�

< eτ < d − i , (71)

labelled by integers i ∈ {0, 1, . . . , d−1
2 }. We can therefore reasonably introduce the notation

Mi(Λ) for the moduli space of τ-stable pairs in each of these chambers.2 As eτ crosses the
integer values in d

2 ≤ eτ≤ d, the moduli space jumps. We summarise the chamber structure in
Figure 1.

Figure 1: Chamber structure of the moduli space of rank 2 stable pairs. The points
marked with × are the walls across which the description of the moduli space
changes.

It is possible to give an explicit algebraic description of M0(Λ). First, a consequence of the
definition is that stable pairs in M0(Λ) are equivalent to non-split extensions of O by Λ. In
other words, they are holomorphic vector bundles E that fit into a sequence

0→O→ E→ Λ→ 0 (72)

and are not of the form E ∼= Λ ⊕ O, together with a section φ ∈ H0(O). The space of all
extensions is H1(O ⊗ Λ−1). Removing the split extensions (whose cohomology class is zero)
and taking the quotient by the automorphisms gives

M0(Λ)∼= PH1(Λ−1) . (73)

2There is a similar chamber structure for stable pairs with the determinant unfixed but c1(E) = d and we
denote the corresponding moduli spaces by Mi,d .
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More broadly, the moduli spaces Mi(Λ) are projective but an explicit description is not
available for i > 0 and other techniques must be exploited. For example, it is possible to
understand wall-crossing at the critical values of eτ in terms of Mori theory: when jumping
from Mi(Λ) to Mi+1(Λ), the moduli space undergoes a flip where an embedded subvariety is
blown-up and the exceptional divisor is blown-down in another direction. With a complete
understanding of M0(Λ), wall-crossing formulae are then sufficient for computations in other
chambers.

For example, the Hodge polynomials of the moduli spaces Mi(Λ) for N = 2 are computed
by this method in [22], with the result

e(Mi(Λ)) = coeffx0

�

(1+ vx)g(1+wx)g

(1− x)(1− vwx)x i

�

(vw)i

1− (vw)−1 x
−
(vw)d+g−1−2i

1− (vw)2 x

��

. (74)

The Hirzebruch genus is a found by substituting v→−1, w→−t in the above expression,

χ−t(Mi(Λ)) = coeffx0

�

(1− x)g−1(1− t x)g−1

x i

�

t i

1− t−1 x
−

td+g−1−2i

1− t2 x

��

. (75)

Finally, if we do not fix the determinant line bundle Λ, the moduli space Mi,d fibres over the
Picard variety Picd(Σ) parametrising Λ. The Hodge polynomial is obtained by inserting an
additional factor associated to the base,

e(Mi,d) = coeffx0

�

(1+ v)g(1+w)g(1+ vx)g(1+wx)g

(1− x)(1− vwx)x i

�

(vw)i

1− (vw)−1 x
−
(vw)d+g−1−2i

1− (vw)2 x

��

. (76)

This vanishes in the limit v→−1 and therefore χ−t(Mi,d) = 0.
Finally, it will be important to give a description of the tangent space to Mτ(Λ) as a

deformation-obstruction complex: given a stable pair (E,φ) there is an exact sequence

0→ H0(EndE)→ H0(E)→ T(E,φ)Mτ(Λ)→ H1(End0E)→ H1(E)→ 0 , (77)

where the maps are induced by multiplication by φ. Here EndE is the bundle of endomor-
phisms of E, while End0E is the bundle of trace-free endomorphisms. Colloquially, H0(E)
corresponds to deformations of the section φ, while H0(EndE) accounts for gauge transfor-
mations acting on φ. Similarly, H1(End0E) corresponds to the deformations of the bundle E,
while H1(E) are obstructions due to the fact thatφ should remain holomorphic. The trace-free
condition has its origin in the fact that we are fixing the determinant of E (trace elements can
be identified with the tangent space to the Picard variety parametrizing Λ= DetE).

6.2 Gauge Theory Construction

We now construct a supersymmetric gauge theory whose twisted index localises to the moduli
space Mτ of rank-N stable pairs. A natural candidate is G = U(N) with the following chiral
multiplets

U(2) U(1)R U(1)t
V adj 0 0
ϕ adj 0 −1
X 0 0
Y 2 1

(78)

and superpotential
W = tr(ϕX Y ) . (79)

This is in fact an N = 4 theory with a particular choice of N = 2 R-symmetry.
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The effective supersymmetric Chern-Simons levels vanish and vortex like saddle points in
the localisation scheme of section 4 are solutions of

∗ FA+ e2
�

X · X † − Y † · Y − 2[ϕ†,ϕ]−τ
�

= 0 ,

∂̄AX = ∂̄AY = ∂̄Aϕ = 0 , X · Y = ϕ · X = ϕ · Y = 0 ,

DAσ = 0 , σ · X = σ · Y = [σ,ϕ] = 0 .

(80)

The moduli space of solutions decomposes as a disjoint union of topological sectors labelled
by d ∈ π1(U(N)) = Z. In the following, we focus on N = 2.

6.2.1 Fixed Loci

We now introduce a real mass parameter mt for the U(1)t symmetry, which has the effect of
reducing the moduli space to the fixed locus of this symmetry. We show that for eτ > d/2, this
coincides with the moduli space of stable pairs Mτ,d .

First, let us assume that

eτ >
deg(E)
rk(E)

=
d
2

. (81)

Then taking the trace of the first equation in (80) and integrating over Σ implies that X is
non-vanishing. Then the equation X · Y = 0 requires that Y = 0 and

σ · X = 0 ϕ · X = 0 , (82)

imply both σ and ϕ are generically at most rank one.
Second, let us introduce a mass parameter mt such that the remaining equations in (80)

are modified by the substitution σ 7→ σ + mt and the action in the relevant representation
is understood. This leaves the conclusions of the above paragraph unchanged. However, the
equations

[σ,ϕ] = mtϕ DAσ = 0 , (83)

together with the first line of equation (80), imply there are potentially two distinct classes of
solutions:

(i) X 6= 0, ϕ = 0 (E irreducible): Let us first consider solutions with ϕ = 0. In this case,
as reviewed in appendix A, the bundle E cannot split for generic values of τ. Since σ is
covariantly constant and σ · X = 0, it is forced to vanish (otherwise the bundle would
split holomorphically). There is therefore a component of the fixed locus defined by the
following equations

∗FA+ e2
�

X · X † −τ
�

= 0 , ∂̄AX = 0 , (84)

with Y , ϕ and σ all vanishing. This coincides with the moduli space Mτ,d of stable pairs
of degree d.

(ii) X 6= 0, ϕ 6= 0 (E reducible): Let us now consider solutions with ϕ 6= 0. In this case σ
must have a non-zero constant fixed expectation value and the gauge group is broken
to U(1)× U(1) accordingly. The vector bundle then splits holomorphically,

E ∼= L1 ⊕ L2 . (85)

Without loss of generality, suppose X ∈ L1. Then

ϕ =

�

0 ϕ12
0 0

�

, (86)
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where ϕ12 is a section of L1⊗ L−1
2 of degree 2m− d. Note that the constant expectation

value for σ is completely fixed by σ · X = 0 and [σ,ϕ]−mtϕ = 0. We then find two
abelian vortex equations

∗ FA1
+ e2

�

|X |2 + 2|ϕ12|2 −τ
�

= 0 ,

∗ FA2
+ e2

�

−2|ϕ12|2 −τ
�

= 0 ,
(87)

together with ∂̄A1
X = ∂̄A1,A2

ϕ12 = 0. Integrating the second equation over Σ shows that
solutions exist provided d −m− eτ > 0. On the other hand, ϕ12 can be non-vanishing
only when 2m − d > 0 such that the degree of L1 ⊗ L−1

2 is non-negative. These two
equations imply eτ < d/2, which violates our assumption. Therefore this component of
the fixed locus is empty.

The moduli space of saddle points in this supersymmetric gauge theory for eτ > d/2 can there-
fore be identified with the moduli space Mτ,d of rank 2 stable pairs.

Note that in the opposite region eτ < d/2, we find X = 0 and the moduli space is instead
parametrised by non-vanishing Y ’s. The first component of the fixed locus with ϕ = 0 can be
described as solutions to the equations

∗FA+ e2
�

−Y † · Y −τ
�

= 0 , ∂̄AY = 0 . (88)

There is a potential second component to the fixed locus with ϕ 6= 0, but a similar analysis
shows that this is empty for generic τ.

6.2.2 Wall-crossing

As discussed in appendix A, at integer values eτ ∈ Z, the vector bundle E can split holomorphi-
cally as (85) even when ϕ vanishes. At these values of eτ, the off-diagonal components of the
connection vanish identically. As a consequence, DAσ = 0 has a family of non-trivial solutions
with constant

σ = diag(0,σ2) , σ2 ∈ R , (89)

which implies that a non-compact Coulomb branch opens up at this point. Therefore, the
supersymmetric observables may jump as eτ varies from m+ε to m−ε for m ∈ Z in d/2< m< d.

We can derive further constraints directly from the BPS equations. Suppose that the holo-
morphic section X is contained in the subbundle L1. Then integrating the D-term equation
(177) over Σ gives the following two relations:

2πm+ ||B||2 + e2vol(Σ)
�

||X ||2 −τ
�

= 0 ,

2π(d −m)− ||B||2 − e2vol(Σ)τ= 0 ,
(90)

where B is an off-diagonal component of the gauge connection. First of all, in order to have
a non-zero section X , deg(L1) = m must be non-negative. Then the second equation implies
that solutions exist only in the sectors m< d−eτ and therefore the moduli space is empty when
eτ > d. If eτ is in the region (d− i−1, d− i), the equations may admit non-trivial solutions from
the sectors m= 0, · · · , i.

At the critical point eτ = d/2, the BPS equations again admit a non-compact Coulomb
branch with 3

σ = diag(σ1,σ2) , σ1 = σ2 = (constant) ∈ R (91)

and therefore the index can jump at this point.

3B 6= 0 for these solutions. When d is even, at eτ= d/2, there exist additional non-compact branch with B = 0
where the vector bundle splits holomorphically.
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6.2.3 Tangent space

Once we pick a point p on the moduli space Mτ,d , the massless fluctuations of the 3d N = 2
multiplets decompose into 1d N = (0,2) multiplets, which organise into the structure of the
virtual tangent space around p. First of all, fluctuations of the 3d chiral multiplets (X , Y,ϕ)
decompose into 1d chiral and Fermi multiplets:

(δX ,ψX ) ∈ H0(EX ) , (ηX , FX ) ∈ H1(EX ) ,

(δY,ψY ) ∈ H0(EY ) , (ηY , FY ) ∈ H1(EY ) ,

(δϕ,ψϕ) ∈ H0(Eϕ) , (ηϕ, Fϕ) ∈ H1(Eϕ) ,

(92)

where Eφ = (P ×G Rφ) ⊗ K
rφ/2
Σ is the associated holomorphic vector bundle of the principal

gauge bundle P and Rφ is the representation of the multiplet φ = (X , Y,ϕ). Explicitly we have

EX = E , EY = E∗ ⊗ KΣ , Eϕ = EndE , (93)

for the rank-N vector bundle E = P×G M , where M is the fundamental representation of U(N).
Similarly, the 3d N = 2 vector multiplet decomposes into a 1d N = (0,2) vector multiplet and
a chiral multiplet

(σ+ ia0,λ) ∈ H0(EndE) , (δĀ, Λ̄) ∈ H1(EndE) , (94)

where H0(EndE) parametrises the infinitesimal holomorphic gauge transformations, and
H1(EndE) corresponds to the deformation of the vector bundle. Together with massless fluc-
tuations of the ϕ multiplet (the last line of (92)), they form a 1d N = (2,2) vector and a chiral
multiplet respectively.

Note that part of these fluctuations get masses from the Yukawa couplings. One can show
that the massless fluctuations correspond to the cohomology of the following pair of complexes
[14]:

H0(EndE)
α0

−→ H0(EX ⊕ EY )
β0

−→ H1(EndE)∗

H1(EndE)
α1

−→ H1(EX ⊕ EY )
β1

−→ H0(EndE)∗ .
(95)

Here α0,1 is the map defined by a multiplication by (X ,−Y ), and β is the map that takes an
inner product with (Y, X ). The cohomology of the complexes can be identified with the virtual
tangent space of the moduli space. Let us focus on the chambers eτ > d/N . On the fixed locus
of the U(1)t symmetry, we have Y = 0 and each of the complex splits into two pieces:

H0(EndE)
α0

−→ H0(EX ) , H0(EY )
β0

−→ H1(EndE)∗

H1(EndE)
α1

−→ H1(EX ) , H0(EY )
β1

−→ H0(EndE)∗ .
(96)

One can show that α0 is injective and α1 is surjective when X is non-vanishing. [18] This
implies that the cohomology of the two complexes on the left can be identified with the space
T , which fits into the exact sequence

0→ H0(EndE)
α0

−→ H0(E) −→ T −→ H1(EndE)
α1

−→ H1(E) −→ 0 . (97)

This coincides with the tangent space of the moduli space of stable pairs, T = TMτ,d . On
the other hand, from Serre duality the remaining two complexes on the right of (96) can be
identified with the shifted cotangent space −T ∗Mτ,d on the fixed locus.
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To summarise, the massless fluctuations give rise to the virtual tangent bundle, which
decomposes into

T vir|fixed = TMτ,d − T ∗Mτ,d (98)

on the fixed locus. The second term is the moving part of the virtual tangent bundle, which
has weight +1 under the U(1)t action. The Hilbert space of supersymmetric ground states of
the N = 2 quantum mechanics for a fixed degree d is the Dolbeault cohomology valued in the
exterior powers of the cotangent bundle:

Hτ,d =
n
⊕

p,q=1

Hq
�

Mτ,d ,∧p t T ∗Mτ,d

�

, (99)

where n = dimC(Mτ,d) = (N2 − N)(g − 1) + d. The twisted index is therefore a generating
function of Hirzebruch-genera of the moduli spaces, 4

χ̂t(Mτ,d) =

∫

Mτ,d

Â(Mτ,d)ch
�

b∧• t−1TMτ,d

�

, (100)

where the ‘symmetrised’ Hirzebruch genus is defined in equation (65).
The twisted index of the theory (78) with fixed degree d vanishes. This is due to the

existence of a fibration over the Jacobian,

Mτ,d → Jacd[Σ] , (101)

whose fiber is isomorphic to
Mτ(Λ) , (102)

which is the moduli space of τ-stable pairs with the determinant line bundle Λ fixed. Since the
Hirzebrich genus of the Jacobian base identically vanishes, a standard argument shows that
the twisted index will also vanish5

In order to compute something non-trivial from the gauge theory side, we work with the
moduli space (102) with the determinant Λ fixed in what follows. This can be done by freezing
by hand the massless fluctuations corresponding to the direction tangent and co-tangent to the
Jacobian. They are generated by the trace of the 1d N = (0,2) chiral and Fermi multiplets

�

tr(δĀ), tr(Λ̄)
�

∈ H1(EndE) and tr(ηϕ) ∈ H1(EndE)∗ (103)

respectively. Below we will perform the path integral inserting a delta function that retains
only the traceless part of these multiplets. The remaining massless degrees of freedom now
corresponds to

T0
vir|fixed = TMτ(Λ)− T ∗Mτ(Λ) , (104)

where TMτ(Λ) fits into the exact sequence (77). Note that this is different from considering
the G = SU(N) version of the theory, which would also remove the trace-free part of the 1d
N = (0, 2) vector multiplet contribution H0(EndE).

6.3 Decoupling Limits and Generalisations

It is interesting to consider the limit |mt | → ∞ where the supermultiplets Y and Φ charged
under the U(1)t symmetry are integrated out.

4Here b∧• is the symmetrised exterior algebra defined by b∧•V = (det V )−1/2 ⊗∧•V . The determinant factor is
due to the symmetric quantization for fermions. Note that we have td(M)ch(∧•T M) = Â(M)ch(b∧•T M) .

5A similar statement is the fact that the twisted index of 3d N = 4 supersymmetric QCD is zero when Nc < Nf .
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• First, in the limit mt → −∞ (corresponding to t →∞), the top exterior power of the
cotangent bundle dominates in the expression (99) and the space of supersymmetric
ground states becomes

Hτ,d = H0,•
∂̄

�

Mτ,d ,K
�

. (105)

The fermions in the massive supermultiplets generate the CS-levels 6

∆kU(1) = −
1
2

, ∆kSU(N) = N −
1
2

, ∆kU(1)R =
1
2

, ∆kR = −
1
2

. (107)

• Second, in the opposite limit mt →∞ (corresponding to t → 0), the space of super-
symmetric ground states become

Hτ,d = H0,•
∂̄

�

Mτ,d ,O
�

(108)

and integrating out massive fermions generates CS-levels

∆kU(1) =
1
2

, ∆kSU(N) = −N +
1
2

, ∆kU(1)R = −
1
2

, ∆kR =
1
2

. (109)

More generally, one can consider an N = (0,2) quantum mechanics whose space of super-
symmetric ground states can be identified with the cohomology valued in E = Kp+1/2, where
K be the determinant line bundle over Mτ,d . For this purpose, we consider the following 3d
N = 2 theory:

U(N)G U(1)R
V adj 0
X 0

(110)

together with the CS levels

kU(1) = −p , kSU(N) = (2N − 1)p , kU(1)R = p , kRR = −p , (111)

where kU(1)R is the mixed CS level between the U(1) ⊂ U(N)G and the U(1)R R-symmetry.
The level should be an half-integer, p+ 1

2 ∈ Z, such that the line bundle Kp+1/2 is well-defined.
This is compatible with the above |mt | →∞ limits of the N = 4 theory.

As above we work with the moduli space Mτ(Λ) with fixed determinant line, by removing
the trace of the fluctuation of 1d N = (0, 2) chiral multiplet

�

tr(δĀ), tr(Λ̄)
�

∈ H1(EndE) (112)

in the path integral of effective quantum mechanics. As before, we focus on N = 2.

6.3.1 Branches of the moduli space for rank 2 theories

Unlike the N = 4 theory in section 6.2, the relevant BPS equations in the N = 2 theory with
generic CS levels (111) has contribution from non-zero effective levels keff(σ). Let us first
consider the rank 2 case with E =O, where the bare CS levels are given by

kU(1) =
1
2

, kSU(N) = −
3
2

, kU(1)R = −
1
2

, kR =
1
2

. (113)

If eτ is generic in the region eτ > d
2 , there are again two branches of solutions:

6The SU(N) effective levels are obtained from the formula

keff,G = kG +
∑

R

1
2

T2(R)sign(mt) , (106)

where T2(R) is the quadratic index of the representation R, normalised in a way that T2(fund.) = 1.
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(i) X 6= 0, E is irreducible: In this branch, the vector bundle bundle E does not split holo-
morphically and we have σ = 0 by the argument above (84). Therefore the underlying
bosonic moduli space is again given by the rank 2 stable pairs Mτ(Λ), parametrised by
solutions (A, X ) to the equations (84). We call this branch the stable pair branch or the
irreducible branch.

(ii) X 6= 0, E is reducible: In this case, the BPS equations have solutions with non-zero
σ = diag(σ1,σ2), which breaks the gauge group into U(2)→ U(1)1×U(1)2. This allows
the solution with the vector bundle E splitting holomorphically into L1 ⊕ L2. Without
loss of generality, let us assume that X is a non-zero section of L1. Then the equation
σ · X = 0 sets σ1 = 0. Since σ2 can still be non-zero, a part of the fluctuation of the X
multiplet becomes massive and generates the effective CS level for the U(1)2 unbroken
gauge symmetry. The semi-classical D-term equation is then 7

∗FA+ e2

�

X X † −
keff
± σ

2π
−τ

�

= 0 , (114)

where keff
± σ is a diagonal matrix

keff
± σ =

�

σ2 0
0 −1

2σ2 ±
1
2σ2

�

, (115)

valid in the region sign(σ2) = ±1 with σ1 = 0. 8 Taking the trace and integrating the
equation over Σ, we find that this branch exists only in the region eτ > d/2. In the region
σ2 > 0, each diagonal component gives the relation

2πm+ e2vol(Σ)
�

||X ||2 −
σ2

2π
−τ

�

= 0 ,

2π(d −m)−τe2vol(Σ) = 0 ,
(116)

where m = deg(L1). From the second equation, we find that the branch is empty at
generic value of eτ. On the other hand, in the region σ2 < 0, we have

2πm+ e2vol(Σ)
�

||X ||2 −
σ2

2π
−τ

�

= 0 ,

2π(d −m) + e2vol(Σ)
�σ2

2π
−τ

�

= 0 .
(117)

Solutions to these equations exist in the region d−eτ > m. Note that the second equation
completely fixes the value of σ2. Then the first component of the BPS equation modulo
U(1) gauge trasformations reduces to the abelian vortex equation on Σ, whose moduli
space is the m-th symmetric product of the curveΣ. The remaining U(1) gauge symmetry
is left unbroken.

We call this branch the reducible branch.

In constrast to the case with keff = 0, non-compact Coulomb branch does not appear at eτ ∈ Z
in this region. In branch (ii) the expectation value of σ is completely determined by the
BPS equations and the moduli space remains compact. As eτ crosses the integer values in

7In what follows, we omit the subscript 0 from σ0 to avoid clutter in the notation.
8The bare CS levels for U(1)1 × U(1)2 can be obtained from the expression (113). The U(2) gauge group

breaks into U(1)A×U(1)B in this chamber, where U(1)B is the maximal torus of SU(2) factor and U(1)A is the U(1)
factor in U(2). This gives the relation U(1)1,2 =

1
2 [U(1)A± U(1)B] respectively. It is straightforward to check that

the CS levels in this basis are k11 = k22 = 1
2 (kU(1) + kSU(2)) and k12 = k21 = 1

2 (kU(1) − kSU(2)). Since σ2 is non-zero,
only k22 gets a correction after integrating out X multiplet fluctuation. This gives the expression (115).
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Figure 2: Chamber structure of the theory (110) for N = 2, p = −1/2. The points
denoted by × are the positions of type I walls, across which the index may jump.
The points denoted by black dots are the positions of type II walls. As eτ crosses the
integer values in the red region, the description of the moduli space changes, but the
index remains the same. M

(i)
i,d ,M(ii)

i,d and M
(iii)
i,d denote for the chambers (i), (ii) and

(iii) in the moduli space respectively, where we have M
(i)
i,d =Mi,d , the moduli space

of rank 2 stable pairs.

this region, the states associated with branch (i) can appear/disappear according to the wall-
crossing phenomena described in section 6.2. However, branch (ii) also can undergo a wall-
crossing at the same time, which is expected to compensate the change of the index. Therefore,
the wall at eτ ∈ Z is of type II, and the index of the full gauge theory remains constant in this
region.

When eτ is precisely at the critical value eτ = d
2 , the equations have non-trivial solutions

with X = 0. Since keff,U(1) = 0 for σU(1) < 0, the moduli space at this point has a non-compact
direction parametrised by negative σU(1). This is a type I wall, where the twisted index can
jump. If eτ goes below the critical value, i.e., eτ < d

2 , we encounter another branch:

(iii) X = 0: In this branch, the bosonic moduli space is parametrised by solutions (A,σ) to

∗FA+ e2

�

−
keffσ

2π
−τ1

�

= 0 , DAσ0 = 0 . (118)

The vacua at this branch are described by the Chern-Simons theory with the following
effective levels:

keff
U(1) =

�

1 , σU(1) > 0
0 , σU(1) < 0

, keff
SU(2) =

�

−1 , σSU(2) > 0
−2 , σSU(2) < 0

. (119)

In the flat space limit, the space of supersymmetric vacua consists of isolated points with
a mass gap. We call this branch the topological branch.

In Figure 2, we summarise the chamber structure of this theory in the space of eτ.

6.3.2 General CS level |p|> 1
2

The chamber structure of the theory with p 6= ±1/2 is qualitatively different from that of the
case with p = ±1/2.

First of all, branch (i) remains the same and can be again identified with the moduli space
of stable pairs with σ = 0, which is non-empty in the chambers in d/2< eτ < d.

In branch (ii), where the vector bundle is reducible, the effective levels are given by

keff
± σ =

�

−2pσ2 0
0 (p± 1/2)σ2

�

. (120)
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Taking the trace and integrating the D-term equation over Σ, we find that branch (ii) is poten-
tially non-empty for all values of eτ, unlike the case with p = −1

2 . Integrating each component
of the D-term equation now gives

2πm+ e2vol(Σ)
�

||X ||2 +
2pσ2

2π
−τ

�

= 0 ,

2π(d −m) + e2vol(Σ)
�

−
(p± 1/2)σ2

2π
−τ

�

= 0 ,
(121)

in the region sign(σ2) = ±1 respectively. In this case, we find that solutions exist in the region
pσ2 < 0 in the sectors d −τ < m. On the other hand, in the region pσ2 > 0, solutions exist in
the sectors d −τ > m.

Finally, branch (iii), which corresponds to the topological branch, can be described as
solutions to (118) with

keff
U(1) =

�

−p+ 1
2 , σU(1) > 0

−p− 1
2 , σU(1) < 0

, keff
SU(2) =

�

3p+ 1
2 , σSU(2) > 0

3p− 1
2 , σSU(2) < 0

. (122)

By taking the trace of the D-term equations, we find that the solutions can potentially exist for
all values of eτ.

Note that the value of σ is fixed in all regions and therefore all the walls are type II. We
expect the twisted index to be independent of τ.

6.4 Twisted Index and Wall-Crossing

Now we are ready to discuss the twisted indices of the gauge theories we studied in the last sub-
section. We propose a generalisation of the wall-crossing formula (32) to the rank-2 theories
and show that it reproduces the Hirzebruch genus at each chambers (75). We also compute
the twisted indices of the theory (110) and show that it reproduces the holomorphic Euler
characteristics valued in a power of the determinant line bundle for the rank 2 stable pairs.

6.4.1 χ−t(Mτ)

Twisted index of the theory (78) for N = 2 can be written as the integral formula

I(τ) =
∑

d∈Z
qd I(τ, d) , (123)

where the summation is over the degree d ∈ Z of the principal bundle P:

I(τ, d) =
1
2

∑

(m1,m2)∈Z2

m1+m2=d

∮

JK

∏

i=1,2

d x i

x i
Z1-loop(x1, x2,m)H(x1, x2)

g + Iboundary(τ) . (124)

As discussed in section 3.1, the first term is the contribution from the contours around the
selected poles of the integrand at finite u∗, while the second term is the contribution from the
boundary of the classical Coulomb branch |ui|2→∞, which encodes the dependence on the
stability parameter τ. The one-loop determinant can be written as

Z1-loop = (−1)m1−m2 t(−n+g)/2(1− t)−g(1− t)2(g−1)(x1 − x2)
1−g(x2 − x1)

1−g

(x1 − t x2)
g−1−m1+m2(x2 − t x1)

g−1−m2+m1

�

x1 − t
1− x1

�m1+1−g � x2 − t
1− x2

�m2+1−g

,

(125)
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where n = 2(g − 1) +m1 +m2. Note that we removed the contribution from the the trace of
the Fermi multiplet tr(ηϕ) ∈ H1(O) as discussed in (103), by multiplying the factor (1− t)−g

in the first line.
The factor H(x1, x2)g in the integrand can be obtained by integrating out the zero modes

of the chiral multiplets (Ā, Λ̄), which correspond to unbroken U(1)2 ⊂ U(2) flat connections
on Σ in the Coulomb branch. Removing the contribution tangent to Jacd[Σ] in Mτ,d can be
implemented by inserting the delta function in the field space

δ(tr(Λ̄))δ(tr(Ā)) ·δ(tr(Λ))δ(tr(A)) . (126)

Using the Lagrange multipliers, it is straightforward to show that, for G = U(N), the result
can be written as

H(x1, · · · , xN ) = det
ab
(Hab +η)

�

�

�

η−linear
, (127)

where

Hab =
∂Weff(u)
∂ ua∂ ub

, a = 1 , · · · , N (128)

is the hessian of the second derivative of the twisted effective superpotentials of the 3d theory
on S1. Here |η−linear means taking the coefficient of the η-linear term. Explicitly,

Hab =
∑

α∈∆
αaαb 1+ xα t−1

2(1− xα t−1)
+δab

�

1+ xa

2(1− xa)
+

xa + t
2(xa − t)

�

, (129)

where ∆ is the set of all roots in g. For the rank 2 case, it reads

H(x1, x2) =
1+ x1

2(1− x1)
+

1+ x2

2(1− x2)
+

x1 + t
2(x1 − t)

+
x2 + t

2(x2 − t)

+ 2
�

x2 + x1 t
x2 − x1 t

+
x1 + x2 t
x1 − x2 t

�

.
(130)

Having discussed the integrand, we now turn to the contours. The contours in the ex-
pression (124) are determined by the zero mode integrals for the auxiliary field D̂, as briefly
summarised in section 3.1. If we choose η = (1, 1), one can show that the only poles in the
bulk that pass the JK-residue condition are at {x1 = 1, x2 = t} and {x2 = 1, x1 = t}. How-
ever, the residues of these poles vanish due to the zeros in the numerator of the integrand.
Therefore, the contribution from the contour at finite u (the first term of (124)) is identically
zero and the index gets contribution from the boundary term only. 9 The index can be written
as

I(τ, d) =
∑

m

Imboundary(τ, d) . (131)

With this choice of η, the contour for the D̂-integral can be chosen to be (23) with
δ = (−ε,−ε) where ε is small and positive. Then it is possible to show that, on the boundary
components of the x-contour, the D̂-integral has a non-vanishing contribution only around the
singularities at

{x1 = 1 , x2 = 0,∞} and {x2 = 1 , x1 = 0,∞} , (132)

and all the other contributions vanish after closing the D̂ contour. The integrals around these
poles depend on the parameter τ. Due to the Weyl symmetry, the contribution from the two
singularities are the same after summing over m.

9The residue of pole at x1 = x2 can be non-zero but they are excluded in the prescription as explained in
section 3.1
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Let us examine the iterative residue integral around the first pole in (132). Using the
condition m1 +m2 = d, we redefine (m1,m2) = (m, d −m) and sum over m ∈ Z to obtain the
index at a fixed degree d. Suppose that gm(x1, x2, D̂1, D̂2) is the product of the one-loop and
the classical contributions of the path integral computed around a background with D̂ turned
on, which reduces to the integrand of (124) when evaluated at D̂ = 0. After performing the
D̂1 integral and taking into account the Weyl symmetry, we are left with the expression

Imboundary = lim
s→0

�

res
x2=0
+ res

x2=∞

�

d x2

2πi x2

∫

R+iδ2

dD̂2

D̂2
res
x1=1

d x1

x1
gm(x1, x2, 0, D̂2) eF(s,D̂2,d−m,τ) ,

(133)
where

F(s, D̂2, d −m,τ) =
βvol(Σ)

2s2e2
D̂2

2 −
iβ
s2

�

−
2π(d −m)

e2
+ vol(Σ)τ

�

D̂2 . (134)

Performing the D̂2 integral after rescaling D̂2→ s2D̂2, we arrive at the expression

Imboundary = Θ (d −m− eτ)
�

res
x2=0
+ res

x2=∞

�

res
x1=1

d x2

x2

d x1

x1
Z1-loop(x ,m) H(x)g . (135)

Let us fix a generic eτ in the region d/2 < eτ < d. Note that the pole at x1 = 1 exists only
when m≥ 0. The index can be written as

I(τ, d) =
d−beτc−1
∑

m=0

�

Im1;0 + Im1;∞

�

, (136)

where we defined

Ima;b(d) = res
x2=b

res
x1=a

d x2

x2

d x1

x1
Z1-loop(x ,m) H(x)g . (137)

By the residue theorem on the x2-plane with x1 fixed, we can rewrite the index as

I(τ, d) = −
d−beτc−1
∑

m=0

Im1;1 . (138)

This expression reflects the fact that the fixed locus under the action of the U(1)t symmetry
is at σ1 = σ2 = 0, as discussed in section 6.2. The index (138) is expected to compute the
Hirzebruch genus of the moduli space Mτ,d(Λ) of rank 2 stable pairs in all of the chambers in
d/2< eτ < d. Notice that the bounds agree with the discussion in 6.2.2.

In the chamber d − 1 < eτ < d, the index gets a contribution from the m = 0 sector only.
The corresponding moduli space is the projective space M0(Λ) as discussed in section 6.1. In
this case the singularity at x1 = 1 is a simple pole and the expression (138) can be explicitly
evaluated:

I(τ, d) = − res
x2=1

d x2

x2
(−1)d+g−1 t(−g−d+2)/2 1

1− t

�

1− t x2

1− x2

�d+g−1

= (−1)d+g−1 t(−g−d+2)/2 1− td+g−1

1− t
= (−1)d+g−1 t(−g−d+2)/2χ−t

�

Pd+g−2
�

.

(139)

This agrees with the description (73).
Although we will not provide a general proof of the equivalence between (138) and (75)

in all chambers, it is possible to check for many values of d and g that these two expressions
agree in all chambers for d/2< eτ < d10 .

10Notice in particular that the index computation (138) is similary to the derivation of [22], in that it starts
from the d − 1< eτ < d and corrects the results after every integer is crossed.
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6.4.2 χ(Mτ,Kn)

Let us now consider the twisted index of the theory (110) with p ∈ Z+ 1
2 . This can be written

as

I(τ, d) =
1
2

∑

(m1,m2)∈Z2

m1+m2=d

∮

JK

∏

i=1,2

d x i

x i
ZCS Z1-loop(x1, x2,m1,m2)H(x1, x2)

g + Iboundary(τ) , (140)

where the contribution from the CS level and the one-loop is

ZCS Z1-loop = (−1)m1−m2(x1 x2)
p(g−1−d/2)(x1/x2)

3p(m1−m2)/2(x1 − x2)
1−g(x2 − x1)

1−g

(x1 x2)
g−1

�

x1/2
1

1− x1

�m1+1−g �
x1/2

2

1− x2

�m2+1−g

,
(141)

and the one-form gaugino contribution is

H(x1, x2)
g =

�

−6p+
1+ x1

2(1− x1)
+

1+ x2

2(1− x2)

�g

. (142)

As before, let us redefine (m1,m2)→ (m, d −m) and sum over m ∈ Z for given d. For each m,
the index gets a contribution only from the boundary term, since the only rank-2 singularity
of the integrand at finite u is at the boundary of the Weyl chamber x1 = x2 = 1.

As discussed in section 6.3, the moduli space of the gauge theory consists of various
branches depending on the value of eτ. We focus on the region d/2 < eτ < d, where the
moduli space contains branch (i), which can be identified with the moduli space of the rank
2 stable pairs Mτ(Λ). In this region, the twisted index receives contribution from the contour
integrals around the singularities at (132). In the presence of the effective CS levels (114),
contribution from the first singularity in (132) is determined by the D̂2 integral (133) on the
asymptotic components of the σ2 integral, where F(s, D̂2,m,τ) is now given by 11

F(s, D̂2,m,τ) =
βvol(Σ)

2s2e2
D̂2

2 −
iβ
s2

�

−
2π(d −m)

e2
+

�
�

keff
± s2σ

�

2

2π
+τ

�

vol(Σ)

�

D̂2 . (143)

Consider the special case p = −1
2 , where

(keff
± σ)2 =

�

0 , σ2 > 0
−σ2 , σ2 < 0

. (144)

Taking the limit s→ 0 sufficiently fast so that s2σ→∞, we find that the D̂2-integral on the
contour at σ2→−∞ identically vanishes. We have

I(τ, d) =
∞
∑

m=0

Θ(d −m− eτ) Im1;0 =
d−[eτ]−1
∑

m=0

Im1;0 , (145)

where we defined

Ima;b = res
x2=b

res
x1=a

d x2

x2

d x1

x1
ZCS Z1-loop(x ,m) H(x)g . (146)

11The notation (keff(σ)σ)2 denotes for the second component of the diagonal matrix (120).
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Let us first focus on the chamber d/2 < eτ < d, where the moduli space consists of two
branches (i) and (ii). Using the residue theorem on the x2-plane with x1 fixed, this expression
can be recast into

I(τ, d) = −
d−beτc−1
∑

m=0

�

Im1;1 + Im1;∞

�

. (147)

From the discussion in section 6.3, we expect that the two terms on the RHS are contributions
from branch (i) and branch (ii) respectively. This agrees with the fact that σ1 = σ2 = 0 on the
branch (i), while in branch (ii), the solutions exist only at σ1 = 0, σ2→−∞. These branches
are non-empty in the sectors 0≤ m≤ d − beτc − 1.

By an explicit computation, one can check that the contribution from branch (ii) is identi-
cally zero in this chamber. On the other hand, the contribution from branch (i) is expected to
reproduce the holomorphic Euler characteristic of the moduli space of stable pairs

I(τ, d) = χ(Mτ(Λ),O) . (148)

One can check that

I0
1;1 = 1 and Im1;1 = 0 , for 0< m< d/2 . (149)

This agrees with the result obtained by taking the limit t → 0 of the expression (138), which
implies

χ(Mτ(Λ),O) = 1 . (150)

Note that the index does not undergo a wall-crossing in the chambers d/2< eτ < d, as expected
from the analysis in section 6.3. If we vary eτ below the critical point, eτ < d/2, the sectors
d/2< m< d − [eτ] start to contribute and the residue integrals in these sectors are in general
non-zero. This implies that the index changes discontinuously as eτ crosses the wall at eτ= d/2.

Let us comment on the theories with |p|> 1/2. Performing the D̂ integrals, one can show
that the index can be written as a sum of two contributions

I(τ, d) = I1(τ, d) + I2(τ, d) , (151)

where I1(τ, d) is the contribution from the contours around σ1 = 0 and σ2 → ±∞. The
relevant component of the effective level on these contours is

(keff
± σ)2 =

�

p±
1
2

�

σ2 . (152)

The D̂2 integral then gives,

I1(τ, d) =
∞
∑

m=0

Θ(−p) Im1;0 +Θ(p) Im1;∞ . (153)

Note that this expression is completely independent of eτ, which is expected from the discussion
in section 6.3. Depending on the sign of p, we can rewrite the integral as

I1(τ, d)|p<−1/2 = −
d−beτc−1
∑

m=0

�

Im1;1 + Im1;∞

�

+
∞
∑

m=d−beτc

Im1;0 , (154)

and

I1(τ, d)|p>1/2 = −
d−beτc−1
∑

m=0

�

Im1;1 + Im1;0

�

+
∞
∑

m=d−beτc

Im1;∞ . (155)
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We again claim that the term Im1;1 is contribution from branch (i), and the term Im1;∞ and Im1;0
are contributions from branch (ii). This decomposition is motivated by the fact that in the
sectors 0 ≤ m ≤ d − beτc − 1, the solutions for σ2 is in the region pσ2 → ∞, while in the
sectors m≥ d − beτc, the solutions for σ2 is in the region pσ2→−∞.

The term I2(τ, d) in (151) is the contribution from the contour which encircles the poles
at σ1 → ±∞ and σ2 → ±∞. Note that for |p| > 1

2 , this term can be potentially non-zero,
unlike the previous examples. It is natural to identify I2(τ, d) as the contribution from branch
(iii). This term is also completely independent of eτ, which agrees with the absence of the type
I wall in the entire eτ-space, as argued in section 6.3.

One can explicitly compute the contribution from branch (i) in the chamber d−1< eτ < d,
which can be identified with the projective space M0(Λ). In this case, only the m = 0 term
contributes to the index. The pole at x1 = 1 is a simple pole and one can explicitly compute
the integral:

I0
1;1 = −(−1)d+g−1 res

x2=1

d x2

x2

x
(p+ 1

2 )(d+g−1)
2

(1− x2)d+g−1
. (156)

Performing the x2 integral, we find

I0
1;1 = (−1)d+g−1

�

(n− 1)(1− d − g)− 1
n(1− d − g)

�

, (157)

with n= p+ 1
2 . This formula precisely agrees with the holomorphic Euler characteristic of the

moduli space M0(Λ)
I0
1;1 = (−1)d+g−1χ(Pd+g−2,Kn) . (158)

It would be very interesting to provide an explicit geometric interpretation of the contri-
butions from branches (ii) and (iii), based on the analysis in section 6.3. We leave this for a
future work.

6.4.3 Higher rank generalization

The Hirzebruch genus of the moduli space of rank N pairs for N > 2 can in principle be
computed using the U(N) gauge theory description (78) (or (110)). We have

I(τ, d, N) =
1
N !

∑

m∈ZN

tr(m)=d

N
∏

i=1

d x i

x i
Z1-loop({x i},m)H({x i})g + Iboundary(τ) , (159)

where the one-loop contribution is simply

Z1-loop = t
n0
2 (1− t−1)−g(1− t−1)N(g−1)

∏

α∈∆

(1− xα)α(m)+1−g

(1− xα t−1)α(m)+1−g

N
∏

i=1

�

x i − t
1− x i

�mi+1−g

, (160)

with n0 = −g + (N2 + N)(g − 1) − d. The expression for H({x i}) is given in (127). Again,
Iboundary is the contribution from the classical Coulomb branch boundary which encodes the
dependence in τ. The geometry of the boundary is in general complicated and we leave the
detailed analysis to future work. For N > 2, the index (159) gets contribution from infinitely
many GNO flux sectors labeled by m for finite τ and d, unlike the rank-2 case studied above.
It would be interesting to work out the details and compare the χ−t genus computed in [29]
for the moduli space of rank-3 pairs and generalise the formula to the moduli space of higher
rank pairs.
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A Generalized vortex equations

Generalized vortex equations on a Riemann surface have been extensively studied, and their
moduli spaces of solutions have been given an algebraic description by means of an extension
of the classical Hitchin-Kobayashi correspondence [30–33]. This correspondence relates holo-
morphic vector bundles that satisfy a stability condition to Einstein-hermitian vector bundles.
We recall that the latter are complex vector bundles endowed with a hermitian metric, whose
curvature (seen as an endomorphism of the tangent bundle) is a constant times the identity
operator. Similarly, the generalized vortex equations can be formulated as equations for the
existence of a specific hermitian metric on a complex vector bundle, and Einstein-hermitian
metrics can be interpreted as a special case of these.

The aim of this appendix is to summarize and develop the main notions concerning gen-
eralized vortex equations needed in the bulk of the article.

A.1 Abelian vortex equations

Let us start with the simplest example. Consider an hermitian line bundle L on Σ endowed
with a smooth unitary connection A. Let φ be a smooth section of L. The space of pairs (A,φ)
that are solutions to the vortex equations on Σ

∗F + e2(|φ|2 −τ) = 0 , ∂̄Aφ = 0 , (161)

will be denoted by Vd . Here F is the curvature of the connection A and ∂̄A is the holomorphic
structure on L determined by dA and the complex structure on Σ. We will also denote by G
be the group of gauge transformations, G := Hom(Σ, U(1)). By definition the moduli space of
vortices is

Md :=Vd /G . (162)

This can be understood as an infinite-dimensional Kähler quotient. In fact, if we consider the
space of pairs (A,φ) as a Kähler manifold with flat metric

g =
1

4π

∫

Σ

�

1
e2
δA∧ ∗δA+ ∗|δφ|2

�

dΣ , (163)

then the moment map for the action of gauge transformations on the Kähler subspace of pairs
satisying ∂̄Aφ = 0 is

1
e2
∗ F + |φ|2 . (164)

In this paper we make use of the Hitchin-Kobayashi correspondence to express the moduli
space of solutions algebraically. First, we notice that by integrating the first vortex equation
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in (161), a necessary condition for the existence of solutions is

τ≥
2πd

e2Vol (Σ)
. (165)

We assume the strict version of this inequality in what follows. It is then clear that the section
φ cannot vanish everywhere on Σ, which is is the simplest instance of a stability condition.

The general strategy of the Hitchin-Kobayashi correspondence for vortices on Σ is to re-
place (161) with its respective stability condition, and then to take the quotient of the solution
to the remaining one by complex gauge transformations GC = Hom(Σ,C∗). The precise state-
ment in this case [34] is that given a pair (A,φ) such that φ is a non-vanishing holomorphic
section of L, in each complexified gauge orbit there exists one pair satisfying (161), which is
unique up to U(1) gauge transformations G. Furthemore, provided the strict version of (165)
holds, any solution can be written in this way.

The relation to the classical Hithchin-Kobayashi correspondence comes from the fact that
(161) can be viewed as an equation for a hermitian metric h, intead of a connection A. This is
because given a complex structure ∂̄A and a hermitian metric L there is a unique connection A,
the Chern connection, compatible with both structures. The proof relies on this point of view,
and can be applied also to the case of more general gauge groups. Finally, we remark that this
construction can be viewed as an infinite-dimensional analogue of the Kempff-Ness theorem,
applied to the Kähler quotient Md =Nd //G.

The Hitchin-Kobayashi correspondece implies that the moduli space of solutions to the
vortex equations can be parametrized by pairs (L,φ), where L is a holomorphic line bundle of
degree d and φ is a non-vanishing holomorphic section of L. Denoting the degree of the line
bundle by d, there is a map from this space to the symmetric product of the curve SymdΣ. In
fact, this parametrizes degree d divisors on Σ, and the map is given by taking the divisor of
zeros of φ

D = p1 + . . .+ pd . (166)

From a physical perspective, the points p1, . . . , pd correspond to the positions of the vortex
centres. It turns out that the hermitian line bundle can be recovered as by means of the map

j : SymdΣ→ Picd(Σ)∼= JΣ
: {D} 7→OΣ(D) .

(167)

The connection A is then defined uniquely. Thus, we have an isomorphism

Md
∼= SymdΣ . (168)

We notice that the map j has remarkable properties. Whenever d ≥ 2g−1 it is a holomorphic
fibration with the projective space of global sections PH0(C , L)∼= CPd−g as fibres.

A.2 U(N) vortices with fundamental matter

We now extend our discussion about the Hitchin-Kobayashi correspondnece to U(N) vortices
with fundamental matter. Let E be a holomorphic vector bundle with structure group U(N),
endowed with a d-bar operator ∂̄E . Let φ ∈ H0(Σ, E), that is

∂̄Eφ = 0 . (169)

As explained in the section about Abelian vortices, it is convenient to view the vortex equation
as an equation for the metric h. For fundamental matter, we have the u(N)∗-valued equation

∗F + e2
�

φ ·φ† −τ
�

= 0 . (170)
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In analogy to the U(1) case, we would like to derive a stability condition from this equation.
Our presentation is based on [16]. We again integrate over Σ and we get

µ(E)≤
e2τvol (Σ)

2π
, (171)

where for any bundle E µ(E) := deg(E)
rank(E) is the slope. This is a first necessary condition, which

we are now going to refine. Suppose there is a given holomorhic subbundle E′ ⊂ E. As smooth
complex vector bundles, we have

E =smoothly E′ ⊕
�

E/E′
�

, (172)

but this might not be true holomorphically. In fact, let (~e1,~e2) be a holomorphic unitary frame
so that ~e1 is a basis for E′. Let DA be the metric connection, with respect to the metric h. We
have

DAea = Aabeb (173)

where

A=

�

A
′

B
−B† A⊥

�

. (174)

Here A′ is the metric connection that arises from the restriction of h and ∂̄E to E′ and A⊥ gives
a connection on the complement of E′. B is a (1, 0)-form which is interepreted as the second
fundamental form of the embedding E′ ,→ E (that is, it computes the extrinsic curvature of E′

in E) and A† is its conjugate transpose. 12 In obvious notation, we can compute

F = dA− A∧ A=

�

F
′
+ B ∧ B† ∗
∗ F⊥ + B† ∧ B

�

. (175)

Importantly, a quick computation in local coordinates shows that
∫

Σ

Tr
�

∗B ∧ B†
�

dΣ≥ 0 ,

∫

Σ

Tr
�

∗B† ∧ B
�

dΣ= −
∫

Σ

Tr
�

∗B ∧ B†
�

dΣ≤ 0 ,

(176)

where the only important thing to keep in mind is that B is of type (1, 0). Now, we can also
write (170) in local coordinates as

�

∗F
′
+ ∗B ∧ B† ∗
∗ F⊥ + ∗B† ∧ B

�

+ e2

�

φ
′
φ
′† −τ ∗
∗ φ⊥φ⊥† −τ

�

= 0 . (177)

Taking the trace of the upper left component and integrating over the curve, we get that

µ(E′)≤
e2τvol(Σ)

2π
, (178)

with equality if and only if
∫

Σ

Tr
�

∗B ∧ B†
�

dΣ= 0 . (179)

By definition, if the above equation holds, then

E =hol E′ ⊕
�

E/E′
�

(180)

12B = (1−π)DAπ where π is the projection onto L. Since L is a holmorphic subbundle, B must be a (1,0)-form.
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holomorphically. Now suppose that φ ∈ H0(Σ, E′). Then, taking the trace of the lower-right
component of (177), we similarly get

µ
�

E/E′
�

≥
e2τvol(Σ)

2π
, (181)

with equality if and only if (179) holds, E/L is holomorphic and (180) holds holomorphically.
We can now summarize the above findings as follows. Let

µM := sup{µ (E) , µ (L) | L holomorhic subbundle of E} ,

µm := inf{µ (E/L) | L holomorhic subbundle of E,φ ∈ H0(Σ, L)} .
(182)

Further, define the following notion of stability for pairs (E,φ)

Definition 1 A pair (E,φ) is stable if and only if

µM <
e2τvol(Σ)

2π
< µm .

Then we have the following

Lemma 1 If there is a metric h satsifying the equations (170), then either the pair (E,φ) is
stable or E =hol E′ ⊕

�

E/E′
�

with φ ∈ H0
�

Σ, E′
�

. In the latter case, the pair (E′,φ) satisfies the
inequality

µ(E′)<
e2τvol(Σ)

2π
,

and the holomorphic bundle E/E′ satisfies

µ
�

E/E′
�

=
e2τvol(Σ)

2π
.

In [16] the converse is also proven.
Finally, we consider the |τ| → ∞ limit. In this limit, the stability condition simplifies

drastically. First of all, notice that in this limit the lower bound is obviously satisfied. As for
the upper bound, it is easy to see that it immediately implies that φ cannot be contained in
any subbundle of E. But this means that generically φ has maxiaml rank. This discussion can
be generalized to matter fields in both the fundamental and anti-fundamental representation
at no cost. The result in the large τ limit remains the same. For other representations, more
sophisticated techniques are needed [32,35].
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