
SciPost Phys. 12, 187 (2022)

Comparing machine learning and interpolation methods
for loop-level calculations

Ibrahim Chahrour? and James D. Wells†

Leinweber Center for Theoretical Physics, Physics Department,
University of Michigan, Ann Arbor, MI 48109-1040 USA

? chahrour@umich.edu , † jwells@umich.edu

Abstract

The need to approximate functions is ubiquitous in science, either due to empirical con-
straints or high computational cost of accessing the function. In high-energy physics, the
precise computation of the scattering cross-section of a process requires the evaluation
of computationally intensive integrals. A wide variety of methods in machine learning
have been used to tackle this problem, but often the motivation of using one method over
another is lacking. Comparing these methods is typically highly dependent on the prob-
lem at hand, so we specify to the case where we can evaluate the function a large number
of times, after which quick and accurate evaluation can take place. We consider four in-
terpolation and three machine learning techniques and compare their performance on
three toy functions, the four-point scalar Passarino-Veltman D0 function, and the two-
loop self-energy master integral M . We find that in low dimensions (d = 3), traditional
interpolation techniques like the Radial Basis Function perform very well, but in higher
dimensions (d = 5, 6, 9) we find that multi-layer perceptrons (a.k.a neural networks) do
not suffer as much from the curse of dimensionality and provide the fastest and most
accurate predictions.

Copyright I. Chahrour and J. D. Wells.
This work is licensed under the Creative Commons
Attribution 4.0 International License.
Published by the SciPost Foundation.

Received 15-12-2021
Accepted 10-05-2022
Published 08-06-2022

Check for
updates

doi:10.21468/SciPostPhys.12.6.187

Contents

1 Introduction 3

2 Interpolation Methods 4
2.1 Nearest-Neighbor Interpolation (NN) 4
2.2 Linear Interpolation on Regular Grid (Grid) 5
2.3 Inverse Distance Weighting (IDW) 5
2.4 Radial Basis Function (RBF) Interpolation 5

3 Regression Methods 6
3.1 Multilayer Perceptron (MLP) 6
3.2 Light Gradient Boosting Machine (LGBM) 7
3.3 Stochastic Variational Gaussian Process (SVGP) 7

1

https://scipost.org
https://scipost.org/SciPostPhys.12.6.187
mailto:chahrour@umich.edu
mailto:jwells@umich.edu
http://creativecommons.org/licenses/by/4.0/
https://crossmark.crossref.org/dialog/?doi=10.21468/SciPostPhys.12.6.187&domain=pdf&date_stamp=2022-06-08
https://doi.org/10.21468/SciPostPhys.12.6.187

SciPost Phys. 12, 187 (2022)

4 Test Functions 8
4.1 Toy Functions 8
4.2 Loop Integral Functions 9

4.2.1 Scalar Passarino-Veltman D0 9
4.2.2 Two-loop Self-energy Master Integral M 10

4.3 Characterizing the Distributions of the Test Functions 10

5 Cross-validation and Evaluation Metrics 12

6 Results 13
6.1 3 Dimensions 13
6.2 6 Dimensions 13
6.3 9 Dimensions 15
6.4 Two-loop Master Integral (5 Dimensions) 15
6.5 Discussion and Further Analysis 17

7 Conclusions and Future Directions 19

A Relating the Arguments of D0 21

B Neighbors for RBF 21

References 22

List of Acronyms and Abbreviations

1. AE: Absolute Error

2. IDW: Inverse Distance Weighting

3. LGBM: Light Gradient Boosting Machine

4. MLP: Multi-layer Perceptron

5. MSE: Mean Squared Error

6. NN: Nearest Neighbors

7. RBF: Radial Basis Function

8. sAPE: Symmetric Absolute Percentage Error

9. SVGP: Stochastic Variational Gaussian Process

10. CV: Coefficient of Variation

2

https://scipost.org
https://scipost.org/SciPostPhys.12.6.187

SciPost Phys. 12, 187 (2022)

1 Introduction

A pervasive problem in quantitative fields of study is the need to evaluate a function for which
one has limited access to, either due to empirical constraints or high computational cost. The
problem is worsened for high-dimensional settings where the input space is too large to be
explored adequately with even relatively large amounts of data. This is often referred to as
the curse of dimensionality. The standard way of dealing with this issue is to approximate
the function either through interpolation1 or regression. Examples of areas that require in-
terpolation/regression include environmental sciences [1], astronomy [2], geology [3], and
aerospace engineering [4].

The field of high-energy physics severely faces this issue, having to perform long and com-
plicated computations before arriving at a precise prediction for an observable at colliders.
The most common observables are arrived at by computing the cross-section of the scattering
of two or more particles. To achieve suitable precision, calculations beyond the leading order
(LO) are needed [5]. Beyond LO, one encounters a large number of loop diagrams which need
to be reduced to a set of master integrals, the evaluation of which can take hours on a mod-
ern quad-core CPU for a single phase space point [6]. Moreover, if the scattering is between
partons inside hadrons, then one needs to know the parton distribution functions (PDFs) that
give the probability density of finding a parton with some momentum fraction of the parent
hadron. These PDFs must be fit from experimental data as they cannot be derived from per-
turbation theory, which once again raises the question of how to choose between function
approximation techniques.

Recently, machine learning (ML) techniques have been applied to a variety of situations
in high-energy physics. In [7], normalizing flows [8] were used to reduce the uncertainties
in the evaluation of multi-loop integrals, leading to a speedup in their precise numerical com-
putation. On the regression front, many attempts have been made to approximate matrix
elements and cross-sections of processes in the Standard Model and theories beyond it. In [9],
neural networks were used to approximate the cross-section of chargino production in the phe-
nomenological Minimally Supersymmetric Standard Model (pMSSM-19) achieving low rela-
tive errors with a prediction speedup on the order of O(106) (excluding training time) over
the full calculation. The authors in [10] utilized XGBoost [11], a gradient boosting machine,
to approximate the matrix element of gluon fusion to Z bosons, achieving a speedup of a fac-
tor of 20 compared with the full calculation (assuming a training time of 7 minutes as stated
in [10]). In [12–14], neural networks were used to approximate high-dimensional squared
matrix elements of jet production from e+e− annihilation and diphoton production. There, an
ensemble of neural networks is trained to quantify the uncertainty of the prediction, as well
as improve the performance. Counting the training and prediction time, a speedup of a factor
of 10 compared to the full calculation was achieved in [12]. On the other hand, the authors
in [15] leverage distributed Gaussian process (GP) regression to approximate cross-sections in
the MSSM. Similarly, the authors in [16] used GPTree [17], an interpolant based on GP and
KDTrees, to interpolate the two-loop amplitude of qq̄ → γγγ achieving faster evaluation and
an uncertainty within those of a Monte Carlo approach [18]. The NNPDF collaboration [19]
use neural networks as unbiased interpolants of PDFs for hadronic studies at colliders.

The success of the previous methods have made them standard techniques in the field of
high-energy physics. Still, it is interesting to ask whether there are general principles that can
guide the selection of the approximation method and whether machine learning is really nec-
essary, or do traditional interpolation techniques suffice. Furthermore, determining the best
method can be highly dependent on the task at hand. Many papers have looked at comparing

1We use the term interpolation in its original sense, where the interpolating function attains the function value
exactly at some known data.

3

https://scipost.org
https://scipost.org/SciPostPhys.12.6.187

SciPost Phys. 12, 187 (2022)

various methods for their own fields and problems. In [20], four interpolation techniques were
compared on 2-dimensional spatial data with mixed results as to the best interpolant. Simi-
larly in [21], three interpolation techniques were compared on a low number of electric field
magnitude data in two dimensions, with inverse distance weighting performing the best. On
the other hand, a novel variation of support vector regression was compared to interpolation
techniques on seismic data in low dimensions with hundreds of thousands of data points [22],
leading to competitive performance. A number of interpolation and machine learning models
were put to the test on various materials science datasets in [23]. There, the datasets were
high-dimensional but sparse, with GP regression performing the best. In the field of ecol-
ogy [24], the distribution of the data was found to have a large effect on the performance of
the interpolation/regression techniques, with some being affected more than others. We can
see from these studies that it can be difficult to make general statements about approximation
methods, even in low dimensions. Thus, it is crucial to specify our situation in this study and
describe the particular problem we would like to solve.

We aim at approximating computationally expensive functions appearing in the calcula-
tion of scattering cross-sections in high-energy physics. These functions can be low- or high-
dimensional, depending on the process at hand. But, we assume that we can evaluate these
functions a large number of times, after which quick and accurate evaluation can be performed.
To that end, we assess four interpolation and three machine learning techniques in various di-
mensions, comparing their accuracy and evaluation speed. Throughout the paper, we will
refer to the interpolation techniques as interpolants, the regression techniques as models, and
the combination as approximants.

This paper is organized as follows: first we present the interpolation methods in Sec. 2, de-
scribing briefly how each method works. Then we present the ML regression methods in Sec. 3,
highlighting the chosen settings and hyperparameters. After that, we list the test functions in
Sec. 4 and describe their output distribution through data statistics. For model selection and
method comparison, we explain the cross-validation procedure in Sec. 5 and list the metrics
used to compare the approximants. We then present the results in Sec. 6 and discuss the per-
formance of the approximants, highlighting the features and drawbacks of each. Lastly, we
present new directions for this research in Sec. 7.

2 Interpolation Methods

We start by presenting the interpolation methods, where the interpolating function passes
through all known data points.

2.1 Nearest-Neighbor Interpolation (NN)

Perhaps the simplest interpolation technique, the method of nearest-neighbors assigns the
value of the new point to that of the nearest known data point. As such, the resulting inter-
polant is piece-wise constant. This technique is commonly used in image interpolation because
of its low computational complexity [25]. We can write the interpolant as

f̂NN = f
�

argmin
i
||x− xi||2

�

, (1)

where x is the unknown point, xi are the known points, || ||2 is the Euclidean distance, and
f returns the known values. The advantage of NN interpolation is its simplicity, serving as a
lookup table for unknown points.

In this analysis, we use SciPy’s [26] NearestNDInterpolator to perform the interpola-
tion which utilizes the KD Tree algorithm [27] to find the nearest neighbors.

4

https://scipost.org
https://scipost.org/SciPostPhys.12.6.187

SciPost Phys. 12, 187 (2022)

2.2 Linear Interpolation on Regular Grid (Grid)

Initially, we considered linear interpolation on irregular data which proceeds first by triangu-
lating the input data points (typically Delaunay triangulation [28]). Then, interpolation on
a new data point is performed by checking which d-simplex the new point falls within and
computing the weighted average of the vertices of the d-simplex. The weights are given by
the barycentric coordinates of the new point with respect to its host simplex. However, apply-
ing the triangulation on a large dataset and storing it required gigabytes of data, forcing us to
consider interpolation on a regular grid instead. This is clearly less flexible, but nonetheless,
it is worth pursuing to check whether the performance trumps the demands of flexibility.

The task here is simplified because no triangulation is required. Given N known data points
on a grid in d dimensions, an unknown point will lie in a hyperrectangle whose 2d vertices are
known points. The interpolation proceeds by partitioning the hyperrectangle into 2d hyper-
volumes sharing the unknown point as a common vertex. The assigned value is then the sum
of the known 2d points weighted by the normalized diagonally opposite hypervolumes [29].
The normalization here is by the volume of the entire hyperrectangle.

In this analysis, we use SciPy’s [26] RegularGridInterpolator to perform the interpo-
lation.

2.3 Inverse Distance Weighting (IDW)

Introduced by Shepard in 1968 [30], IDW has become widely used in geographic information
systems (GIS) for its ease of use and interpretability. The complexity of interpolating a point is
O(N) which is desirable for our case where N is large. To interpolate a new point, IDW takes
the weighted average of all the known points with the weights corresponding the inverse of
the distance between the new and known points. Thus we can write

f̂IDW(x) =

∑N
i=1 wi(x)yi
∑N

i=1 wi(x)
, (2)

where N is the number of known points, yi is the value of the ith known point, and wi is given
by

wi(x) =
1

||x− xi||
p
2

. (3)

We choose p = 1 in this analysis. The interpolation is performed using Photutil’s [31]
ShepardIDWInterpolator.

2.4 Radial Basis Function (RBF) Interpolation

Originally developed by Hardy [32] and later shown to consistently outperform its competitors
by Franke [33], RBF has achieved immense popularity as an interpolation technique. The idea
of RBF is to write our approximation as a linear combination of a function that depends only
on the distance between two points (hence, radial). At each known point, there is an RBF
centered at that point which gives us the interpolant:

f̂RBF(x) =
N−1
∑

i=0

wiϕ(||x− xi||2) , (4)

where N is the number of known data points, x is the point we are interpolating, xi are the
known points, ϕ is the radial basis function, and wi are the weights. To fix the weights,
we require that our interpolating function pass through all known points, which gives us N
linear equations in the weights. The complexity of solving this system is O(N3) which can be

5

https://scipost.org
https://scipost.org/SciPostPhys.12.6.187

SciPost Phys. 12, 187 (2022)

prohibitive for large amounts of data. Furthermore, the memory requirements of interpolating
at a given point is O(N2) [34]. To overcome this, we limit the interpolant to the k-nearest
neighbors rather than the entire dataset at prediction time. In particular, we choose 150-
nearest neighbors based on a speed versus performance trade-off (see appendix B). We note
that there are other techniques of speeding up RBF that are worth exploring, such as the
compactly supported radial basis functions (CSRBFs) with spatial subdivision [34,35].

In this analysis, we use SciPy’s [26] RBFInterpolator with the default thin-plate spline
RBF.

3 Regression Methods

Unlike interpolation, regression does not require the approximating function to assume the
values of the known points. A regression model typically proceeds by minimizing some objec-
tive function (e.g. mean-squared error). Finding the optimal model parameters that minimize
the objective is a difficult task requiring first- or second-order gradient methods. The following
regression models all fall under the umbrella of machine learning.

3.1 Multilayer Perceptron (MLP)

Multilayer Perceptrons2 are used for a variety of purposes such as classification, regression,
and variational inference. It has been shown that MLPs with a single hidden layer, sufficiently
many hidden nodes, and suitable activation function can approximate any continuous function
on a compact set in Rn to arbitrary accuracy [36, 37]. This provides great motivation for
the use of MLPs in regression tasks. An MLP can be viewed as a function N (x;θ) where the
dimension of the input x determines the number of nodes in the input layer, and the parameters
θ are adjusted during the training process to minimize the objective. We use a fully-connected
architecture with each layer of the form

l(a) = φ (W · a+ b) , (5)

where a is the input from the previous layer, W is the h× k weight matrix of two connected
layers, b are the biases of the layer, and φ is a nonlinear function called the activation. The
dimensions h and k represent the number of nodes in the previous and current layer respec-
tively.

The construction of MLPs is performed using Tensorflow [38] and Keras [39]. Perform-
ing hyperparameter optimization is computationally expensive so we rely on empirical tests to
guide the settings. We use an architecture of 8 hidden layers with 64 nodes each, applying the
Gaussian Error Linear Unit (GELU) [40] activation and LSUV weight initialization [41]. Using
the Adam [42] optimizer, we minimize either the mean squared error (MSE) loss

LMSE =
1
n

n
∑

i=1

(N (xi)− yi)
2 (6)

or the mean absolute percentage error (MAPE)

LMAPE =
1
n

n
∑

i=1

�

�

�

�

N (xi)− yi

yi

�

�

�

�

, (7)

2Also known as deep or artificial neural networks. We choose the name multilayer perceptron to avoid confu-
sion with nearest neighbors when abbreviating.

6

https://scipost.org
https://scipost.org/SciPostPhys.12.6.187

SciPost Phys. 12, 187 (2022)

where n is the batch size and yi ’s are the true values. In general, we use the MSE loss except on
the D0 function introduced in Sec. 4. We train on an NVIDIA Tesla V100 GPU for a maximum
of 4000 epochs with the EarlyStopping callback that stops training when no improvement has
been made over 400 epochs. The batch size is set to either 1000 or 5000 training points. The
learning rate is set to the default value 0.001 and is decayed every 100 epochs by a factor of
0.85.

3.2 Light Gradient Boosting Machine (LGBM)

The idea of boosting is to combine many weak learners into one strong model. LGBM [43] is a
decision tree model that is lightweight and fast, achieving similar performance to XGBoost [11]
while consuming much less time and memory [43]. LGBM uses leaf-wise growth rather than the
typical level-wise growth [44] when building the tree. Furthermore, typical decision trees use
pre-sorted algorithms [45] to find the best split locations, whereas LGBM uses histogram-based
algorithms which speed up training and require less memory [43].

Like other machine learning models, LGBM comes with many hyperparameters that need
to be tuned. Similar to the MLP case, we rely on empirical tests to guide the settings. We
highlight what we deem to be the most important hyperparameters and the chosen values:

• num_leaves = 500

• max_depth = 10

• max_bin = 300

• num_iterations = 1500

• sub_samples or bagging_fraction = 0.5

In determining the booster, we tried the default gbtree and dart [46], which applies the
idea of dropout in deep learning [47] to boosted trees to avoid over-fitting. We find that dart
generalizes much better than gbtree so we choose dart as our booster. The implementation
of LGBM is done through the scikit-learn API [48].

3.3 Stochastic Variational Gaussian Process (SVGP)

The textbook definition of a Gaussian process (GP) is that it “is a collection of random variables,
any finite number of which have a joint Gaussian distribution” [49]. For a given mean function
m(x) and covariance function k

�

x,x′
�

, a GP is completely specified [49] and can be denoted

fGP(x)∼ GP
�

m(x), k
�

x,x′
��

. (8)

A common choice for the kernel, which we use here, is the squared exponential function:

k(r) = α2 exp

�

−
r2

2l

�

, (9)

where r is the Euclidean distance between x and x′, l is the lengthscale parameter, and α is
the variance parameter. The kernel is promoted to a matrix K when dealing with a training
dataset D = (X,y) of N observations, and the optimization of the parameters l and α can be
achieved through the maximization of the marginal likelihood [50]

log p(y) = −
N
2

log2π−
1
2

log |K| −
1
2

y> (K)−1 y . (10)

7

https://scipost.org
https://scipost.org/SciPostPhys.12.6.187

SciPost Phys. 12, 187 (2022)

Given an unknown point x∗, the mean and variance of the Gaussian predictive distribution are
given by [50]

µGP (x∗) = k∗ (K)
−1 y ,

σ2
GP (x∗) = k∗∗ − k∗ (K)

−1 k∗ ,
(11)

where k∗ = k (x∗,X) and k∗∗ = k (x∗,x∗). A nice feature of using GP’s is that we can obtain an
uncertainty σGP for our prediction µGP without extra work. However, computing µGP and σGP
involves the inversion of the N ×N kernel covariance matrix K which exhibits a time complex-
ity O(N3) that becomes prohibitive for large N . The idea of SVGP [51] is to use a subset of
the training data called inducing variables that aim at summarizing the data, simultaneously
approximating the posterior p(fGP|y) through variational inference [52]. The final time com-
plexity for m inducing variables is O(m3). This allows us to perform GP regression on very
large datasets.

We use the GPFlow [53] package to fit the SVGP model. The number of inducing variables
is set to 2000 and the optimization of the evidence lower bound (ELBO) is done through
Adam [42]. We select a batch size of 5000 points and optimize for 100,000 epochs on a GPU.
The learning rate is decayed every 1,000 epochs by a factor of 0.99.

4 Test Functions

The goal of this analysis is to approximate ‘black-box’ functions, i.e. functions that can only
be evaluated without much knowledge of their internal structure. However, here we con-
sider known functions to understand the performance of each technique and to facilitate the
comparison. We look at multidimensional polynomial, Camel, and periodic functions. The
polynomial and Camel functions were used as tests for the i-flow [54] integration code. In
addition, we look at two integral functions that appear widely in loop-level calculations in the
Standard Model. The first is the four-point scalar Passarino-Veltman integral function [55],
and the second is the two-loop self-energy master integral.

In all of the following, we uniformly sample the unit hypercube [0,1]d .

4.1 Toy Functions

The three toy functions are given by

fpoly (x) =
d
∑

i=1

−x2
i + x i , (12)

fCamel(x) =
1

2(σ
p
π)d

exp

−

∑

i

�

x i −
1
3

�2

σ2

!

+ exp

−

∑

i

�

x i −
2
3

�2

σ2

!!

, (13)

fperiodic(x) = x̄
d
∏

i=1

sin 2πx i , (14)

where d is the dimension, x̄ is the mean of x, and as in [54]we chooseσ = 0.2. The polynomial
function has no ‘difficult’ features to learn like sharp peaks or oscillations, so it should be
the simplest to approximate. The multidimensional Camel is chosen because it contains two
peaks that get harder and harder to locate at large dimensions. The sharpness of the peaks is
controlled by the widthσ. The periodic function is chosen to test the approximation techniques
on oscillating functions. As we increase the dimension, the number of peaks and valleys rises
quickly making this function very difficult in high dimensions.

8

https://scipost.org
https://scipost.org/SciPostPhys.12.6.187

SciPost Phys. 12, 187 (2022)

p1 p2

p3 p4

q, m0

m1

m2

m3

Figure 1: Feynman diagram of the Scalar Passarino-Veltman D0 function.

A common technique which we employ here is to transform the outputs of the function
before fitting/training. In this section we merely state the transformations and in Sec. 4.3 we
show the consequences of such transformations. For the Camel function, we perform a simple
log scaling of the outputs since all values are positive and the range of the function is quite
high. For the periodic function, we perform a signed cube root scaling given by:

sgn(y) · 3
Æ

|y| , (15)

where sgn is the sign function. The polynomial outputs are not scaled. In general, we fit/train
on both scaled and unscaled outputs and report the best performance.

4.2 Loop Integral Functions

To perform high precision theoretical calculations in particle physics, one must compute the
contribution of loop diagrams appearing in the Feynman diagram expansion of a scattering
process. These loop diagrams give rise to Feynman integrals whose numerical calculation is
very expensive, especially at higher loop order. We consider two Feynman integrals to ap-
proximate: the scalar four-point Passarino-Veltman function at one-loop, and the two-loop
self-energy master integral.

4.2.1 Scalar Passarino-Veltman D0

At the one-loop level, it has been shown [55] that any tensor integral can be reduced to a set
of 1-, 2-, 3-, and 4-point scalar integrals, the last of these being the most complicated. This
4-point scalar integral is typically referred to as the Passarino-Veltman D0 function.

The function depends on the kinematics of the external particles (all momenta are incom-
ing) and the masses of the internal particles and is given by:

D0

�

s1, s2, s3, s4, s12, s23, m0, m1, m2, m3

�

= (16)

C0

∫

drq
1

�

q2 −m2
0

� �

(q+ p2)
2 −m2

1

�

�

�

q+ p2 + p4

�2 −m2
2

��

�

q+ p2 + p3 + p4

�2 −m2
3

� ,

where q is the loop momentum, si j = (pi+p j)2, si = p2
i , and C0 is a constant from dimensional

regularization. Although not very expensive to evaluate, D0 serves as a good starting point in
determining how hopeful our project should be moving to higher loops.

By fixing certain quantities, we can look at this function in various dimensions up to d = 9.
Although there are 10 independent variables, one can rewrite D0 in the following way for any
of the inputs:

D0

�

x1, x2, x3, x4, x5, x6, x7, x8, x9, x10

�

=
1
x5

D0

�

y1, y2, y3, y4, 1, y6, y7, y8, y9, y10

�

, (17)

9

https://scipost.org
https://scipost.org/SciPostPhys.12.6.187

SciPost Phys. 12, 187 (2022)

x1 x2

x4x3

x5

Figure 2: Two-loop self-energy diagram corresponding to the function M .

where yi = x i/x5 effectively reducing the maximum dimension to 9. We select somewhat
arbitrary regions of the parameter space to arrive at the three D0 functions in d = 3,6, and 9
dimensions:

D(3)0 = Re
h

D0

�

0.01,0.04, 0.16,
x4

4
,1, u (x6) ,

x7

2
,

x7

2
,

x7

2
, 0.2

�i

, (18)

D(6)0 = Re
h

D0

�

0.01,0.04, 0.16,
x4

4
,1, u (x6) , x7, x8, x9, x10

�i

, (19)

D(9)0 = Re
h

D0

� x1

4
,

x2

4
,

x3

4
,

x4

4
,1, u (x6) ,

x7

2
,

x8

2
,

x9

2
,

x10

2

�i

, (20)

where u(x6) is a function given in appendix A. These three functions will also be referred
to as D3, D6, and D9 respectively. It is important to note that although the previous toy
functions were differentiable everywhere, Re [D0] is not and has non-trivial analytic structure.
The evaluation of D0 is performed using Package-X [56], which is interfaced with the COLLIER
library [57–60] through the CollierLink interface. The outputs are scaled by equation 15 if
better performance is found.

4.2.2 Two-loop Self-energy Master Integral M

Theories beyond the Standard Model often posit fields that affect the physical mass of known
particles by contributing to the self-energy diagrams [61]. As such, it is important to have
precise theoretical predictions at the two-loop level for the self-energy corrections. Similar to
the one-loop case, one can reduce two-loop self-energy diagrams to a set of basis integrals [62].
The master integral M corresponding to the topology in Fig. 2 is free of divergences and will
be our fifth test function.

The form of M is given by [61]

M(x1, x2, x3, x4, x5) = (21)

lim
ε→0

C2

∫

d r kd rq
1

[k2 + x2] [q2 + x2] [(k− p)2 + x3]
�

(q− p)2 + x4

�

[(k− q)2 + x5]
,

where x1, x2, x3, x4, and x5 are the masses of the internal particles, and C is an overall
constant appearing in dimensional regularization. Again, we only take the real part: Re [M],
arriving at a single-valued 5 dimensional function. The evaluation of the master integral is
performed through the TSIL program [61]. We do not scale the outputs of this function.

4.3 Characterizing the Distributions of the Test Functions

Now that we have listed the test functions, we would like to characterize how difficult it would
be to approximate them based on their distributions. A common method [24, 63] is to con-
sider data variation described by the coefficient of variation (CV) and the moments of the

10

https://scipost.org
https://scipost.org/SciPostPhys.12.6.187

SciPost Phys. 12, 187 (2022)

0

100

101

CV

0

100

101

Sk
ew

ne
ss

2 4 6 8
Dimension

0

100

101

102

103

104

Ku
rto

sis

Poly
Camel
Periodic

(a) Before scaling.

1.5

1.0

0.5

0.0

CV

1.5

1.0

0.5

0.0

Sk
ew

ne
ss

2 4 6 8
Dimension

1

0

1

2

Ku
rto

sis

Poly
Camel
Periodic

(b) After scaling.

Figure 3: Three data statistics: coefficient of variation, skewness, and kurtosis in
various dimensions for the polynomial, Camel, and periodic functions.

distributions3. These statistics are given by:

CV=
µ

s
, (22)

S =

∑N
i=1 (yi − ȳ)3 /N

s3
, (23)

K =

∑N
i=1 (yi − ȳ)4 /N

s4
− 3 , (24)

where µ is the mean, s is the standard deviation, S is the Fisher-Pearson coefficient of skewness,
and K is the coefficient of excess kurtosis [64]. In general, non-zero skewness indicates an
asymmetry in the distribution, leaning to the left or right. On the other hand, kurtosis measures
the degree to which a distribution contains outliers [65]. Fig. 3 shows the three statistics
CV, skewness, and kurtosis in increasing dimensions for the polynomial, Camel, and periodic
functions (a) before and (b) after scaling.

The polynomial function exhibits low CV, skewness, and kurtosis regardless of dimension,
so we do not scale the true values. On the other hand, the Camel function exhibits increasingly
large CV, skewness, and kurtosis as the dimension increases (Fig. 3a). This motivates a log-
scaling of the true values prior to fitting/training, which dramatically reduces all three statistics
and flips the sign of K (Fig. 3b). The periodic function has a mean around zero so its CV is
very large and not plotted here. Prior to cube root scaling, its skewness is nearly 0 and remains
so after scaling, indicating a symmetric distribution that is preserved with scaling. Lastly, the
kurtosis of the periodic function is positive and increases with dimension to a maximum of
about 40 in 9 dimensions (Fig. 3a), whereas after cube root scaling, it turns negative until 8
dimensions where it attains a much smaller positive kurtosis of 0.3 in 9 dimensions. Turning
to the loop integral functions, table 1 lists the values of CV, skewness, and kurtosis for the D0
functions before and after scaling, and those for M which is not scaled. Again, we see the the

3We only consider the third and fourth moments.

11

https://scipost.org
https://scipost.org/SciPostPhys.12.6.187

SciPost Phys. 12, 187 (2022)

Table 1: Data statistics before and after scaling for the D3, D6, D9, and M functions.

Function CV Skewness Kurtosis

D3
Before scaling: −2.69

After scaling: −2.46
−0.9
0.46

79.0
−1.12

D6
25.0
2.48

−12.5
−1.06

2526
1.38

D9
−4.83
−3.04

−60.0
0.08

9053
−0.88

M 0.57 1.64 9.57

benefits of scaling the outputs in reducing the absolute values of skewness and kurtosis, while
also flipping the sign of kurtosis for D3 and D9.

5 Cross-validation and Evaluation Metrics

Our assumption of working with a costly black-box function permits us to evaluate it N times.
For regression, we split our generated data into training, validation, and testing sets denoted
by Ntrain, Nval, Ntest respectively. We start with the training phase where the model is fed the
training data in batches and the parameters are adjusted to minimize the objective function.
During training, we use the validation data to monitor the performance of the model on data it
hasn’t been trained on. This allows us to stop training when our models start to overfit. Finally,
the testing phase is when we apply our model to unseen data to measure the performance “in
the real world”. For interpolation, we do not need a validation set, so the interpolation data
is just Ntrain + Nval. We use a common testing dataset on all approximants. For all functions,
we choose Ntest = 1M and Nval = 10%Ntrain. The training data is either 4M for the two-loop
self-energy function M or 5M for the remaining functions.

To evaluate the models and compare them, we look at the distribution of absolute errors
(AE) and symmetric absolute percent errors (sAPE):

AEi = |yi − f̂i| , (25)

sAPEi =
2 · |yi − f̂i|
|yi|+ | f̂i|

· 100%, (26)

where yi is the true value and f̂ (xi) is the prediction of the approximant. The symmetric
version of the percent errors is chosen since our functions can vanish at some inputs which
leaves the usual percent error undefined. These two metrics will be presented through boxplots
(see Fig. 4 and caption for details) where outliers are suppressed for plotting purposes. The
mean values will be shown as green markers on the boxplots in Sec. 6. We also look at the
coefficient of determination, R2, given by

R2 = 1−

∑

i

�

yi − f̂i

�2

∑

i (yi − ȳ)2
, (27)

where ȳ is the mean of the true values. This coefficient cannot exceed 1 (the case where the
predicted values perfectly coincide with the true values), but can be negative which indicates
worse performance than a baseline of the average of the function. It is also scale-free, which is
useful in comparing performance across dimensions. In addition to boxplots that quantitatively
summarize the performance of each approximant, it is useful to look at prediction versus truth

12

https://scipost.org
https://scipost.org/SciPostPhys.12.6.187

SciPost Phys. 12, 187 (2022)

Figure 4: Boxplot illustration from Sebastian Raschka [66]. The image has been
cropped to remove explanatory text. Q1 denotes the first quartile i.e. the value
below which is 25% of the data points. The median or Q2 divides the data points in
half. Q3 indicates the values below which is 75% of the data points. The interquartile
range IQR is the range between Q1 and Q3. Values that lie below Q1−1.5×IQR and
above Q1+1.5×IQR are plotted separately as points and are referred to as outliers.

plots which can reveal the scales at which the approximants are performing better or worse. We
show these plots in reference [67]. We also consider secondary metrics such as the prediction
time and disk size that are also of interest for speed and distribution.

6 Results

We analyze the performance of the approximants in 3, 6, and 9 dimensions on the toy functions
and D0. We give a separate analysis for the 5-dimensional function M . The Grid method is
not applied to the loop integral functions since the data was generated randomly.

6.1 3 Dimensions

We begin with results in 3 dimensions. Figure 5 shows boxplots of sAPEs in 3 dimensions for
the three toy functions and D3. The red colors indicate interpolation while blue colors indicate
regression methods, and the green markers indicate the mean value. For all four functions, RBF
achieves the lowest median and Q3 sAPE values. MLPs and Grid consistently achieve lower
sAPEs than the remaining methods. Although RBF achieves the lowest medians, it results in
larger means for the periodic and D3 functions where Grid and MLP achieve the lowest mean
sAPEs respectively. This indicates that RBF produces many outliers.

In addition to percent differences, often we are interested in absolute differences which
offer a better sense of scale. In Fig. 6, we see that RBF achieves the lowest AEs, both in terms
of median and mean values, for all functions except D3 where MLP achieves a lower mean AE.
This indicates that MLP approximates large values better than RBF, probably due to cube root
scaling, while RBF is much more accurate overall. This can also explain the higher R2 value of
MLP in Fig. 7 compared to RBF. Worth noting is that SVGP performs poorly and cannot find a
good fit for D3 compared to the other approximants, likely due to the inducing variables not
being able to summarize its high variability.

6.2 6 Dimensions

In 6 dimensions, the story begins to change. Figure 8 shows boxplots of sAPEs in 6 dimensions
for the three toy functions and D6. For all four functions, MLP achieves the lowest sAPE values
both in terms of median and mean values. Aside from the performance of MLP, there is no

13

https://scipost.org
https://scipost.org/SciPostPhys.12.6.187

SciPost Phys. 12, 187 (2022)

RBF IDW NN Grid LGBM SVGP MLP

10-5

10-4

10-3

10-2

10-1

100

101

102

sA
P

E
 (

%
)

Poly

RBF IDW NN Grid LGBM SVGP MLP
10-4

10-3

10-2

10-1

100

101

102

sA
P

E
 (

%
)

Periodic

RBF IDW NN Grid LGBM SVGP MLP

10-4

10-3

10-2

10-1

100

101

102

sA
P

E
 (

%
)

Camel

RBF IDW NN LGBM SVGP MLP

10-4

10-3

10-2

10-1

100

101

102

sA
P

E
 (

%
)

D3

Figure 5: Boxplots of the symmetric absolute percent error (%) for four test func-
tions in 3 dimensions. Red colors indicate interpolation while blue colors indicate
regression methods.

RBF IDW NN Grid LGBM SVGP MLP

10-7

10-6

10-5

10-4

10-3

10-2

A
b
so

lu
te

 E
rr

or

Poly

RBF IDW NN Grid LGBM SVGP MLP
10-7

10-6

10-5

10-4

10-3

10-2

A
b
so

lu
te

 E
rr

or

Periodic

RBF IDW NN Grid LGBM SVGP MLP
10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

A
b
so

lu
te

 E
rr

or

Camel

RBF IDW NN LGBM SVGP MLP

10-5

10-4

10-3

10-2

10-1

100

101

A
b
so

lu
te

 E
rr

or

D3

Figure 6: Boxplots of the absolute errors for four test functions in 3 dimensions. Red
colors indicate interpolation while blue colors indicate regression methods.

consistent behavior when comparing the remaining methods. RBF achieves the 2nd lowest
median sAPEs except on the polynomial where SVGP performs very well but does poorly on
the remaining functions. NN does the worst on the toy functions, but better than LGBM and
SVGP on D6. The upshot is that already in 6 dimensions, we see MLP consistently performing
better than other approximants. This statement is aided by the AE plots (Fig. 9) and the R2

plots (Fig. 10), which show the lowest AEs and highest R2 values for MLP.

14

https://scipost.org
https://scipost.org/SciPostPhys.12.6.187

SciPost Phys. 12, 187 (2022)

RBF IDW NN Grid LGBM SVGP MLP

0.99975

0.99980

0.99985

0.99990

0.99995

1.00000

R
2

Poly

RBF IDW NN Grid LGBM SVGP MLP

-0.0005

-0.0004

-0.0003

-0.0002

-0.0001

0.0000

R
2

+1

Periodic

RBF IDW NN Grid LGBM SVGP MLP
0.99960

0.99965

0.99970

0.99975

0.99980

0.99985

0.99990

0.99995

1.00000

R
2

Camel

RBF IDW NN LGBM SVGP MLP
0.90

0.92

0.94

0.96

0.98

1.00

R
2

D3

Figure 7: R2 values in 3 dimensions for the three toy functions and D3.

6.3 9 Dimensions

In 9 dimensions, we see the superiority of MLP compared to the other approximants. Figure 11
shows boxplots of sAPEs in 9 dimensions for the three toy functions and D9. Once again, for all
four functions, MLP achieves the lowest sAPE values both in terms of median and mean values.
For the polynomial, the relative performance of the approximants is nearly identical to that in
6 dimensions. This confirms the low variability of this function established in Sec. 4.3. For the
periodic function, all approximants except MLP perform very poorly with very high sAPEs. We
find that cube root scaling is essential for good MLP performance, otherwise training is stuck at
a local minimum. However, even with cube root scaling for the other approximants, we find no
significant difference in performance. In particular, SVGP predicts all values to be identically
near 0, again due to the inducing variables’ inability to capture the periodic nature of the
function in such high dimensions. For the Camel function, RBF outperforms the remaining
approximants, with Grid having the highest sAPEs. SVGP produces a few extremely large
outliers (Fig. 12) which makes it unreliable as an approximant in this case. We find that log
scaling produces much better results than fitting/training on the raw data. Lastly for the D9
function, interestingly, we find that IDW has the 2nd lowest median and mean sAPEs, whereas
in lower dimensions, it consistently had higher sAPEs than RBF. Looking at the R2 values for D9
in Fig. 13, we see that RBF, NN, and LGBM have negative R2, performing worse than a function
that returns the mean of D9 everywhere. Putting it all together, it is clear that MLP is superior
to the other approximants in 9 dimensions.

6.4 Two-loop Master Integral (5 Dimensions)

The last function we consider is the 5-dimensional two-loop self-energy master integral M .
Figure 14 shows the AEs, sAPEs, and R2 values of the approximants. Here again, MLP achieves
the lowest median AE and sAPE (also the lowest mean AE and sAPE), as well as the highest R2

value. It also has a much smaller IQR as opposed to RBF which has a wide IQR. Our previous
results for RBF in 3 dimensions (see Sec. 6.1) showed great performance for all functions, but
already in 5 dimensions we see MLP outperforming it.

15

https://scipost.org
https://scipost.org/SciPostPhys.12.6.187

SciPost Phys. 12, 187 (2022)

RBF IDW NN Grid LGBM SVGP MLP

10-3

10-2

10-1

100

101

102

sA
P

E
 (

%
)

Poly

RBF IDW NN Grid LGBM SVGP MLP

10-1

100

101

102

sA
P

E
 (

%
)

Periodic

RBF IDW NN Grid LGBM SVGP MLP

10-2

10-1

100

101

102

sA
P

E
 (

%
)

Camel

RBF IDW NN LGBM SVGP MLP

10-1

100

101

102

sA
P

E
 (

%
)

D6

Figure 8: Boxplots of the symmetric absolute percent error (%) for four test func-
tions in 6 dimensions. Red colors indicate interpolation while blue colors indicate
regression methods.

RBF IDW NN Grid LGBM SVGP MLP

10-5

10-4

10-3

10-2

10-1

A
b
so

lu
te

 E
rr

or

Poly

RBF IDW NN Grid LGBM SVGP MLP

10-5

10-4

10-3

10-2

10-1

A
b
so

lu
te

 E
rr

or

Periodic

RBF IDW NN Grid LGBM SVGP MLP
10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

A
b
so

lu
te

 E
rr

o
r

Camel

RBF IDW NN LGBM SVGP MLP

10-3

10-2

10-1

100

101

A
b
so

lu
te

 E
rr

o
r

D6

Figure 9: Boxplots of the absolute error for four test functions in 6 dimensions. Red
colors indicate interpolation while blue colors indicate regression methods.

Focusing on the results for MLP, the mean sAPE is about 0.1%, which is also about the same
as the 3rd quartile, meaning that 75% of the points have sAPEs of 0.1% or less. Considering
the speed of evaluation, it took about 19 hours to generate the 5M values of M using TSIL [61]
on a single CPU, whereas the MLP evaluation of 100k testing points takes about 1 second on a
CPU (see Fig. 16a), and about 0.3 seconds for 1M points on a GPU. This provides a speed-up
of at least 1,400 times on a CPU, and 46,000 times on a GPU.

16

https://scipost.org
https://scipost.org/SciPostPhys.12.6.187

SciPost Phys. 12, 187 (2022)

RBF IDW NN Grid LGBM SVGP MLP

0.970

0.975

0.980

0.985

0.990

0.995

1.000

R
2

Poly

RBF IDW NN Grid LGBM SVGP MLP

0.88

0.90

0.92

0.94

0.96

0.98

1.00

R
2

Periodic

RBF IDW NN Grid LGBM SVGP MLP

0.92

0.94

0.96

0.98

1.00

R
2

Camel

RBF IDW NN LGBM SVGP MLP

0.2

0.4

0.6

0.8

1.0

R
2

D6

Figure 10: R2 values in 6 dimensions for the three toy functions and D6.

6.5 Discussion and Further Analysis

The previous sections showed that for low dimensions, RBF generates good fits and outper-
forms other approximants in terms of median sAPE for all functions. On the other hand, going
to higher dimensions shows the curse of dimensionality taking effect quickly, and not just on
RBF, but on other approximants as well, with the exception of MLP. This suggests that MLP
is more robust to the curse compared with the other methods. To see this more clearly, we
run an experiment on the periodic function where we fix the number of training points while
increasing the dimension from 2 to 9. To compare the performance across dimensions, we
compute R2 (because it is scale-free), and plot 1− R2 to better show the differences on a log-
scale. Figure 15 shows the plot of 1−R2 (0 is best) versus the dimensionality for the periodic
function. There is a clear separation between MLP and the other approximants where the curse
of dimensionality affects the performance of the other approximants more strongly compared
to MLP. Furthermore, the performance of SVGP and LGBM plateaus at dimensions lower than
4, indicating a limitation of these models in achieving higher accuracy for small dimensions.

This is likely due to the scaling properties of these approximants. For RBF, its memory
and computational complexities force us to limit the interpolation at an unknown point to 150
nearest neighbors. This does not hinder performance in low dimensions since the density of
points is high, but going to larger dimensions, the volume grows exponentially and so does
the number of samples required to maintain the same distance between neighboring points.
Assuming we sample points on a grid, the distance between adjacent points in 3 dimensions
for 5M points is 0.006. To maintain this distance in 9 dimensions, we must sample 1020 points.
Similarly for SVGP, the complexity of fitting a regular GP forces us to utilize a limited number
of inducing variables, which become sparse in large dimensions. The same reasoning can be
applied to NN and Grid. On the other hand, IDW does not suffer as much from larger amounts
of data, but is known to produce a bullseye pattern [68] despite the known points not being
maxima, leading to subpar performance. The tendency of LGBM to overfit, even with dart,
contributed strongly to its unimpressive performance. As for MLP, the large number of train-
able parameters coupled with the nonlinearity at each layer allows for great representational
ability. Whereas RBF solves for the weights exactly and thus requiring high computational cost,

17

https://scipost.org
https://scipost.org/SciPostPhys.12.6.187

SciPost Phys. 12, 187 (2022)

RBF IDW NN Grid LGBM SVGP MLP

10-3

10-2

10-1

100

101

102

sA
P

E
 (

%
)

Poly

RBF IDW NN Grid LGBM SVGP MLP

10-1

100

101

102

sA
P

E
 (

%
)

Periodic

RBF IDW NN Grid LGBM SVGP MLP

10-2

10-1

100

101

102

sA
P

E
 (

%
)

Camel

RBF IDW NN LGBM SVGP MLP

100

101

102

sA
P

E
 (

%
)

D9

Figure 11: Boxplots of the symmetric absolute percent error (%) for four test func-
tions in 9 dimensions. Red colors indicate interpolation while blue colors indicate
regression methods.

RBF IDW NN Grid LGBM SVGP MLP
10-5

10-4

10-3

10-2

10-1

A
b
so

lu
te

 E
rr

o
r

Poly

RBF IDW NN Grid LGBM SVGP MLP
10-7

10-6

10-5

10-4

10-3

10-2

10-1

A
b
so

lu
te

 E
rr

o
r

Periodic

RBF IDW NN Grid LGBM SVGP MLP
10-12
10-11
10-10
10-9
10-8
10-7
10-6
10-5
10-4
10-3
10-2
10-1
100
101
102
103
104

A
b
so

lu
te

 E
rr

or

Camel

RBF IDW NN LGBM SVGP MLP

10-1

100

101

102

A
b
so

lu
te

 E
rr

or

D9

Figure 12: Boxplots of the absolute error for four test functions in 9 dimensions. Red
colors indicate interpolation while blue colors indicate regression methods.

adjusting the large number of trainable parameters in the MLP is done in small steps during
gradient descent through the efficient backpropagation algorithm. This makes the MLP very
flexible in finding a good fit to the data, with the downside of needing longer times to train
and the possibility of getting stuck in sub-optimal local minima.

As mentioned in Sec. 5, the evaluation times and model sizes are important for speed and
distribution. Figure 16 shows the prediction times (Fig. 16a) in seconds (s) on 100k points and

18

https://scipost.org
https://scipost.org/SciPostPhys.12.6.187

SciPost Phys. 12, 187 (2022)

RBF IDW NN Grid LGBM SVGP MLP

0.825

0.850

0.875

0.900

0.925

0.950

0.975

1.000

R
2

Poly

RBF IDW NN Grid LGBM SVGP MLP

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

R
2

Periodic

RBF IDW NN Grid LGBM SVGP MLP
0.0

0.2

0.4

0.6

0.8

1.0

R
2

Camel

RBF IDW NN LGBM SVGP MLP

-0.75

-0.50

-0.25

0.00

0.25

0.50

0.75

1.00

R
2

D9

Figure 13: R2 values in 9 dimensions for the three toy functions and D9.

RBF IDW NN LGBM SVGP MLP

10-3

10-2

10-1

100

A
b
so

lu
te

 E
rr

or

M

RBF IDW NN LGBM SVGP MLP

10-2

10-1

100

101

sA
P

E
 (

%
)

M

RBF IDW NN LGBM SVGP MLP

0.94

0.95

0.96

0.97

0.98

0.99

1.00

R
2

M

Figure 14: Boxplots of the absolute error (left) and symmetric absolute percent error
(middle), and the R2 metric (right) for the two-loop self-energy master integral M in
5 dimensions. Red colors indicate interpolation while blue colors indicate regression
methods.

file sizes (Fig. 16b) in megabytes (MB) for the approximants. The darkest shade corresponds
to d = 3, with lighter shades corresponding to d = 6 and d = 9. These bar plots show that
MLP is fastest in higher dimensions while also requiring the least disk space for storage. On
the other hand, training an MLP on large amounts of data can take many hours, whereas the
interpolants can fit and predict in a few minutes.

7 Conclusions and Future Directions

In this analysis, we studied and compared the performance of interpolation and regression
techniques on a variety of functions in increasing dimensionality, two of which are important
for precision calculations in high-energy physics. Fixing the number of training points at 5M
and varying the dimension from 3 to 9, we find that in low dimensions (d = 3) RBF achieves
the lowest median AE and sAPE values on all test functions. In higher dimensions (d = 5,

19

https://scipost.org
https://scipost.org/SciPostPhys.12.6.187

SciPost Phys. 12, 187 (2022)

2 3 4 5 6 7 8 9

Dimensions

10-13

10-11

10-9

10-7

10-5

10-3

10-1

1
−
R

2

Periodic

RBF

IDW

NN

Grid

LGBM

SVGP

MLP

Figure 15: The performance metric 1−R2 on the periodic function versus the number
of dimensions for all approximants. Lower is better.

RBF IDW NN Grid LGBM SVGP MLP

10-1

100

101

102

P
re

d
ic

ti
o
n
 T

im
e

(s
)

Prediction times on 100k points

(a) Prediction Time (s).

RBF IDW NN Grid LGBM SVGP MLP

100

101

102

103

M
od

el
 S

iz
e

(M
B

)

(b) Model Size (MB).

Figure 16: The prediction times on 100k testing points in seconds (left) and the file
size of each approximant in megabytes (right).

d = 6 and d = 9), we find that MLP outperforms the other approximants, achieving by far the
lowest median AE and sAPE values on all test functions. We also find that MLP is fastest at
predicting unknown values while having the smallest file size. In addition, MLP is more robust
to the curse of dimensionality than other approximants.

There are many interesting avenues to explore moving forward. Although this analysis
presents a strong case for MLP in higher dimensions, it is important to investigate the limi-
tations of this method for high-dimensional regression, similar to the analysis in [69] which
looked at the statistical information and limitations of generative adversarial networks for
event generation in increasing dimensionality. Ultimately, we are interested in how accurate
the MLP can potentially be. Future work will look at the dependence of MLP performance on
the size of the training set and the model architecture. Furthermore, we would like to investi-
gate various uncertainty estimates such as model ensembling and Monte Carlo Dropout [70].
Answering these questions will shed light on the potential of MLPs and their limitations in
accurately approximating computationally expensive functions for high-energy physics.

20

https://scipost.org
https://scipost.org/SciPostPhys.12.6.187

SciPost Phys. 12, 187 (2022)

Acknowledgments

This research was supported in part through computational resources and services provided
by Advanced Research Computing (ARC), a division of Information and Technology Services
(ITS) at the University of Michigan, Ann Arbor. This work is supported in part by DOE grant
DE-SC0007859.

A Relating the Arguments of D0

The Lorentz invariant quantity s23 in equation 16 can be related to the other external inputs
si and a scattering angle θ . Rather than sampling s23 directly which has nontrivial limits, we
define x6 =

cosθ+1
2 and sample x6 ∈ [0,1] instead. The full relation between u≡ s23

s12
and x6 is

u=
1
2

�

− 1+ x2 + x3 − x2 x3 + x1(1+ x3 − x4) + x4 + x2 x4+

(2x6 − 1)
q

x2
1 + (−1+ x2)2 − 2x1(1+ x2)

q

x2
3 + (−1+ x4)2 − 2x3(1+ x4)

�

.
(28)

B Neighbors for RBF

As mentioned in Sec. 2.4, we must limit the interpolation of RBF to a small number of nearest
neighbors. To determine this number, we run experiments on the test functions in various di-
mensions where we compute the R2 performance of RBF with increasing neighbors. Figure 17
shows the results for various functions in different dimensions. We find that if RBF achieves
a high R2 for a function at low neighbors, there are diminishing returns on the performance
after about 150 neighbors (Fig. 17, panels 1 – 5). On the other hand, when RBF performs
poorly (panel 6, D9 function), it will require a large number of neighbors that brings back the
computational and memory overhead we are trying to avoid.

25 50 75 100 125 150 175

Neighbors

0.70

0.75

0.80

0.85

0.90

0.95

1.00

R
2

Camel, 9d

25 50 75 100 125 150 175

Neighbors

0.70

0.75

0.80

0.85

0.90

R
2

Periodic, 9d

25 50 75 100 125 150 175

Neighbors

-1.2

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

R
2

1e-8+1

Poly, 3d

25 50 75 100 125 150 175

Neighbors

0.98165

0.98170

0.98175

0.98180

0.98185

0.98190

0.98195

0.98200

0.98205

R
2

D3

25 50 75 100 125 150 175

Neighbors

0.40

0.42

0.44

0.46

0.48

0.50

R
2

D6

25 50 75 100 125 150 175

Neighbors

-0.12

-0.10

-0.08

-0.06

R
2

D9

Figure 17: The performance metric R2 of RBF as a function of the nearest neighbors
for various functions and dimensions.

21

https://scipost.org
https://scipost.org/SciPostPhys.12.6.187

SciPost Phys. 12, 187 (2022)

References

[1] J. Li and A. D. Heap, Spatial interpolation methods applied in the environmental sciences:
A review, Environ. Model. & Softw. 53, 173 (2014), doi:10.1016/j.envsoft.2013.12.008.

[2] K. W. K. Wong and D. Gerosa, Machine-learning interpolation of population-synthesis sim-
ulations to interpret gravitational-wave observations: A case study, Phys. Rev. D 100,
083015 (2019), doi:10.1103/PhysRevD.100.083015.

[3] H. Mitášová and J. Hofierka, Interpolation by regularized spline with tension: II. Appli-
cation to terrain modeling and surface geometry analysis, Math Geol 25, 657 (1993),
doi:10.1007/BF00893172.

[4] D. Amsallem and C. Farhat, Interpolation method for adapting reduced-order models and
application to aeroelasticity, AIAA J. 46, 1803 (2008), doi:10.2514/1.35374.

[5] ALEPH Collaboration, DELPHI Collaboration, L3 Collaboration, OPAL Collaboration, SLD
Collaboration, LEP electroweak working group, SLD electroweak and heavy flavour
groups, Precision electroweak measurements on the Z resonance, Phys. Rep. 427, 257
(2006), doi:10.1016/j.physrep.2005.12.006.

[6] Z. Li, J. Wang, Q.-S. Yan and X. Zhao, Efficient numerical evaluation of Feynman integrals,
Chinese Phys. C 40, 033103 (2016), doi:10.1088/1674-1137/40/3/033103.

[7] R. Winterhalder, V. Magerya, E. Villa, S. Jones, M. Kerner, A. Butter, G. Heinrich and T.
Plehn, Targeting multi-loop integrals with neural networks, SciPost Phys. 12, 129 (2022),
doi:10.21468/SciPostPhys.12.4.129.

[8] D. J. Rezende and S. Mohamed, Variational inference with normalizing flows, Proc. Int.
Conf. Mach. Learn. 32, 1530, arXiv:1505.05770.

[9] S. Otten, K. Rolbiecki, S. Caron, J.-S. Kim, R. Ruiz de Austri and J. Tattersall, DeepXS: Fast
approximation of MSSM electroweak cross sections at NLO, Eur. Phys. J. C 80, 12 (2020),
doi:10.1140/epjc/s10052-019-7562-1.

[10] F. Bishara and M. Montull, (Machine) Learning amplitudes for faster event generation,
arXiv:1912.11055.

[11] T. Chen and C. Guestrin, XGBoost: A scalable tree boosting system, SIGKDD Conf. Knowl.
Discov. Data Min. 22, (2016), doi:10.1145/2939672.2939785.

[12] S. Badger and J. Bullock, Using neural networks for efficient evaluation of
high multiplicity scattering amplitudes, J. High Energy Phys. 06, 114 (2020),
doi:10.1007/JHEP06(2020)114.

[13] D. Maître and H. Truong, A factorisation-aware Matrix element emulator, J. High Energy
Phys. 11, 066 (2021), doi:10.1007/JHEP11(2021)066.

[14] J. Aylett-Bullock, S. Badger and R. Moodie, Optimising simulations for diphoton produc-
tion at hadron colliders using amplitude neural networks, J. High Energy Phys. 08, 066
(2021), doi:10.1007/JHEP08(2021)066.

[15] A. Buckley, A. Kvellestad, A. Raklev, P. Scott, J. Vegard Sparre, J. Van den Abeele and I. A.
Vazquez-Holm, Xsec: The cross-section evaluation code, Eur. Phys. J. C 80, 1106 (2020),
doi:10.1140/epjc/s10052-020-08635-y.

22

https://scipost.org
https://scipost.org/SciPostPhys.12.6.187
https://doi.org/10.1016/j.envsoft.2013.12.008
https://doi.org/10.1103/PhysRevD.100.083015
https://doi.org/10.1007/BF00893172
https://doi.org/10.2514/1.35374
https://doi.org/10.1016/j.physrep.2005.12.006
https://doi.org/10.1088/1674-1137/40/3/033103
https://doi.org/10.21468/SciPostPhys.12.4.129
https://arxiv.org/abs/1505.05770
https://doi.org/10.1140/epjc/s10052-019-7562-1
https://arxiv.org/abs/1912.11055
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1007/JHEP06(2020)114
https://doi.org/10.1007/JHEP11(2021)066
https://doi.org/10.1007/JHEP08(2021)066
https://doi.org/10.1140/epjc/s10052-020-08635-y

SciPost Phys. 12, 187 (2022)

[16] H. A. Chawdhry, M. Czakon, A. Mitov and R. Poncelet, NNLO QCD corrections
to three-photon production at the LHC, J. High Energy Phys. 02, 057 (2020),
doi:10.1007/JHEP02(2020)057.

[17] Z. Kassabov, Zaharid/GPTree: Interpolation library using Gaussian Processes and KDTrees,
doi:10.5281/zenodo.3571309 (2019).

[18] M. Czakon, A. van Hameren, A. Mitov and R. Poncelet, Single-jet inclusive rates with exact
color at O(α4

s), J. High Energy Phys. 10, 262 (2019), doi:10.1007/JHEP10(2019)262.

[19] R. D. Ball et al. and The NNPDF collaboration, Parton distributions for the LHC run II, J.
High Energy Phys. 04, 040 (2015), doi:10.1007/JHEP04(2015)040.

[20] C. Caruso and F. Quarta, Interpolation methods comparison, Comput. & Math. Appl. 35,
109 (1998), doi:10.1016/S0898-1221(98)00101-1.

[21] M. A. Azpurua and K. Dos Ramos, A comparison of spatial interpolation methods for es-
timation of average electromagnetic field magnitude, Prog. Electromagn. Res. M 14, 135
(2010), doi:10.2528/PIERM10083103.

[22] Y. Jia and J. Ma, What can machine learning do for seismic data processing? An interpola-
tion application, Geophysics 82, V163 (2017), doi:10.1190/geo2016-0300.1.

[23] E. Bélisle, Z. Huang, S. Le Digabel and A. E. Gheribi, Evaluation of machine learning
interpolation techniques for prediction of physical properties, Comput. Mater. Sci.98, 170
(2015), doi:10.1016/j.commatsci.2014.10.032.

[24] J. Li and A. D. Heap, A review of comparative studies of spatial interpolation methods
in environmental sciences: Performance and impact factors, Ecol. Inform. 6, 228 (2011),
doi:10.1016/j.ecoinf.2010.12.003.

[25] D. Han, Comparison of commonly used image interpolation methods, Proc. Int. Conf. Com-
put. Sci. Electron. Eng. 2, 1556 (2013), doi:10.2991/iccsee.2013.391.

[26] P. Virtanen, et al., SciPy 1.0: Fundamental algorithms for scientific computing in Python,
Nat. Methods 17, 261 (2020), doi:10.1038/s41592-019-0686-2.

[27] J. L. Bentley, Multidimensional binary search trees used for associative searching, Commun.
ACM 18, 509 (1975), doi:10.1145/361002.361007.

[28] D. T. Lee and B. J. Schachter, Two algorithms for constructing a Delaunay triangulation,
Int. J. Comput. Inf. Sci. 9, 219 (1980), doi:10.1007/BF00977785.

[29] R. Wagner, Multi-linear interpolation, https://rjwagner49.com/Mathematics/
Interpolation.pdf.

[30] D. Shepard, A two-dimensional interpolation function for irregularly-spaced data, Proc.
ACM Natl. Conf. 23, 517 (1968), doi:10.1145/800186.810616.

[31] L. Bradley, B. Sipőcz, T. Robitaille, E. Tollerud, Z. Vinícius, C. Deil, K. Barbary, T. J.
Wilson, I. Busko, H. M. Günther, M. Cara, S. Conseil et al., astropy/photutils: 1.0.0,
doi:10.5281/zenodo.4044744 (2020).

[32] R. L. Hardy, Multiquadric equations of topography and other irregular surfaces, J. Geophys.
Res. 76, 1905 (1971), doi:10.1029/JB076i008p01905.

23

https://scipost.org
https://scipost.org/SciPostPhys.12.6.187
https://doi.org/10.1007/JHEP02(2020)057
https://doi.org/10.5281/zenodo.3571309
https://doi.org/10.1007/JHEP10(2019)262
https://doi.org/10.1007/JHEP04(2015)040
https://doi.org/10.1016/S0898-1221(98)00101-1
https://doi.org/10.2528/PIERM10083103
https://doi.org/10.1190/geo2016-0300.1
https://doi.org/10.1016/j.commatsci.2014.10.032
https://doi.org/10.1016/j.ecoinf.2010.12.003
https://doi.org/10.2991/iccsee.2013.391
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1145/361002.361007
https://doi.org/10.1007/BF00977785
https://rjwagner49.com/Mathematics/Interpolation.pdf
https://rjwagner49.com/Mathematics/Interpolation.pdf
https://doi.org/10.1145/800186.810616
https://doi.org/10.5281/zenodo.4044744
https://doi.org/10.1029/JB076i008p01905

SciPost Phys. 12, 187 (2022)

[33] R. Franke, A critical comparison of some methods for interpolation of scattered data, http:
//hdl.handle.net/10945/35052.

[34] V. Skala, RBF Interpolation with CSRBF of Large Data Sets, Procedia Comput. Sci. 108,
2433 (2017), doi:10.1016/j.procs.2017.05.081.

[35] M. Smolik and V. Skala, Efficient speed-up of radial basis functions approximation and
interpolation formula evaluation, in Computational science and its applications, ICCSA
2020 Lecture Notes, Springer International Publishing, Cham, ISBN 9783030587987
(2020), doi:10.1007/978-3-030-58799-4_12.

[36] K. Hornik, M. Stinchcombe and H. White, Multilayer feedforward networks are universal
approximators, Neural Netw. 2, 359 (1989), doi:10.1016/0893-6080(89)90020-8.

[37] G. Cybenko, Approximation by superpositions of a sigmoidal function, Math. Control Signal
Systems 2, 303 (1989), doi:10.1007/BF02551274.

[38] M. Abadi et al., TensorFlow: A system for large-scale machine learning, arXiv:1605.08695.

[39] F. Chollet et al., Keras, (2015), https://keras.io.

[40] D. Hendrycks and K. Gimpel, Gaussian Error Linear Units (GELUs), arXiv:1606.08415.

[41] D. Mishkin and J. Matas, All you need is a good init, arXiv:1511.06422.

[42] D. P. Kingma and J. Ba, Adam: A method for stochastic optimization, arXiv:1412.6980.

[43] G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye and T.-Y. Liu, LightGBM: A
highly efficient Gradient Boosting decision tree, Adv. Neural Inf. Process. Syst. 30, (2017).

[44] Light GBM documentation, https://lightgbm.readthedocs.io/en/latest/Features.html.

[45] M. Mehta, R. Agrawal and J. Rissanen, SLIQ: A fast scalable classifier for data mining, in
Advances in Database Technology, Springer Berlin Heidelberg, Berlin, Heidelberg, ISBN
9783540610571 (1996), doi:10.1007/BFb0014141.

[46] R. K. Vinayak and R. Gilad-Bachrach, DART: Dropouts meet multiple Additive Regression
Trees, Proc. Int. Conf. Artificial Intell. Statistics 18, 489 (2015).

[47] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever and R. Salakhutdinov, Dropout: A
simple way to prevent neural networks from overfitting, J. Machine Learn. Res. 15, 1929
(1929).

[48] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P.
Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos et al., Scikit-learn: Machine
learning in Python, J. Mach. Learn. Res. 12, 2825 (2011).

[49] C. E. Rasmussen and C. K. I. Williams, Gaussian processes for machine learning, The MIT
Press, Cambridge, Massachusetts, US, ISBN 9780262182539, (2005).

[50] H. Liu, Y.-S. Ong, X. Shen and J. Cai, When Gaussian process meets big data: A
review of scalable GPs, IEEE Trans. Neural Netw. Learning Syst. 31, 4405 (2020),
doi:10.1109/TNNLS.2019.2957109.

[51] J. Hensman, N. Fusi and N. D. Lawrence, Gaussian processes for big data,
arXiv:1309.6835.

24

https://scipost.org
https://scipost.org/SciPostPhys.12.6.187
http://hdl.handle.net/10945/35052
http://hdl.handle.net/10945/35052
https://doi.org/10.1016/j.procs.2017.05.081
https://doi.org/10.1007/978-3-030-58799-4_12
https://doi.org/10.1016/0893-6080(89)90020-8
https://doi.org/10.1007/BF02551274
https://arxiv.org/abs/1605.08695
https://keras.io
https://arxiv.org/abs/1606.08415
https://arxiv.org/abs/1511.06422
https://arxiv.org/abs/1412.6980
https://lightgbm.readthedocs.io/en/latest/Features.html
https://doi.org/10.1007/BFb0014141
https://doi.org/10.1109/TNNLS.2019.2957109
https://arxiv.org/abs/1309.6835

SciPost Phys. 12, 187 (2022)

[52] M. Titsias, Variational learning of inducing variables in sparse Gaussian processes, Proc.
Int. Conf. Artificial Intell. Statistics 12, 567 (2009)

[53] A. G. d. G. Matthews et al., GPflow: A Gaussian process library using TensorFlow, J. Mach.
Learn. Res. 18, 1 (2017).

[54] C. Gao, J. Isaacson and C. Krause, i-flow: High-dimensional integration and sampling with
normalizing flows, Mach. Learn.: Sci. Technol. 1, 045023 (2020), doi:10.1088/2632-
2153/abab62.

[55] G. Passarino and M. Veltman, One-loop corrections for e+e− annihilation into µ+µ− in the
Weinberg model, Nucl. Phys. B 160, 151 (1979), doi:10.1016/0550-3213(79)90234-7.

[56] H. H. Patel, Package-X: A Mathematica package for the analytic calculation of one-loop
integrals, Comput. Phys. Commun. 197, 276 (2015), doi:10.1016/j.cpc.2015.08.017.

[57] A. Denner and S. Dittmaier, Reduction of one-loop tensor 5-point integrals, Nucl. Phys. B
658, 175 (2003), doi:10.1016/S0550-3213(03)00184-6.

[58] A. Denner and S. Dittmaier, Reduction schemes for one-loop tensor integrals, Nucl. Phys. B
734, 62 (2006), doi:10.1016/j.nuclphysb.2005.11.007.

[59] A. Denner and S. Dittmaier, Scalar one-loop 4-point integrals, Nucl. Phys. B 844, 199
(2011), doi:10.1016/j.nuclphysb.2010.11.002.

[60] A. Denner, S. Dittmaier and L. Hofer, Collier: A fortran-based complex one-loop
library in extended regularizations, Comput. Phys. Commun. 212, 220 (2017),
doi:10.1016/j.cpc.2016.10.013.

[61] S. P. Martin and D. G. Robertson, TSIL: a program for the calculation of two-loop self-energy
integrals, Comput. Phys. Commun. 174, 133 (2006), doi:10.1016/j.cpc.2005.08.005.

[62] O. V. Tarasov, Generalized recurrence relations for two-loop propagator integrals with arbi-
trary masses, Nucl. Phys. B 502, 455 (1997), doi:10.1016/S0550-3213(97)00376-3.

[63] A. Kravchenko and D. G. Bullock, A Comparative Study of Interpola-
tion Methods for Mapping Soil Properties, Agron. J. 91, 393 (1999),
doi:10.2134/agronj1999.00021962009100030007x.

[64] D. Zwillinger and S. Kokoska, CRC standard probability and statistics tables and formulae,
CRC Press, Boca Raton, Florida, US, ISBN 9781420050264, (2000).

[65] P. H. Westfall, Kurtosis as peakedness, Am. Stat. 68, 191 (2014),
doi:10.1080/00031305.2014.917055.

[66] S. Raschka, matplotlib.pyplot.boxplot — Matplotlib 3.4.3 Documentation, (2021), https:
//matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.boxplot.html.

[67] I. Chahrour and J. D. Wells, Prediction versus truth plots for “function approximation for
high-energy physics: Comparing machine learning and interpolation methods”, Zenodo
(2021), https://doi.org/10.5281/zenodo.5708243.

[68] C. A. Gotway, R. B. Ferguson, G. W. Hergert and T. A. Peterson, Comparison of Kriging
and inverse-distance methods for mapping soil parameters, Soil Sci. Soc. Am. J. 60, 1237
(1996), doi:10.2136/sssaj1996.03615995006000040040x.

25

https://scipost.org
https://scipost.org/SciPostPhys.12.6.187
https://doi.org/10.1088/2632-2153/abab62
https://doi.org/10.1088/2632-2153/abab62
https://doi.org/10.1016/0550-3213(79)90234-7
https://doi.org/10.1016/j.cpc.2015.08.017
https://doi.org/10.1016/S0550-3213(03)00184-6
https://doi.org/10.1016/j.nuclphysb.2005.11.007
https://doi.org/10.1016/j.nuclphysb.2010.11.002
https://doi.org/10.1016/j.cpc.2016.10.013
https://doi.org/10.1016/j.cpc.2005.08.005
https://doi.org/10.1016/S0550-3213(97)00376-3
https://doi.org/10.2134/agronj1999.00021962009100030007x
https://doi.org/10.1080/00031305.2014.917055
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.boxplot.html
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.boxplot.html
https://doi.org/10.5281/zenodo.5708243
https://doi.org/10.2136/sssaj1996.03615995006000040040x

SciPost Phys. 12, 187 (2022)

[69] A. Butter, S. Diefenbacher, G. Kasieczka, B. Nachman and T. Plehn, GANplifying event
samples, SciPost Phys. 10, 139 (2021), doi:10.21468/SciPostPhys.10.6.139.

[70] Y. Gal and Z. Ghahramani, Dropout as a Bayesian approximation: Representing model
uncertainty in deep learning, Proc. Int. Conf. Mach. Learn. 33, 1050 (2016)

26

https://scipost.org
https://scipost.org/SciPostPhys.12.6.187
https://doi.org/10.21468/SciPostPhys.10.6.139

	Introduction
	Interpolation Methods
	Nearest-Neighbor Interpolation (NN)
	Linear Interpolation on Regular Grid (Grid)
	Inverse Distance Weighting (IDW)
	Radial Basis Function (RBF) Interpolation

	Regression Methods
	Multilayer Perceptron (MLP)
	Light Gradient Boosting Machine (LGBM)
	Stochastic Variational Gaussian Process (SVGP)

	Test Functions
	Toy Functions
	Loop Integral Functions
	Scalar Passarino-Veltman D0
	Two-loop Self-energy Master Integral M

	Characterizing the Distributions of the Test Functions

	Cross-validation and Evaluation Metrics
	Results
	3 Dimensions
	6 Dimensions
	9 Dimensions
	Two-loop Master Integral (5 Dimensions)
	Discussion and Further Analysis

	Conclusions and Future Directions
	Relating the Arguments of D0
	Neighbors for RBF
	References

