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Abstract

We discuss and compare two recently proposed toy models for anomalous transport
and Griffiths effects in random systems near the Many-Body Localization transitions:
the random dephasing model, which adds thermal inclusions in an Anderson Insulator
as local Markovian dephasing channels that heat up the system, and the random Gaus-
sian Orthogonal Ensemble (GOE) approach which models them in terms of ensembles
of random regular graphs. For these two settings we discuss and compare transport and
dissipative properties and their statistics. We show that both types of dissipation lead
to similar Griffiths-like phenomenology, with the GOE bath being less effective in ther-
malising the system due to its finite bandwidth. We then extend these models to the
case of a quasi-periodic potential as described by the André-Aubry-Harper model cou-
pled to random thermal inclusions, that we show to display, for large strength of the
quasiperiodic potential, a similar phenomenology to the one of the purely random case.
In particular, we show the emergence of subdiffusive transport and broad statistics of
the local density of states, suggestive of Griffiths like effects arising from the interplay
between quasiperiodic localization and random coupling to the baths.
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1 Introduction

Transport properties of quantum many body systems are known to be extremely sensitive to
inhomogeneities and spatial disorder. A well understood example is provided by the phe-
nomenon of Anderson localization [1], where diffusion is suppressed by quantum interfer-
ence above a critical disorder strength, which turns out to be vanishingly small in low di-
mensions [2]. Another notable example is provided by the case of a quasi-periodic potential
incommensurate with the lattice, as in the model of André-Aubry-Harper (AAH) [3,4] where
in one dimension a transition from delocalized ballistic transport to localized behavior arises
as a function of the potential strength.

The fate of quantum localization in presence of many-body interactions, and in regimes
far from low temperature equilibrium, has been at the center of theoretical and experimental
interest, both for its fundamental interest for our basic understanding of quantum statistical
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mechanics and for its practical implications in the search for mechanisms to protect quan-
tum information [5–13]. The existence of a Many-Body Localized (MBL) phase has been dis-
cussed and established, both for quenched randomness and quasi-periodic disorder [14–20],
yet many questions remain open. In particular the transport and thermalization properties on
both sides of the MBL transition have attracted particular interest, triggered by the evidence
for anomalous (sub) diffusion [21–30], a remarkably robust phenomenon which has been
since then also observed experimentally with cold atoms, ultracold ions, and superconducting
circuits [31–35].

An appealing phenomenological interpretation of these anomalies has been proposed, for
disordered models, in terms of the existence around the MBL transition of a quantum Grif-
fiths phase [36]. This is characterized by rare inclusions of the insulating (conducting) phase
with an anomalously small (large) localization length. Several phenomenological proposals
have been put forward to describe this physics, from purely classical resistor-capacitor mod-
els with power-law distributed resistances [23, 37] to stochastic models for merging thermal
and insulating regions which are motivated by strong-disorder renormalization group argu-
ments [38–41]. Crucially, this Griffiths physics is at the core of our understanding of both
the critical properties of the MBL transition and the mechanism for its destabilization through
quantum avalanches [42–48].

In the quasi-periodic case the understanding of transport and thermalization across the
MBL transition is even more preliminary. Anomalous transport has been reported in the
past years for the interacting AAH model, including claims of subdiffusion and superdiffu-
sion [49–51], which have been, however, recently questioned [52]. The existence of a sub-
diffusive region, prior to the fully localized phase, is an intriguing possibility and its relation
with a possible Griffiths phase is a priori not obvious. In fact, the quasi-periodicity is a struc-
tured pattern, whereas disordered potentials are random and uncorrelated processes. A better
understanding of the robustness of quasi-periodic localized phases against thermal inclusions
and their transport properties is therefore urgent.

Unfortunately, the study of large disordered or quasi-periodic interacting many body sys-
tems with numerically exact methods remains extremely challenging. It is therefore desirable
to find models which capture some of the key physical facets of many-body localizing systems,
while being computationally tractable even for large system sizes.

Recently, two toy models have been proposed to describe, at a microscopic level, the in-
terplay between localization and the so-called thermal inclusions, which in truly many-body
systems are produced by internal interactions, in the context of MBL with random disorder.
The first one, called random dephasing model [53], describes the environment in terms of
Markovian dephasing processes able to heat up the system and which are randomly coupled
to each lattice site with a given probability. The second one describes thermal inclusions as
the coupling to a GOE random-matrix bath implemented through an ensemble of Random-
Regular-Graphs (RRG) [54]. In addition to their role for the understanding of MBL physics
these models also present an intrinsic interest, as simple settings where questions related to
stability of localization with respect to dissipation can be answered in some detail.

It is important to mention here that some recent works have even questioned the existence
of a truly MBL phase in the thermodynamic limit [55–59]. Furthermore, several recent nu-
merical results indicate that, even if a genuine MBL transition exists, it is affected by strong
finite-size effects, with the transition point moving to larger and larger values of the disor-
der as larger system sizes are considered [60, 61], and eventually following far outside the
numerically-accessible crossover between the finite-size MBL regime and thermalization. Yet,
the subdiffusive crossover region preceding the transition seem to be very robust and much
less affected by finite size effects. In this respect Refs. [62–65] put forward the idea that that
the MBL transition and the anomalously slow sub-diffusive crossover phase preceding it may
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be driven by distinctly different physical mechanisms. In this paper we focus on this latter
regime. In this regard, the advantage of working with simplified toy models is twofold. On
the one hand, they allow one to inspect the physics on much larger scales (on which Griffiths
effects are believed to be important) compared to the interacting models. On the other hand,
they allow one to study the sub-diffusive regime disentangling it from the MBL transition.

In the first part of this work we revisit and compare in detail these two models of thermal
inclusions in the context of a simple Anderson insulator. In particular, we compute transport
and spectral properties, going beyond the results presented in [53,54]. We then extend these
toy models to the quasi-periodic case, with the goal of shedding light on the mechanism for
the destruction of their localized phases by thermal inclusions and assessing its degree of
universality.

The paper is structured as follows. In Sec. 2 we give an overview of the main results of
our paper. In Sec. 3 we define the Anderson and AAH models, the dissipative settings we
consider, the main quantities of interest and we also briefly mention how to compute them. In
Sec. 4 we present our results for the random disordered case, while in Sec. 5 we discuss the
quasi-periodic one. In Sec. 6 we discuss and compare the behavior of the two models and we
discuss them in the light of possible connections with the MBL problem. Finally, in Sec. 7 we
present our conclusions. We detail in the Appendix the derivations and computations of our
analytic results.

2 Summary of Main Results

We start with an overview of the main results obtained in this work, which will be discussed
in detail in Sections 4 and 5.

We consider two models for single particle localization, namely one dimensional quantum
particles in presence of (uncorrelated) random or quasiperiodic disorder leading to the An-
derson and AAH models defined in Sec. 3.1, and we study the effect of thermal inclusions on
their transport and spectral properties. As we discuss in Sec. 3.2 for each of these two mod-
els we consider and compare two types dissipative environments: (i) a Markovian Dephasing
Bath (MDB) described by the Lindblad master equation with randomly distributed dephasing
jump operators, similar to what was done in Ref. [53], and (ii) a GOE bath described by a
local coupling to independent Random-Regular-Graphs, as done in Ref. [54]. The advantage
of these two settings is that in both cases the effect of the coupling to the bath can be treated
exactly using Lindblad equations of motions or the cavity method, respectively, and these lead
to numerically exact results for single-particle observables such as the particle current or the
local density of states, as discussed in Sec. 3.3.

We first discuss in Sec. 4 the case of the Anderson model coupled to MDB and GOE baths,
for which we revisit and complement the results of Refs. [53, 54]. In particular, we discuss
transport properties such as the scaling of the typical resistivity with system size, a study not
performed in Ref. [54], and the statistics of the Local Density of States (LDoS), missing in
Ref. [53], thus obtaining a complete picture of the effect of thermal inclusions on the Anderson
localized phase leading to a robust sub-diffusive phase. Our results are summarized in the
dynamical phase diagram shown in Fig. 5. This study lets us demonstrate that the two ways
of introducing dissipation, MDB and GOE, lead to the same physical behavior. Already from
this analysis we can conclude that the GOE bath is less effective in thermalizing the system
and inducing diffusion.

In Sec. 5 we extend our analysis to the quasiperiodic case, i.e. the AAH model. We discuss
how dissipation in the two settings affects its transport and spectral properties. Our results
show that in both cases the localized phase of the AAH model turns into a sub-diffusive regime
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which appears to be much broader for the GOE dissipation than for the MDB one, as shown in
the dynamical phase diagram of Fig. 9. This subdiffusive scaling appears also in the statistics
of the LDoS.

A comment is in order here. For a truly many-body model in a quasiperiodic potential the
spatial structure of the thermal inclusions is not random and is arguably correlated with the
potential itself. However, predicting the position of these thermal spots is an extremely hard
task, which is essentially equivalent to solving the many-body problem. For this reason in the
toy models we work with the dephasing dynamics is assumed to apply on a randomly dis-
tributed set of sites, independently of the local potential, both in the Anderson and in the AAH
case. One could then argue that, since in our simplified setting the insulating regions and the
thermal inclusions are essentially put by hand at random, one cannot draw any conclusion on
the universality of the Griffiths picture. Yet, on the one hand one could speculate that many-
body interactions, together with the randomness of the initial configuration, give rise to some
sort of configurational disorder, as one could see for example by treating those interactions
at the Hartree-Fock (HF) level [66,67]. Besides, we would like to point out that the fact that
the Anderson model with uncorrelated disorder and the AAH model in the localized regime
respond in a very similar way when coupled to a thermalizing system is still interesting and
informative. In fact, as explained below, in the Anderson model the formation of rare reso-
nances is a quite “simple” local process: resonances are formed on the sites on which the local
disorder is small and the dephasing dynamics is active. Instead the formation of resonances in
the AAH case cannot be predicted easily and is likely to involve more complex and non-local
processes. Still, the phenomenology of the two models when coupled to the thermal inclu-
sions is essentially the same, for the two kinds of dissipative enviroments that we consider.
We believe that this gives some strong indication on the fact that the subdiffusive regime is a
very robust feature which appears whenever Anderson localized edgestates are perturbed by
thermal inclusions, independently of the details of the microscopic modelization of the bath.

3 Models and Methods

In this Section we define the models we work with. We first introduce the two non-interacting
one-dimensional chains, namely the Anderson tight-binding model with quenched randomness
and the André-Aubry-Harper model with a quasi-periodic potential. Next, we explain the
two ways in which we introduce the thermal inclusions due to the coupling to an effective
environment. Finally, we identify the observables we employ and we briefly describe how we
implement them (a thorough analysis is detailed in the Appendices).

3.1 Anderson and André-Aubry-Harper Models

Let us consider a one-dimensional tight-binding model of non-interacting spin-less fermions
moving on a chain of L sites. The system’s Hamiltonian is

Ĥ =
L−1
∑

i=1

�

t
�

d̂†
i d̂i+1 + h.c.

�

+ hi d̂
†
i d̂i

�

=
L
∑

i, j=1

d̂†
i Hi, j d̂ j ,

Hi, j = tδi, j+1 + tδi+1, j + hiδi, j . (1)

In Eq. (1) d̂i (d̂†
i ) are the annihilation (creation) operators acting on the i-th site, the one-

particle Hamiltonian H is an L × L Hermitian and tridiagonal matrix, and open boundary
condition are applied. The constant hopping t sets the unit of energy, and the inhomogeneous
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potential hi is taken to be either random and uniformly distributed

hi ∈ [−W ; W ] , (2)

or quasi-periodic (i.e. incommensurate with the lattice)

hi = λ cos(2πci) , (3)

with c= (
p

5−1)/2 (known as the golden ratio)1 and λ≥ 0. These are the Anderson [1] and
the André-Aubry-Harper quasi-periodic [4] models, respectively.

3.2 Random Coupling to Baths

With the aim of mimicking the effect of thermal inclusions, we consider a random coupling to
baths, modeled in two ways which we specify in the following two subsections. The couplings
allow for energy relaxation, with a rate γi that is a random variable distributed according to

P(γi; p,γ) = pδ(γi) + (1− p)δ(γi − γ) , (4)

where p ∈ [0, 1] is a control parameter, and γ sets the dephasing strength (see the cartoons in
Fig. 1 and Fig. 2). In particular, the limits

— p→ 1 corresponds to no dephasing at all,

— p→ 0 is a constant and uniform dephasing acting on every site.

Given a spin chain of length L, (1−p)L is the average number of sites under dephasing. Finally,
a reason for setting these coupling terms randomly across the set-up is to mimic the spatial
distribution of thermal inclusions in many-body localized systems (at least when considering
models with a random potential). For deterministic models the position of a thermal inclusion
is not random, although it remains unpredictable. For this reason we keep the random coupling
distribution (4) even when focusing on André-Aubry-Harper chains.

3.2.1 Markovian Dephasing Bath

In order to include the effect of the environment while keeping the system tractable we work
in the framework of open Markovian quantum systems described by the Lindblad equation for
the system density matrix [68], i.e.

∂t ρ̂t = Lρ̂t = −i[Ĥ, ρ̂t] +D[ρ̂t] , (5)

where the first term represents the coherent evolution of the density matrix due to the system’s
Hamiltonian Ĥ, while the second term accounts for incoherent processes due to the coupling
to the environment and it is described by a dissipator D[ρ̂t] acting on the density matrix. In
this work we consider three types of dissipative processes, which give rise to a dissipator of
the form

D[◦] =Dd[◦] +Dbnd,l[◦] +Dbnd,r[◦] , (6a)

Dd[◦] =
L
∑

i=1

γi (2n̂i ◦ n̂i − {n̂i ,◦}) , (6b)

Dbnd,l[◦] = Γ
�

2d̂†
1 ◦ d̂1 −

�

d̂1d̂†
1,◦
	�

, (6c)

Dbnd,r[◦] = Γ
�

2d̂L ◦ d̂†
L −

�

d̂†
L d̂L ,◦

	�

. (6d)

1Any other value which is incommensurate with the lattice spacing, here assumed to be unity, gives equivalent
physics. The specific choice of the golden ratio is due to historical reasons.
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In these notes we treat the stationary state of disordered and quasi-periodic system subject to the
presence of boundary driving and percolated dissipation. The quadratic nature of the considered
model allows exact computations. Depending on the Hamiltonian, and on the percolation probability
for a site to be dephasing, different regimes are identified.

I. MOTIVATIONS

Many-body localization has gathered extensive focus
as an example of quantum system avoiding the thermal
fate [1–9]. Much of the work has been devoted to un-
derstanding disordered systems. It is known that non-
interacting systems subject to sufficiently strong disorder
exhibit (Anderson) localization [10, 11]: the transport
of particle is exponentially suppressed with system size,
and the Wannier wavefunction are confined to a bounded
support. Remarkably, localization survive the presence
of interactions, with the important difference that in-
formation propagate unbounded in interacting systems.
On the other hand, many-body localization has been ob-
served also in the so-called quasiperiodical system [12–
17]. These are lattice models subject to a periodic po-
tential, with wavelength incommensurate with the un-
derlying lattice. At strong enough potential, the system
localize.

An important point is that, in the thermalizing phase
preceding the localization transition, several numerical
studies have found evidence of anomalous subdiffusive
transport of particles [18–21]. The microscopic origin
of this subdiffusion is still uncertain. The prevailing
idea is that this behavior is caused by Griffiths effects.
Here, rare regions of strong disorder result in bottlenecks
that slow transport. Also quasiperiodic system exhibits
anomalous transport, but the correlated nature of the
on-site potential renders the Griffiths phase explanation
less an educated guess. The stability of a subdiffusive
region, prior to the fully localized phase, is a fascinating
possibility, supported by recent numerical works [22, 23].

It is desirable to find a toy model which capture the key
physical aspect of many-body localizing systems, while
being treatable. In these notes, we consider the ideas
in Ref. [24] in the non-interacting Aubry-André-Harper
(AAH) model. Specifically, the system is evolved coupled
also to a boundary driving, and to percolated on-site de-
phasing. (Each site is subject to dephasing, except for
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a fraction p). The effect of percolated dephasing is to
mimic interactions throughout the system, while preserv-
ing efficient simulation through free fermion techniques.
The structure of these note is the following. In section
we introduce the models and methods considered. We
review the main steps and considerations in Ref. [24] in
section. The treatment of the AAH is worked out in sec-
tion.
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Figure 1. Cartoon summarizing the system when the bound-
ary driving is open. The boundary terms inject/absorb par-
ticles from the system. We shall pick �i = 0, � respectively
with probability p, 1 � p. The limiting case p = 0 correspond
to dephasing at every site, while p = 1 to no dephasing.[To
Do: larger fonts]

II. MODELS
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possibility, supported by recent numerical works [22, 23].
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a fraction p). The effect of percolated dephasing is to
mimic interactions throughout the system, while preserv-
ing efficient simulation through free fermion techniques.
The structure of these note is the following. In section
we introduce the models and methods considered. We
review the main steps and considerations in Ref. [24] in
section. The treatment of the AAH is worked out in sec-
tion.
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i

Figure 1: (Top) Cartoon of the Anderson or AAH models randomly coupled to Markovian
dephasing baths (MDB). Each black bullet represents a site on the lattice and the red squares
above the chain depict the local baths. The absence of some squares illustrates the fact
that the coupling to the baths is controlled by the random variable γi which vanishes with
probability p. The left and right boundary terms inject/absorb particles from the system.
(Bottom) The details of the local couplings on site i. Dd, Dbnd,l and Dbnd,r represent Lindblad
operators in the bulk and at the boundaries.

The first term, given by Eq. (6b), describes so-called dephasing processes (energy exchanges
with the bath that do not change particle number) and involve the particle density on each
site i, n̂i ≡ d̂†

i d̂i . As discussed at the beginning of this section, we take the coupling to the bath
γi to be random and distributed according to Eq. (4).

The last two terms, given in Eq. (6c)-(6d), describe particle injection/ejection contributions
acting on the first/last site of the chain, respectively. These processes are necessary to induce
a direct current (DC) at late times and therefore to describe transport. We take the coupling
to these two baths equal and given by Γ (see Fig. 1).

For brevity, the above characterization is collectively referred to as Markovian Dephasing
Bath (MDB). Within this setup, despite the four body interaction due to the dephasing contri-
bution, we can solve the equations of motion for the quantities of interest exactly [53,69] (see
Sec. 3.3). We outline the necessary details in App. A.

3.2.2 GOE Bath from Random Regular Graphs

Here we introduce our second setup, which is inspired by the recent proposal of a toy model
for the Griffiths phase of the disordered MBL problem [54]. The model is made of M identical
copies of Anderson/AAH chains of length L, labeled by the index n = 1, . . . , M . To mimic
the effect of thermal inclusions, at each horizontal position i the M sites belonging to different
chains are coupled by random hopping terms extracted from a sparse random matrix ensemble,
i.e., the ensemble of Random Regular Graphs (RRG) of fixed total connectivity c = 3 [70].
The RRGs are random lattices with a local tree-like structure, loops with typical length of order
log M , and no boundary. It is well known that in the absence of disorder the connectivity
matrix of a RRG belongs to the Gaussian Orthogonal Ensemble (GOE) [71,72]. Therefore, in
the following we refer to this dissipative setting as GOE bath. We present a sketch of this setup
in Fig. 2.
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Figure 2: Cartoon of the Anderson or AAH model coupled to random GOE baths with prob-
ability 1− p. The full model is made of M identical copies of a 1d chain coupled along the
x-direction via the inter-layer hopping rates t (red edges), with potential hi (equal on all
sites of the transverse planes). The matrix elements between two sites at a given position i
along the x direction correspond to the adjacency matrix of a random realization of a RRG
(different on each layer) times the intra-layer hopping rate γi (blue edges). The absence of
some RRGs illustrates the fact that γi = 0 with probability p. In the figure the connectivity
of the RRGs is c = 3.

The Hamiltonian of the model is

ĤGOE =−
L
∑

i=1

M
∑

n=1

�

t
�

d̂†
i,nd̂i+1,n + h.c.

�

+ hi d̂†
i,nd̂i,n

�

−
L
∑

i=1

∑

〈n,m〉i

γi

�

d̂†
i,nd̂i,m + h.c.

�

,

(7)

where d̂i,n and d̂†
i,n are creation and annihilation operators on the site at position i along the

n-th chain, and hi is the inhomogeneous potential (which is identical on all M sites sitting
at the same position i). The latter, in accordance with Sec. 3.2.1, we take to be either uni-
formly distributed in hi ∈ [−W ; W ] or given by a quasi-periodic incommensurate potential,
see Eqs. (2) and (3). The parameter t is the hopping rate in the horizontal direction between
sites occupying subsequent positions along the chains. γi is the hopping rate in the transverse
direction and it is equal to γ with probability 1− p and zero with probability p, as in Eq. (4).
The notation 〈n, m〉i indicates pairs of sites n and m with the same horizontal coordinate i
connected by an edge of the RRG within the i-th plane.

Note that on each vertical plane a different random realization of the RRG is chosen, in
such a way that two sites that are connected by γwithin a given layer are (with high probability
in the M →∞ limit) not connected on another layer. This is important as it ensures that the
whole lattice can be thought of as an anisotropic random graph, which is locally a tree but has
loops whose typical size diverges with the system size. The sites have either connectivity c+2
if they belong to a layer with γi 6= 0 or just 2 in the cases with γi = 0.

The Anderson insulator with p = 0, corresponding to a uniform dissipative coupling
along the chain, has already been studied in Ref. [54]. In this case one finds a localiza-
tion/delocalization transition when γ becomes of order 1/L. Unlike the MDB set-up described
in Sec. 3.2.1 in which each connection to the dephasing bath produces dissipation, in the GOE
set-up the RRG couplings are not always effective to ensure dissipation. This implies that
while the average number of non-zero γi couplings along the chain is (1− p)L, the number of
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Figure 3: Scheme representing the resonance condition for different layers (labelled i, j, k,
l, m, n) with RRG interactions. The density of states in layers i, l and m corresponds to a
delta peak, which is characterized by an absence of RRG interactions (γi = γl = γm = 0). On
the contrary for layers j, k and n the density of states has a width of 2

p
c − 1γ as we consider

γ j = γk = γn 6= 0. Layers j and k correspond to the scenario in which a resonance is formed,
their density of states is non-zero for E = ω and consequently it generates a peak in the
LDoS around layers j and k. For layers i, l, m and n however we have no overlap between
the probing frequency ω and ρ(E), thus there is no resonance in this case. In general, this
means that only the RRG interactions corresponding to the scenario of layers j and k form a
resonance in the LDoS.

positions in which the GOE-like couplings produces a Local Density of States (LDoS) of order
one only scales as ∼ (1− peff)L, with peff ≥ p. This can be understood with simple arguments
in the strong disorder limit (W � t or λ � t depending on the type of on-site potential).
When γ = 0 the system corresponds to M identical Anderson insulators with wave-functions
strongly localized around the sites i and corresponding eigenvalues close to the local potential
−hi . When the RRG couplings are turned on the hopping in the transverse direction lifts up
the degeneracy and spreads these M eigenenergies on a semi-circle-like distribution ρ(E) cen-
tered around −hi and of width 2

p
c − 1γ, see App. B. When the probing energy ω falls within

this band, a resonance in the LDoS is formed on site i. On the contrary, if ω falls outside this
band the RRG couplings do not yield a significant contribution to the LDoS on site i (see Fig. 3
for a sketch). Consequently, the fraction of dephasing planes (1− peff) is roughly given by the
probability to have γi 6= 0 times the probability that the on-site potential −hi is close enough
to the probing energy ω to form a resonance in the LDoS. This means

(1− peff) = (1− p)

∫ +∞

−∞
dhi P(hi)Θ

�

2
p

c − 1γ− |hi −ω|
�

< (1− p) , (8)

where P(hi) is the probability distribution of hi and Θ the Heaviside function. More generally,
this limiting case (W � t or λ� t) is a good example to understand why the RRG interactions
act like a bath in this set-up. Indeed, as shown in App. B, the presence of these interactions
generates a non-vanishing imaginary part in the Green function G(z) = (ĤGOE − zÎ)−1, with
z =ω+i0+, provided that there is a resonance. This implies that particles on a given site have a
finite life-time as they scatter in the system [73], which in other words means that localization
is destroyed. With the RRG interactions we thus retrieve a delocalization phenomenon that is
usually induced by a bath acting on a system with localized eigenstates.

3.3 Observables

In the following we characterize transport and spectral properties of the systems, which are
encoded in the frequency-resolved single particle retarded Green’s functions whose imaginary
part gives the Local Density of States (LDoS). For transport, a natural observable to distinguish
between localized, diffusive or intermediate regimes is the resistance of a finite-sized sample,
defined as the inverse stationary current flowing through the system,

R≡ 1/ j∞ , (9)
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which in the stationary (t →∞) regime is constant throughout the chain for both protocols
(see the App. A).

In the MDB case the average current is defined as

jMDB
∞ = it 〈d̂†

i−1d̂i − d̂†
i d̂i−1〉∞ . (10)

The asymptotic current is expected to be independent of i. In the equation above we have intro-
duced the average over the stationary state (infinite time solution of Eq. (5)) 〈◦〉∞ ≡ tr(◦ρ∞).

In the GOE setup instead we directly measure the (zero temperature) dimensionless con-
ductance 1/RGOE at a given energy energy ω through the Fisher-Lee formula [74],

1/RGOE(ω) = Tr
�

ΓLGGOEΓR
�

GGOE
�?�

, (11)

which uses the retarded (resp. advanced) Green’s function GGOE(ω) (resp. (GGOE(ω))?) of the
system dressed by the leads, and ΓL,R = −2ImΣL,R as the imaginary part of the self-energies
associated with the semi-infinite left and right leads (see App. B for details). Because the GOE
case involves the probing energy ω, it is important to note that RMDB and RGOE(ω) are not
equivalent: RMDB probes the whole spectrum of the system while RGOE(ω) only characterizes
the setup at a given energy. Throughout the rest of the paper we will measure the conductance
at ω= 0, around the middle of the band of single-particle eigenstates.

Another relevant quantity for our analysis is the single particle retarded Green’s function,
whose imaginary diagonal part is proportional to the LDoS. Such quantity contains information
on the degree of dissipation throughout the system and plays an important role in the theory
of localization. We can define the retarded Green’s function for the two settings as

MDB : GMDB
i, j (t) = −iθ (t)〈{d̂i(t), d̂†

j }〉 , (12)

GOE : GGOE
(i,n),( j,m)(z) = 〈i, n|

1

ĤGOE − zÎ
| j, m〉 , (13)

respectively. In the MDB setting we have used the time-domain definition of the retarded
Green’s function, written in terms of the anticommutator of time-evolved fermionic operators
and with the theta function ensuring causality. We note that in the context of fermionic open
quantum systems the time-evolution has to be performed with the adjoint Lindblad operator as
we discuss in App. A.2. In the GOE case it is more convenient to work directly in the frequency
representation, z = ω+ i0+, and define the retarded Green’s function as the resolvent of the
Hamiltonian. As mentioned above, the imaginary part of the retarded Green’s function has a
direct physical interpretation as LDoS at energy ω, and we study it below. In more explicit
form it reads

AGOE
i,n (ω) =

1
π

ImGGOE
(i,n),(i,n) =

∑

α

|ψα(i, n)|2 δ(Eα −ω) . (14)

Thanks to the translational invariance within the transverse planes in the GOE setting, the
dependence of the Green’s functions on the in-layer n indices disappears in the M →∞ limit.
In fact the typical length of the loops in the transverse planes diverges as log M . Therefore,
since the local potential is the same on each node of the transverse layer, they all become
statistically equivalent and the translational invariance in the transverse direction is recovered.
An equivalent expression to the one in Eq. (14) can be obtained for the MDB setting (see
e.g. [75]).

We note that both the resistance R and the retarded Green’s functions G defined above are
stochastic variables due to the random coupling to the bath for 0 < p < 1, and have an addi-
tional source of randomness for the Anderson model, i.e. the quenched disorder potential hi .
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We thus study the full probability distribution of these observables. Since the resistance devel-
ops a broad distribution with fat tails, P(R)∼ R−µ, approaching the subdiffusive regime [53],
we use its typical value as a proxy characterizing the transport properties. Denoting the aver-
age over all sources of disorder as ◦, we specifically define

Rtyp = exp log R , (15)

where we occasionally append the superscript MDB/GOE specifying the protocol under con-
sideration.2 We also study the exponent µ with which P(R) decays at large R.

We conclude this section with some technical insights on how the calculation of the relevant
observables defined above is performed within the two dissipative settings, leaving further
details to the Appendices.

In the MDB setting we can compute both the stationary current as well as the retarded
Green’s function exactly using the equation of motion techniques, as discussed in App. A. This
is possible despite the fact that the dephasing jump operators are proportional to the particle
density, thus leading to a Lindbladian which is not quadratic in the fermionic operators. The
structure of the dissipator however allows for further simplifications: one can indeed show
that the equations of motion for single particle correlations, usually coupled to higher order
correlators through a full hierarchy, decouple for the dephasing model [53,69,76]. As a result
one can obtain closed equations of motion for both single-time and two times single particle
correlations, which can be solved in real-space for generic inhomogeneous couplings. Using
this approach we can therefore compute both the steady-state current and the LDoS for the
MDB, as we review in App. A.

In the RRG/GOE context, we used two approaches. The first one is based on the Cavity
Method and has already been explained in Ref. [54], see also App. B. It consists in taking the
limit M →∞ from the start and assuming that loops are so long that they can be neglected.
This method is appropriate to compute local observables such as the probability distribution of
the LDoS, and leads to recursion relations for the diagonal elements of the Green’s functions
(given in App. B) which can be easily solved for very long chains.

A second complementary strategy, also explained in App. B, consists in studying the model
at finite M coupled to biased reservoirs at its edges and using a relation between the conductiv-
ity and the transmission matrix proposed in [74,77]. The coupling to the semi-infinite left and
right leads effectively yields a quasi-1d model, which can be solved exactly with the Transfer
Matrix method by inverting the full Green’s function within each plane by lower-upper (LU)
decomposition [78]. This method is appropriate to compute transport properties and global
observables such as the conductivity, as it allows one to overcome the drawback of the first
approach, which does not account in an exact fashion for all possible paths joining two sites of
the first and last external planes which are attached to the leads. However, the exact recursion
equations at finite M are much more costly to solve numerically (the time scales as LM3) and
we are thus limited to much smaller sizes, L ® 256, compared to the first strategy. Moreover,
keeping M finite leads to extra finite-size effects in the transverse direction.

4 The Anderson Chain

We start the discussion of our results focusing on the Anderson model coupled to local thermal-
izing environments, in the spirit of Refs. [53,54]. We first briefly revisit its transport properties
and we display and discuss the numerical evidence for sub-diffusion. We then present results

2Similar results to the ones presented in this paper are obtained when substituting the median med (R) to the
typical value Eq. (15). We do not show them here for presentation convenience.
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Figure 4: Typical resistance Rtyp (cfr. Eq. (15)) at W = 3/2 as a function of system size for
the MDB (a) and GOE (b) Anderson models. Different curves correspond to different values
of the dissipation probability p given in the key. The transport in both settings evolves from
diffusive to subdiffusive when one disconnects more and more sites from the baths (i.e., by
increasing p). The blue dashed lines are the Ohm’s law (diffusion with β = 1). In the insets,
we plot the associated exponent β(p) (cfr. Eq. (16)) extrapolated at different p. The fits are
obtained by considering the largest system sizes (log L ≥ 4).

for the statistics of the local density of states. For concreteness, we fix t = 1, Γ = 1/2 and
γ= 1/4 for the dephasing protocol, and t= 1, c = 3 and γ= 1/4 for the GOE one.

4.1 Resistance, Transport and the Phase diagram

The nature of transport is determined by the scaling of the typical resistance with the system
size L. In particular, a power law dependence

Rtyp ∼ Lβ (16)

indicates ballistic transport for β = 0, while diffusion is signaled by β = 1, and corresponds
to the Ohm’s law [79]. Values of β that are intermediate between 0 and 1 (0 < β < 1)
are termed superdiffusive while β > 1 is subdiffusive. The localization limit corresponds to
R∝ exp(L/ξloc), with ξloc the localization length, achieved by a divergent β .

We computed the stationary current as discussed in Sec. 3.3, and we derived the resistance
for the two models (see Eqs. (10) and (11)). In Fig. 4 we display the typical resistance Rtyp,
defined in Eq. (15), of the Anderson model with W = 3/2, as a function of system size in
double logarithmic scale. We used several values of the probability of decoupling from the
local baths, p indicated in the key, in the two protocols, MDB (a) and GOE (b).

In the no-dephasing limit, p = 1, the system exhibits Anderson localization for any W > 0
and the typical resistance grows exponentially with system size. The divergence of β can be
observed in the insets where we plot β against p. In the opposite limit, p = 0, in which every
site in the chain is subject to dephasing, the system is diffusive Rtyp∝ L. This limit is shown
with a blue broken line in the main plots and as the limit of the β(p) curves in the inserts.3

Since the fraction p controls how many sites are unaffected by dephasing, as p becomes
large there is an increasing number of insulating intervals. As first discussed in Ref. [23],
exponentially distributed rare insulating segments with exponentially large resistance produce
subdiffusive transport, R∼ Lβ with β > 1, due to Griffiths effects. The trend of the data shown

3The apparent super-diffusive behavior at p = 0 and small L is due to the fact that when the length of the chain
is smaller than the localization length the system behaves as if it were delocalized and hence the transport looks
like ballistic.
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Figure 5: Transport phase diagram of the Anderson model for the MDB (a), and GOE (b)
protocols. We obtain the data by extrapolating the system size scaling of the typical resistance
Rtyp (cfr. Eq. (16)). Specifically, we consider system sizes L = 8 ÷ 256 and measure the
exponent β = log Rtyp/log L. The white region correspond to points which are diffusive up
to two errorbars. The critical line Wc = W (pc) lies within this area, and signals a transition
between a subdiffusive (β > 1) and a diffusive (β = 1) behavior. The black cross markers are
examples of extrapolation points, with associated error estimations. The black dashed line
p = 1, corresponds to no dephasing. In this limit, the system is always Anderson localized
for any W > 0, with a resistance exponentially suppressed in system size (dashed line) The
hatched region in the GOE correspond to Anderson localization which only extends in a
vanishing region of the phase diagram in the thermodynamic limit where 1− p = O(1/L).

in Fig. 4 complies with these expectations: the curves are ordered from bottom to top for p
increasing from p = 0 to p = 0.95. This is made clear by the double logarithmic scale chosen
in the plots.

We note that the GOE bath is less efficient in thermalizing the system compared to the
MDB protocol. This is exhibited by the values of the exponent β(p) (insets in Fig. 4): the GOE
one reaches anomalous (sub) diffusion values at values of p that are smaller than the ones in
the MDB protocol. As detailed in Sec. 3.3, this is due to the fact that the band-width of the
RRG perturbation is finite and not all the sites in which γi > 0 effectively produce dissipation.
The value of p in the GOE setting should thus be “renormalized” to peff ≥ p, as expressed in
Eq. (8).

Lastly, we stress that the GOE protocol displays a robust Anderson localization for
1− p ∼ O(1/L), as schematically depicted in the figure and already discussed in Ref. [54].

From the analysis of the transport properties discussed so far, in particular the evolution of
the exponent β in Eq. (16), we can map out a dynamical phase diagram for the Anderson model
coupled to the MDB and GOE baths, as a function of p and W , which we plot in Fig. 5 (a)-(b).
We see that the crossover from diffusive to sub-diffusive transport extends into a crossover
line pc(W ), such that for p < pc(W ) the system is diffusive while for p > pc(W ) it is sub-
diffusive. The critical dephasing rate decreases with increasing disorder, indicating that a
strongly localized Anderson model is more robust to thermal inclusions.

Although, as discussed above, the GOE bath is less efficient to thermalize the samples, the
crossover from diffusion to subdiffusion in the two settings is qualitatively very similar.

Finally, we recall that, while the resistance in the MDB setting is computed over all eigen-
states, in the GOE case it is computed using only eigenstates around ω = 0. In principle, in
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Figure 6: Histograms of the retarded Green functions at ω = 0 of an L = 512 Anderson
model with W = 4, for various values of p in the MDB protocol (a) and the GOE one (b).

the latter case one should also do a finite-size scaling analysis in M . In fact, at any finite M
we are considering an effective 1d disordered system which eventually localizes for L � M .
We can thus expect strong finite size effects and deviations from the power-laws for L ® M .
Such an analysis would demand a heavy numerical work which goes beyond the scope of this
paper.

4.2 Statistics of the LDoS

We now discuss how the emergence of sub-diffusive transport and Griffiths affects the spec-
tral properties of the system, as encoded in the imaginary part of the retarded local Green’s
function, i.e. the local Density of States (LDoS).

The statistics of this quantity allows one to capture the dissipation propagation along the
chain. In Ref. [54] it was shown that the sub-diffusive phase of the Anderson model with
RRG dissipation is characterized by patchworks of insulating segments where ImGi,i(ω) decays
exponentially over some length, and rare resonances on which it is of order one. It is therefore
interesting to see whether the same physics is captured in the random dephasing Anderson
model. For convenience, in the GOE case we fix ω = 0 as a reference energy throughout this
subsection. With this choice, in the following we omit the frequency dependence of the LDoS.

In Fig. 6 we plot the histogram of log |Im Gi,i| in the Anderson model with MDB (a) and
GOE (b) baths. Different curves in the two panels correspond to different values of the pa-
rameter p. Concretely, we fix the system size L = 512, and the disorder strength W = 4, and
we vary p ∈ [0,1]. The histograms display a fat tail towards small values of the argument,
P(y) ∼ e−τ(p)|y| with τ(p) reported in the inserts of the two graphs. In both cases τ(p) is a
decreasing function of p with limit τ(p→ 1)→ 0. However, the τ(p) takes consistently larger
values at p < 1 in the MDB protocol than in the GOE one, due to the fact that in the GOE model
the relevant probability of un-coupling to the thermal inclusions is peff > p. We also note that
in the GOE case the histogram shows a bump at large negative values of the argument, which
becomes more pronounced as p→ 1.

Further insights on the shape of LDoS statistics can be obtained from the analysis of
log |Im Gi,i| in single samples. More precisely, we now compare the behavior of the Anderson
model with the two ways of including dissipation, by using a single and the same realization
of {hi} and {γi}. In Fig. 7 (a) and (b) we display the LDoS along the chain. From these single
realizations we can appreciate that for small p (i.e., in the diffusive regime) the LDoS fluctu-
ates around values of order one on all the sites of the chain. Instead, for larger p (i.e. in the
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Figure 7: Comparison between the MDB and the GOE protocols for a fixed realization of
the couplings {hi ,γi}. For the Anderson chain we fix W = 4 (a)-(b), while for the AAH we
choose λ = 3 (c)-(d). In the plots we see, once an effective peff is considered, the MDB has
qualitative features that match those of the GOE protocol.

subdiffusive regime) the range of variation of the LDoS is much broader. Figures 7 (a) and
(b) demonstrate that the tails of the distribution in Fig. 6, observed at very small values of
the LDoS, originate from a very heterogeneous profile of local dissipation in the system. More
precisely, we see that very large insulating segments, within which Im Gi,i decreases exponen-
tially over the bare localization length (whose size is exponentially distributed) coexist with a
few rare resonances where the bath produces dissipation and Im Gi,i is of order 1. In App. C
we propose a simple model based on this observation to predict the exponent τ(p) character-
izing the tail of the LDoS distribution. As shown in the inset of Fig. 6, it agrees well with the
numerical results. Furthermore, we can understand the origin of the bump in the very tail of
the LDoS distribution for the GOE bath in Fig. 6 as being due to the accumulation of samples
without resonances (and thus being fully localized).

Finally, the comparison in Fig. 7 of the LDoS profile between the two types of dissipation
confirms what already noted, namely that the MDB bath gives rise to deeper minima in the
LDoS profile. The GOE model has larger effective probability of un-coupling to the thermal
inclusions, peff > p. If we take into account this difference and renormalize the coupling γ
to the Markovian dissipation, we obtain an overall better qualitative agreement between the
two LDoS profiles at a fixed disorder realization as we show in Fig. 7. We conclude that
the analysis of the spectral statistics reveals clear signatures of subdiffusive behavior in the
Anderson model with the two kinds of dissipation.

5 The André-Aubry-Harper Chain

In full analogy with the Anderson model analysis, we now investigate the transport and dis-
sipative properties of the AAH model with quasi-periodic disorder and random coupling to a
MDB or GOE bath. We recall that in the absence of any coupling to the baths the AAH model
displays a non-trivial localization transition at λc = 2: for λ < λc the system is ergodic (and

15

https://scipost.org
https://scipost.org/SciPostPhys.12.6.189


SciPost Phys. 12, 189 (2022)

Figure 8: Typical resistance Rtyp as a function of system size for the MDB (a) and (c) and
GOE (b) and (d) AAH model, for fixed value of the quasi-periodic potential strength λ, and
different values of the dissipation probability p. In (a) and (b) λ = 2.4 and the transport
undergoes a transition from diffusive to subdiffusive behavior upon increasing p, similarly
to what happens in the Anderson model, see Fig. 4. In the insets, we present the exponent
β(p) (cfr. Eq. (16)) as a function of p. In (c) and (d) λ = 0.4. The asymptotic diffusive
limit needs larger systems sizes to establish for increasing p and the long cross-over can be
confused with a super-diffusive behavior (see the text for a discussion). The fits are obtained
considering the largest system sizes (log L ≥ 4).

the transport is ballistic), while for λ > λc the system is Anderson localized. For p = 1, i.e. in
absence of any bulk coupling to dissipation, the model reduces to the one studied in Ref. [80].
Throughout this section we fix t= 1, Γ = 1/2 and γ= 1/4 for the dephasing model, and t= 1,
c = 3 and γ= 1/4 for the GOE one.

5.1 Resistance, Transport and the Phase Diagram

We start discussing the typical resistance in the steady-state for both the MDB and the GOE
AAH models. Our results for λ = 2.4 are given in Fig 8 (a) and (b), and for λ = 0.4 in Fig 8
(c) and (d).

First ot all, we see that, in both cases, for sufficiently large system sizes, the typical resis-
tance scales as a power law of system size, i.e. Lβ for any p < 1, corresponding to a finite
coupling to the baths. The exponent β (cfr. Eq. (16)) depends on both the probability p of
having a thermal inclusion and the quasi-periodic potential strength λ and it is shown in the
inset of Fig. 8.

For λ > λc , i.e. when the isolated AAH model is in the localized phase, there is a pc = p(λc)
such that the system is diffusive for 0 ≤ p ≤ p(λc), and subdiffusive for p > p(λc), see panels
(a) and (b) and the insets where the exponent β is seen to deviate from the diffusive limit
β = 1 at pc . For λ ≤ λc , we see that both models show ballistic transport for p → 1, while
for p < 1 there is a crossover increasing the system size towards a different scaling behavior
which might seem compatible with superdiffusive scaling, Lβ with β < 1, as recently proposed
in Ref. [49, 51] for the interacting and isolated AAH. However, being limited to relatively
small system sizes, this analysis alone cannot exclude that the apparent superdiffusive behavior
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Figure 9: Transport phase diagram of the AAH model coupled to random MDB (a) or GOE
(b) baths as a function of the thermal inclusion probability p and the strength of the quasi-
periodic potential λ. At p = 1 we see the expected transition from a conducting phase with
ballistic transport to a localized one, with exponentially small resistance. As p decreases
from one the transport exhibits a transition between a diffusive and a subdiffusive phase.
The white region indicates the region where transport is compatible with diffusion up to two
error bars. The transition line λ = λc(p) lies in this region. The black cross markers are
examples of extrapolation points, with associated error estimations. Close to p = 1, in panel
(a) the hatched area exhibits a region compatible with superdiffusion, which we cannot fully
resolve with our numerical data. Conversely, in panel (b) the hatched area exhibits a region
compatible with localization which, similarly, we cannot fully resolve with our numerical
precision.

observed at intermediate values of L should eventually disappear in the thermodynamic limit,
as recently suggested in Ref. [52] for the interacting many-body AAH. We anticipate that the
analysis of the LDoS decline any superdiffusion, supporting a diffusive behavior for any p < 1
when λ < λc (in line with Ref. [16,52]).

Our analysis of the typical resistance is summarized in the transport phase diagram for the
AAH model reported in Fig. 9, as a function of the strength of the quasiperiodic potential λ and
the probability p of having a dissipative coupling. We find that in both dissipative protocols
(MDB on the left and GOE on the right panel) there is a crossover line from subdiffusive to
diffusive transport at λc(p) within the localized phase of the model. On the other hand, as
already discussed the transport is diffusive for any p for large enough systems and λ < λc = 2.
Comparing the left panel to the right one we again remark that the GOE bath is less effective
in thermalizing the system, with an effective peff > p.

The emergence of a subdiffusive transport regime in the AAH model under the effect of
thermal inclusions, that we found both within the random MDB and the random GOE models,
is an intriguing result. To investigate further whether this anomalous transport can be inter-
preted in terms of Griffiths physics we discuss in the next section the statistics of the LDoS.

5.2 Statistics of the LDoS

We conclude the analysis of the AAH model by discussing the statistics of the LDoS across the
system evaluated at zero frequency, as done in Sec. 4.2 for the Anderson model. In Fig. 10
we plot the histogram of log |Im Gi,i| for the two types of dissipation considered so far and
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Figure 10: Histograms of the LDoS at ω = 0 for the AAH model with L = 512 at λ = 0.4
(a)-(b) and λ= 3 (c)-(d) for the random dephasing (top panels) and GOE (bottom panels).

different values of λ and p. For λ < λc (panels (a) and (b)) we see that the histogram of the
LDoS displays a Gaussian profile, modulo some boundary effects for the MDB, with a variance
that increases as p → 1. This provide a robust indication that the system is diffusive, as the
initial distribution structure of the hi is washed out by the coupling to the environment. In
contrast, this is not the case for λ > λc (see Fig. 10 (c) and (d)) where a power-law behavior
describing the distribution at small values of the LDoS emerges as p is increased. As done
for the Anderson Model we can extract an exponent describing the power-law decay at large
negative arguments, P(y) ∼ e−τ(p)|y| with τ(p) reported in the inserts of the two graphs. We
see that the two exponents are comparable in magnitude, but show an apparent non-linear
dependence from p. The presence of a broad distribution for the LDoS is consistent with its
behavior in single sample realizations that we had plotted in Fig. 7, showing that for p → 1
both models of thermal inclusions lead for λ > λc to a very heterogeneous profile of LDoS
with few sites having exponentially small dissipation. The overall picture suggests that the
AAH model in its localized phase, when coupled to thermal inclusions, also supports a Griffiths
like phenomenology, both for what concerns its transport properties, that turn subdiffusive, as
well as for the profile of its effective local dissipation.
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6 Discussion

In the previous sections we discussed transport and dissipation properties in the AAH and
Anderson models in the presence of different kinds of thermal inclusions.

One general outcome of this analysis is that the GOE bath is generically less effective in
thermalizing the system and restoring diffusion, and leaves a broader signature of anomalous
transport effects in its phase diagram, as compared to the MDB setting, as it appears clearly
in the transport phase diagrams of Figs. 5-9. We traced back this difference in the spectral
properties of the two dissipative settings. In particular, the Markovian dephasing bath, being
essentially broadband, is able to establish resonances for any local energy of the system while
the RRG/GOE one with its finite bandwidth requires a resonance condition, see Eq. (8).

An interesting aspect of our results are the similarities that emerged in the properties of the
Anderson and AAH models coupled to thermal inclusions, which both show a phenomenology
compatible with Griffiths effects, in particular for what concerns the subdiffusive transport
and the broad statistics of the LDoS. This is an intriguing and somewhat surprising result at
first, given the deterministic nature of the quasiperiodic potential which does not obviously
lead to rare region effects. One might wonder how much of these similarities has to do with
the nature of the coupling to dissipation, which in both Anderson and AAH models we chose
to be random. In this respect it is worth emphasizing that the anomalous properties of the
AAH model emerged only for λ > λc , i.e. when in absence of any dissipation the system is
in a localized phase, while for λ < λc the random coupling to thermal inclusions was shown
not to be sufficient by itself to destroy diffusion. As such this result seems to point out that
the emergence of subdiffusion and broad dissipation statistics is a robust feature of localized
phases coupled to thermal inclusions, irrespectively of the nature of the on-site potential.

Finally, it is interesting to comment on the possible connections between our work and a
truly interacting disordered many-body problem in the context of MBL. In the random case
it was argued in Refs. [53, 54] that the role of thermal inclusions could mimic the effect of
many-body interactions, which are expected to favor local thermalization. As such the Ander-
son insulator could be a sensible starting point at strong disorder to understand the destruction
of a localized phase due to the proliferation of local ergodic regions. In fact the phenomenol-
ogy found in both Refs. [53, 54] shares many features with the current understanding of the
MBL transition. A similar reasoning could be applied to the MBL problem in a quasiperiodic
potential. In this respect one could speculate that many-body interactions play a double role,
namely to induce local equilibration and at the same time to give rise to a sort of configurational
randomness as one could see for example by treating those interactions at the Hartree-Fock
level [66, 67]. This reasoning justifies our choice of a random coupling to thermal inclusions
also in the AAH case. From this perspective one could consider the results discussed in this
work also relevant for the MBL/QP problem in a regime where interactions are weak enough
to be treated with HF and the disorder is strong enough to be deep in the localized phase and
suggest that some sort of subdiffusive scaling could emerge also in that context.

7 Conclusions

In this work we analyzed the effect of local random dissipation on single particle localized
phases of matter, as described by the non-interacting Anderson or AAH models. Several rea-
sons, exposed at the beginning of this manuscript, motivated this study.

In the context of quenched random disorder recent works attempted to give a phenolog-
ical model of the Griffiths phase found near the MBL transition, as arising from coupling to
thermal inclusions. Here, we re-examined two of these works, both of which considered An-
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derson insulators coupled to different types of dissipative environments, described in terms of
random Markovian Dephasing Baths or random GOE baths. In Sec. 4 we provided a thorough
comparison of transport and spectral properties of these two settings, thus complementing
the existing analysis. As a general outcome we showed that the phenomenology in the two
cases is qualitatively similar, with a crossover from sub-diffusive to diffusive transport and the
emergence of a broad distribution in the statistics of the local dissipation. Concomitantly, we
showed that the GOE bath is typically less effective in thermalizing a localized phase by restor-
ing diffusion, than the Markovian dephasing bath, ultimately due to its finite bandwidth. As a
result the properties of an Anderson model coupled to this type of dissipation show anomalous
transport and spectral properties in a much broader area of the phase diagram.

A second motivation for this work was to investigate the stability of the localized phase
of the quasiperiodic AAH model to thermal inclusions, and to compare its features with the
truly random case. In Sec. 5 we extended our analysis to the AAH model coupled to random
MDB and GOE dissipation, and we discussed its transport and spectral properties. We provided
evidence that even under a quasiperiodic disorder the localized phase is unstable to thermal
inclusions towards a phase with Griffiths like phenomenology, including subdiffusive transport
and a broad distribution of the local density of states, biased by few rare spots with exponen-
tially small dissipation. Such a phase eventually turns into a conventional diffusive one when
the coupling to dissipation becomes more uniform across the chain. On the other hand, we
showed that on the delocalized side of the AAH phase diagram this phenomenology is absent
and the thermal inclusions lead to diffusive behavior for large enough systems, while finite
size samples can display apparent super-diffusive transport. This suggests that the emergence
of anomalous transport and spectral properties is a generic feature of localized phases coupled
to thermal inclusions, irrespective of the nature of the potential.

In addition to provide two examples of exactly solvable models of disordered systems cou-
pled to random dissipation, both displaying rich physics, our work could be relevant for the
MBL problem in the presence of quasiperiodic potentials, as we discuss in Sec. 6. In this re-
spect, it would be interesting to compare more closely the phenomenology that emerges from
our toy models with results obtained for the fully interacting case.
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A Exact solution for the Markovian Dephasing Bath

We recall that in this setting there is a single chain with sites labeled i, j. For convenience, we
fix the hopping t.
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A.1 Stationary correlation functions and current

To evaluate the current we only need the evolution of the (instantaneous) spatial correlation
matrix

Ci, j(t) = tr(ρ̂(t)d̂i d̂
†
j ) . (17)

In the above equation, we denote time t. By differentiating with respect to the time variable
t and using the Lindblad equation (5) we find

∂t Ci, j(t) = −iCi−1, j(t)− iCi+1, j(t) + iCi, j+1(t) + iCi, j−1(t)

− i(hi − h j)Ci, j(t) + 2Γδi,Lδ j,L − 2(1−δi, j)(γi + γ j)Ci, j(t)

− Γ (δ1, j +δ1,i)Ci, j(t)− Γ (δL, j +δL,i)Ci, j(t) .
(18)

Remarkably, despite the fact that dephasing acts as a four body interaction, the equations of
motion for the two-point functions are closed and can be solved exactly. We also note that
these equations are decoupled from the particle-pair creation/annihilation correlations. In
Eq. (18) we implicitly imposed open boundary condition C0,i(t) = Ci,L+1(t) = 0 for all i.

The stationary state is obtained by solving ∂t Ci, j = 0 for all i, j. For this purpose, it is
convenient to rephrase Eq. (18) in matrix form. We introduce the matrix D capturing the
dissipation contributions with elements Di,k = δi,k(γi+δi,1Γ+δi,LΓ ), and the matrix P= P(C),
with components Pi,k(t) = 2δi,k(γkCk,k(t)+ Γδi,Lδk,L)≡ pk(t)δi,k. With these definitions, we
recast (18) as

∂tC= −i[H, C]− {D,C}+ P≡ TC+CT† + P , (19)

where we avoided writing the time dependencies. The infinite time solution is obtained with
standard ordinary differential equation tools [53], and reads

C(∞) =
∫ ∞

0

d t eTt P(∞) eT
† t . (20)

We note that this is a self-consistency equation due to the dependency of P on C. This expres-
sion can be further massaged using the spectral decomposition of the matrix T

T=
∑

p

λp|φR(p)〉〈φL(p)| , 〈φL(q)|φR(p)〉= δp,q , (21)

where with a slight abuse of notation we used the Dirac notation for the L-dimensional complex
vectors |φR/L(p)〉 =

∑

iφ
R/L
i (p)|i〉, with components φR/L

i (p). Then, from Eq. (21) it follows
the series expansion

etT =
∑

p

etλp |φR(p)〉〈φL(p)| , (22)

which we use in Eq. (20) to derive the self-consistent equation [53,80]

Ci, j(∞) = 2ΓΘi, j,L + 2
∑

k

γkΘi, j,kCk,k(∞) ,

Θi, j,k ≡ −
∑

p,q

φR
i (p)(φ

L
k(p))

∗(φR
j (q))

∗φL
k(q)

λp +λ∗q
. (23)

Lastly, the stationary current is j∞ ≡ ji(∞) = 2Im Ci−1,i(∞). We conclude this subsection
by remarking that not all the components of the tensor Θ are needed to extract the stationary
value of the current, which is constant throughout the system.
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A.2 Retarded Green’s function

To obtain the retarded Green’s function Eq. (12), we need the time dependence of the annihi-
lation operator d̂(t). As presented in Ref. [81, 82], for fermionic fields, this time evolution is
generated by the modified adjoint Lindbladian

d
d t

d̂i(t) = L̃†d̂i(t) , (24)

with L̃† defined as

L̃†(◦)≡ i[Ĥ,◦] +Dd[◦] + D̃bnd,l[◦] + D̃bnd,r[◦] , (25)

D̃bnd,l[◦] = Γ
�

2ηd̂1 ◦ d̂†
1 −

�

d̂1d̂†
1,◦
	�

, (26)

D̃bnd,r[◦] = Γ
�

2ηd̂†
L ◦ d̂L −

�

d̂†
L d̂L ,◦

	�

. (27)

In the above equation Ĥ and D̂d are as in Eq. (6), while the phase η = −1 fully captures the
fermionic nature of the degrees of freedom. The final expression for the evolution equation of
the retarded Green functions is

d
d t

Gi, j(t) = −iδi, jδ(t)− i
∑

k

Hi,kGk, j − γGi, j(t)− Γ (δ1,i +δL,i)Gi, j(t) . (28)

Recasting it in matrix form, and using the previously defined T= −iH−D, we find

d
d t
G(t) = −iδ(t)1+TG(t) . (29)

Fourier transforming both sides, we have

G(ω) = (ω1− iT)−1 . (30)

In the specific case of homogeneous systems, a closed expression for the matrix elements in
Eq. (30) can be obtained [69,83].

B The Cavity Method

The diagonal elements of the Green’s function of the model (7) can be in principle computed
exactly using a Transfer Matrix approach. This can be done, for instance, by direct Gaussian
integration. The starting point is the formal representation of the Green’s function as an in-
tegral over the bosonic variables {φi,n,φ?i,n} defined on each node n = 1, . . . , M belonging to
the i-th layer:

Gi′,n′; j′,m′ =

∫

DφDφ?φ?i′,n′φ j′,m′ e
−
∑L

i, j=1

∑M
n,m=1φ

?
i,n(H−zI)i,n; j,mφ j,m

∫

DφDφ? e−
∑L

i, j=1

∑M
n,m=1φ

?
i,n(H−zI)i,n; j,mφ j,m

.

Let us now imagine that we have progressively integrated out all the bosonic variables on all
the sites of the layers i < j ≤ L starting from the rightmost one. Since the action above is
quadratic, the result of this integartion will also be quadradic and can be formally encoded
in a Gaussian weight describing the measure over the bosonic variables of the i-th layer in
absence of all the layers on the right:

P(r)i [{φi,n,φ?i,n}]∝ e
−
∑

n,m
φ?i,n

�

G(r)i

�−1

nm
φi,m

,
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where G(r)i is an M ×M complex symmetric matrix (and similarly for the measure in absence
of the left neighboring layer). By Gaussian integration, it is straightforward to show that the
recursion relations for the left and right elements of the measure read:

�

G(r)i

�−1

nm
= (−hi − z)δn,m − γi

2C(i)nm − t2G(r)i−1,nm ,
�

G(l)i

�−1

nm
= (−hi − z)δn,m − γi

2C(i)nm − t2G(l)i+1,nm . (31)

Here, C(i)nm is the connectivity matrix of the RRG on the i-th layer whose elements are equal to
1 if n and m are connected by the RRG and zero otherwise, and γi = γ with probability 1− p
and zero with probability p. Considering an open system the boundary conditions on i = 1
and i = L are

�

G(r)1

�−1

nm
= (−h1 − z)δn,m − γ1

2C(1)nm ,
�

G(l)L

�−1

nm
= (−hL − z)δn,m − γL

2C(L)nm . (32)

The first two equations for the Green’s functions can be easily solved by inverting the
matrices on the right hand side by lower-upper (LU) decomposition [78] on each layer. Note
that these equations are exact but can only be solved for finite M .

However, in the M →∞ limit a drastic simplification arises. In this limit, the typical length
of the loops in the transverse planes diverges and the Gaussian measure on the c neighbors of
a given site within a given layer factorizes in absence of the central site, since these c neighbors
belong to disconnected branches of the graph and are uncorrelated. Moreover, as explained in
the main text, since the local potential is the same on all the vertices of the transverse planes, in
the M →∞ limit they all become statistically equivalent and a translational invariance within
each plane is restored. Equations (31) and (32) are thus drastically simplified. Following
Ref. [54], one can show that:

�

G(r)i

�−1
= hi − z − t2G(r)i − cγi

2G(v)i , (33)
�

G(l)i

�−1
= hi − z − t2G(l)i − cγi

2G(v)i , (34)

with c the uniform connectivity of the RRG on the planes, and
�

G(v)i

�−1
= hi − z − t2G(r)i+1 − t2G(l)i−1 − (c − 1)γi

2G(v)i , (35)

where G(r,l,v)i are the diagonal elements of the Green’s function on any site of the i-th layer
in absence of its right neighbor, its left neighbor, and one of its c neighbors in the transverse
plane, respectively. Once these so-called “cavity” Green’s functions are known on each layer,
one can finally compute the diagonal elements of the Green’s function of the original problem
on layer i (see Ref. [54] for more details):

G(z) = (ĤGOE − zÎ)−1 , (36)

via
[Gi(z)]

−1 = hi − z − t2G(r)i+1 − t2G(l)i−1 − cγi
2G(v)i . (37)

We insist upon the fact that there is no dependence on the in-layer indices n, m within this
approximation. Besides, focusing on the limiting case of independent layers (t = 0) we can
exactly obtain the density of states in each layer. As a matter of fact for this case we can solve
Eq. (35) and obtain

G(v)i =
hi − z ±

p

(hi − z)2 − 4(c − 1)γi
2

2γi
2(c − 1)

. (38)
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Then with Eq. (37) we have for the Local Density of States (LDoS) that

ImGi(z)∝ ImG(v)i . (39)

Therefore, on a given layer i the LDoS can be non-zero only if |hi − z| ≤ 2
p

c − 1γi . More
generally, and as performed in [54], with Eqs. (33), (34), and (35) we can derive the LDoS in
the limit M → +∞ for any set of coupling parameters.

However, this approach is not suited to compute the resistance R(ω) as a large number of
paths (all those containing loops) connecting the first and last layer are neglected. Indeed, with
this approximation, the resistance is always overestimated and we always obtain a localized
regime, i.e R(ω) scales as R(ω)∼ eαL (α > 0).

One way to overcome this problem and compute the resistance is to go back to the finite
M case and solve recursively the set of exact Eqs. (31). With their solution one can then derive
the conductivity σ(ω) at energy ω following the approach developed in [74] by Fisher and
Lee. The set-up consists in connecting two reservoirs – also called leads – to the layers i = 1
and i = L and noticing that σ(ω) is simply given by the matrix elements of the resolvent – up
to a proportionality factor – according to

σ(ω) = lim
η→0+

1
M

�

�

�

�

�

M
∑

n1,nL=1

〈0|dL,nL
G(z)d†

1,n1
|0〉

�

�

�

�

�

2

= lim
η→0+

1
M

�

�

�

�

�

�

tL−1
∑

{nk}k∈[[1,L+1]]

�

G(l)L

�

nL ,nL+1

L−1
∏

i=1

�

G(r)i

�

ni ,ni+1

�

�

�

�

�

�

2

. (40)

It is important to note that the reservoirs modify the boundary conditions of Eq. (31). At the
edges, i = 1 and i = L,

�

G(l)i

�−1

nq
= [−hi − z −Σ(ω)]δn,q − γiC(i)nq − t2G(l)i+1,nq , (41)

�

G(r)i

�−1

nq
= [−hi − z −Σ(ω)]δn,q − γiC(i)nq − t2G(r)i−1,nq ,

where Σ(ω) is the self-energy of the leads verifying

Σ= −E + i

p
4t2 − E2

2E
. (42)

The resistance is then the inverse of the conductivity, RGOE(ω) = 1/σ(ω).
Alternatively, It is also possible to derive the current jGOE

∞ (ω) by adding source terms at

the boundaries i = 1 and i = L in the cavity measures P(r)i [{φi,n,φ?i,n}] and P(l)i [{φi,n,φ?i,n}]
(for more details, see [84]). This approach is equivalent to the previous one and gives – up to
a proportionality factor – the same resistance RGOE(ω).

C Predicting the tail in the LDoS

Focusing on Fig. 7 we can note that the LDoS profiles are characterized by a handful of reso-
nances (ImGi,i = O(1)) interspersed by regions where the density of states decays exponen-
tially. In these isolating regions the LDoS scales as ImGi,i ∼ e−|i−io|/ξloc with io the position
of the closest resonance and ξloc the bare localization length. In particular, within a local-
ized region of length l the LDoS appears to be distributed uniformly with values ranging from
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around e−l/2ξloc (the minimum value of the density being attained roughly at the middle of
the segment) to O(1). Following the analysis in [53] (in particular the third section) the total
number of layers with log |Im(Gi,i)| equal to −α (up to sub-leading terms) is

Ω
�

log |Im(Gi,i)|= −α
�

≈
∑

l≥2ξlocα

2n(l) , (43)

where n(l) is the number of isolating segments of length l in the system. Equation (43) sim-
ply translates the fact that only isolating segments longer than 2ξlocα contain layers where
log |Im(Gi,i)| = −α: these layers being approximately two in number, one when the LDoS de-
creases exponentially with i, and one when the LDoS increases exponentially with i. Then,
the probability distribution is given by

P
�

log |Im(Gi,i)|= −α
�

≈
Ω
�

log |Im(Gi,i)|= −α
�

L
≈

2
L

∑

l≥2ξlocα

n(l) . (44)

In fact, if we consider that each layer in the system has a probability p to form a local resonance
in the LDoS (ImGi,i = O(1)) it can be proven that n(l) is a random variable following the
Poisson distribution [53]

P[n(l)] =
µ(l)n(l)

n(l)!
eµ(l) , with µ(l) = L(1− p)pl . (45)

Averaging the probability density P
�

log |Im(Gi,i)| = −α
�

over the distribution of n(l) then
yields

〈P
�

log |Im(Gi,i)|= −α
�

〉 ≈ 2
∑

l≥2ξlocα

(1− p)2pl

≈ 2
∑

k≥0

(1− p)2pk+2ξlocα

≈ 2(1− p) p2ξlocα , (46)

where 〈◦〉 indicates the average over all variables {n(l)}l∈N. For p close to one this simple
approach predicts a tail τ(p) in the probability distribution

〈P
�

log |Im(Gi,i)|= −α]〉 ∼ e−ατ(p) , with τ(p) = −2ξloclog(p) . (47)

When compared to our numerical results we observe a good agreement with this prediction,
see the inset in Fig. 6.
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