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Abstract

Quantum entanglement is one essential element to characterize many-body quantum
systems. However, the entanglement measures are mostly discussed in Hermitian sys-
tems. Here, we propose a natural extension of entanglement and Rényi entropies to
non-Hermitian quantum systems. There have been other proposals for the computa-
tion of these quantities, which are distinct from what is proposed in the current paper.
We demonstrate the proposed entanglement quantities which are referred to as generic
entanglement and Rényi entropies. These quantities capture the desired entanglement
properties in non-Hermitian critical systems, where the low-energy properties are gov-
erned by the non-unitary conformal field theories (CFTs). We find excellent agreement
between the numerical extrapolation of the negative central charges from the generic
entanglement/Rényi entropy and the non-unitary CFT prediction. Furthermore, we ap-
ply the generic entanglement/Rényi entropy to symmetry-protected topological phases
with non-Hermitian perturbations. We find the generic n-th Rényi entropy captures the
expected entanglement property, whereas the traditional Rényi entropy can exhibit un-
natural singularities due to its improper definition.
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1 Introduction

Boltzmann’s entropy is the revolutionized formula that connects the observable of a macrostate
to the probability distribution of possible microstates. This concept has been extended to quan-
tum systems, where the von Neumann (entanglement) entropy measures the entanglement of
a many-body quantum state. In modern condensed matter physics, these entanglement mea-
sures, including the entanglement entropy and the Rényi entropies provide a deep insight of
diagnosing and characterizing quantum phases of matter. In particular, for critical systems
in (1 + 1) dimensions, the entanglement entropy has a universal scaling Sy ~ 51InL,, with L,
being the length of subsystem A and ¢ being the central charge of the corresponding conformal
field theory (CFT) [1-4].

To date, the interest in entanglement has been mainly focused on Hermitian quantum
systems. A systematic analysis of entanglement properties in non-Hermitian quantum sys-
tems [5-10] is still desired. In this article, we fill up this gap by proposing the generic en-
tanglement and Rényi entropies which capture the desired entanglement properties in non-
Hermitian quantum systems. To illustrate the validity of our proposal, we first emphasize one
issue of entanglement measures in non-Hermitian systems. In critical non-Hermitian systems
which are governed by non-unitary CFTs, the negative central charge can lead to the nega-
tive entanglement entropy [11-16]. The negative entanglement entropy seems problematic
because the reduced density matrix is positive semi-definite which cannot give rise to a neg-
ative value of the entanglement entropy. To reconcile this issue, Refs. [17-19] suggest that
the entanglement entropy is still positive and the true central charge is replaced by an effective
central charge c.¢ which is positive! [17].

Alternatively, one can define a reduced density matrix which involves the left and right
eigenstates in non-Hermitian systems. In this definition, the entanglement entropy is no longer
guaranteed to be positive and leads to a possibility to obtain the negative central charge. By
using this definition of the reduced density matrix combined with a modified trace, Ref. [20]
has shown the negative central charge can be obtained in one-dimensional quantum group
symmetric spin chains. In Ref. [21], the authors demonstrate that with the null vector con-
dition on the twist fields in the cyclic orbifold, the Rényi entropy can be negative and the
corresponding negative central charge can be obtained in the non-Hermitian conformal field
theories?. In addition, Ref. [22] shows that the negative central charge can be obtained by

In these approaches, the left and right eigenstates coincide at critical points due to PT symmetry together
with chiral factorization of CFT. It leads to the usual definition of the reduced density matrix and gives the positive
value of the entanglement entropy. The corresponding effective central charge is c.s = ¢ — 24h, where h is the
conformal weight of the ground state with h < 0, i. e., the ground state is not the conformal vacuum. If one set
h = 0, the entanglement entropy can scale with the true central charge ¢

2It is interesting to point out that the Rényi entropy of the ground state with conformal weight h < 0 by
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choosing proper branch cuts in the calculation of the entanglement entropy in the free-fermion
models. In complementary to these existing approaches, we propose a natural extension of
entanglement/Rényi entropy, which we referred to as the generic entanglement/Rényi entropy.
The generic entanglement/Rényi entropy not only captures the desired negative central charge
in several non-Hermitian critical systems, but also applicable to gapped symmetry protected
topological phases. For the former critical cases, by using the logarithmic scaling property of
the generic entanglement/Rényi entropy, we numerically obtain the negative central charge in
the two-legged Su-Schrieffer-Heeger (SSH) model at the critical points and the g-deformed
XXZ model with imaginary boundary terms. For the latter case, we demonstrate that the
generic entanglement/Rényi entropy is a smooth function of the Hermitian breaking param-
eter in the Affleck-Kennedy-Lieb-Tasaki (AKLT) model, whereas the traditional Rényi entropy
has unphysical singularities. Thus, the generic entanglement and Rényi entropies provide an
unambiguous way of extracting the entanglement properties in non-Hermitian systems.

2 Generic Entanglement entropy and Rényi entropy

In non-Hermitian quantum systems, the density matrix p = . ap Pap |1/)§) (wél can be defined
by the left and right biorthogonal states with (1/)]&|1/)%) = 6,p. Here, the density matrix in-

herits the non-Hermicity of the Hamiltonian p” # p. Suppose p has nonnegative and real
eigenvalues, the expectation value of an observable O is defined as (O) = Tr(pO) [23]. The
expectation value of O is interpreted as the probabilistic expected value of the measure of O.
For local observable O, in subsystem A, the density matrix is replaced by the reduced density
matrix p, = Trzp for measuring the expected outcomes. Here A denotes the complementary
part of A. However, in non-Hermitian quantum systems, the eigenvalues of p, can be negative
or even complex. This indicates the probability interpretation of the eigenvalues of p, must
be extended to negative or complex numbers. In physics, we often require a measurable quan-
tity to be a real number, which leads to certain constraints of the measurable quantity. The
entanglement properties are the measures (the expectation values) of the “entanglement” in a
quantum system. For example, the entanglement entropy is defined as the expectation value
of the logarithm of the probability of states in the subsystem A, S, = —Tr(p,1np,) = (—Inp,).
One can generalize the entanglement measures to other quantities such as the n-th Rényi en-
tropy S5, exp((1 —n)s{”) = (oY)

Since p, is generically non-Hermitian, the usual entanglement measures will not be real.
One needs to define a more generic form of entanglement measures that are applicable for both
Hermitian and non-Hermitian quantum systems. For a non-Hermitian reduced density matrix
P4, We decompose its eigenvalues w,, into the amplitude and the phase parts, w, = |w,|e/®>.
The matrix p, can be diagonalized by L and R, L'R = I, such that

L'p,R = diag(ew,) = diag(|e,|)diag(e'?").

The amplitude and phase parts of the reduced density matrix are defined as
|pal := Rdiag(Jw,|)LT and e!® := Rdiag(e!®*)L". In this notation, p, = |p4le’®.
Now we give the generic definitions of the entanglement entropy and the n-th Rényi en-

this approach is not a trivial function of L,. For the conformal vacuum h = 0, it will reduce to the usual form
S =1+ (L) +---.
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tropy,

SA ;=—Tr(pAln|pA|) = _Zwvlnlwvla

ln(Zwv|a)v|” 1) (D

The above definitions give the desired properties of the entanglement measures. First, both
the generic entanglement entropy and the n-th Rényi entropy have the correct definition in the
Hermitian limit, i.e., |p4| = pa, €'® = I. Second, the generic first Rényi entropy is equal to the
generic entanglement entropy, S (” D= 11m = InTrpalpa™ = —anTr(pAlpAln_l)|n:1 =S,.

Third, for all the cases we studled, the elgenvalues of the reduced density matrix are real or
conjugate pairs, which lead to the real outcomes. The definitions of the generic entanglement
and Rényi entropies [Eq. (1)] are the main results in this work.

We validate the generic entanglement and Rényi entropies capture the correct entangle-
ment properties from various critical non-Hermitian systems. At the critical point, this non-
Hermitian system can be described by the non-unitary conformal field theory with the negative
central charge. We compute both the generic entanglement and Rényi entropies for different
critical non-Hermitian models. All results give the expected scaling as a function of the sub-
system size. We also demonstrate the equivalency of our definition with the modified trace
formalism in the quantum group symmetric spin chains [20] in the Appendix C. Finally, we
compare the traditional and generic entanglement/Rényi entropy in the AKLT model with the
non-Hermitian perturbation and demonstrate the validity of our proposed definition.

() ._
st =

ln (TF(PA|PA|H 1)

1—

2.1 The non-Hermitian two-legged SSH model at critical points

We consider the two-legged SSH with the single-particle Hamiltonian in the momentum space
as,

n* —iu

where w and v, () are the intra- and inter-cell hopping terms, and u is the imaginary chemical
potential [Fig. 1a]. The research on the SSH model is widely extended [24-29]. Due to
its simplicity and nontrivial topological properties, it has been treated as a parent model for
studying many-body systems with non-Hermiticity. The many-body ground state of this model
is considered as filling all negative single-particle energy modes. The phase diagram of this
model is shown in Fig. 1b, containing three parity and time-reversal (P7) preserving phases
(trivial, topological I, and II) and a PT broken phase, which are symmetric about v; = v,. For
either v; = 0 or v, = 0, this model reduces to the non-Hermitian SSH model [30, 31], which
hosts both trivial and topological phases as in the usual SSH model, with a P77 broken phase
between them.

At the phase boundary, the system is gapless and all the single-particle energies are real.
There are certain momenta k = kgp corresponding to degenerate energies which we denote
those momenta as the exceptional points (EP)s in the momentum space. In Fig. 1c, there is
one kgp in the energy spectrum which corresponds to the blue segments in Fig. 1b. On the
other hand, there are two kgp’s in the energy spectrum [Fig. 1d] which corresponds to the
orange curves in Fig. 1b. When calculating the generic entanglement/Rényi entropy, a proper
limit needs to be taken to avoid divergence at kgp [see Supplementary information for details].

In Figs. 1e-h, the data fitting shows that the critical behaviors of the n-th Rényi entropy with
different n agrees perfectly with the logarithmic scaling [1-4] for the fixed ratio L,/L = 1/2,

Sf(‘“) g (1 + = )ln L, + a,, and also for a fixed total system size L, S, = 51n [sm(m’*)] + b,

H(k) = |:H’i n ] , N=—w-— Vle_ik - Vzeik 5 (2)
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Figure 1: The two-legged non-Hermitian SSH model. a, The subsystem A is a
segment of the systems containing L, unit cells. b, The phase diagram of the two-
legged SSH model for (w,u) = (1,0.5). ¢, and d, show the single-particle energy
dispersion at the red point (v;, v,) = (1.5,0) and the magenta point, respectively. The
green point is the quadratic band touching point. We discuss the entanglement/Rényi
entropy at this point in the Supplementary Information. The logarithmic scaling of
the n-th Rényi entropy SIE\n) with n = 1,2, 3 for the subsystem sizes L, = L/2 for e,
trivial-P7T broken transition point, f, topological-P7 broken point with only one kgp,
and g, the transition point with two kgp’s. h, the entanglement entropy for the above
different critical points for a fixed total size L = 200. The lines are the numerical
fitting curves, and the numbers shown in each figure are the fitted central charges.

where a, and b,, are constants. All the fitted central charges agree well with the expected
¢ = —2 in the single kgp cases and ¢ = —4 in the two kgp’s cases. The two-legged SSH model
is a non-interacting model which is convenient to extract the true central charge from the
finite-size scaling of the generic entanglement/Rényi entropy. In the following section, we
demonstrate our proposal can also be applied to more complicated many-body non-Hermitian
quantum systems.

2.2 The g-deformed critical XXZ spin chain with imaginary boundary terms

We consider the g-deformed XXZ spin model [20, 32] with open boundary condition [see
Fig. 2a],

1

~

—1

(O‘;O‘x +0)o” +c0590§'0§+1)+isin9 (az.—a;rl), 3)

j+1 j o j+l J

L
H=

j=1

—.
I
—_

where 6 € [0,7/2] and 0%, a = x,y,2 are the Pauli matrices. This model is non-Hermitian
and critical. The Hermiticity can be restored by taking the periodic boundary condition, where
the boundary imaginary terms disappear. The Hamiltonian [Eq. (3)] is the anisotropic limit
of an integrable six-vertex model with complex Boltzmann weights, where the central charge
can be expressed as ¢ = 1 — 619_25;1 which can be negative as shown in Fig. 2b. In the six-
vertex model with complex Boltzmann weights, the phase factors cancel everywhere, except
at boundaries and along lines connecting conical singularities. Due to these phase factors, the
trace operation requires an modified form, which includes a factor q_zaf [20]. On the other
hand, the Hamiltonian [Eq. (3)] can also be viewed as the anisotropic limit of an integrable
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Figure 2: The g-deformed XXZ spin-1/2 chain. a, The non-Hermitian terms of
gain/loss remain at the ends with open boundary condition. The length of subsystem
A is chosen as L, = L/2, such that the bipartition is far from the ends. b, The indigo
line is the theoretical value of the central charge as a function of 8, and the red
circles are the average of numerical fitted central charges from c,qq and coyen. The
logrithmic scaling of the generic entanglement entropy forc, 6 = 7, d, 6 = 3, e,
0=2F andf, 0=%—10°.

six-vertex model with real Boltzmann weights together with non-trivial complex boundary
condition. The corresponding central charge ¢ = 1. The trace operation in this situation is just
the usual trace.

For an open spin-chain, the equal bipartition is considered such that the subsystem A bor-
ders with the boundary. The entanglement entropy has the scaling form S, ~ ¢ In L. We use the
Lanczos exact diagonalization to compute the left and right ground states for the system size
up to L = 32 [See Appendix A]. The central charges are extracted from the scaling behavior of
the generic entanglement entropy. As shown in Figs. 2b-f, the central charge from the finite-
size scaling of the generic entanglement entropy shows nice agreement with the analytic form.
We also consider the case of fixing the total system size L and varying the subsystem size L,.
The scaling behavior of the generic entanglement entropy has the form S, ~ ¢ 1In [sin (ﬂTL")]
The corresponding central charges extracted from this case are identical to the equal bipartite
case.

2.3 The pseudo-Hermitian AKLT model

Finally, we consider the fully gapped interacting spin chain for further checking the validity of
the generic entanglement/Rényi entropy. The AKLT model with the pseudo-Hermitian pertur-
bation is

H=

M-

(sj “Sjp1 + %(sj : sj+1)2) +iyS}_,S3S7, 4
j=1
where S; are the spin-1 operators at the j-th site and y € R. The pseudo-Hermitian property
of the Hamiltonian is nHn~! = H' with 7 : §¥ — —S?. At y=0, the exactly solvable AKLT
model [33] is fallen into the symmetry-protected-topological (SPT) phase, protected by the
parity P, time-reversal T, and Z, x Z, symmetries [34-37]. The ground-state is described by
the valence bond solid with the valence bond connecting fractionalized spin-1/2 at each site. A

6
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Figure 3: The pseudo-Hermitian AKLT model. a, The real and imaginary part of
the lowest energy spectra for the magnetization M = 0 and M = 1 as functions of
y. b, The fidelity susceptibility of almost zero detects neither quantum critical point

nor EP. ¢, The traditional third Rényi entropy Sﬁxgc)n 4 and d, the generic third Rényi
®3)
S

entropy S, ., as a function of y. The dashed lines are 21n 2. The system size L = 16
and the subsystem size L, = 8. The generic Rényi entropy is defined by Eq. (1), while
1

the traditional Rényi entropy is Sfxnc))l 4= 1 n (Trp?).

pair of spin-1/2’s in the adjacent sites form the singlet state %(IN)— [LT)), and two spin-1/2’s
at each site are projected into the spin-1 subspace. The magnon excitation is a triplet with a
Haldane gap and separated from the singlet ground-state. Although the SO(3) symmetry is
broken by the y term which eliminates the triplet degeneracy, the magnetization M = ZSJZ

is a good quantum number. However, only the M = 0 sector has the real eigenvalue, and] the
eigenvalues for = M sectors are the complex conjugate pairs.

In Fig. 3a, the ground state energy is real and the energy gap between the ground state
and the first excited state is finite. Since the ground state is intact due to the finite gap, one
expects the entanglement/Rényi entropy is a smooth function of y. Further examination of
non-singular behavior in the parameter space can be made by considering the fidelity suscep-
tibility (y)="52, where the fidelity F(y)={w5(IpR(r +€)) (Y5 + OIPE()) is the
inner-product of the left/right ground states with nearby parameters v and y+e. We take
e=1073. The fidelity susceptibility is found to be able to detect both the quantum critical
point (yp=+00) and the EP (yr=—00) [38,39]. As shown in Fig. 3b, the fidelity suscep-
tibility of nearly zero indicates the absence of both quantum critical point and the EP in the
parameter space.

We compute the entanglement/Rényi entropy from the traditional definition and the new
definition [Eq. (1)] in the region |y| < 2. Although both the traditional and generic Sggl d/New
for n = 1,2 are smooth functions of y [see Supplementary information for details], the tradi-
tional 3™ Rényi entropy has singularities as shown in Fig. 3c. These unnatural singularities
come from Trpg = 0 where there is an accidentally perfect cancellation of the positive and
negative eigenvalues of p,. On the other hand, no cancellation is found in the generic third
Rényi entropy [Fig.3d]. From our results of various non-Hermitian systems, we expect that
the generic Rényi entropy remains a smooth function when the ground state energy is real and
the system has a finite gap, while the traditional Rényi entropy can have singularities due to
the improper definition.
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3 Conclusion and discussion

In this work, we establish a connection between quantum information science and non-Hermi-
tian quantum systems. The generic entanglement and Rényi entropies capture the correct en-
tanglement properties in non-Hermitian quantum systems. Experimentally, these non-Hermi-
tian quantum systems can be realized as the few-body atom gain and loss [40-43] in an optical
lattice. One can prepare the left and right many-body ground state and measure the generic
entanglement/Rényi entropy by quantum state tomography [44,45]. In principle, one can
measure the true central charge for many-body non-Hermitian quantum systems at the phase
transition point. Also, in Ref. [46], the Ising model with an imaginary field (Yang-Lee edge
singularity [47]) can be embedded in a quantum system with an ancilla qubit. The non-
unitary criticality can be considered as the post-selection of quantum measurements. One
should be aware that the entanglement/Rényi entropy conditioned on post-selection can be
negative [48-50]. We expect the generic entanglement/Rényi entropy can be related to the
conditional entanglement/Rényi entropy. It is interesting to note that the generic Rényi entropy
can be expressed as

1 P n—1
In(Tr(pf o ™), m=

()
S\ —
A 1—n 2

(5)
From the field theory treatment with m € Z*, Eq. (5) is a partition function on the (2m + 1)-
sheeted surface with the partial time-reversal operation applied on subsystem A along the m
copies.

Although our main focus is the non-Hermitian systems which can be described by non-
unitary CFTs, our proposal can apply to many non-Hermitian quantum systems. In particular,
for the quadratic band touching point in the two-legged SSH model which cannot be described
by CFTs, we observe that the generic entanglement entropy also has a logarithmic scaling with
effective central charge ¢ = —6 [see Appendix B.2]. It is still desired to have the effective field
theory description of understanding the universal entanglement properties of the quadratic
band touching point or the Lifshitz transition in non-Hermitian systems. Furthermore, the
entanglement dynamics, the holographic duality, and the robustness of the topological entan-
glement entropy in non-Hermitian systems are interesting subjects for future investigation.
We believe that our work paves a new direction to study the entanglement properties in non-
Hermitian quantum systems.
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A Numerical Methods

Utilizing the non-Hermitian Lanczos exact diagonalization method for complex symmetric ma-
trix [51], we compute the ground state eigenvalue and the corresponding left/right eigenvec-
tors for the g-deformed spin-1/2 XXZ chain and the spin-1 AKLT model with non-Hermitian
perturbations. For both spin models, the magnetization in the z-direction is a good quantum
number. Moreover, the reduced density matrix commutes with the subsystem magnetization.
Thus, both the Hamiltonian and the reduced density matrix can be block diagonalized by
magnetization. The first excited energy in the AKLT model is computed by a few extra itera-
tions. The dimension of the Hilbert space in the sector M=0 for the AKLT model with L=16 is
D=5196627, and for the q-deformed XXZ chain with L=32 is D=601080390. To converge to
the high accuracy of eigenvectors, the restart process with the final vector as the initial vector is
usually needed. For the q-deformed XXZ chain with 8=7/2—1073, this tiny shift prevents the
numerical difficulty from the ill-conditioned point 6=7/2. The condition number for L=32
with O=m/2—1073 is about 7x10%. In this case, carefully choosing the random initial vector
is important and tedious for trying. After obtaining the accurate eigenvectors, the imaginary
part of the generic entanglement entropy is about —6x10~7 for L=32 in the g-deformed XXZ
chain with §=m/2—1072, which is the worst-case compared with the other cases. Therefore,
we confidently consider all the generic entropies are real, with ignorable numerical round-off
error of imaginary part. Parallelized numerical computations were performed on the High-
Performance Computing (HPC)-cluster with Intel i9-10900K CPU and 64GB memory.

B Details of the two-legged SSH model

The non-Hermitian two-legged SSH model with P77 symmetry is

L L L L
H=—w Z(C;chl +H.c.)+iu Z(nn —nj)—w Z(C;chﬂl +H.c.)—v, Z(C;lCiHT +H.c),
j=1 j=1 j=1 j=1
(6)

where cj; and c; are the annihilation operators at the jth site for the leg with gain and loss,

. . e ot .
respectively. u is the parameter for non-Hermiticity, and n;, = CioCjo 1 the number operator.

Periodic boundary conditions are assumed, i.e., ¢; .1, := ¢;. By employing Fourier transform,

~ L ikj ) . o
Cho = % ijl e’klcja, where k = Z“Tm and m =0,...,L —1, the single-particle Hamiltonian

H(k) is obtained

H= > (& & |H(k [f"T}, 7
;[m LI ™
where the single-particle Hamiltonian (k) is shown in Eq. (2).
The single-particle eigenenergies are e, (k) = 4/ A(k), where
Alk) = V12 + v§ +w? + 2w(v; + vo) cosk + 2v; v, cos 2k —u?,

and the biorthogonal left/right eigenvectors for A(k) > 0 (PT preserving) are

|Li(k)>=#[ w3 v Ak ]

V/ZA(k) eikvl +e vyt w
1 —iuF v A(k)
L(k) = . v .
|R ( )) ﬁ(iiu+ A(k)) |:elkv1+e lkv2+W]


https://scipost.org
https://scipost.org/SciPostPhys.12.6.194

Scil SciPost Phys. 12, 194 (2022)

The half-filled ground state |1,D(L)/ R) is constructed by filling all negative energy modes.

Figs. 1c and d in the main text show the single-particle energy dispersion at various points
at the phase boundaries. At the boundary between the trivial phase and the P77 broken phase,
there is a single kgp = 7. The behavior is the same at the part of the boundary between the
PT broken phase and the topological phase shown in the blue line segments in Fig. 1b in
the main text. For the part shown in the orange curve, two kgp’s appear symmetrically about
k = 1 [see Fig. 1d in the main text]. Approaching the green point along the orange curve,
these kgp’s approach k = 1 and become a single kgp = 7 with the quadratic band touching
[Fig. 4a].

In calculations, careful selection of sizes and parameters is important, so that the properties
of conformal field theory can be retained. Firstly, there should be a k-mode very close to each
kgp. Otherwise, the effect of the EPs would disappear in the finite system. Secondly, since
k = kgp causes a singularity (1/+/A(k) = o0) in the calculation of the entanglement entropy,
we need a tiny shift from kgp, but keeping the scale invariance of the system as the system size
L changes.

In the case of a single kgp = 7, we choose the momenta k = @, m=0,...,L-1, § K1,
such that k = kgp + 6/L for m = L/2. Note that we put § in this way so that no additional
length scale is introduced. In the case of a pair of kgp # 7, the parameters are chosen such
that kgp/m = 1+ p/q is a rational number, and the system size L is chosen as a multiple of 2q.
With this choice, we have k = kgp + & /L for some m.

Followed by the above selection rules, we choose the parameters (v;,v,) = (0.5,0)
and (1.5,0) for the trivial-to—P7T-broken and P7T -broken-to-topological cases, respec-
tively (the red dots in Fig. 1b in the main text), and (v;,v,) ~ (1.9220798186197803,
1.3970417517659157), corresponding to kgp/7 = 1£2/5, (purple dot in Fig. 1b in the main
text) for the case that a pair of kgp # 7. In all cases, 6 = 107 is used.

To calculate the entanglement entropy, we need the reduced density matrix p, for a sub-
system A, which can be obtained by the overlap matrix M“ [22]. The matrix element of M* is
calculated by

Mﬁﬁ - ZL;iR[j,i , a8 € occupied modes, (8)
ieA

where L, ; and R, ; are the left and right spatial wavefunction of the occupied mode a = (k,—),
respectively. We have

pa= ) (A, 1L RA + (1—2,)[0)(0]), ©)

where |L‘:) and |R‘?}) are the left and right biorthogonal eigenvectors of M# with the eigenval-

ues A,, respectively. < LﬁIRﬁ> =6,,, and 6,, is a Kronecker delta function. The entanglement
entropy are then calculated after the eigenvalues A, are obtained. For the Hermitian free-
fermion systems, see Ref. [52].

We also calculate the entanglement entropy by using the correlation matrix method [22,
53]. The matrix elements C;; of the correlation matrix C is C;; = (wélcg'cjlwg), where i, j € A.

By the formulas modified from the Hermitian case [25,53-55], we have:

Sa=—> GylnlA, )+ (1=2,) 1= 2,0, (10)
4
1 _ _

S = T 2 (AT A=A =, an

Where A, is the 1-th eigenvalue of the correlation matrix C or the overlap matrix M4,
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Figure 4: a, The quadratic band touching takes place at the green point in the phase
diagram in Fig. 1b in the main text. At this point, we do not expect conformal
symmetry. b, The logarithmic scaling of the entanglement entropy at the quadratic
band touching point.

B.1 Dependence on the momentum shift

As we discussed in the previous section, in the two-legged non-Hermitian SSH model, to avoid
the singularity, we need to introduce a momentum shift 6 for computing the generic entangle-
ment/Rényi entropy. Here we summarize the dependence of & in Slgn). If we fix Ly/L =1/2,

and change 9, fitting suggests the following behavior (including S, = S/gnzl)):

1. For ¢ = —2 cases, SIE‘H) = %lnLA+ln5 +a,.

2. For c = —4 cases, SIE‘”) = %lnLA+21n5 +b,.

3. At the quadratic band touching point, Sf(‘") =—2InL,+2Ind+¢.

Here a,, b,, and ¢ are constants. We let 6 = e~ and fit S/gn) versus d for eachof n=1,2,3,
L, = 50,100,150, and (v;, V) at each of the three points calculated in the main text (with
d = 20,30,40,50) and the quadratic band touching point (with d = 10,15,20,25 due to
numerical limitation). In each case, the coefficient of In 6 equals the above coefficient up to
at least 9 decimal digits.

B.2 The behavior near the quadratic band touching point

In the phase diagram of the two-legged SSH model [Fig. 1(b) in the main text], there is
a quadratic band touching point (green dot) separating the PT-broken—to-topological phase
boundary with ¢ = —2 [blue line segment in Fig. 1(b) in the main text] and that with ¢ = —4
[orange curve in Fig. 1 in the main text]. Its coordinate is

(v2,v) ~ (1.1830127018922194,0.3169872981077807). (12)

We summarize the behavior as we go along the blue line, pass through this quadratic band

touching point, and then go along the orange curve. In each case, we calculate Sgn), n=1,2,3
for L, up to the order of 10% with & = 0.00002.

1. Along the ¢ = —2 phase boundary [blue line] with v, — vS ~—10"%

Sg") shows the expected asymptotic behavior of ¢ = —2 for large L,. For small L,, it
behaves like item 2. below.
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2. Along the ¢ = —2 phase boundary [blue line] with v, — vg ~—1078:

SIE\") is dominated by a single pair of eigenvalues, 1/2 % ai, of both the overlap and the
correlation matrix. This means that Sf(‘") ~ —2In |% + ai| is almost independent of n.

Sg") shows log scaling with L, with coefficient —1. The behavior of ¢ = —2 is expected
to be retained at extremely large L,, but is beyond numerical calculation.

3. Along the ¢ = —2 phase boundary [blue line] with v, — sz ~—10715:
SIE‘“) behaves like item 2. for large L,. For small L,, it behaves like item 4. below.

Q ,,Qy.
15V )
Both the overlap and the correlation matrix shows only (up to numerical error) a single

pair of eigenvalues, 1/2 + ai, other than 0 and 1. This means that S,Exn) =—2In |% + ai|

4. At the quadratic band touching point, (v;°,v

is independent of n. SIE‘”) shows log scaling with L, with coefficient exactly —2 (up to
numerical error). In the main text, we refer this coefficient to the effective central charge
c=—6.

5. Along the ¢ = —4 phase boundary [orange curve] with v, — vS ~+1074

S/gn) shows the expected asymptotic behavior of ¢ = —4 for large L,. Unlike the previous
cases, we cannot explore the behavior of very small L,. Since kgp/m ~ 1£1072, L, must
be multiples of at least several hundreds. In such a scale, the behavior of Slgl) is already

quite close to the expected asymptotic behavior of ¢ = —4, but SIE\") for larger n scales
more like item 2. above.

C The equivalency of the generic entanglement entropy and the
quantum group entanglement entropy

Let us consider a critical quantum group symmetric XXZ spin chain with the following Hamil-
tonian,

-1

(ciof,;—1D+h], (13)

q+q

2
whereq € C, |g| =1, and h; = (q—q_l)(of —0%)/2. Suppose we consider two sites and restrict
the phase of g, Arg(q) € [0, /2], the Hamiltonian H is not Hermitian but the spectrum is real.
The corresponding right ground state and excited state are

W) = g2 1)~ g 2 L), ) = ———=(q"2 1) + g2 11)), (1)

vqt+q- vqat+q-

with the eigenenergies E, = —(q + ¢~ ') and E; = 0, respectively. The left eigenvectors are
obtained from changing ¢ — ¢! in Eq. (14). They satisfy the biorthonormal condition,
(itj®) = &, j for i,j = 0,1. The density matrix can be constructed from the left and right
ground states

0 0 0 O
1 0 gt -1 0
— R Ly _
p—|¢0)(w0|—q+q_1 0 -1 q 0 (15)
0 0 0 O
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In Ref. [20], the modified trace is introduced for the consideration in quantum group sym-
metric spin chains. The reduced density matrix from the modified trace formula is

~ —20% 1 10

The modified trace gives the correct normalization Trs(q 2°45,) = 1. The entanglement en-
tropy computed from the modified trace is

‘§A =-—Tr ((q—ZUiﬁA) In pNA) = ln(q + q_l) . (]— 7)

On the other hand, one can construct the reduced density matrix in the ordinary way

1 0
pa=Trz(p) = = [g q_l] . (18)

As one expects, it also satisfies the normalization Trzp, = 1. Now we can compute the generic
entanglement entropy defined in the main text,

-1

q q q q
Sy=—Tr(p,ln =— In + n
A (paln|pal) (q+q—1 q+q! q+q! q+q? )
=Inlg+q'|=In(g+q ). (19)

Here |q| = 1 and Arg(q) € [0, /2] ensures (g +q ') = |g + ¢ !|. Hence the generic entangle-
ment entropy is identical to the entanglement entropy computed from the modified trace in
the quantum group symmetric spin models.

D Traditional and generic entanglement and Rényi entropies in
the AKLT model with non-Hermitian perturbation

We compute the generic entropy Sf(xlﬂlzgw and the traditional entropy S/glc’)zl()i in the presence of the

non-Hermitian breaking term y # 0. Both traditional and generic entanglement entropies are
real and smooth functions of y as shown in Figs. 5(a) and (b). Similarly, the traditional and the
generic 2" Rényi entropies are real and smooth functions of y as shown in Figs. 5(c) and (d).
However, as we discussed in the main text, the traditional 3™ Rényi entropy has singularities
due to its improper definition, while the generic 3" Rényi entropy remains a smooth function
of y.

The singularities in the traditional 3" Rényi entropy come from Trpf\ = 0. We expect these
singularities do not happen for the generic n-th Rényi entropy. In Fig. 6, we systematically
compute W = Trpu|p™ ! for n = 2,---,10 in the parameter region |y| < 2 and do not
observe any singularity. Moreover, no significant change is found by doubling the system size
from L=8 to L=16. we believe larger system sizes L > 16 do not change the validity of the
generic entanglement entropy and Rényi entropies.

13


https://scipost.org
https://scipost.org/SciPostPhys.12.6.194

Scil SciPost Phys. 12, 194 (2022)

2 T I T T T 2

e Re Part
= Im Part

1+ * Re Part | e Re Part
L = Im Part| | = Im Part

Figure 5: (a) The traditional entanglement entropy Slglg)l d
tanglement entropy s as the functions of y. (c) The traditional second Rényi

ANew
entropy ng)l 4 and (d) the generic second Rényi entropy Sfﬁlew as the functions of .

The dashed lines are 21n 2. We choose the total system size L = 16 and compute the

S,Extl())l ANew 1= 1, 2 with the subsystem size L, = 8.

and (b) the generic en-

04
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Figure 6: No singularity is found in the trace, W=Trp,|p4|"}, forn =2,---,10. (a)
L=8 and L,=4, and (b) L=16 and L,=8. No significant change is found by doubling
the system size from L=8 to L=16.
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