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An ideal rapid-cycle Thouless pump
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Abstract

Thouless pumping is a fundamental instance of quantized transport, which is topolog-
ically protected. Although its theoretical importance, the adiabaticity condition is an
obstacle for further practical applications. Here, focusing on the Rice-Mele model, we
provide a family of finite-frequency examples that ensure both the absence of excitations
and the perfect quantization of the pumped charge at the end of each cycle. This family,
which contains an adiabatic protocol as a limiting case, is obtained through a mapping
onto the zero curvature representation of the Euclidean sinh-Gordon equation.
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1 Introduction

Thouless pumping [1] serves as a fundamental example of topological quantization of trans-
port in a many-body system. It occurs in a one-dimensional band insulator whose parameters
are varied at an infinitesimally slow rate in such a way as to describe a non-contractible loop
around the critical manifold of gapless states in the system’s parameter space. If these con-
ditions are met then an integer number of charge quanta per cycle is pumped through any
given cross-section of the system. Thouless pumping is intimately related to the integer Hall
effect [2], since in both cases the quantized transport coefficient is expressed in terms of the
Chern index of a U(1) principal bundle [3] associated with the Berry or Zak phase [4–6]. Also
there is an extension to Floquet-Thouless energy pumps with the corresponding topological
invariant [7]. Despite its conceptual importance, the Thouless pump had remained a hypo-
thetical device until only recently when it was realized in highly controlled systems of ultracold
bosons [8] and fermions [9].

The exact quantization of the pumped charge in a Thouless pump requires perfectly adia-
batic driving which ensures that no elementary excitations are created during the pump cycle.
An actual experiment is always performed at a finite driving frequency, which, in general, lifts
the topological protection of charge quantization [10–12]. This is one of the reasons why the
original Thouless pump is unlikely to supersede the quantum Hall and Josephon effects as the
current standard [13–16]. Non-adiabatic effects on quantized transport in parametric pumps
[17–21], of which the Thouless pump is a special case, were studied in [10–12,22–26]. Gen-
erally, such effects consist in frequency-dependent corrections to the average pumped charge
as well as non-equilibrium noise. Also worth mentioning are the finite-size corrections [27]
and the trade-off between the requirements of adiabaticity and large system size [28].

Recently, attention has started to turn to ways of mitigating the non-adiabatic effects in
finite-frequency protocols. Among the proposed strategies are the dissipation assisted pump-
ing [29], non-Hermitean Floquet engineering [30, 31] and counterdiabatic control in both
quantum [32, 33] and classical [34] settings. Also it is worth mentioning the non-adiabatic
quantization of the current, instead of the charge, in quasiperiodic Thouless pumps [35].
Moreover, the topological classification of periodically driven systems [36, 37] has led to the
proposal of novel topological phases; among others a 2D anomalous Floquet-Anderson insu-
lator was proposed, that can serve as a 2D non-adiabatic charge pump [38].

In this work we take a complementary route and look into the optimization of the driv-
ing path in the pump’s parameter space. Focusing on the paradigmatic model of the Thou-
less pump, the driven Rice-Mele insulator, we explicitly construct an infinite family of driving
protocols which achieve both the exact quantization of the pumped charge and vanishing
non-equilibrium noise at driving frequencies ranging from zero to the typical band gap of the
insulator.

This paper is organized as follows: In Sec. 2 we introduce the Thouless pumping and
highlight the main aspects of this work. In Sec. 3 we introduce the mathematical framework
for quantum pumping. In Sec.4 we perform the mapping from the zero curvature representa-
tion to the Rice-Mele model. In Sec. 5 by using this mapping, we find the conditions for the
existence of an ideal pump.

2

https://scipost.org
https://scipost.org/SciPostPhys.12.6.203


SciPost Phys. 12, 203 (2022)

2 Overview of Thouless pumping and statement of the main result

2.1 Adiabatic and non-adiabatic Thouless pumping

We begin our discussion with a brief recapitulation of Thouless pumping in a one-dimensional
insulator described by the paradigmatic Rice-Mele model [39].

The system consists of an 1-dimensional half-filled bipartite lattice described by the tight-
binding Hamiltonian

Ĥp =
N
∑

j=1

�

m(a†
j a j − b†

j b j) + (t1a†
j b j + t2 b†

j a j+1 + h.c.)
�

. (1)

Here p = (m, t1, t2) is a point in the space of tight-binding parameters, where m is the real
staggering onsite potential and the alternating hopping amplitudes t1,2 are generally complex.
The operators a, b, a†, b† are the canonical Fermion fields {ai , a†

j }= {bi , b†
j }= δi j ,. Quantised

pumping is expected to occur in an infinite system, however for technical purposes it is conve-
nient to keep N finite assuming periodic boundary conditions j +N ≡ j and take the N →∞
limit when necessary. At any given point p in the parameter space, the single-particle energy
spectrum of the Hamiltonian consists of two bands, which in semiconductor physics are called
the valence band and the conduction band, see Fig 3(b) for some examples. Due to the half-
filing condition, that is the overall number of fermions being N , the ground state of the system
corresponds to a completely filled valence band and an empty conduction band. The ground
state is separated from the excited states by the band gap Eg , which vanishes when m= 0 and
δ = 0, where δ = |t1| − |t2|. By a slight abuse of notation we denote the critical Eg = 0 point
in the (m,δ) subspace of the parameter space as pc .

Assume now that system is prepared in the ground state of the Hamiltonian Hp and then
the parameters of the Hamiltonian are allowed to change very slowly as a function of time τ
such that p(τ) describes a closed loop in the parameter space, i.e. p(0) = p(T ). If the path p(τ)
avoids the critical point pc at all times, then the band gap will ensure that the evolution of the
system is adiabatic that is no elementary excitations are created in the process. Thus, due to the
periodicity of p(τ) the final state of the system will coincide with the initial one. Remarkably,
notwithstanding the fact that no charge carriers are present in the system at any stage of the
cycle, the protocol may result in charge transport across the system. 1 Furthermore, as was
shown by Thouless [1] the charge pumped through any cross-section of the system in a given
cycle is an integer coinciding with the winding number of the closed path around the critical
point pc .

Adiabaticity of the pumping cycle is crucial for the exact topological quantization of
pumped charge because any elementary excisions created in the process may skew the very
low (one particle per cycle) average current in a non-universal way, also contaminating the ex-
periment with non-equilibrium noise. In a laboratory experiment one aims to work at driving
frequencies T−1� Eg [10] because the interband Landau-Zener transitions creating particle-
hole pairs in the bulk of the pump should be suppressed in such a case. However, in large
pumps, where the adiabatic quantization of the pumped charge is accurate, the necessary con-
ditions for adiabaticity turn out to be more stringent [28]. Even though topologically quantised
Thouless pumping does not generally survive away from the adiabatic limit [11], this does not
in principle exclude the existence of fine-tuned noise-free quantized charge pumping protocols
operating at finite frequency. For such a rapid-cycle protocol to exist, a number of conditions

1In a periodic chain, the charge transfer means that there is circulation of exactly one unit of charge per period,
resulting in the same "snapshot" at τ = T . In an open chain, it is assumed that there are charge reservoirs at the
boundaries and the transport occurs through the chain.
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Figure 1: Panel (a): the Rice-Mele lattice. Panel (b): the energy bands for Rice-Mele
Hamiltonian for different values of m,δ = |t1| − |t2| in the 1st Brillouin Zone. The
critical point is found at m= 0 and δ = 0. Panel (c): the pumped charge Q after the
completion of a full adiabatic cycle is the winding number around the critical point
in the parameter space of the Rice-Mele model.

need to be met. Firstly, for the reasons given above, it is necessary that at the end of the cycle
the system should return to its initial state |Ψ0〉 , which is to say that

ÛT |Ψ0〉= T exp

�

−i

∫ T

0

Ĥp(τ′)dτ
′

�

|Ψ0〉= exp(iG) |Ψ0〉 , (2)

where ÛT is the unitary operator of evolution over one cycle, often called the Floquet evolution
operator, T exp is the time ordered exponential, and G is some real phase. In other words, the
initial state |Ψ0〉 needs to be an eigenstate of the Floquet operator ÛT . While Floquet eigenstates
do undoubtedly exist, it is generally a hard task to initialise a many-body system in a Floquet
eigenstate. This brings us to the second requirement, which is that |Ψ0〉 has to be an easily
initialisable state, preferably the ground state of a local Hamiltonian. Finally, even if a protocol
is found such that |Ψ0〉 is simultaneously an eigenstate of the Floquet evolution operator and
is easy to initialise, there is no guarantee that the charge pumped in one cycle will not be zero.
As is discussed in [11], the requirement of non-vanishing pumped charge is equivalent to a
singular band crossing condition for the Bloch spectrum of the Floquet operator −i ln ÛT [11].
Due to the complex relationship between the path p(τ) and the Floquet operator (2), it is
generally unclear how to chose the trajectory p(τ) in a way that would ensure the required
band crossing or whether such a choice exists at all.

2.2 The proposed solution

In this work we present an explicit construction of an infinite family of closed paths p(τ) in
the parameter space of the Rice-Male Hamiltonian which obey all the above requirements
for the rapid-cycle quantised Thouless pumping. For each element of the family, the pump is
initialised in the ground state of the Rice-Mele Hamiltonian at some point p(0) of the parameter
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space and then a closed loop p(τ) is performed in a finite period T such that p(T ) = p(0)
and no excitations are created at the end of the cycle. A way that our work can be seen is
that out of all possible cycles p(t), we find explicit examples that survive without requiring
the adiabaticity protection. In the following paragraphs of this section we give a complete
self-contained description of the family as well as illustrating the operation of the rapid-cycle
protocol with a specific example. The rest of the article is devoted to a detailed mathematical
derivation of our result.

A rapid pumping cycle is generated by the Rice-Mele hamiltonian (1) with the time-
dependent parameters given in the following explicit functional form

m(τ) =
v̇(τ)

2
p

µ− 1
dc(ru(τ),µ) , (3)

t1,2(τ) =
V (τ)e−iθ (τ)

4

�

nc (ru(τ),µ)± sc (ru(τ),µ)
�

. (4)

In this expression τ is the time. The cycle begins at τ = 0 and ends at τ = T at which point
the tight binding parameters return to their initial values. The symbols dc,nc and sc stand for
the three minor Jacobi elliptic functions [40] having period r, which is related to the elliptic
parameter µ > 1 by r = 4

p

1/µK(1/µ), where K is the complete elliptic integral of the first
kind. The+,− sign in the expression for t1,2 corresponds to t1, t2, respectively. The functions u
and v are arbitrary smooth functions of their time argument satisfying the boundary conditions

u(T ) = u(0) + n , u̇(T ) = u̇(0) = 0 , (5)

where n is a nonzero integer and

v(0) = 0 , v(T ) = T . (6)

The function V is defined as

V (τ) =
Æ

[v̇(τ)]2 + [λu̇(τ)]2 , (7)

and the phase θ (τ) is given by

θ (τ) = arg [λu̇(τ) + i v̇(τ)] , (8)

where λ= r
p

µ− 1.
In the following sections we give a detailed proof that if at τ = 0 the system is prepared

in the ground state of the Rice-Mele Hamiltonian and then the parameters of the Hamiltonian
evolve according to Eqs. (3), (4) then at the end of the period τ= T the system will be found in
the same ground state. Furthermore, we show that in the N →∞ limit the net charge pumped
through any cross section of the system during one cycle will be given by the integer n, Eq. (5).
For these reasons the protocol achieves noisless quantised pumping at a finite frequency. The
protocol is obviously fine-tuned because an arbitrary finite frequency cycle would generate
excitations in the system. However, the family of available loops p(τ) is parametrised by two
arbitrary (up to the boundary conditions) functions u and v and two real parameters µ and T
and therefore is very large. The T →∞ limit connects this family with the family of adiabatic
Thouless protocols. We finally note, that although no excitations are found in the system at
τ = T , intermittent excitations are created during the cycle. Our peculiar choice of the path
p(τ) ensures complete annihilation of all particle-hole pairs at the end of the cycle without
complete time reversal of the evolution as the latter would have resulted in vanishing pumped
charge.
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We note that the ideal pump can operate at frequencies comparable to the typical value
of the band gap, although we do not establish the rigorous upper bound on the frequency in
the present work. We also note that contrary to the Thouless protocol using real t1,2. the
rapid-cycle protocol requires complex hopping amplitudes with time-dependent arguments.
Physically, this corresponds to the application of a uniform electric field pulse E = θ̇ (τ) or, in
the context of ultracold atomic pumps, an acceleration pulse along the chain.

Lastly, one reason why the proposed rapid-cycle protocol functions away from the adiabatic
limit is that the ground state of the Rice-Mele Hamiltonian at τ= 0 is also an Eigenstate of the
Floquet operator ÛT ; by definition, the Floquet eigenbasis satisfies the necessary condition (2).
It is known that if this condition is satisfied then the finite-frequency corrections to the pumped
charge are non-analytic in frequency, δq = o(ω∞), [11] that is they vanish faster than any
power law when frequency approaches zero. Thus, finding a natural way to prepare the many-
body system in a Floquet eigenstate would already constitute a substantial improvement in
the performance of a finite frequency pump. However, our protocol brings it one step further
also protecting the crossing of the Bloch-Floquet bands, which removes the non-analytic in
frequency corrections too making the quantization of the pumped charge perfect.

Next, we illustrate our general result with an example.

2.3 Example

We consider the protocol defined by Eqs. (3)-(8) with

v(τ) = τ , u(τ) = w(ατ) , (9)

where α is the inverse period α= 1/T and we have defined the function

w(z) = z − (2π)−1 sin(2πz) . (10)

One can easily see that the boundary conditions (5) and (6) are satisfied with n = 1. By
straightforward substitution one finds the function V, Eq. (7),

V (τ) =
Æ

1+ 4λ2α2 sin4 (πατ) ,

and the shape of the electric field pulse

E(τ) = θ̇ (τ) =
2πα2λ sin(2πατ)

4α2λ2 sin4(πατ) + 1
. (11)

We recall that λ in these expressions is a free real parameter, which also determines the elliptic
parameter µ and the parameter r in Eqs. (3) and (4). They now take the form

m(τ) =
1

2
p

µ− 1
dc (rw(ατ),µ) , (12)

t1,2(τ) =
V (τ)e−iθ (τ)

4
[nc (rw(ατ),µ)± sc (rw(ατ),µ)] ,

where the parameter r is related to the elliptic parameter by r = 4
p

1/µK(1/µ) and
λ= r

p

µ− 1.
We now proceed to the results of the numerical simulation illustrating the operation of the

protocol for a particular choice of the remaining free parameters α and µ. The results of the
simulation for α= 0.09 and µ= 3.5 in a Rice-Mele chain of N = 50 sites are shown in Fig. 2.
Plotted are the time-dependent tight-binding parameters, pumped charge and the adiabatic
fidelity, which is the magnitude of the projection of the time-dependent state |Ψ(τ)〉 onto the
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instantaneous vacuum state of the time-dependent Hamiltonian Hp(τ). To illustrate the fine-
tuned nature of the ideal protocol, the same data are shown for a non-ideal protocol with the
same |t1|, |t2| and m but with θ = 0. One can see that in contrast to the non-ideal case, at the
end of each cycle of the ideal protocol exactly one unit of charge is pumped across the system
and wave function returns to the Hamiltonian’s exact vacuum state. Curiously enough, the
proposed protocol does not seem to have any finite size corrections at least to the numerical
accuracy of our computation.

Figure 2: Comparison of an ideal and a non-ideal pumping protocols for the driving
parametersα= 0.09 andµ= 3.5, and the system size N = 50. The non-ideal protocol
is obtained from the ideal one by suppressing the electric field pulse. Panel (a):
Time-dependent tight-binding parameters and the electric field E = θ̇ for the ideal
protocol. Panel (b): Projection of the driving path onto the (δ, m) plane. Panel (c):
Pumped charge as a function of time for the ideal (solid line) and non-ideal (dashed
line) protocols. Panel (d): Adiabatic fidelity for the ideal (solid line) and non-ideal
(dashed line) protocols.

The rest of the paper deals with the rigorous definition and the proof of the remarkable
properties of the ideal protocol discussed in this section and illustrated in Fig. 2.

3 Mathematical framework

The Hamiltonian (1) admits for complete separation of variables in the Fourier space
Ĥp =

∑

k∈B [n̂+(k)ε+(k) + n̂−(k)ε−(k)], where B = (2π/N){0,1, . . . N − 1} is the discretised
Brillouin zone, ε±(k) are the quasiparticle energies ε−(k) = −|ε+(k)|, and n̂±(k) are the quasi-
particle occupation number operators. The vacuum state of the Hamiltonian Eq. (1) is a si-
multaneous eigenstate of all occupation numbers such that n−(k) = 1 and n+(k) = 0 for all
k ∈ B. Generally, the vacuum of the Hamiltonian (1) is separated from the lowest-energy ex-
cited state by the band gap Eg = 2

p
δ2 +m2, where we used the notation δ = |t1| − |t2|. The

condition of non-vanishing of the band gap defines the non-simply connected parameter space
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of the Rice-Mele insulator P = {(m, t1, t2)|Eg > 0}.
A pumping protocol consists of initialization of the system in a state |Ψ〉 and a continu-

ous loop p : [τ1,τ2]→ P , p(τ) = (m, t1, t2)(τ), which defines a time-dependent Hamiltonian
H(τ) = Hp(τ). Thus the initial state evolves based on |Ψ(τ)〉= Û(τ,τ1) |Ψ〉 where Û(τ,τ1) is
the unitary evolution operator generated by H(τ). Normally, indefinite periodic repetition of
the protocol is implied so we shall refer to Û(τ2,τ1) as the Floquet operator.

For any system that is prepared at its vacuum state, its evolution is constrained to the
invariant eigenspace of the Hamiltonian (1) defined by the constraints n+(k) + n−(k) = 1, for
all k ∈ B. This subspace is isomorphic to

⊗

k∈B Vk, where Vk is the two-dimensional single-
particle Hilbert space corresponding to the Bloch momentum k. Using this representation of V ,
we can write a natural initial wave function as |Ψ〉=

⊗

k∈B |v(k)〉, where |v(k)〉 is the negative-
energy eigenvector of the initializing Hamiltonian in the single-particle subspace Vk, and the
end-of-the-cycle wave function as

|Ψ(τ2)〉= Û(τ2,τ1)|Ψ〉=
⊗

k∈B
Û(τ2,τ1, k) |v(k)〉 . (13)

We will omit the arguments τ2,τ1 for shortness from now on; the evolution will be assumed
from an initial τ1 to a final τ2. We note that for any N the functions |v(k)〉 and Û(k) appear-
ing on the right hand of (13) can be viewed as restrictions of smooth N -independent maps
|v〉 : [0,2π)→ C2 and Û : [0, 2π)→ SU(2) to the discretized Brillouin zone B. With this defi-
nition of |v〉 and Û in mind, it has been shown [36] that for a protocol with the wave function
|Ψ(τ2)〉 given in the form (13), given that it is an eigenvector of the Floquet operator Û , the
amount of charge traversing any given cross-section of the system per cycle is given in the
N →∞ limit by 〈q〉= I[Û , |v〉 〈v|], where we have introduced the notation

I[Û , P̂] = −i

∮

dk
2π

Tr[P̂(k)Û−1(k)∂kÛ(k)] . (14)

If the state |Ψ〉 is eigenvector of Û , it means that Û(k) |v(k)〉 = ξ(k) |v(k)〉 , and I[Û , |v〉 〈v|]
coincides with the winding index of the continuous map ξ : [0, 2π)→ U(1). It is therefore an
integer.

We shall call a pumping protocol ideal if the initial state is both the vacuum of H(τ1) and
eigenvector of Û and, moreover, I[Û , |ν〉 〈ν|] 6= 0. Ideal protocols are easy to initialize, noise-
free and they achieve integral quantization of the pumped charge. Today, the only known
type of this pumping protocol is the adiabatic Thouless protocol [1], i.e. when the parameters
p = p(ατ) and α→ 0. In that regime the pumping is known to be robust, i.e. insensitive in
the particular choice of path. Now we are going to present another class of examples whose
charge pumping survives away from the adiabatic limit.

4 Mapping Rice-Mele to zero curvature representation

The EsGE is a partial differential equation for a real field φ

∆φ + sinh(φ) = 0 , (15)

where ∆ is the two-dimensional Laplace operator. It can be shown by direct calculation that
EsGE is equivalent to the zero curvature condition

∂y Âx − ∂x Ây + [Âx , Ây] = 0 , (16)
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for the anti-Hermitian matrix-valued vector field

Âx =
1
4

�

σ̂+ cosh
φ − ik

2
− σ̂− cosh

φ + ik
2

+ iσ̂3 ∂yφ

�

, (17)

Ây =
i
4

�

σ̂+ sinh
φ − ik

2
+ σ̂− sinh

φ + ik
2
− σ̂3 ∂xφ

�

, (18)

where σ̂i stands for the ith Pauli matrix, σ̂± ≡ σ̂1 ± iσ̂2, and k is the spectral parameter,
which is allowed to take any complex value. The zero-curvature condition (16) implies, in
particular, the existence of a globally defined unitary fundamental matrix F̂(x) which solves
the overdetermined system of equations

∂x F̂ = Âx F̂ , ∂y F̂ = Ây F̂ . (19)

Now, let γ : [τ1,τ2]→ E2, be a differentiable path in the Euclidean plane. Define the
matrix:

ĥγ(τ, k) = i
dγ
dτ
· Â(x, k)|x=γ(τ) , (20)

and introduce a two-spinor fieldψ(k),ψ†(k), k ∈ B, satisfying the canonical anticommutation
algebra {ψα(k),ψ

†
β
(p)}= δαβδkp where α,β are spinor indices.

Figure 3: The mapping of the zero-curvature representation on Rice-Mele model. We
specify the time-dependent parameters t i ,m, by choosing specific solution φ, a path
in x,y plane and using the relations (22) and (23)

Then the operator
Hγ(τ) =

∑

k∈B
ψ†(k)ĥγ(τ, k)ψ(k) (21)

coincides with the reciprocal space representation of the Rice-Mele Hamiltonian Eq.(1) with
the following choice of the tight-binding parameters

m(τ) = −
1
4
γ̇×∇φ(γ) , (22)
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where the cross stands for the skew-symmetric product, and

t1(τ) =
‖γ̇‖
4

e−
φ(γ)

2 −iθ , t2(τ) =
‖γ̇‖
4

e
φ(γ)

2 −iθ , (23)

where we used the polar decomposition of the velocity vector γ̇x = ‖γ̇‖ cosθ , γ̇y = ‖γ̇‖ sinθ .
The transformation to the reciprocal space representation is given by the Fourier transform of
the fields

�

a j
b j

�

=
1
p

N

∑

k∈B
eik je−i(k+π) σ̂3

4 ψ(k) .

Let φ(x) be some solution of equation (15) and consider a path γ starting at the point
x 1 = γ(τ1) and ending at x 2 = γ(τ2). Define the unitary evolution matrix

Ûγ(k) = Û(τ,τ1; k)
�

�

τ=τ2
, (24)

as the boundary value of the unitary evolution matrix solving the Schrödinger equation

i
∂ Ûγ(τ,τ1; k)

∂ τ
= ĥγ(τ, k)Ûγ(τ,τ1; k) , Û(τ1,τ1; k) = Î . (25)

It follows directly from equations (16), (19) and (20) that Ûγ(k) = F̂(x 2)F̂−1(x 1) . In other
words, the zero-curvature condition ensures that the unitary evolution operator Ûγ(k) only
depends on the initial and final points of the path [41]. So we managed to provide a map
from the zero curvature representation of classical Sinh-Gordon field onto the time-dependent
tight-binding quantum Hamiltonian (see Fig. (3)).

5 Setting the conditions for an ideal pump

We have given the mapping between the Rice-Mele model and the zero curvature represen-
tation. Till now, everything is pretty general. In order to specify a protocol, one needs a
solution φ of (15) and a path on E2. In this section, we are going to find the conditions for
Floquet-proper protocols. We now introduce the following definition

Definition 1 (Orderly path) Consider a two-dimensional Euclidean space endowed with a matrix-
valued vector field Â satisfying the zero-curvature condition (16). A differentiable path
γ : [τ1,τ2] → E2 will be called orderly if ∀k ∈ [0, 2π) (i) ĥγ(τ1, k) = ĥγ(τ2, k) 6= 0 and
(ii) [Uγ(k), ĥγ(τ1(2), k)] = 0 2.

An orderly path ensures that the cycle fulfils the condition (2). For each orderly path
γ : [τ1,τ2]→ E2 we define its index

νγ = I[Ûγ, P̂−] , (26)

where P̂−(k) is the projector onto the negative-energy eigenspace of the Hamiltonian
ĥγ(τ1, k) = ĥγ(τ2, k).

We now proceed to considering a special class of solutions to the equation (15), namely
the functions φ(x) which are translationally invariant along the x direction. Such functions
obey the ordinary differential equation

ϕ′′y + sinh(ϕ) = 0 . (27)

2Any differentiable loop, that is a path satisfying γ(τ1) = γ(τ2) and γ̇(τ1) = γ̇(τ2), has Uγ(k) = I and is
therefore orderly. Time-dependent Rice-Mele Hamiltonians constructed from such loops provide an interesting
family of systems exhibiting a perfect dynamic localization [42].
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Equation (27) coincides with Newton’s second law for a particle with coordinate ϕ moving in
the potential cosh(ϕ) therefore all its solutions are periodic functions of y. Moreover, all such
periodic solutions map out closed loops in the phase space (ϕ,ϕ′y) winding counterclockwise
around the point of stable equilibrium (0,0). This observation justifies the following proposi-
tion.

Proposition 1 Let ϕ(y) be a non-vanishing solution of Eq. (27) having the fundamental period
λ and consider a path p : [0,1]→ R2, defined by p(τ) = (δ, m)(τ) where

δ(τ) =
1
2

sinh
ϕ(nλτ)

2
, m(τ) = −

1
4
ϕ′(nλτ) , (28)

and n ∈ Z. Then p avoids the origin (0,0) and its winding index around the origin coincides with
−n.

Now, let φ(x) = ϕ(y) and let λ be be the fundamental period of ϕ(y). Consider a family
of straight-line paths γα : [0,1]→ E2 defined by

γα(τ) = x 1 +
�

α−1τ, nλτ
�

, (29)

where x 1 ∈ E2 is a fixed starting point, n ∈ Z, and α > 0 is a real parameter. Denote by Ĝ−(k)
the projecttor onto the negative energy eigenspace of the Hamiltonian ĝ(k) = iÂx(x 1, k).

Lemma 1 For the family of matrix-valued functions of k Ûα(k) ≡ Ûγα(k) associated with the
family of paths (29) there exists a differentiable 2π-periodic real-valued function χ(k) such that
the limit

ω̂(k) = lim
α→0

eiα−1χ(k) ĝ(k)Ûα(k) (30)

exists and ω̂(k) satisfies the following two properties
(i) [ω̂(k), ĝ(k)] = 0 and
(ii) I

�

ei(a+χ b) ĝω̂, Ĝ−
�

= −n for all a, b ∈ R.

The detailed proof of this Lemma is given in the Supplementary material. Its intuitive meaning
is as follows. Let for simplicity x 1 = 0. At small α, the evolution along the path (29) is
generated by the Hamiltonian iα−1Ax(nλτey , k), which up to a constant is the time-dependent
Rice-Mele Hamiltonian whose time-dependent parameters δ(τ) = |t2|(τ)− |t1|(τ) and m(τ),
are given in equation (28). A large pre-factor in front of the Hamiltonian ensures adiabatic
evolution, so the Hamiltonian commutes with the unitary evolution matrix at each moment
of time τ. Also, in this limit Ĝ− = P̂−. Although, the α→ 0 limit of the evolution matrix does
not exist due to the rapid oscillations arising from the dynamical phases, one can define the
transfer matrix (30), where the dynamical phase factors have been stripped away. The transfer
matrix bears the information about the topological Berry phase associated with the adiabatic
path of the system in the parameter space. It follows from Proposition 1 that such an adiabatic
path performs to a n-fold clockwise winding around the critical point (δ, m) = (0, 0). It is well
established that for adiabatic paths of such type I[ω̂, P̂−] = −n, see e.g. [43]. Moreover, it is
easily shown that I[ω̂, P̂−] = I[eiQ̂ω̂, P̂−] for any differentiable Hermitian matrix Q̂(k), which
commutes with ω̂(k) and whose eigenvalues are periodic functions of k. Next, we consider a
particular type of path.

Definition 2 Denote by Γµ, the set of all differentiable paths γ : [τ1,τ2] → E2 satis-
fying the following boundary conditions: (i) γy(τ2) = γy(τ1) +µ, (ii) γ̇y(τ1) = γ̇y(τ2) = 0,
(iii) γ̇x(τ1) = γ̇x(τ2) 6= 0.

11

https://scipost.org
https://scipost.org/SciPostPhys.12.6.203


SciPost Phys. 12, 203 (2022)

Figure 4: The two alternative paths from the starting point x 1 to the end point x 2.
In the limit of large ‖x 3 − x 2‖, evolution along γ′ is amenable to the asymptotic
estimate (30), while subsequent evolution along γ′′ has no effect on the winding
index, Lemma 1 (ii).

Theorem 1 Let φ(x) = ϕ(y) and let λ be its fundamental period. Let γ ∈ Γnλ, where n ∈ Z.
Then (i) γ is orderly, and (ii) νγ = −n.

Proof of Theorem 1 Let x 1(2) = γ(τ1(2)). First, we check that every element of Γnλ is orderly.
Items (ii) and (iii) of Definition 2 imply that ĥγ(τ1(2), k) = ic ĝ(k) where c = γ̇x(τ1(2)), and
thanks to item (i) ĝ = iÂx(x 1, k) = iÂx(x 2, k). It remains to verify condition (ii) of Defi-
nition 1. To this end, we pick a point x 3 = x 2 + (1/α, nλ) and construct an arbitrary dif-
ferentiable path γ′ starting at x 1 and ending at x 3, and a straight-line path γ′′ starting at
the point x 3 and ending at x 2, see Fig. 4. Using the zero-curvature condition we can write
Ûγ(k) = Ûγ′′(k)Ûγ′(k), where Ûγ′′(k) = eis ĝ(k) and s = ‖x 2 − x 3‖. Furthermore, by virtue of

Lemma 1, Uγ′(k) = e−iα−1χ(k) ĝ(k)ω(k) + o(1).
It follows that Ûγ(k) = ei[s−α−1χ(k)] ĝ(k)ω(k) + o(1). Since the left hand side of this expression does

not depend on α, there exists a limit Ŝ(k) = limα→0 ei[s−α−1χ(k)] ĝ(k) such that Uγ(k) = Ŝ(k)ω(k).
We can now write νγ = I[Ŝ(k)ω̂(k), P̂−] as

νγ = lim
α→0

I[ei[s−α−1χ(k)] ĝ(k)ω̂(k), P̂−] = I[ω̂(k), Ĝ−] = −n ,

where we have used item (ii) of Lemma 1 and the fact that P̂− = Ĝ−

Theorem 1 yields the following Corollary, which constitutes the main result of this work.
Corollary. Let φ(x) = ϕ(y), where ϕ(y) is a solution to the equation (27) having the fun-
damental period λ, let γ ∈ Γnλ, where n ∈ Z, and let H(τ) be a time-dependent Rice-Mele
Hamiltoniain with the parameters given by Eqs. (22), (23). Then the pumping protocol by
which the system is initiated in the vacuum state of H(τ1) and evolves from τ1 to τ2 under
H(τ) is ideal and the pumped charge per cycle is equal to −n.

In Fig. (5) different paths on x-y plane for the x-independent solution of Sh-G equation
are demonstrated with their respective pumped charge for the Rice-Mele model.

6 Discussion-Conclusions

As it was shown, we have provided explicit examples of perfect topological pumps that operate
at finite frequency. We managed to do that by creating a map from the zero curvature repre-
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Figure 5: Different paths on x-y plane of the zero curvature of the Euclidean x-
independent ShG that represent different single cycles of Rice-Mele model and the
respective pumped charge I . The path (a) corresponds to the dynamic localization
(See footnote 2 in a previous page). The path (b) is referred as Trivial because the
whole evolution is performed by iÂx (See Discussion for more). The paths (c),(d)
are the main result of our work, where an exact integer of charge is pumped. Last,
the path (e) is not compatible with Theorem 1.

sentation of ShG equation to the Rice-Mele model. A first comment is this map is not bijective,
i.e. every adiabatic configuration of R-M model is not possible to be mapped back to the ShG.
In fact, the examples we propose are considerably different from the ones usually used in the
study of Rice-Mele model; the relations (23) suggest complex hopping parameters, i.e. with
presence of a homogeneous electric field.

Moreover, many parts of our proofs/derivations were model-independent, i.e. did not
use the particular form of the matrices. The only real restriction is a proper correspondence
between the quasi-momentum and a free parameter; typically the solution of the integrable
equations through that involves the introduction or auxiliary parameters, the so-called spectral
parameters. This is what we exploited to construct the mapping. After all, there is open space
by using the same train of thought on different integrable PDEs that are already known. This
may create even wider families of perfect fast Thouless pumps.

A crucial part for the validity of the proposed Theorem 1 is that the initial configuration to
be hγ(0, k)∝ iÂx ,∀k. This is important, since Eq. (16) for the x-independent case yields:

∂y Âx + [Âx , Ây] = 0 ⇒ ∂τÂx − i[Âx , ĥγ(τ)] = 0 . (31)

This means the Âx (or iÂx , if we want it Hermitean) is the dynamical (Lewis-Riessenfeld)
invariant [44] for the Hamiltonian ĥγ defined in Eq. (20). It is well-known [45] that the
eigenvectors of the invariant coincide with the Floquet basis; thus the condition for noiseless
cycles of the fast pump is ensured. Nevertheless, the interesting part is that finding the dy-
namical invariants is a formidable task, in general. But with our particular example, both
identifying it and preparing the system to its lowest energy Floquet basis are straight-forward.
Also a novel addition is the exact pumped charge per period at any finite frequency. Although,
in general, there has been argued [11] that by preparing the system in the lowest energy Flo-
quet state, the divergence from perfect integer is exponentially smaller than preparing it in
some eigenstate of the Hamiltonian, still we have proven our example retains perfect integer
pumped charge at the end of the cycle for any finite-frequency. This exceptional behaviour is
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probably due to the integrabality of the ShG we used to perform the mapping to Rice-Mele
model.

Finally, we would like to comment on the implementation of the proposed protocol with
ultracold Fermions in optical lattices [42,46]. A first study about the stability was performed
in [47] and has investigated the effects of factors that are present in a realistic setting beyond
the fine-tuned setting we presented. In particular, it showed that the corrections are of first
order with the next-to-nearest neighbour interaction term and of second order in the parabolic
confining potential. Nevertheless, these are not a huge obstacles for a realistic implementation,
as the ultracold atomic experiments have the advantage of high control of these parameters.
Also it made clear that the finite-size effects can easily be suppressed and to have perfect
quantization with very small number of fermions. Moreover, it is worth noting that atoms in
an optical lattice are neutral, therefore the "electric field" pulse (11) has to be simulated by
accelerated motion of the lattice potential as a whole. At present we do not understand the
effects of interparticle collisions on the fidelity of the protocol, however it should be borne in
mind that such collisions are rather inefficient in spin-polarized fermionic systems.
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A Appendix

A.1 Proof of Lemma 1

For convenience, we assume x 1 = 0. Generalisation to other starting points is trivial. It follows
directly from Eqs. (20) and (29) that

ĥγα(τ) =
�

iα−1Âx(x, k) + inλÂy(x, k)
	�

�

x=γα(τ) ,

where both Ây(γa(τ), k) and Ây(γa(τ), k) are smooth (of class C∞) bounded α - independent
functions of τ and k. Furthermore,

iÂx(γ
a(τ), k) = σ̂xδ(τ) sin

k
2
+ σ̂y t(τ) cos

k
2
+ σ̂zm(τ) , (32)

where the functions δ(τ) and m(τ) are defined in Eq. (28) and

t(τ) = −
1
2

cosh
�

ϕ(nλτ)
2

�

.

Denote by ε+(τ, k) the non-negative eigenvalue of ĥγα(τ). It is easily seen that the second
eigenvalue is given by ε−(τ, k) = −ε+(τ, k) Since, according to Proposition 1, the path
p(τ) = (δ, m)(τ) avoids the origin (0, 0) and |t(τ)| > 0, for all τ, the spectrum of the ma-
trix (32) has a gap for all k ∈ [0,2π) and for all τ ∈ [0,1]. Therefore, in a small enough
vicinity of α= 0, there exists ∆> 0 such that

ε+(τ, k)− ε−(τ, k)>∆ , (33)

for all α, k and τ. We note that εα+(τ, k) is a smooth bounded function of τ and k, which is
also 2π-periodic in k.
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We now use the asymptotic estimate by Kato [48]

Ûγα(k)P̂
α
± (0, k) = e∓iα−1ϑα(k)Ŵα

± (k)P̂
α
± (0, k) +O(α) , (34)

where P̂α+(−)(τ, k) is the projection matrix onto the positive (negative) eigenspace of ĥγα(τ),

ϑα(k) =

∫ 1

0

εα+(τ, k)dτ , (35)

and Ŵα
± is related to the unitary evolution matrix V̂α± (τ) satisfying:

d
d t

V̂α± (τ, k) =
�

d
d t

P̂α± (τ, k), P̂α± (τ, k)
�

V̂α± (τ, k) ,

V̂α(0, k) = I , (36)

by Ŵα
± (k) = V̂α± (1, k)P̂α± (0, k). As is shown in [48] Ŵ±(k)P̂α± (0, k) = P̂α± (1, k)Ŵ±(k) and

[Ŵα
± (k)]

†Ŵα
± (k) = P̂α± (0, k). Since P̂α± (0, k) = P̂α± (1, k) we conclude that

Ŵα
± (k) = P̂α± (0, k)eiβα±(k) , (37)

where βα±(k) are the topological Berry phases [4,49]. We note that the projectors P̂α± together
with their derivatives are smooth 2π-periodic in k bounded functions of k and τ in any vicinity
of α= 0 therefore Ŵα

± (k) = Ŵ 0
±(k) + o(1), α→ 0 where

Ŵ 0
±(k) = P0

±(0, k)eiβ0
±(k)

are smooth 2π-periodic functions of k. The Kato estimate (34) and equation (37) imply that

Ûγα(k) = P̂α+ (0, k)e−iα−1ϑα(k)+iβα+(k) + P̂α− (0, k)eiα−1ϑα(k)+iβα−(k) +O(α) , α→ 0 . (38)

The existence of a lower bound (33) on the spectral gap of the operator ĥγα(τ) in a small
vicinity of α = 0 implies that the eigenvalues εα(k) and the projectors Pα± (0, k) admit for
uniform perturbative estimates [50]

εα(k) = ε0(k) +αε̃(k) +O(α) ,

P̂α± (0, k) = P̂0
±(0, k) +O(α) , α→ 0 . (39)

This, in particular, implies

ϑα(k) = ϑ0(k) +αϑ̃(k) +O(α) , α→ 0 , (40)

where ϑ0(k) and ϑ̃(k) are smooth 2π- periodic functions of k given by

ϑ0(k) =

∫ 1

0

dτε0(τ, k) , ϑ̃(k) =

∫ 1

0

dτε̃(τ, k) .

Using estimates (39) and (40) in (38) we find

Ûγα(k) = Ĝ+(k)e
−iα−1ϑ0(k)−iϑ̃(k)+iβ0

+(k) + Ĝ−(k)e
iα−1ϑ0(k)+iϑ̃(k)+iβ0

−(k) +O(α) , α→ 0 , (41)

where Ĝ+(−)(k) is the projector onto the positive (negative) eigenspace of the matrix

ĝ(k) = iÂx(0, k) = Ĝ+(k)ε
0
+(0, k)− Ĝ−(k)ε

0
+(0, k) . (42)
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We now define the function

χ(k) =
ϑ0(k)
ε0
+(0, k)

. (43)

Then there exists the limit

ω̂(k) = lim
α→0

eiα−1χ(k) ĝ(k)Ûγα(k) = Ĝ+(k)e
−iϑ̃(k)+iβ0

+(k) + Ĝ−(k)e
iϑ̃(k)+iβ0

−(k) , (44)

which establishes the statement of item (i) of the Lemma.
We now proceed to evaluating the integral

I
�

ω̂, Ĝ−
�

= −i

∮

dk
2π

Tr[Ĝ−(k)ω̂
−1(k)∂kω̂(k)] , (45)

where the integration is performed over the period 2π of Ĝ−(k) and ω̂(k). Substituting Eq. (44)
into (45) and taking into account the periodicity of ϑ̃(k) we have

I[ω̂, Ĝ−] =

∮

dk
2π
∂kβ

0
−(k) . (46)

The 2π-periodicity of Ŵ 0
−(k) implies that this integral is an integer. The value of this integer

is not affected by the replacement ω̂(k) 7→ ω̂(k)ia ĝ(k)+bχ(k) ĝ(k)ω̂(k) because both ε+(k) and
χ(k) are smooth 2π-periodic functions of k. Recalling that β0

−(k) has the meaning of the Berry
phase induced by the adiabatic evolution under the Hamiltonian (32) we use the well known
result, see e.g. Ref. [6], that the integral (46) coincides with the winding index of the curve
(δ, m)(τ) around the point (0,0). By virtue of Proposition 1, this number is given by−n, which
amounts to property (ii).
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