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Abstract

We study complex scalar theories with dipole symmetry and uncover a no-go theorem
that governs the structure of such theories and which, in particular, reveals that a Gaus-
sian theory with linearly realised dipole symmetry must be Carrollian. The gauging of the
dipole symmetry via the Noether procedure gives rise to a scalar gauge field and a spa-
tial symmetric tensor gauge field. We construct a worldline theory of mobile objects that
couple gauge invariantly to these gauge fields. We systematically develop the canonical
theory of a dynamical symmetric tensor gauge field and arrive at scalar charge gauge
theories in both Hamiltonian and Lagrangian formalism. We compute the dispersion
relation of the modes of this gauge theory, and we point out an analogy with partially
massless gravitons. It is then shown that these fractonic theories couple to Aristotelian
geometry, which is a non-Lorentzian geometry characterised by the absence of boost
symmetries. We generalise previous results by coupling fracton theories to curved space
and time. We demonstrate that complex scalar theories with dipole symmetry can be
coupled to general Aristotelian geometries as long as the symmetric tensor gauge field
remains a background field. The coupling of the scalar charge gauge theory requires a
Lagrange multiplier that restricts the Aristotelian geometries.
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1 Introduction

Fractons [1, 2] are exotic quasiparticles with the distinctive feature of having only limited
mobility. They therefore constitute an unfamiliar and fundamental new (theoretical) phase
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of matter [3, 4]. The bizarre trait of not being able to freely move offers a novel window
to widen our understanding of physical (quantum field) theories, gravitational physics [5,
6], holography [7], and might even have applications in the context of quantum information
storage [2,8–10]. For further details and references we refer to the reviews [11,12].

For some theories the restricted mobility of isolated fracton particles can be viewed as a
consequence of conservation of their dipole moment: a point particle of (constant) charge q
with a conserved dipole moment ~d = q~x must remain stationary, ~̇x(t) = 0.

For continuum scalar field theories a conserved dipole moment arises from global dipole
symmetry which acts infinitesimally on a complex scalar Φ(t, ~x) as δΦ= i ~β · ~xΦ. Such a trans-
formation admits an interpretation as a higher moment generalisation of global U(1) invari-
ance, which acts as δΦ= iαΦ. In this language, the dipole moment is the first moment as the
transformation is linear in ~x . Including even higher moments in the symmetry transformation
leads to multipole symmetries [13]. Concretely, a complex scalar theory that describes fracton
phases of matter and enjoys dipole symmetry is [14]

L= Φ̇Φ̇? −m2 |Φ|2 −λ(∂iΦ∂ jΦ−Φ∂i∂ jΦ)(∂iΦ
?∂ jΦ

? −Φ?∂i∂ jΦ
?) . (1.1)

A similar non-Gaussian theory was also encountered in the context of the X-cube model of
fracton topological order [15], where they employ a lattice description.

Complex scalar theories with dipole symmetry – including the theory of (1.1) – have two
distinctive features: a non-Gaussian term, like the last term in (1.1), and the absence of a
∂iΦ∂iΦ

? term in the action. The absence of the term ∂iΦ∂iΦ
? implies that the free theory, i.e.,

the one containing only Φ̇Φ̇? −m2 |Φ|2, has no notion of particles in the usual sense. Indeed,
we will show that the excitations of the free ungauged theory can be understood as Carrollian
particles [16–19], which, like isolated fractons, have the peculiar property that they cannot
move. The non-Gaussian term breaks the infinite multipole symmetry of the free theory down
to the dipole symmetry and, furthermore, breaks Carroll boost invariance, which means that
the Carrollian spacetime symmetry reduces to Aristotelian spacetime symmetry. In fact, as
we will demonstrate, a Lagrangian that is polynomial in fields and their derivatives cannot
simultaneously be Gaussian, contain spatial derivatives, and have a linearly realised dipole
symmetry: assuming two of those properties implies that the third will not hold. For a linearly
realised dipole symmetry this leaves on the one hand the case containing spatial derivatives,
which is non-Gaussian, like (1.1), and, on the other hand, the case without spatial derivatives
which is Gaussian. As discussed above, the latter theories are Carrollian due to a symmetry
enhancement that arises when spatial derivatives are absent. Finally, if we demand that the
theory is both Gaussian and contains spatial derivatives, the dipole symmetry can no longer
be linearly realised and the resulting theories are special cases of Lifshitz field theories with
polynomial shift symmetry [20].

Gauging this dipole symmetry requires a purely spatial symmetric tensor gauge field Ai j
and a scalar φ, which we demonstrate by employing the Noether procedure to gauge the
dipole symmetry. This symmetric tensor gauge field can be made dynamical by introducing
a suitable gauge invariant action [21,22], known generically as scalar charge gauge theories.
We elucidate the gauge structure of these theories using cohomological tools and we calculate
their asymptotic charges. A particularly interesting special case of the scalar charge gauge
theory is the traceless theory [21,22], which is independent of the trace of the symmetric tensor
gauge field, δi jAi j . We derive this theory from a new perspective by using a Faddeev–Jackiw
type approach (which sidesteps the more elaborate Dirac approach of treating constrained
systems) [23, 24]. We also show that the traceless theory only exists in spatial dimensions
d > 2. Moreover, it turns out that the gauge structure of the symmetric tensor gauge field
shares certain similarities with so-called (linearised) partially massless gravitons [25,26].

The spacetime symmetries of the theories described above are those of absolute space-
time: they are Aristotelian [27]. Aristotelian symmetries consists of spacetime translations
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and spatial rotations, but do not include boosts that mix time and space. If we were to include
a boost symmetry, Aristotelian geometry becomes either Lorentzian, Galilean, or Carrollian,
depending on the type of boost that is included in the description.

Coupling field theories to arbitrary geometric backgrounds has the advantage that it allows
us to extract currents by varying the geometry (see, e.g., [28–30]). While the coupling of scalar
charge gauge theories to curved space (without time) has previously been considered in [31]
(see also [32,33]), the coupling of the complex scalar theory (such as the theory of (1.1)) to
curved spacetime has remained an open problem. As we will show, the geometric framework
for coupling such fracton theories to curved spacetime is that of Aristotelian geometry [34].
An Aristotelian geometry is described not by a metric but by a 1-form τµ and a symmetric
corank-1 tensor hµν, which respectively measure time and space, as well as their “inverses” vµ

and hµν.
The coupling of the scalar charge gauge theory to curved spacetime has been studied in the

literature [31] for the special case where only the geometry on constant time slices is curved.
We repeat this analysis and we find that for d > 2 the scalar charge gauge theory can only
couple to a curved Riemannian geometry on constant time slices provided that its magnetic
sector is traceless, but contrary to claims in the literature, the electric sector does not need to
be traceless. Furthermore, we point out that the Riemannian geometry on constant time slices
that these special scalar charge gauge theories can couple to are spaces of constant sectional
curvature, i.e., they are described by a Riemann tensor of the form

Ri jkl =
R

d(d − 1)
(hikh jl − hilh jk) , (1.2)

which implies for d > 2 (via Schur’s lemma) that the Ricci scalar must be constant.1 We gen-
eralise these results to a curved Aristotelian spacetime whose intrinsic torsion vanishes. We
find that this is possible if the Riemann tensor of the Aristotelian geometry obeys equation
(7.288), which is the Aristotelian generalisation of (1.2). The complex scalar theories, on the
other hand, can be coupled to any Aristotelian geometry, with the caveat that the (now covari-
ant) symmetric tensor gauge field Aµν and φ must be background fields, i.e., non-dynamical.

Note added: As this manuscript was nearing completion we were made aware of the
work [35] which also studies fractons on curved spacetime.

Organisation As an aid to the reader, we here provide an overview of the structure of this
document.

In Section 2, we consider a complex field with dipole symmetry. In Section 2.1, we study
the global symmetries of a theory with dipole symmetry and work out the general expressions
for the associated Noether currents. We then discuss the classification of Lagrangians with
linearly realised dipole symmetry in Section 2.2, assuming that the Lagrangian is polynomial
in the field and its derivatives. Following this, we derive a no-go theorem in Section 2.4
that tells us that a theory with dipole symmetry cannot simultaneously have linearly realised
dipole symmetry, contain spatial derivatives, and be Gaussian. We then discuss the symmetry
algebra for a concrete complex scalar theory with dipole symmetry that is very similar to (1.1).
We elaborate in Section 2.6 on the connection of these symmetries to a (static) Aristotelian
spacetime and discuss some coincidental isomorphisms to Carroll and Bargmann algebras.
We end this section with Section 2.7, where we work out the gauging of the global dipole
symmetry using the Noether procedure, which shows how the symmetric tensor gauge field
emerges.

1This follows from the covariant constancy of the Einstein tensor. We thank José Figueroa-O’Farrill for useful
discussions on this point.
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In Section 3, we couple a worldline action to the scalar charge gauge theory, which we
show gives rise to a vanishing total dipole charge (see also [36] for an alternative approach to
fracton worldline theories).

In Section 4, we develop the scalar charge gauge theory using a cohomological analysis.
Starting in Section 4.1, we work out the Poisson brackets and the generator of gauge trans-
formations, followed by an analysis of the gauge structure in Section 4.2 using generalised
differentials. We find it convenient to employ Young tableaux to elucidate the gauge structure.
Following this, we work out the the Hamiltonian for scalar charge gauge theory in Section 4.3,
which we convert from a phase-space formulation to a configuration space formulation by in-
tegrating out the canonical momentum in Section 4.4. We then consider the special case of
3+1 dimensions in Section 4.5. Of special interest is the traceless scalar charge theory, which
is independent of the trace of the symmetric tensor gauge field. We develop this from a novel
perspective in Section 4.7 using a Faddeev–Jackiw type approach, which a priori suggests the
existence of two novel scalar charge gauge theories, which, however, turn out to be field redef-
initions of either the traceless or the original theory. We then compute the spectrum of scalar
charge gauge theory in Section 4.8. Finally, we comment on similarities between the scalar
charge gauge theory and the theory of partially massless gravitons in Section 4.9.

In Section 5, we describe Aristotelian geometry. In Section 5.1, we describe the geometric
data that takes the place of a metric in Aristotelian geometry, while connections for Aristotelian
geometry are discussed in Section 5.2. Finally, we discuss the procedure of coupling generic
field theories to Aristotelian geometry in Section 5.3

We then present one of our main results in Section 6: the coupling of the complex scalar
theory with dipole symmetry to an arbitrary Aristotelian geometry.

This is followed by the coupling of the scalar charge gauge theory to Aristotelian geome-
try in Section 7 which is less straightforward than for the scalar fields. We start this analysis
by considering Aristotelian geometries with absolute time for which the geometry on leaves
of constant time are time-independent but further arbitrary Riemannian geometries. In Sec-
tions 7.1.1 and 7.1.2, we show how to couple the magnetic and electric sectors to Aristotelian
backgrounds that have a curved time-independent Riemannian geometry on leaves of con-
stant time. It is shown that a generic magnetic Lagrangian can only couple gauge invariantly
if the Riemannian geometry on constant time slices is flat. If we demand that the magnetic
Lagrangian is traceless (i.e., independent of the trace of the symmetric tensor gauge field) then
we show that it can be coupled to Riemannian geometries of constant sectional curvature. Fur-
thermore we show that for d = 2 spatial dimensions the magnetic sector cannot be traceless as
in that case the magnetic Lagrangian vanishes. The conditions on the spatial geometry can be
enforced with Lagrange multipliers. Finally, we demonstrate that there are no restrictions on
the electric sector, i.e., this part of the Lagrangian can couple to any Riemannian geometry on
the leaves of constant absolute time. In Section 7.2 we generalise these results by considering
any torsion-free Aristotelian geometry. We end the paper with a discussion in Section 8.

Furthermore, we include three appendices: in Appendix A, which is intended as an aid
to the reader, we derive electrodynamics in a similar fashion to how the scalar charge gauge
theory is derived in the main text. In Appendix B we provide the details behind our conclusion
that the analysis that led to the traceless scalar theory does not lead to any further new scalar
charge gauge theories.Finally, in Appendix C, we show that introducing an additional gauge
field in an attempt to couple the scalar charge gauge theory to any curved background breaks
the dipole symmetry.

Notation & conventions Throughout the manuscript, we employ the following notation:
we use i, j, k, . . . as flat spatial indices, which run from 1, . . . , d, where d is the number of
spatial dimensions. The index position of the spatial components can be raised and lowered
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with a Kronecker delta, and we are often cavalier with their position. Greek indices, µ,ν,ρ, . . .
are used for curved spacetime indices and run from 0, . . . , d. These cannot be raised and or
lowered in general. We (anti)symmetrise with weight one, i.e., T(ab) =

1
2(Tab + Tba) and

T[ab] =
1
2(Tab − Tba). Furthermore, “c.c.” stands for complex conjugation and will appear

frequently in expressions involving complex scalar fields. The Riemann tensor of an affine
connection ∇ is defined via the Ricci identity

[∇µ,∇ν]Xρ = Rµνρ
σXσ − 2Γρ[µν]∇ρXσ , (1.3)

where Xµ is any 1-form. The components of the Riemann tensor are

Rµνρ
σ = −∂µΓρνσ + ∂νΓ

ρ
µσ − Γ

ρ

µλ
Γλνσ + Γ

ρ

νλ
Γλµσ . (1.4)

The Ricci tensor is defined as Rµρ = Rµσρ
σ.

1.1 Summary of main results

This is a fairly lengthy paper, so to help guide the reader we provide here a summary of some
of our main results. The archetypal field theory with a dipole symmetry (see, for example, the
review [12]) consists of a complex scalar field Φ, the dynamics of which is described by the
Lagrangian

L= Φ̇Φ̇? −m2 |Φ|2 −λX i jX
?
i j , (1.5)

where m is the mass of the scalar, and λ is a coupling constant. The quantity X i j is given by

X i j = ∂iΦ∂ jΦ−Φ∂i∂ jΦ . (1.6)

This theory is invariant under the following infinitesimal transformations

δαΦ= iαΦ , δβΦ= iβi x
i , (1.7)

where α and βi are constants. The dipole symmetry may be gauged via the introduction of
a symmetric tensor gauge field Ai j and a scalar gauge field φ that transform as δφ = Λ̇ and
δAi j = ∂i∂ jΛ, where Λ(t, x) is the parameter of the gauge transformation. This leads to the
gauge invariant Lagrangian

L= (∂t − iφ)Φ(∂t + iφ)Φ? −m2 |Φ|2 −λX̂ i j X̂
?
i j , (1.8)

where X̂ i j = ∂iΦ∂ jΦ−Φ∂i∂ jΦ+ iAi jΦ
2 and where the gauge fields are background fields. As we

demonstrate in Section 2, the spacetime symmetries are Aristotelian: there is no boost symme-
try, leaving only spacetime translations and spatial rotations. The appropriate curved geometry
to which these theories couple realises the Aristotelian transformations as local tangent space
symmetries and is called Aristotelian geometry, which we discuss in detail in Section 5. This
geometry is described by geometric fields (τµ, hµν, vµ, hµν) that satisfy the relations

vµτµ = −1 , vµhµν = τµhµν = 0 , −vµτν + hµρhρν = δ
µ
ν . (1.9)

From this Aristotelian structure, we can construct a compatible connection ∇ (see equation
(5.212) for the connection coefficients of ∇). In terms of this geometry, we may write down
the curved generalisation of (1.1), where the complex scalar is coupled to a non-dynamical
symmetric tensor gauge field Aµν, satisfying vµAµν = 0, as well as a non-dynamical scalar
gauge field φ, as

L= e
��

vµ∂µΦ
? − iφΦ?

�

(vν∂νΦ+ iφΦ)−m2 |Φ|2 −λhµνhρσX̂µρ X̂ ?νσ
�

, (1.10)
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where
X̂µν = Pρ(µPσ

ν)

�

∂ρΦ∂σΦ−Φ∇ρ∂σΦ
�

+ iAµνΦ
2 . (1.11)

In these expressions, e is the Aristotelian analogue of the familiar
p
−g from Lorentzian geom-

etry, while Pµν = hµρhρν is a spatial projector. The curved spacetime Lagrangian is gauge in-
variant with respect to the curved gauge transformations δφ = −vµ∂µΛ, δAµν = Pρ(µPσ

ν)∇ρ∂σΛ
and δΦ= iΛΦ.

Until now, the gauge fields have been background fields. To make them dynamical we
first introduce the gauge invariant field strengths Fi jk = ∂iA jk − ∂ jAik and F0i j = Ȧi j − ∂i∂ jφ.
The class of Lagrangians describing these gauge fields are known as scalar charge gauge the-
ories and are the topic of Section 4. The coupling of the traceless scalar charge gauge the-
ory to curved space (but not spacetime) was considered in [31], where they found that the
background must be Einstein in d = 3 space dimensions. This in turn implies that the 3-
dimensional geometry must be a space of constant (sectional) curvature. We generalise their
result by showing that it is not necessary for the electric sector of the theory to be traceless
in order to couple it to curved space. The restriction to backgrounds that are Einstein implies
that, unlike for the complex scalar, we can no longer perform arbitrary background variations.
As we explicitly discuss for the case of (3+ 1)-dimensional curved space in Section 7.1.1, we
can however couple the scalar charge gauge theories to arbitrary backgrounds by introducing
a Lagrange multiplier Xi j that constrains the spatial geometry to satisfy the Einstein condition.
This allows us to perform arbitrary variations of the background while maintaining gauge in-
variance at the cost of having an additional field in the description. The resulting Lagrangian
for d = 3 has the form

L=
p

h
�

1
2g1

hikh jl F0i j F0kl −
g2

g1(g1 + 3g2)
(hi j F0i j)

2

−
h1

4

�

h jmhkn − h jkhmn
�

hil Fi jkFlmn + h1

�

Ri j −
R
3

hi j
�

Xi j

�

, (1.12)

where g1, g2 and h1 are coupling constants. A few remarks are in order. For d = 2 spatial
dimensions, the magnetic sector cannot be traceless because if it were it would vanish iden-
tically (due to the symmetry properties of Fi jk). For d ≥ 3 the traceless magnetic sector can
only couple to spaces of constant curvature. In any dimension, if the magnetic sector is not
traceless we can only couple to flat space. In any dimension, the electric sector can couple to
any Riemannian geometry. We summarised our findings in Table 1.

The coupling to curved spacetime requires the use of Aristotelian geometry. For simplicity,
we will restrict to Aristotelian geometries that are torsion-free. Here, the field strengths F0i j
and Fi jk combine into the following covariant field strength

Fµνρ =∇µAνρ −∇νAµρ − 2Pσρ τ[µ∇ν]∇σφ . (1.13)

This field strength is not gauge invariant and transforms under gauge transformations as
δFµνρ = Rµνρ

σ∂σΛ, where Rµνρ
σ is the Riemann tensor of ∇. Provided that the (d + 1)-

dimensional Aristotelian geometry satisfies a special condition, given in (7.288), the coupling
of the Lagrangian (1.12) to such backgrounds takes the form

L= e
��

1
2g1

hρλhσκ −
g2

g1(g1 + d g2)
hρσhλκ

�

vµvνFµρσFνλκ (1.14)

+ h1

�

−
1
4

hνλhρκ +
1

2(d − 1)
hνρhλκ

�

hµσFµνρFσλκ

�

.

We need to supplement this Lagrangian with the appropriate Lagrange multiplier term that
enforces (7.288). We summarised our findings in Table 2.

In addition to the coupling to curved spacetime, we also obtain the following new results:

7

https://scipost.org
https://scipost.org/SciPostPhys.12.6.205


SciPost Phys. 12, 205 (2022)

• We provide a classification of (polynomial) Lagrangians with dipole symmetry by de-
riving a condition (see (2.37)) that must be satisfied order-by-order in the number of
spatial derivatives.

• We remark that a Gaussian theory of a complex scalar with dipole symmetry is also
Carrollian.

• We derive a no-go theorem that states that a theory of a complex scalar with a linearly
realised dipole symmetry cannot be simultaneously Gaussian and contain gradient terms.
For a non-linearly realised dipole symmetry, it is possible to have a theory that is both
Gaussian and such that it contains spatial derivatives.

• We derive a novel worldline action that couples the symmetric tensor gauge field to
dipoles. This coupling has the form

Sint = −q
ˆ λ f

λi

dλ
�

Ṫ
�

φ − X i∂iφ
�

− X i Ẋ jAi j

�

, (1.15)

where q is the U(1) charge, and Xµ(λ) = (T (λ), X i(λ)) are the embedding fields de-
scribing the worldline. We expect this to be relevant for the study of Wilson loops of the
scalar charge gauge theory.

• Using cohomology we highlight the gauge structure of the scalar gauge theories and
provide an exact sequence similar to the gauge structure of electrodynamics and lin-
earised gravity (see Section 4.2). We also point out some similarities and differences
with partially massless gravitons (Section 4.9).

• We derive the most general quadratic scalar charge gauge theories whose Hamiltonian is
bounded from below. In Hamiltonian form, this Lagrangian reads (in generic dimension)

L[Ai j , Ei j ,φ] = Ei jȦi j −H−φ∂i∂ j Ei j , (1.16)

where

H =
g1

2
Ei j Ei j +

g2

2
Eii

2 +
h1

4
Fi jkFi jk +

h2

2
Fi j j Fikk , (1.17)

with g1 > 0, g1 + d g2 > 0, h1 ≥ 0 and h1 + (d − 1)h2 ≥ 0.

• We determine the modes of the scalar charge gauge theories. For the generic traceful
theory, we find d(d + 1)/2 − 1 independent modes with three characteristic velocities
given by

v2
1 = (g1 + (d − 1)g2) (h1 + (d − 1)h2) ,

v2
2 =

1
2

g1(h1 + h2) ,

v2
3 = g1h1 .

2 Complex scalar theories with dipole symmetry

A complex scalar field with dipole symmetry describes the fracton phase of matter [14]. The
requirement of dipole symmetry restricts the form of the action governing the dynamics of the
scalar field, and leads generically to non-Gaussian theories. As we will show, it is possible to
obtain Gaussian theories at the expense of linearly realised dipole symmetry or the presence
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of spatial derivatives. The latter case is an example of a Carrollian theory, while the former is
a special case of a Lifshitz field theory with polynomial shift symmetries.

We will then compute and discuss the symmetry algebra for the prototypical complex scalar
field theory with dipole symmetry [12,14,37], which appears in (2.46). We show using these
symmetries that the underlying homogeneous space is a static Aristotelian spacetime.

Finally, we will discuss the Noether procedure for Lagrangians with linearly realised dipole
symmetry and explicitly show how the gauging of the dipole symmetry leads to a symmetric
tensor gauge field Ai j and a scalar gauge field φ.

2.1 Symmetries and Noether currents

In this section we begin by studying the Noether currents for a generic complex scalar La-
grangian L[Φ, Φ̇,∂iΦ,∂i∂ jΦ, c.c.] (see equation (2.60) for a concrete model). We require the
Lagrangian to have U(1) and dipole symmetries which are associated with the following trans-
formations

Φ′(x) = eiαΦ(x) , (2.18a)

Φ′(x) = eiβi x
i
Φ(x) . (2.18b)

In addition, we require the Lagrangian to be symmetric under temporal translations, spatial
translations and spatial rotations given respectively by

t ′ = t + c , x ′i = x i , Φ′(x ′) = Φ(x) , (2.19a)

x ′i = x i + ai , t ′ = t , Φ′(x ′) = Φ(x) , (2.19b)

x ′i = Ri
j x

j , t ′ = t , Φ′(x ′) = Φ(x) , (2.19c)

where Ri
j is a rotation matrix. While we will not require it, s ,ome Lagrangians are also invari-

ant under anisotropic scale transformations

t ′ = bz t , x ′i = bx i , Φ′(x ′) = bDΦΦ(x) , (2.20)

where the real parameter z is known as the dynamical critical exponent, and DΦ is the scaling
dimension of Φ. For the first three transformations the Lagrangian transforms as L′(x ′) = L(x)
while under scaling it should transform asL′(x ′) = b−d−zL(x)where d is the number of spatial
dimensions.

In order to compute the Noether currents we need to work with the infinitesimal version
of these transformations. If we take x ′µ = xµ+ εξµ(x)+O(ε2) and we take Φ to transform as
Φ′(x ′) = exp (ε f (x))Φ(x) where f is any complex function, then we obtain

δΦ(x) = −ξµ(x)∂µΦ(x) + f (x)Φ(x) , (2.21)

where we defined Φ′(x) = Φ(x) + εδΦ(x) +O(ε2). Using that the Lagrangian transforms as a
density and is defined up to a total derivative term we have a symmetry provided that

δL= ∂µ (−Lξµ + Kµ) (2.22)

for some vector Kµ. For our set of symmetry transformations the expressions for ξµ and f are

ξt = 1 , ξi = 0 , f = 0 , time translation ,

ξt = 0 , ξi = δi
k , f = 0 , space translation in xk-dir ,

ξt = 0 , ξi = xkδi
l − x lδi

k , f = 0 , rotation in (xk, x l)-plane ,

ξt = zt , ξi = x i , f = DΦ , anisotropic dilatation ,

ξt = 0 , ξi = 0 , f = i , phase rotation ,

ξt = 0 , ξi = 0 , f = i xk , dipole symmetry in xk-dir .

(2.23)
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The indices k, l on the right hand side are fixed and end up as additional indices on the Noether
currents.

We now want to compute the conserved currents for each of these symmetries. An arbitrary
variation the Lagrangian L[Φ, Φ̇,∂iΦ,∂i∂ jΦ, c.c.] is given by

δL= δΦ
�

∂L
∂Φ
− ∂t

∂L
∂ Φ̇
− ∂i

∂L
∂ ∂iΦ

+ ∂i∂ j
∂L
∂ ∂i∂ jΦ

�

+ ∂t

�

∂L
∂ Φ̇
δΦ

�

+ ∂i

�

∂L
∂ ∂iΦ

δΦ+
∂L
∂ ∂i∂ jΦ

∂ jδΦ− ∂ j
∂L
∂ ∂i∂ jΦ

δΦ

�

+ c.c. . (2.24)

In this equation the terms in the first bracket are the equation of motion for the Lagrangian.
A symmetry transformation leaves the Lagrangian invariant up to a total derivative, i.e.,

δL= ∂µ (−ξµL+ Kµ) . (2.25)

Hence, for variations that are symmetries, and for fields that are on-shell, the Noether current
Jµ = (J0, J i) obeys the conservation equation

∂0J0 + ∂iJ
i = 0 , (2.26)

where

J0 =
�

∂L
∂ Φ̇
δΦ+ c.c.

�

+ ξtL− K t , (2.27a)

J i =

�

∂L
∂ ∂iΦ

δΦ+
∂L
∂ ∂i∂ jΦ

∂ jδΦ− ∂ j
∂L
∂ ∂i∂ jΦ

δΦ+ c.c.

�

+ ξiL− K i , (2.27b)

and the c.c. only applies to the terms on the left within the square brackets. The corresponding
conserved charge is then given by

Q =
ˆ

dd x J0 . (2.28)

Since for the Lagrangians that we will end up working with we find that Kµ = 0 for all sym-
metries, we drop Kµ from now on.

The energy-momentum tensor is denoted by Tµν. The ν = 0 component corresponds to
the Noether current for time translation invariance and the ν = k component corresponds to
the Noether current for space translations invariance in the xk-direction. Under translations
we have δΦ= −ξµ∂µΦ= −δ

µ
ν∂µΦ= −∂νΦ and so we find that

T0
ν = −

�

∂L
∂ Φ̇
∂νΦ+ c.c.

�

+δ0
νL , (2.29a)

T i
ν = −

�

∂L
∂ ∂iΦ

∂νΦ+
∂L
∂ ∂i∂ jΦ

∂ j∂νΦ− ∂ j
∂L
∂ ∂i∂ jΦ

∂νΦ+ c.c.

�

+δi
νL . (2.29b)

We note that the expression for the stress tensor, T i j , is in general not symmetric in i and j.
However, it is well known that Noether currents are only defined up to improvement terms.
In general we are allowed to add any term Xµν satisfying the following off-shell condition

∂µXµν = 0 , (2.30)

such that the new current T̃µν = Tµν + Xµν still satisfies ∂µ T̃µν = 0. For Lagrangians that
can be coupled to curved space, we will always be able to find an Xµν such that T̃ [i j] = 0.
This is because the stress tensor can be found as the response to varying the Lagrangian with
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respect to the spatial metric hi j of the curved geometry (in ADM variables) that these theories
couple to, and this response is automatically symmetric. We will discuss this coupling to a
background geometry in Section 5.

Let us use Θµν to denote the specific choice of improved energy momentum tensor for
which Θ[i j] = 0 (on flat space spatial indices are raised and lowered with δi j and δi j). We can
then construct a new set of conserved currents Jµ jk given by

J0
jk = x jΘ0

k − xkΘ0
j , (2.31a)

J i
jk = x jΘi

k − xkΘi
j , (2.31b)

where ∂µJµ jk = 0 follows from the conservation of Θµν as well as Θ[i j] = 0. This will be the
conserved current associated with rotations in the ( jk)-plane.

If the theory under scrutiny is also invariant under anisotropic scale transformations (2.20),
the z-deformed trace of the appropriately improved energy-momentum tensor Θµν vanishes

zΘ0
0 +Θ

k
k = 0 . (2.32)

In section 6 we will show that the coupling to curved space can be done in such a manner that
the resulting theory enjoys an anisotropic Weyl symmetry. The Ward identity for this gauge
symmetry is given in (5.226), and on flat space this becomes (2.32) on-shell.

This allows us to construct yet another conserved dilatation current JµD given by

J0
D = ztΘ0

0 + xkΘ0
k , (2.33a)

J i
D = ztΘi

0 + xkΘi
k , (2.33b)

where ∂µJµD = 0 follows from the conservation of Θµν as well as the condition in (2.32). This
is the conserved current corresponding to the anisotropic scale symmetry.

The U(1) Noether current for our generic scalar Lagrangian is given by

J0
(0) = i

∂L
∂ Φ̇
Φ+ c.c. , (2.34a)

J i
(0) = i

∂L
∂ (∂iΦ)

Φ+ i
∂L

∂ (∂i∂ jΦ)
∂ jΦ− i∂ j

�

∂L
∂ (∂i∂ jΦ)

�

Φ+ c.c. . (2.34b)

The Noether current associated with the dipole symmetry can then be expressed as follows

J0 j
(2) = x jJ0

(0) , (2.35a)

J i j
(2) = x jJ i

(0) − J̃ i j , (2.35b)

where we defined

J̃ i j =

�

−i
∂L

∂ (∂i∂ jΦ)
Φ+ c.c.

�

. (2.36)

The current conservation tells us that J i
(0) = ∂ j J̃

ji . The latter equation is equivalent to

J j
(0) − ∂i J̃

i j = iΦ
∂L
∂ (∂ jΦ)

+ 2i∂iΦ
∂L

∂ (∂i∂ jΦ)
+ c.c.= 0 . (2.37)

It can be shown2 that the latter equation is nothing but the condition that the Lagrangian
viewed as a function of ρ and θ , where Φ= 1p

2
ρeiθ , does not depend on ∂iθ .

2To show this consider

L(Φ, Φ̇,∂iΦ,∂i∂ jΦ, c.c) = L̃(ρ, ρ̇, θ̇ ,∂iρ,∂i∂ jρ,∂i∂ jθ ) ,
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It can be shown that equation (2.37) holds off shell. The Lagrangian is invariant under both
a global U(1) transformation and a dipole transformation, i.e., under δΦ = i

�

α+ βk xk
�

Φ.
This means that we have

δL=
�

α+ βk xk
�

�

iΦ
∂L
∂Φ
+ iΦ̇

∂L
∂ Φ̇
+ i∂iΦ

∂L
∂ ∂iΦ

+ i∂i∂ jΦ
∂L
∂ ∂i∂ jΦ

+ c.c
�

+ βi

�

iΦ
∂L
∂ (∂iΦ)

+ 2i∂ jΦ
∂L

∂ (∂i∂ jΦ)
+ c.c

�

= 0 .
(2.38)

Using that this must vanish off shell for βi = 0 and α 6= 0 as well as for α = 0 and βi 6= 0 we
obtain equation (2.37).

2.2 Classification of Lagrangians with linear dipole symmetry

We will assume that the Lagrangian is polynomial in the fields and derivatives of the fields.
The classification problem for such theories with linear dipole symmetry amounts to finding
the most general polynomial solution to (2.38).

For theories that are second order in time derivatives we find Lagrangians of the form

L= Φ̇Φ̇? − V (|Φ|2) +L[2] +L[4] + · · · , (2.39)

where L[2] and L[4] contain the most general terms that are quadratic and quartic in spatial
derivatives, respectively. The dots denote terms that are higher order in spatial derivatives.
If we wish to consider theories that are first order in time derivatives we need to replace the
kinetic term with iΦ?Φ̇+ c.c.

For example at second order in spatial derivatives we can make the ansatz

L[2] = c1Φ
?2∂iΦ∂iΦ+ c?1Φ

2∂iΦ
?∂iΦ

? + c2∂iΦ∂iΦ
? + c3Φ

?∂i∂iΦ+ c?3Φ∂i∂iΦ
? , (2.40)

where c1 and c3 are complex-valued functions of |Φ|2 and c2 is a real-valued function of |Φ|2.
This Lagrangian is manifestly U(1) invariant. Solving (2.37) leads to

c3 = −c1|Φ|2 +
c2

2
. (2.41)

Hence we find

L[2] =
�

c1Φ
?2 (∂iΦ∂iΦ−Φ∂i∂iΦ) + c.c.

�

+ c2

�

∂iΦ∂iΦ
? +

1
2
Φ?∂i∂iΦ+

1
2
Φ∂i∂iΦ

?

�

. (2.42)

If we take c2 to be a constant then the c2-term is a total derivative. Hence, c2 must be of order
|Φ|2, while c1 is O(1). It follows that L[2] is not Gaussian. Using partial integration the c2 term
can be written as

−
1
2

c′2∂i|Φ|2∂i|Φ|2 , (2.43)

and vary both sides

∂L
∂Φ
δΦ+

∂L
∂ Φ̇
δΦ̇+

∂L
∂ ∂iΦ

δ∂iΦ+
∂L
∂ ∂i∂ jΦ

δ∂i∂ jΦ+ c.c.=

∂ L̃
∂ ρ
δρ +

∂ L̃
∂ ρ̇
δρ̇ +

∂ L̃
∂ θ̇
δθ̇ +

∂ L̃
∂ ∂iρ

δ∂iρ +
∂ L̃
∂ ∂i∂ jρ

δ∂i∂ jρ +
∂ L̃
∂ ∂i∂ jθ

δ∂i∂ jθ .

Next use Φ = 1p
2
ρeiθ in the variations on the left hand side and collect all terms proportional to δ∂iθ . Since the

right hand side, by assumption, does not contain such terms these terms must add up to zero. This is precisely the
condition (2.37).
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where the prime denotes differentiation with respect to |Φ|2. Looking at the Hamiltonian we
see that the c1 term is not bounded from below while the c′2 term is bounded from below.

Using similar methods, we can write down an expression for the most general expression
that is quartic in spatial derivatives. Instead of working out this most general expression, we
will work with the following expression

L[4] =−λX i jX
?
i j − λ̃X iiX

?
j j , (2.44)

where we defined

X i j = ∂iΦ∂ jΦ−Φ∂i∂ jΦ , (2.45)

and where λ and λ̃ are real parameters. This Lagrangian satisfies (2.37) for any values of λ
and λ̃, and the associated Hamiltonian is bounded from below for λ≥ 0 and λ+ dλ̃≥ 0.

Combining this choice of L[4] with the kinetic term above leads to Lagrangians that are
reminiscent of some that have previously been considered in the literature [12,14]

L= Φ̇Φ̇? −m2 |Φ|2 −λX i jX
?
i j − λ̃X iiX

?
j j , (2.46)

where m is the mass of the complex scalar.

2.3 Symmetry enhancement

An interesting sub-case for the class of Lagrangians described in section 2.1 is when there is
additional symmetry in the form of the transformation δΦ = i

2γx2Φ, where γ is the transfor-
mation parameter. This gives rise to the conservation of the trace of the quadrupole moment.
Later on we will see that the gauging of this type of Lagrangians will lead to a symmetric and
traceless tensor gauge field Ai j , where the tracelessness is due to this extra symmetry.

Using equations (2.27a) and (2.27b) we find the following expression for the Noether
current associated with the γ-transformation

J0
(4) =

1
2

x2J0
(0) , (2.47a)

J i
(4) =

1
2

x2J i
(0) − x j J̃ i j . (2.47b)

From this we indeed see that the Noether charge associated with this is the trace of the
quadrupole moment. Furthermore, if we write out the current conservation equation we get
the following condition

0= ∂0J0
(4) + ∂iJ

i
(4) = −J̃ ii , (2.48)

where we used the conservation of the U(1)-current as well as the condition in (2.37).
It can be shown that the condition in (2.48) is the condition for the Lagrangian to have

this additional γ-symmetry and thus holds off-shell. Specifically, if we require the Lagrangian
to be invariant under δΦ= i(α+ xkβ k + 1

2γx2) we get

δL=
�

α+ βk xk +
1
2
γx2

�

�

iΦ
∂L
∂Φ
+ iΦ̇

∂L
∂ Φ̇
+ i∂iΦ

∂L
∂ ∂iΦ

+ i∂i∂ jΦ
∂L
∂ ∂i∂ jΦ

+ c.c.
�

+
�

βi + γx i
�

�

iΦ
∂L
∂ (∂iΦ)

+ 2i∂ jΦ
∂L

∂ (∂i∂ jΦ)
+ c.c.

�

+ γ
�

iΦ
∂L

∂ (∂i∂iΦ)
+ c.c.

�

= 0 .

(2.49)

Using that this must vanish off-shell for arbitrary α, βi and γ we recover (2.37) as well as the
condition (2.48).
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2.4 No-go theorem

So far we have discussed non-Gaussian theories with spatial derivatives and linearly realised
dipole symmetries, c.f., (2.18b). A theory is Gaussian if its Lagrangian is quadratic in the fields
whose kinetic terms are canonically normalised. In our case this is the field Φ. Additionally, we
restrict our attention to Lagrangians that are polynomial in Φ and derivatives thereof. In this
case, a Gaussian complex scalar with linearly realised dipole symmetry is either of the form

L= i
2
(ΦΦ̇? −Φ?Φ̇)− V (|Φ|2) (2.50)

or
L= Φ̇Φ̇? − V (|Φ|2) , (2.51)

depending on whether one wants first or second order time derivatives in the equations of
motion. If we demand that the theory be Gaussian the potential is, up to an insignificant con-
stant, a mass term V = m2ΦΦ?. Due to the linearly realised dipole symmetry a gradient term
(∂iΦ)(∂iΦ

?) is disallowed. These Gaussian models with linearly realised dipole symmetry are
Carrollian. This means their spacetime symmetries are enhanced by a Carroll boost symmetry

t ′ = t + bi x
i x ′i = x i Φ′(x ′) = Φ(x) (2.52)

which, with δΦ(x) = −ξµ∂µΦ(x) + f (x)Φ(x), is given infinitesimally by

ξt = xk ξi = 0 f = 0 Carroll boost in direction xk . (2.53)

These Carroll boosts are actually part of the more general symmetries δΦ(x) = ξt(x i)∂tΦ(x),
where ξt(x i) is an arbitrary real function of the spatial coordinates. Additionally, we have
a second tower of infinite-dimensional symmetries whereby we can rotate Φ with a phase
that, again, is any local function of the spatial coordinates.3 If we expand Φ in Fourier modes
(assuming a quadratic potential V = m2ΦΦ?) then the modes have a fixed energy E = m,
i.e., no dispersion relation, so these modes (particles) are not propagating in space. To show
this we compute the retarded propagator for the second order time derivative theory with
V = m2ΦΦ? which is proportional to

lim
ε→0

ˆ
dEdd~p

ei(Et−~p·~x)

(E − iε)2 −m2
. (2.54)

It is of the form f (t)δ(~x) since there is no momentum dependence in the denominator. Hence
there is only propagation in time and not in space. This result is Carroll boost invariant [18].

The above shows that any theory of a complex scalar with a linearly realised dipole symme-
try cannot simultaneously be Gaussian and contain spatial derivatives (i.e., gradient terms).
If we allow for a non-linearly realised dipole symmetry, it is possible to build theories that are
both Gaussian and contain spatial derivatives, as we illustrate with the following example. It
is well-known that the Lagrangian (2.46) is non-Gaussian. Consider now the case where the
potential in (2.51) is of Mexican hat form

V = g

�

|Φ|2 −
v2

2

�2

, (2.55)

3This means that this Gaussian (or free) theory without coupling admits an infinite dimensional BMS-
like [38, 39] symmetry algebra, c.f., also [13]. More precisely, this algebra is a semidirect sum of an Euclidean
algebra spanned by the rotations and translations extended by two infinite dimensional abelian Lie algebras, the
“supertranslations”. They have the unfamiliar feature that the two “supertranslations” do not commute with the
actual translations, but their polynomial order gets reduced by them. For example, the action of the translations
Pi on the first order Carroll boosts Bi leads to the zeroth order time translations, {Pi , B j} = δi j H. We remark that
a point particle with a conserved dipole moment ~d = q~x also has conserved higher-pole moments and thus an
infinite symmetry.
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where g and v are real constants. Around the false vacuum Φ= 0 the theory is non-Gaussian
but if we expand around the true vacuum |Φ|= v/

p
2 and ignore higher order terms the theory

becomes Gaussian with a non-linearly realised dipole symmetry. To see this consider

L= Φ̇Φ̇? −λX i jX
?
i j − g

�

|Φ|2 −
v2

2

�2

, (2.56)

=
1
2
ρ̇2 +

1
2
ρ2θ̇2 −

λ

4
∂iρ∂ jρ∂iρ∂ jρ

+
λ

2
ρ∂iρ∂ jρ∂i∂ jρ −

λ

4
ρ2∂i∂ jρ∂i∂ jρ −

λ

4
ρ4∂i∂ jθ∂i∂ jθ −

g
4

�

ρ2 − v2
�2

, (2.57)

where X i j is defined in (2.45), and where we usedΦ= 1p
2
ρeiθ and expanded aroundρ = v > 0

by defining ρ = v +η. If we keep only quadratic terms in η and θ we find

L= 1
2
η̇2 +

1
2

v2θ̇2 −
λ

4
v2∂i∂iη∂ j∂ jη−

λ

4
v4∂i∂iθ∂ j∂ jθ − gv2η2 , (2.58)

where we performed some partial integrations. The fields η and θ now have canonically
normalised kinetic terms. This is a theory of Lifshitz type with polynomial shift symmetries
which can be seen as a non-linear realisation of the dipole symmetry. The field θ is a Lifshitz
Goldstone boson and the field η is a massive Lifshitz scalar. The non-linear (in θ) symmetry
is explicitly given by

δθ = α+ βi x
i , (2.59)

where α is the constant shift symmetry of conventional Goldstone bosons and βi parametrises
the dipole symmetry which is, up to the exclusion of the time dimension, also reminiscent of
the symmetries of the Galileon [40].

Based on the result of this section and Section 2.1, we conclude that the following three
properties cannot all hold at the same time (for Lagrangians that are polynomial in the fields
and their derivatives):

1. linear dipole symmetry

2. spatial derivatives

3. Gaussian

If you assume any two of these the remaining property does not hold. To summarise: if 1. and
2. hold we have linear dipole symmetry and spatial derivatives at the expense of obtaining
non-Gaussian theories, like the fractonic ones of this work, see, e.g., (2.60). When 1. and
3. hold we have Gaussian theories with linear dipole symmetry, however spatial derivatives
are forbidden, and the theory acquires a Carrollian symmetry. For the case where 2. and 3.
hold we have a Gaussian theory and spatial derivatives however in that case we cannot have
a linear dipole symmetry. What is still possible is for the dipole symmetry to be nonlinearly
realised. These are special cases of Lifshitz field theories with polynomial shift symmetry, like
the one we have discussed.

2.5 Symmetry algebra

In this section we want to compute the symmetry algebra for the following anisotropic scale
invariant Lagrangian

L= Φ̇Φ̇? −λX i jX
?
i j − λ̃X iiX

?
j j , (2.60)
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where X i j is defined in (2.45). This theory has scale symmetry (2.20) with dynamical critical
exponent z = d+4

3 and the scaling dimension of Φ given by DΦ =
2−d

3 . Unless both λ and λ̃
vanish it is also non-Gaussian.

To obtain the charges for the Lagrangian in (2.60) and compute their Poisson brackets we
use the Hamiltonian formulation. We start by defining the canonical momenta Π and Π? of Φ
and Φ? by

Π=
∂L
∂ Φ̇
= Φ̇? , Π? =

∂L
∂ Φ̇?

= Φ̇ , (2.61)

which we use to obtain the canonical Hamiltonian density

H = ΠΠ? +λX i jX
?
i j + λ̃X iiX

?
j j , (2.62)

which is bounded from below forλ≥ 0 andλ+dλ̃≥ 0. The Lagrangian density in Hamiltonian
form is then

LH = ΠΦ̇+Π?Φ̇? −H (2.63)

from which we can read off the equal time Poisson brackets

{Φ(x),Π(y)}= δ(x − y) , {Φ?(x),Π?(y)}= δ(x − y) . (2.64)

Next we want to compute the Noether charges associated with the symmetries of the La-
grangian. We use the expression we found in equation (2.27a) to find the following set of
Noether charges

Q(0) =
ˆ

dd x J0
(0) , (2.65a)

Q(2)i =
ˆ

dd x x iJ0
(0) , (2.65b)

Pi =
ˆ

dd x Pi , (2.65c)

Mi j =
ˆ

dd x (x iP j − x jPi) , (2.65d)

H =
ˆ

dd x H , (2.65e)

D =
ˆ

dd x (ztH+ x iPi − DΦ (ΦΠ+Φ
?Π?)

�

, (2.65f)

where

J0
(0) = i (ΦΠ−Φ?Π?) , (2.66a)

Pi = Π∂iΦ+Π
?∂iΦ

? , (2.66b)

are the charge density and momentum density, respectively. Starting from the top we have the
U(1) charge, the dipole charge, the momentum, the angular momentum, the energy and the
dilatation charge.

It is interesting to note that for general values of DΦ and d, the Poisson bracket {D, H} is
given by the following expression

{D, H}=
ˆ

dd x
�

− 2(d − 2+ 3DΦ)ΠΠ
? + (d − 4+ 4DΦ)H

�

. (2.67)
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In order for this to be proportional to H, and thus for the algebra to close, we need DΦ = −
d−2

3 ,
and so we obtain

{D, H}= −
d + 4

3
H . (2.68)

The prefactor of d+4
3 is exactly the value of z for which the theory is scale invariant. Ultimately

one finds the following nonzero Poisson brackets

{Mi j , Mkl}= −4δ[k[i M j]l] , {M jk, Pi}= −2δi[ j Pk] , (2.69a)

{Pi ,Q
(2)
j }= δi jQ

(0) , {M jk,Q(2)i }= −2δi[ jQ
(2)
k] , (2.69b)

{D, H}= −zH , {D, Pi}= −Pi , {D,Q(2)i }=Q(2)i , (2.69c)

where z = d+4
3 .

If we set λ̃= −λ/d we get a symmetry enhancement. Namely, the Lagrangian is invariant
under δΦ= i

2γx2Φ which leads to the following Noether charge

Q(4) =
1
2

ˆ
dd x x2J0

(0) . (2.70)

This can be thought of as the trace of the quadrupole moment. It has the following nonzero
Poisson brackets

{Pi ,Q
(4)}= −Q(2)i , {D,Q(4)}= 2Q(4) . (2.71)

Let us remark that the charges (2.65a)–(2.65e), and by extension the algebra in (2.69a)
and (2.69b), always take this form for any complex scalar theory that is second order in time
derivatives with dipole and U(1) symmetries. Within this class of theories, some Lagrangians,
such as (2.60), will also have dilatation symmetry.

Other symmetries?

In this subsection, we work out the most general conditions that a manifest, i.e., linearly
realised (in field space) symmetry of the form (2.21) must satisfy. For a variation of this form
to be a symmetry, it must be such that the Lagrangian varies as in (2.25), which for the specific
Lagrangian (2.60) leads to the condition

∂µKµ =
1
2
(X i jX

?
kl + Xkl X

?
i j) (2.72)

×
�

λδ jl

�

4∂(iξk) −δik(4Re f + ∂µξ
µ)
�

+ λ̃δkl

�

4∂(iξ j) −δi j

�

4Re f + ∂µξ
µ
���

− ξ̇i(Φ̇?∂iΦ+ Φ̇∂iΦ
?) + Φ̇?Φ̇

�

∂µξ
µ − 2ξ̇t + 2Re f

�

+ΦΦ̇? ḟ + Φ̇Φ? ḟ ?

+ (Φ∂µΦX ?i j +Φ
?∂µΦ

?X i j)
�

λ∂i∂ jξ
µ + λ̃δi j∂

2ξµ
�

+Φ2X ?i j(λ∂i∂ j f + λ̃δi j∂
2 f ) +Φ?2X i j(λ∂i∂ j f ? + λ̃δi j∂

2 f ?)

+ 2
�

(Φ̇∂ jΦ−Φ∂ jΦ̇)X
?
kl + (Φ̇

?∂ jΦ
? −Φ?∂ jΦ̇

?)Xkl

�

(λδ jl∂kξ
t + λ̃δkl∂ jξ

t) .

A symmetry with a nonzero Kµ transforms the action into a boundary term, and we will not
consider this case. As we saw above, all the transformations in (2.23) led to Kµ = 0. Using
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equation (2.72) we find that a symmetry with Kµ = 0 must satisfy

0= λ
�

2δ(l( j∂i)ξk) + 2∂(kξ(iδ j)l) −δ(l( jδi)k)(4Re f + ∂µξ
µ)
�

+ λ̃δkl

�

4∂(iξ j) −δi j

�

4Re f + ∂µξ
µ
��

, (2.73a)

0= ∂iξ
i − ξ̇t + 2Re f , (2.73b)

0= λ∂i∂ jξ
µ + λ̃δi j∂

2ξµ , (2.73c)

0= λ∂i∂ j f + λ̃δi j∂
2 f , (2.73d)

0= ḟ , (2.73e)

0= ξ̇i , (2.73f)

0= λδ j(l∂k)ξ
t + λ̃δkl∂ jξ

t . (2.73g)

The solutions to these equations split into two cases: when λ+ dλ̃ 6= 0, the equations above
tells us that the most general symmetry is such that

f = −
d − 2

3
f0 + iα+ iβi x

i , (2.74a)

ξi = ξi
0 +ω

i
j x

j + f0 x i , (2.74b)

ξt = ξt
0 +

d + 4
3

f0 t , (2.74c)

where { f0,α,βi ,ξ
i
0,ξt

0} are real constants, andωi
j is a real antisymmetric matrix. We see that

this exactly reproduces the symmetries of (2.23). If, on the other hand, λ+ dλ̃ = 0, we find
that

f = −
d − 2

3
f0 + iα+ iβi x

i +
i
2
γx2 , (2.75a)

ξi = ξi
0 +ω

i
j x

j + f0 x i , (2.75b)

ξt = ξt
0 +

d + 4
3

f0 t . (2.75c)

This means that we obtain the additional trace-quadrupole symmetry when λ+ dλ̃= 0, just
as we observed around (2.70). There are thus no additional symmetries.

2.6 Fracton, Carroll and Bargmann symmetries

The typical structure of the symmetry algebra of a complex scalar theory with a dipole sym-
metry is of the form

{Mi j , Mkl}= −4δ[k[i M j]l] , {M jk, Pi}= −2δi[ j Pk] , Arist. static ,

{M jk,Q(2)i }= −2δi[ jQ
(2)
k] , {Pi ,Q

(2)
j }= δi jQ

(0) , dipole sym. ,

{D, H}= −zH , {D, Pi}= −Pi , {D,Q(2)i }=Q(2)i , dilatations ,

{Pi ,Q
(4)}= −Q(2)i , {D,Q(4)}= 2Q(4) , quadrupole ,

where we included a dilatation generator D with dynamical critical exponent z and a quadru-
pole symmetry Q, but keeping in mind that these latter symmetries are not always present.
We thus have generators of spatial rotations Mi j , spatial and temporal translations Pi and

H, the electric charge Q(0), the dipole charge vector Q(2)i , the quadrupole scalar Q(4) and the
dilatations D. The first line spans the Aristotelian static symmetries which get accompanied by
the symmetries of the second line once dipoles are conserved. When we have scale symmetry
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the third line gets added. For quadrupole symmetries one adds the commutation relations of
the last line (only the first term when there is no dilation symmetry).

The subalgebra spanned by 〈Mi j , H, Pi〉 is naturally interpreted as an Aristotelian homoge-
neous space due to the absence of boost symmetries. A homogeneous space is, up to global
considerations, characterised by a Lie algebra g = h + m and a Lie subalgebra h, where m

is spanned by the remaining generators (the + is a vector space direct sum and should not
be understood as a Lie algebra direct sum). For the case at hand gArist = 〈Mi j , H, Pi〉 and
hArist = 〈Mi j〉 giving rise to a (d+1)-dimensional manifold which is closely tied to the fact that
we have d + 1 remaining generators m = 〈H, Pi〉. This homogeneous space is Aristotelian –
more precisely, the static Aristotelian spacetime [27]. We refer to [27,41] for more details and
a classification of Aristotelian algebras and spacetimes. Having specified the homogeneous
space one can introduce exponential coordinates as σ(t, x) = etH+x i Pi in terms of which the
invariants of low rank are given by a 1-form τ = d t, a degenerate metric h = δi jd x id x j and
their duals v = ∂

∂ t and δi j ∂
∂ x i

∂
∂ x j , which will play a prominent role once we curve our man-

ifold, c.f., Section 5. The action of the symmetries of the subalgebra h on the coordinates is
determined by [h,m] quotiented by h, i.e., [h,m]modh. For example, the rotations have a
nontrivial action on the coordinates precisely as given in (2.19).

The relevant part for fractonic physics is the addition of the dipole charge vector Q(2)i and
the charge Q(0). In particular, the existence of a conserved dipole charge and its nontrivial
commutation relation with the translations distinguishes these theories from non-fractonic
theories. The geometry of the enlarged algebra, spanned by gFrac = 〈Mi j , H, Pi ,Q

(0),Q(2)i 〉, is
still naturally interpreted as the (d + 1)-dimensional static Aristotelian spacetime when we
quotient by hFrac = 〈Mi j ,Q

(0),Q(2)i 〉. This is the case since the action generated by the charges

Q(0) and Q(2)i acts trivially on m = 〈H, Pi〉 and consequently on the spacetime manifold. This
is in perfect agreement with (2.18) where these symmetries only act on the field. To see this
consider

[Q(2)j , Pi]mod hFrac = −δi jQ
(0) mod hFrac = 0 mod hFrac , (2.77)

or, in other words, the commutation relations of 〈Q(0),Q(2)i 〉 with H and Pi do not lead to
elements in 〈H, Pi〉. The same arguments apply upon introducing the conserved quadrupole
moments. In both cases it is natural from the point of view of the underlying homogeneous
space to quotient by the trivial symmetries, whereby we land again at our original Aristotelian
geometry.

The situation slightly differs upon the introduction of the dilatations. Like for the other
cases we enlarge the quotient h, but stick to m= 〈H, Pi〉 connected to the fact that our manifold
stays (d+1)-dimensional. However, the action D on m leads again to elements in m and to the
action (2.20) on the coordinates. Therefore the homogeneous space and its invariants differ
in this case (one could call it a Lifshitz–Weyl spacetime [42]).

Let us finally comment on two Lie algebra isomorphisms. The algebra spanned by
〈Mi j , Pi ,Q

(2)
i ,Q(0)〉 is isomorphic to the Carroll algebra and if Q(2)i is interpreted as boosts and

Q(0) as time translations this would indeed also lead to the (flat) Carroll spacetime. How-
ever, as can be seen from (2.18) the action of Q(2)i is not naturally interpreted as a Carroll
boost (2.52). Since Carroll boosts are not a symmetry of the action this observation is merely
a coincidental equivalence of Lie algebras and not of the underlying homogeneous spaces.

Similar remarks apply for the case with an additional conserved quadrupole symmetry for
which the algebra turns our to be isomorphic to the Bargmann algebra [13], the unique central
extension of the Galilei algebra that exists in any dimension. To obtain Bargmann spacetime
symmetries we would interpret Q(4) as the time translation generator, Q(2)i would generate
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translations, Pi Bargmann boosts and Q(0) would be the central extension which is sometimes
interpreted as mass.

While in the current setup the interpretation in terms of Carrollian and Galilean symmetries
seems to be non-conventional, it might still be interesting to see if there is something to be
learned by thinking of them from this other perspective.

2.7 Noether procedure for gauging dipole symmetry

A Lagrangian for which (2.38) vanishes for any α and βi is a complex scalar theory with dipole
symmetry. If we make α and βi local4 for such a theory we obtain

δL= J0
(0)∂t

�

α+ βk xk
�

− J̃ i j∂i∂ j

�

α+ βk xk
�

, (2.78)

as can be explicitly verified.
When we apply the Noether procedure the original matter Lagrangian is called L(0) (which

is zeroth order in gauge fields). To counter the non-invariance ofL(0) we add to it anL(1) which
is first order in a set of gauge fields whose variation gives us the objects J0

(0) and J̃ i j (which
are the building blocks of the U(1) and dipole currents). Since the latter are fully generic we
need a scalar field φ and a symmetric tensor gauge field Ai j . The expression for L(1) is then
given by

L(1) = −J0
(0)φ + J̃ i jAi j , (2.79)

where the gauge fields transform as

δφ = ∂tΛ , δAi j = ∂i∂ jΛ , (2.80)

where Λ = α+ βk xk. The new Lagrangian is now L(0) +L(1) and we need to check that this
is gauge invariant. This is not guaranteed because the objects J0

(0) and J̃ i j need not be gauge

invariant. If they are not we add an L(2) (which is second order in gauge fields) etc. until the
procedure stops which happens when L(0) +L(1) + . . . is gauge invariant. For (non-)Abelian
symmetries (and polynomial Lagrangians) this always happens after a finite number of steps.

Now, suppose we only assume that L is U(1) invariant, i.e., the first line of (2.38) vanishes
but we do not assume that there is also a dipole symmetry, so that the second line of (2.38)
does not need to vanish, then varying L for local α and βi leads to

δL= J0
(0)∂t

�

α+ βk xk
�

+ J i
(0)∂i

�

α+ βk xk
�

. (2.81)

Up to a total derivative, this can be rewritten as

δL= J0
(0)∂t

�

α+ βk xk
�

− J̃ i j∂i∂ j

�

α+ βk xk
�

+
�

J i
(0) − ∂ j J̃

ji
�

∂i

�

α+ βk xk
�

. (2.82)

Applying the Noether procedure to the latter leads to an L(1) given by

L(1) = −J0
(0)φ + J̃ i jAi j −

�

J i
(0) − ∂ j J̃

ji
�

Bi , (2.83)

where the gauge fields transform as

δφ = ∂t

�

α+ βk xk
�

, δBi = ∂i

�

α+ βk xk
�

, δAi j = ∂i∂ j

�

α+ βk xk
�

. (2.84)

4Making βi local is in a way taken care of by making α local. The functions α and βi must always appear in
the combination α+ βi x

i . The role of βi is in the second line of (2.38) ensuring that the Lagrangian has dipole
symmetry which is why, from the point of view of an ordinary U(1) gauging, the spatial part of the U(1) current
obeys (2.37). We can derive (2.78) by using that the local U(1) variation with parameter Λ of a Lagrangian with
a global U(1) symmetry always takes the form δL= J0

(0)∂tΛ+ J i
(0)∂iΛ and by using that for a theory with a dipole

symmetry we have (2.37). Performing a partial integration and setting Λ= α+βk x k we obtain the desired result.
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If the theory really only has a U(1) symmetry and no dipole symmetry then we can write
Ai j = ∂(iB j) as in that case the Noether current is just given by (J0

(0), J i
(0)). If however the

theory has a dipole symmetry we need to ensure this which can be achieved by assigning to
Bi the additional Stückelberg transformation

δBi = −Σi . (2.85)

The Σi transformation is there to enforce equation (2.37). Using partial integration we can
rewrite L(1) as

L(1) = −J0
(0)φ − J i

(0)Bi + J̃ i jÃi j , (2.86)

where we defined

Ãi j = Ai j − ∂(iB j) . (2.87)

In this latter formulation the gauge fields transform as

δφ = ∂t

�

α+ βk xk
�

, δBi = ∂i

�

α+ βk xk
�

−Σi , δÃi j = ∂(iΣ j) . (2.88)

At the level of the currents the situation is as follows: we have the following responses,

−J0
(0)δφ − J i

(0)δBi + J̃ i jδÃi j , (2.89)

where J̃ i j = J̃ ji . This leads to the following Ward identities

0= ∂t J
0
(0) + ∂iJ

i
(0) , (2.90a)

0= J i
(0) − ∂ j J̃

i j , (2.90b)

for the Λ = α + βk xk and Σi gauge parameters, respectively. This in turn gives rise to the
charge and dipole conservation equations

0= ∂t J
0
(0) + ∂i∂ j J̃

i j , (2.91a)

0= ∂t

�

x iJ0
(0)

�

+ ∂ j

�

x iJ j
(0) − J̃ i j

�

. (2.91b)

The gauge field Bi is now a Stückelberg field and can thus be gauged away entirely. Setting
both Bi and its total gauge transformation to zero, i.e., δBi = ∂iΛ − Σi = 0 tells us that the
residual gauge transformations in the gauge Bi = 0 are described by Σi = ∂iΛ, and thus in this
gauge Ãi j = Ai j which transforms as δAi j = ∂i∂ jΛ.

Lastly, we want to comment on the Noether procedure for the case where the Lagrangian
has the additional γ-symmetry described in section 2.3. In this case, if we make α, β and γ
local, the variation of the Lagrangian becomes

δL(0) = J0
(0)∂t

�

α+ βk xk +
1
2
γx2

�

− J̃ i j
�

∂i∂ j

�

α+ βk xk +
1
2
γx2

�

−
1
d
δi j∂k∂k

�

α+ βk xk +
1
2
γx2

��

, (2.92)

where we used that J̃ ii = 0. We therefore need to introduce a scalar field φ and a symmetric
traceless tensor gauge field Ai j . The expression for L(1) is then given by

L(1) = −J0
(0)φ + J̃ i jAi j , (2.93)

where the gauge fields transform as

δφ = ∂t

�

α+ βk xk +
1
2
γx2

�

, (2.94a)

δAi j = ∂i∂ j

�

α+ βk xk +
1
2
γx2

�

−
1
d
δi j∂k∂k

�

α+ βk xk +
1
2
γx2

�

. (2.94b)

Thus, it is clear that the γ-symmetry leads to a tracelessness condition on Ai j in the Noether
procedure.
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3 Worldline actions and coupling to scalar charge gauge theory

Now that we have identified the gauge fields involved in gauging the dipole symmetry we can
ask ourselves what is the form a worldline action would take that couples to these fields in a
gauge invariant fashion. This would be the analogue of the coupling of a charged point particle
as we are familiar with from electrodynamics where such couplings lead to the Lorentz force,
i.e., a coupling of the form q

´
dλAµẊµ. The general form of the action we are looking for is

Stot = SSCGT + Sint + Skin , (3.95)

where SSCGT is the action for the scalar charge gauge theory involving the fields φ and Ai j
(which we will discuss in detail in Section 4) and where Skin is some yet to be determined
kinetic term for the embedding scalars X i (see further below). The interaction action is

Sint = −q
ˆ λ f

λi

dλ
�

Ṫ
�

φ − X i∂iφ
�

− X i Ẋ jAi j

�

, (3.96)

where the dot denotes differentiation with respect to λ, the parameter along the worldline and
where λi and λ f denote the endpoints of the worldline parameter. The embedding coordinates
are T and X i . The gauge fields and its derivatives are evaluated along the worldline where
t = T and x i = X i . The interaction action is worldline reparametrisation invariant. Under the
gauge transformation δφ = ∂tΛ and δAi j = ∂i∂ jΛ the combination Ṫ

�

φ − X i∂iφ
�

− X i Ẋ jAi j
transforms as

δ
�

Ṫ
�

φ − X i∂iφ
�

− X i Ẋ jAi j

�

= Ṫ∂t

�

Λ− X i∂iΛ
�

+ Ẋ j∂ j

�

Λ− X i∂iΛ
�

(3.97a)

=
d

dλ

�

Λ− X i∂iΛ
�

, (3.97b)

so that Sint remains invariant up to boundary terms (endpoints of the worldline). The gauge
variation is precisely zero for the target space symmetries ∂µ

�

Λ− x i∂iΛ
�

= 0, i.e., Λ= α+βi x
i

with α and βi constant.
In (3.96) the fields are evaluated along the worldline. In order to compute the spacetime

currents associated with the flow of these objects we write (3.96) as follows

Sint = −q
ˆ

d tdd x
ˆ λ f

λi

dλδ(t − T (λ))δ(x − X (λ))
�

Ṫ
�

φ − X i∂iφ
�

− X i Ẋ jAi j

�

, (3.98)

where the integrand of the λ-integral is no longer restricted to the worldline, so for example
φ is now a function of t, x i and not of T (λ), X i(λ) as was the case in (3.96).

Let us define

δASint =
ˆ

d tdd x
�

−J0
(0)δφ + J̃ i jδAi j

�

. (3.99)

This leads to

J0
(0) = q

ˆ λ f

λi

dλδ(t − T (λ))Ṫ
�

δ(x − X (λ)) + X i∂iδ(x − X (λ))
�

, (3.100a)

J̃ i j =
q
2

ˆ λ f

λi

dλδ(t − T (λ))δ(x − X (λ))
�

X i Ẋ j + X j Ẋ i
�

. (3.100b)

We can fix worldline reparametrisation invariance by setting T = λ. If we do this we obtain

J0
(0) = q

�

δ(x − X (t)) + X i∂iδ(x − X (t))
�

, (3.101a)

J̃ i j =
q
2
δ(x − X (t))

�

X i Ẋ j + X j Ẋ i
�

, (3.101b)
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where the dot now denotes differentiation with respect to t.
Gauge invariance of Sint tells us that we have the identically conserved equation

ˆ
d tdd x

�

∂t J
0
(0) + ∂i∂ j J̃

i j
�

Λ= 0 , (3.102)

for all Λ that are at most linear in X i at the endpoints λi = t i and λ f = t f . This implies that

∂t J
0
(0) + ∂i∂ j J̃

i j = 0 , (3.103)

as can be explicitly verified by using Ẋ i∂iδ(x − X (t)) = −∂tδ(x − X (t)). The current is identi-
cally conserved because for the worldline theory there are no other fields (other than the gauge
fields) transforming under the gauge transformation with parameter Λ. We can construct d
additional (identically) conserved equations, namely the currents

J0 j
(2) = x jJ0

(0) , J i j
(2) = x j∂k J̃ ik − J̃ i j , (3.104)

which obey
∂t J

0 j
(2) + ∂iJ

i j
(2) = 0 , (3.105)

by virtue of (3.103).
We can define a U(1) and dipole charge in the sense of distributions, i.e., let ε(x) be a test

function then we define

Q(0)[ε] :=
ˆ

dd xε(x)J0
(0) = qε(X (t))− qX i(t) (∂iε(x))

�

�

�

x=X (t)
, (3.106a)

Q(2)j [ε] :=
ˆ

dd xε(x)J0 j
(2) = −qX j(t)X i(t) (∂iε(x))

�

�

�

x=X (t)
= X j

�

Q(0)[ε]− qε(X (t))
�

.

(3.106b)

For ε = 1, we obtain the total U(1) and total dipole charge, which are q and zero, respectively5.
The kinetic term is of the form

Skin =
ˆ

dλṪ f

�

| ~̇X |2

Ṫ2

�

. (3.107)

This is dictated by translation invariance of T and X i and rotational symmetry of the X i . These
target space symmetries become global symmetries of the worldline theory. Finally, the form
of the Lagrangian is such that we have worldline reparametrisation invariance for any f . Well-
known examples of such a function f are

| ~̇X |2

2Ṫ2
or −

√

√

√

1−
| ~̇X |2

Ṫ2
, (3.108)

where the first expression for f is for theories with Galilei invariance and the second expression
for f is for theories with Lorentz invariance. In the case we are dealing with there is no boost
symmetry and hence f is not uniquely fixed.

Let us come back to the fact that the total dipole charge is zero. For a point particle a
nonzero dipole charge is proportional to qX i (with respect to some chosen origin). For this
to be conserved the particle cannot move unless the total dipole charge is zero. For a point

5The expression for Q(0)[ε] contains the first two terms in the Taylor expansion of qε(x) around x = X (t)

evaluated at x = 0, i.e., ε(x) = ε(X (t)) + (x i − X i(t))(∂iε(x))
�

�

�

x=X (t)
+ · · · evaluated at x = 0.
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particle this would imply q = 0, but our worldline theory does not describe a point particle
because the charge distribution (3.101a) involves a derivative of a delta function and so the
above argument about immobility does not apply. Here we have an example of a worldline
theory for which the total dipole charge is zero while the total charge is q and there is no
mobility restriction. It would be interesting to investigate these mobile and dipole-like objects
in more detail.

If the scalar charge gauge theory is traceless, the gauge transformations instead read
δφ = ∂tΛ and δAi j = ∂i∂ jΛ −

1
dδi j∂

2Λ. In this case, the gauge invariant interaction term
is

Sint = −q
ˆ λ f

λi

dλ
�

Ṫ
�

φ − X i∂iφ +
1

2d
X kX k∂ j∂ jφ

�

−
�

X i Ẋ j −
1
d
δi jX k Ẋ k

�

Ai j

+
1

2(d − 1)
X kX k

�

Ẋ j∂iAi j −
1
d
δi j Ẋ

l∂lAi j

��

. (3.109)

Under a gauge transformation the Lagrangian transforms into a total derivative term that is
proportional to

d
dλ

�

Λ− X i∂iΛ+
1

2d
X kX k∂ j∂ jΛ

�

. (3.110)

It would be interesting to study this action in more detail and to generalise these results to
higher order symmetries.

4 Scalar charge gauge theory

The scalar charge gauge theory was the first continuum model proposed to describe fracton
behaviour [21,22,43] (see also the review [12]).

In this section, we develop the scalar charge gauge theory by making dynamical the gauge
fields obtained by gauging the dipole symmetry using the Noether procedure, c.f., Section 2.7.
We analyse the gauge sector and cohomology of the theory. It is useful to contrast this discus-
sion with electrodynamics, which we have added for convenience in Appendix A, and linearised
general relativity which it perfectly mirrors, see, e.g., the introduction of [44].

By modifying the pre-symplectic potential, we show how the traceless theory emerges from
a Faddeev–Jackiw type Hamiltonian analysis of this modified theory, and, in particular, we
demonstrate that the traceless scalar charge gauge theory with a nontrivial magnetic sector
only exists for d ≥ 3. After computing the spectrum of the scalar charge gauge theory, we
conclude with some observations regarding the similarities between the scalar charge gauge
theory and the theory of partially massless gravitons.

4.1 Poisson bracket and gauge generator

The fundamental fields of scalar charge gauge theory are the symmetric fields

Ai j ∼ i j , (4.111)

and their canonical conjugate momenta Ei j . Boxes after the ∼ symbol denote Young tableaux
that describe the symmetries of the indices. The indices i, j, . . . are spatial, i.e., they run from
1 to d. The fundamental fields satisfy the equal time Poisson bracket

{Ai j(~x), Ekl(~y)}= δi(kδl) jδ(~x − ~y) , (4.112)
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and, by assumption, we have a gauge symmetry

δΛAi j = ∂i∂ jΛ and δΛEi j = 0 , (4.113)

for fixed time t. The gauge parameter is a scalar Λ = Λ(t, ~x) ∼ • , where the bullet is the
Young tableaux for a scalar.

The gauge symmetries are generated canonically via δΛF = {F, G̃[Λ]} with the gauge gen-
erator G̃. It must have a well-defined functional derivative, i.e., δG̃ should not lead to bound-
ary terms upon integration by parts. This means that the gauge generator consists of two
parts G̃[Λ] = G[Λ] +Q[Λ] [45,46]

G[Λ] =
ˆ

dd x (Λ∂i∂ j Ei j) , (4.114)

Q[Λ] =
ˆ

dd x ∂i

�

∂ jΛEi j −Λ∂ j Ei j

�

, (4.115)

where G[Λ] is a bulk and Q[Λ] a boundary term. The charge Q[Λ] does not necessarily vanish
on-shell for gauge parameters Λ that are nonzero on the boundary. On the other hand, the
bulk term G[Λ] vanishes on-shell (more precisely on the constraint surface) and only the
boundary term remains, G̃[Λ] ≈ Q[Λ]. In this sense gauge transformations with nonzero
Q[Λ] actually generate physical symmetries and change the physical state of the system. As
we will show next, they also lead to nontrivial conserved charges. They are called improper
gauge transformations [45, 46]. When Q[Λ] vanishes the gauge symmetries are proper and
are nothing but the redundancies inherent in our description [45,46].

Let us now couple sources to our theory. The charge conservation equation for our dipole
symmetry takes the form (2.90). For sufficient fall-offs of J i

(0), this leads to conservation of the
charge

Q(0) =
ˆ

dd x J0
(0) , Q̇(0) = 0 , (4.116)

as well as the conservation of the dipole charge

Q(2)i =
ˆ

dd x x iJ0
(0) . (4.117)

The boundary charges (4.115) are compatible with these conserved U(1) and dipole charges.
Verifying this requires the generalised Gauss constraint

∂i∂ j Ei j = −J0
(0) , (4.118)

which follows from coupling our theory to matter as we will show at the start of Section 4.3.
Setting Λ= α, where α is constant, we obtain from the boundary charges

Q[α] = α
ˆ

dd x J0
(0) = αQ(0) . (4.119)

If we instead set Λ= βi x
i , we get the dipole charge after using (4.118)

Q[βi x
i] = βi

ˆ
dd x x iJ0

(0) = βiQ
(2)
i . (4.120)
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4.2 The gauge sector

Using cohomology [44, 47, 48] (see Appendix C.I in [49] for a concise summary which is
sufficient for the following arguments) we will now construct a gauge invariant “curvature” or
“magnetic field” tensor which has the important property that it fully characterises the gauge
symmetries and satisfy a Bianchi identity. It is useful to contrast the following discussion with
electrodynamics, which we provide for convenience in Appendix A.

As a first step it is useful to rewrite the gauge transformation as a generalised differential

(d2d1Λ)i j = ∂ j(d1Λ)i = 2∂i∂ jΛ∼ i j , (4.121)

where d1 acts with a derivative on the first and d2 on the second column of the Young tableaux
symmetries and we afterwards Young project accordingly to have the right index symmetries.
We can represent these operations as

d1−→
∂

d1−→
∂
∂

d1−→ · · ·
d2−→ ∂

d2−→ ∂
∂

�d2−→ · · · (4.122)

We want to emphasise that d2 does not exist for equal height tableaux. These operations imply
that

(d1)
2 = 0= (d2)

2 . (4.123)

We refer to potentials of the form A= d2d1Λ as being pure gauge.
We define the gauge invariant “curvature” or “magnetic field” Fi jk by

Fi jk = (d1A)i jk := 2∂[iA j]k ∼
i k
j . (4.124)

This tensor is an irreducible GL(d) representation and has mixed symmetry, i.e., it is neither
totally symmetric nor totally antisymmetric. These curvatures are a subset of all “hook” sym-
metric tensors, as denoted by the Young tableaux on the right hand side of (4.124). In general
hook symmetry means that the first two indices are antisymmetric F[i j]k = Fi jk and an anti-
symmetrisation over all indices vanishes F[i jk] = 0. A useful relation, which follows from these
symmetries, is

Fi[ jk] = −
1
2

F jki . (4.125)

By construction the curvature (4.124) vanishes when the potential is pure gauge

Fi jk = 4∂[i∂ j]∂kΛ= 0 . (4.126)

In other words, the curvatures do not see the irrelevant pure gauge potentials, something we
can also write as

d1d2d1Λ= d2(d1)
2Λ= 0 . (4.127)

Conversely, a vanishing curvature of an arbitrary potential Ai j implies that this potential is
pure gauge, i.e.,

Fi jk = 2∂[iA j]k = 0 =⇒ Ai j = 2∂i∂ jΛ , (4.128)

or in short d1A= 0=⇒ A= 1
2 d2d1Λ. This shows that only the irrelevant pure gauge potentials

get lost when going to curvatures, i.e., the curvatures fully capture the gauge symmetries. The

26

https://scipost.org
https://scipost.org/SciPostPhys.12.6.205


SciPost Phys. 12, 205 (2022)

relation (4.128) can be shown using the Poincaré lemma and the symmetry properties of the
involved tensors.

The final class of tensors we introduce are tensors with the following Young tableaux

Ti jkl ∼
i l
j
k

. (4.129)

This means that Ti jkl = T[i jk]l and T[i jkl] = 0. A subset of these tensors are differentials of
hook symmetric tensors F jkl of the form

(d1F)i jkl = 3∂[i F jk]l . (4.130)

If the hook symmetric tensor is the curvature of a potential, see (4.124), it follows that

∂[i F jk]l = 2∂[i∂ jAk]l = 0 (⇔ d1F = (d1)
2A= 0) , (4.131)

which is the generalised differential Bianchi identity.
Conversely, ∂[i F jk]l = 0, where Fi jk is a generic hook symmetric tensor, implies that F jkl is

the curvature of a potential. To see this we start by

∂[i F jk]l = 0 =⇒ Fi jk = 2∂[i M j]k , (4.132)

where we can decompose Mi j into a symmetric tensor Ãi j = Ã ji and an antisymmetric tensor
B̃i j = −B̃ ji as

Mi j = Ãi j + B̃i j . (4.133)

We still have to enforce that Fi jk is a hook symmetric tensor, F[i jk] = 2∂[i B̃ jk] = 0 leads then
via the Poincaré lemma to B̃i j = ∂[iB j]. It follows that

∂[i F jk]l = 0 =⇒ Fi jk = 2∂[iÃ j]k − ∂k∂[iB j] (⇔ d1F = 0=⇒ F = d1(Ã−
1
2 d2B)) (4.134)

where

Ai j = Ãi j − ∂(iB j) (⇔ A= Ã− 1
2 d2B) . (4.135)

We have the gauge freedom parametrised by Σi and Λ,

Ãi j 7→ Ãi j + ∂(iΣ j) , (Ã 7→ Ã+ 1
2 d2Σ) , (4.136a)

Bi 7→ Bi +Σi − ∂iΛ , (B 7→ B +Σ− d1Λ) , (4.136b)

Ai j 7→ Ai j + ∂i∂ jΛ , (A 7→ A+ 1
2 d2d1Λ) , (4.136c)

Fi jk 7→ Fi jk , (F 7→ F) . (4.136d)

We can partially gauge fix by demanding that Bi = 0, which can be reached by the gauge
transformation Σi = −Bi and Λ= 0. The residual gauge transformation leaving this constraint
unaltered are then given by Σi − ∂iΛ = 0. This means the partial gauge fixed version of our
statement above is Ai j = Ãi j . This shows that the Bianchi identity characterises the curvatures
that come from gauge potentials.

What we have described is a generalisation of the gauge structure of electrodynamics and
linearised gravity. With the differential operators given in (4.121), (4.124), and (4.130), re-
spectively, we have also shown that we obtain an exact sequence that we can schematically
depict as

•
d2d1−→

d1−→
d1−→ . (4.137)

This subsection should be contrasted with Section 2.7 starting around (4.128), where the
Noether procedure led to a similar structure.
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4.3 Hamiltonian for scalar charge gauge theory

The phase space Lagrangian (up to total derivatives) is schematically of the form
pq̇−H+constraints. For our theory the only constraint is the (generalised) Gauss law and the
phase space variables are Ai j and Ei j . This leads to

L[Ai j , Ei j ,φ] = Ei jȦi j −H−φ∂i∂ j Ei j , (4.138)

where φ is the Lagrange multiplier for the Gauss constraint. This is the Lagrangian for the
source-free part of the theory. If we include matter fields that couple to our gauge fields then
we use that the total variation of the gauge invariant matter Lagrangian Lmat[Ai j ,φ,Φ], where
the matter fields are collectively denoted by Φ, is given by

δLmat[Ai j ,φ,Φ] = −J0
(0)δφ + J̃ i jδAi j , (4.139)

where the variations are arbitrary and where we have omitted the terms proportional to δΦ.
The first term in (4.138) contains the (pre)symplectic potential from which we can derive

the (pre)symplectic form whose inverse gives the Poisson brackets (4.112) (see, e.g., [23,
24]). The Lagrange multiplier φ is the same field we encountered in the Noether procedure
in Section 2.7.

We now want to define a Hamiltonian H. We demand that H is:

• so(d)-rotation invariant: this means we use δi j and εi1···id to contract all indices.

• Gauge invariant: this means we build H out of only gauge invariant objects Ei j and
Fi jk, the analogues of the electric and magnetic field strengths. The Hamiltonian then
commutes with the Gauss constraint and the latter Poisson commutes with itself so that
the Gauss constraint is first-class.

• Quadratic in Ei j , so that we can integrate out Ei j and obtain a Lagrangian that is second
order in time derivatives.

• At most quadratic in Fi jk (for simplicity).

• Bounded from below.

Up to total derivatives there are no linear terms that one can write. The only candidate is
Eii but this is a total derivative term in the Lagrangian when expressed in terms of the gauge
potentials. These requirements lead in generic dimension to the Hamiltonian

H =
g1

2
Ei j Ei j +

g2

2
Eii

2 +
h1

4
Fi jkFi jk +

h2

2
Fi j j Fikk . (4.140)

Let us discuss these terms:

• The g1 and h1 terms are the terms that are commonly discussed in the literature and
mimic electrodynamics, c.f., (A.300).

• The g2 and h2 terms can be added because of the possibility to treat the trace of Ai j
separately.

• We could have added a term proportional to Fi jkFik j but using the identity 2Fi jkFik j =
Fi jkFi jk, (which follows from (4.125)) it does not give anything new.
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What remains to be done is to analyse the ranges of the parameters g1, g2, h1, h2. We start
with the electric sector. In order that the electric sector with coupling constants g1 and g2 is
bounded from below we need that g1 ≥ 0 and g1 + d g2 ≥ 0. This follows from writing Ei j
in a traceless and traceful part and demanding that the traceless and traceful parts contribute
each non-negatively to the Hamiltonian. Next, in order to be able to solve for Ei j after varying
the phase space Lagrangian with respect to Ei j , so that we can integrate it out and obtain
the Lagrangian expressed in terms of the gauge potentials, we must require that g1 > 0 and
g1 + d g2 > 0.

In Section 4.7, we will show that the case g1+d g2 = 0, which needs to be treated separately,
plays an important role in the so-called traceless scalar charge theory, which is a theory with
a slightly different gauge transformation for the field Ai j .

Due to the hook symmetry of Fi jk it is more difficult to find the necessary conditions for the
magnetic part of the Hamiltonian to be bounded from below. We will solve this problem for
d ≥ 3 by expressing the Lagrangian in terms of the magnetic field which we define as follows

BI j :=
1
2
εI lmFlm j , (4.141)

where the capital letter I = i1, ..., id−2 denotes a multi-index. It follows from this definition
that the magnetic field is completely traceless. From (4.141) we learn that

Fi jk =
1

(d − 2)!
εi jN BNk . (4.142)

Using this we can rewrite the magnetic part of the Hamiltonian as follows

Hmag =
h1 + h2

2(d − 2)!
BI jBI j −

h2

2(d − 3)!
Bi1...id−3 id−2 jBi1...id−3 jid−2

. (4.143)

Splitting the last two indices of the magnetic field into its symmetric and antisymmetric parts,
Bi1...id−2 j = Bi1...(id−2 j)+ Bi1...[id−2 j], we find that h1 ≥ 0 as well as h1+(d −1)h2 ≥ 0 in order for
the magnetic part of Hamiltonian to be bounded from below. All in all, this means that we get
the following conditions for the Hamiltonian to be bounded from below

g1 > 0 , g1 + d g2 > 0 , h1 ≥ 0 , h1 + (d − 1)h2 ≥ 0 . (4.144)

4.4 Lagrangian of scalar charge gauge theory

The phase space action in a generic dimension is defined by

S[Ai j , Ei j ,φ] =
ˆ

d tdd x
�

Ei jȦi j −H−φ∂i∂ j Ei j + ∂iKi

�

+ Sbdry (4.145a)

=
ˆ

d tdd x
�

Ei j(Ȧi j − ∂i∂ jφ)−H
�

+ Sbdry , (4.145b)

where H is given in (4.140). The Lagrangian is invariant under the gauge transformations
δAi j = ∂i∂ jΛ and δφ = ∂0Λ. The term Sbdry is a suitable boundary action that depends on
the type of variational problem we consider. The term Ki , which is closely related to the
charge (4.115), is given by

Ki = −∂ jφEi j +φ∂ j Ei j . (4.146)

The Lagrange multiplier φ enforces the “generalised Gauss constraint”

∂i∂ j Ei j = −J0
(0) , (4.147)
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where we included a source term J0
(0) (which is the response to varying φ) and has undeter-

mined time evolution, i.e., it is a redundancy of our theory. The variation of the phase space
action of the scalar charge gauge theory coupled to some matter sector leads to

δS[Ai j , Ei j ,φ,Φ] =
ˆ

d tdd x
��

Ȧi j − ∂i∂ jφ − g1Ei j − g2δi j Ekk

�

δEi j (4.148a)

+
�

−Ėi j + h1∂mFm(i j) + h2δi j∂mFmnn − h2∂(i F j)nn + J̃i j

�

δAi j (4.148b)

+
�

−∂i∂ j Ei j − J0
(0)

�

δφ + ∂µθ
µ
�

+δSbdry , (4.148c)

where we omitted the variation of the matter fields that we collectively denote by Φ and where
we furthermore defined

θ0 = Ei jδAi j , (4.149a)

θ i = ∂ j Ei jδφ − Ei j∂ jδφ − h1Fi jkδA jk − 2h2F jmmδi[ jδAk]k . (4.149b)

A well-posed variational problem means that the variation of the action vanishes on-shell
and for suitable boundary conditions for the variations. We would like to consider a Dirichlet
problem where we keep the fields φ and Ai j fixed at the boundaries. However we are dealing
with a theory that depends on second order spatial derivatives of φ and so we also need to
say something about what we do with ∂iφ at the boundary. Since φ is kept fixed on the
boundary the same is true for its tangential derivatives. So we only need to say something
about the normal derivative of φ at the boundary, i.e., ni∂iφ where ni is the outward pointing
unit normal at the boundary. We will keep this fixed as well. Hence for a Dirichlet variational
problem we do not need to choose a nonzero Sbdry.

The degrees of freedom are given by half the total amount of canonical variables
{d(d + 1)/2} minus the amount of first class constraints {1}, leading to d(d + 1)/2 − 1 de-
grees of freedom in d spatial dimensions.

We now want to solve for the momenta Ei j to write the action in configuration space, i.e.,
in terms of Ai j . The variation of Ei j tells us that

g1Ei j + g2δi j Ekk = Ȧi j − ∂i∂ jφ =: F0i j . (4.150)

We first take the trace of this quantity

(g1 + d g2)Eii = Ȧii − ∂i∂iφ = F0ii . (4.151)

When g1 + d g2 is nonzero, we can algebraically solve for Ei j

g1Ei j = F0i j −
g2

g1 + d g2
δi j F0kk . (4.152)

We discuss the case when g1+d g2 = 0 in Section 4.7. Having solved for Ei j using its equation
of motion, we may substitute it back into the phase space Lagrangian associated with the action
(4.145b) to obtain

L[Ai j ,φ] =
g1

2
Ei j Ei j +

g2

2
E 2

ii −
h1

4
Fi jkFi jk −

h2

2
Fi j j Fikk (4.153a)

=
1

2g1
F0i j F0i j −

g2

2g1(g1 + d g2)
(F0ii )

2 −
h1

4
Fi jkFi jk −

h2

2
Fi j j Fikk . (4.153b)

This is the analogue of the Maxwell Lagrangian 1
2 F0i F0i−

c2

4 Fi j Fi j where c is the speed of light.
We can learn a few simple facts from dimensional analysis. Both g1Ei j Ei j and Ei jȦi j have

dimensions of energy density. Furthermore, g1Ei j and Ȧi j have the same dimension. Only the
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dimension of the product of g1/2
1 and Ei j is determined. Without loss of generality we can take

g1 to be dimensionless. Then so must be g2. The dimensions of h1 and h2 are then velocity
squared. We can write equation (4.153b) as

L[Ai j ,φ] =
1
g1

�

1
2

�

F0i j −
1
d
δi j F0ii

�2

+
g1

2d(g1 + d g2)
(F0ii )

2

−
g1h1

4
F2

i jk −
g1h2

2
Fi j j Fikk

�

,

(4.154)

where we factored out the parameter 1/g1. We can think of g1 as a charge. When we gauged
the complex scalar we fixed the charge by saying that δΦ = iΛΦ. We could have said it has
charge e and δΦ = ieΛΦ with g1 = 1. Alternatively we keep δΦ = iΛΦ but then g1 = e2. The
two perspectives are related by rescaling the gauge fields φ and Ai j .

From the kinetic terms we find that the scaling dimensions of φ and Ai j are (d + z − 4)/2
and (d − z)/2, respectively. The scaling dimension of the magnetic terms Fi jkFi jk and Fi j j Fikk
is 2+ d − z. The magnetic terms are relevant for z > 1. We can add quartic terms in Fi jk as
relevant terms when 2(2+ d − z)< d + z, i.e., when z > (4+ d)/3. When z = (4+ d)/3 these
terms are marginal which incidentally is the value of z for which the λ, λ̃ scalar field theory
(2.60) is scale invariant.

4.5 3+ 1 dimensions

In three spatial dimensions the magnetic field introduced in (4.141) is given by

Bi j =
1
2
εimnFmnj = εimn∂mAn j . (4.155)

For d = 3, our result (4.143) implies that the Hamiltonian becomes

H = 1
2

�

g1Ei j Ei j + g2Eii
2 + h̃1Bi jBi j + h̃2Bi jB ji

�

, (4.156)

where h̃1 = h1 + h2 and h̃2 = −h2.
However, in three dimensions we can also write down an additional term that fulfills our

requirements (as listed in section 4.3), namely

Hθ = θ Ei jBi j . (4.157)

We will now show that this term is related to the θ term of [50] which is relevant for a higher
spin Witten effect, however we arrive at this term from a complementary perspective. The
following discussion mirrors again the one of electrodynamics, c.f., Appendix A.2.

We start by adding the H and Hθ term and by completing a square we arrive at

Hd=3 =
1
2

�

�

p

g1Ei j +
θ
p

g1
Bi j

�2

+ g2Eii
2 +

�

h̃1 −
θ2

g1

�

Bi jBi j + h̃2Bi jB ji

�

. (4.158)

Next we apply the canonical transformation

Pi j = Ei j +
θ

g1
Bi j[A] , Q i j = Ai j , (4.159)

where the square bracket indicates that the magnetic tensor is the one of the Ai j fields. It is
of the schematic form of a canonical transformation pq̇ − H(p, q) = PQ̇ − K(Q, P) + Ḟ with
generating function F as can be seen from

Ei j(Ȧi j − ∂i∂ jφ)−HD=3 = Pi j(Q̇ i j − ∂i∂ jφ)−K− θ

2g1
(∂0F0 + ∂i F

i) . (4.160)
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The new Hamiltonian is given by

K = 1
2

�

g1Pi j Pi j +

�

h̃1 −
θ2

g1

�

Bi j[Q]Bi j[Q] + h̃2Bi j[Q]B ji[Q] + g2Pii
2

�

. (4.161)

and the boundary term is of the form

F0 =Q i jBi j , F i = εi jkQ jlQ̇kl − 2Bi j∂ jφ , (4.162)

which we can also write as ∂0F0 + ∂i F
i = 2Bi j(Q̇ i j − ∂i∂ jφ) as was already shown in [50].

4.6 2+ 1 dimensions

While we have not studied the case of 2+ 1 dimensions in detail, we would like to mention
the possibility of fracton Chern–Simons like theories,

L= k
4π
εi j

�

AikȦ jk +φ∂kFi jk

�

, (4.163)

where i, j, k = 1,2. These are not actual Chern–Simons theories, though, as their coupling to
curved backgrounds requires the introduction of metric data. Note that (4.163) is independent
of the trace of Ai j . See, e.g., [12,51] and references therein for more details.

Furthermore, we note that the magnetic part of the Hamiltonian (4.140) in 2+ 1 dimen-
sions can be written as

Hmag =
h1

4
Fi jkFi jk +

h2

2
Fi j j Fikk =

1
2
(h1 + h2)(F

2
122 + F2

121) . (4.164)

Thus, the magnetic theory only has one coupling constant, which must satisfy

h1 + h2 > 0 , (4.165)

for the theory to be non-trivial and bounded from below. As we show in the section below, this
rules out the existence of the traceless theory in d = 2.

4.7 Traceless scalar charge gauge theory

As we will show in this section, rotational symmetry allows for additional terms in the La-
grangian that describes the scalar charge gauge theory. These terms modify the Poisson brack-
ets and thus the gauge transformations and, depending on the details of these terms, a priori
result in three general classes of theories. The first and most important such class is the trace-
less scalar charge gauge theory, so called because it is independent of Aii , i.e.,

δi j
δL[Ai j , Ei j ,φ]

δAi j
= 0 . (4.166)

This theory has an additional conserved quantity in the form of the trace of the quadrupole
moment, and it has played a prominent role in the fracton literature; in particular, it was
shown in [31] that these theories can be put on curved space where the geometry on constant
time slices is some space of constant sectional curvature, and where time is absolute (for more
details see the next section). The second class generalises the traceless theory by allowing for
trace-dependence while the gauge transformation is identical to the one of the traceless theory.
This theory depends on one parameter that measures the dependence on the trace, which has
the interpretation of an additional scalar. Thus, as we discuss in Appendix B, this theory is just
the traceless theory of case 1 coupled to a scalar in the guise of the trace. The third and final
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class of theories have what at first glance appears to be a different set of gauge symmetries
than the other cases, that depend on two parameters, but as we show in Appendix B, this third
case is equivalent to the original theory (4.153b).

The Lagrangian we considered above may be generalised by including two additional terms
parameterised by two real constants c1 and c2:

L[Ai j , Ei j ,φ] = (Ei j + c1δi j Ekk)Ȧi j −H−φ(∂i∂ j Ei j + c2∂i∂i E j j) + ∂iKi

= Ei j(Ȧi j + c1δi jȦkk − ∂i∂ jφ − c2δi j∂k∂kφ)−H , (4.167)

where the boundary term Ki is

Ki = φ∂ j Ei j − ∂ jφEi j + c2(φ∂i E j j − ∂iφE j j) , (4.168)

and where H is an appropriately chosen invariant Hamiltonian, which has the same functional
form as (4.140) when written in terms of the electric field Ei j and the magnetic field strengths
Fi jk.

The new phase space Lagrangian (4.167) differs in two respects from the one discussed
previously in (4.145a). The parameter c1 modifies the Poisson brackets and the parameter c2
modifies the Gauss constraint. Both deformations are compatible with the underlying Aris-
totelian symmetries (time and space translations and spatial rotations).

The term (Ei j+c1δi j Ekk)Ȧi j modifies the pre-symplectic potential and hence the symplectic
form on phase space and by inverting this new symplectic form we obtain the modified Poisson
brackets. The “symplectic” term in the phase space Lagrangian can be written as

Ekl(δi(kδl) j + c1δi jδkl)Ȧi j . (4.169)

To determine the Poisson bracket, we need to invert the quantity in parentheses in the expres-
sion above, see, e.g., [23,24]. This produces the bracket

{Ai j(~x), Ekl(~y)}=
�

δi(kδl) j −
1
d
δi jδkl

�

δ(~x − ~y) , (4.170)

for c1 = −1/d and

{Ai j(~x), Ekl(~y)}=
�

δi(kδl) j −
c1

1+ dc1
δi jδkl

�

δ(~x − ~y) , (4.171)

for c1 6= −1/d.
The Gauss constraint is the generator of gauge transformations. The gauge transformation

generated by the constraint imposed by φ of some function F on phase space is given by

δΛF = {F,
ˆ

dd x Λ(∂i∂ j Ei j + c2∂i∂i E j j)} , (4.172)

so that when c1 6= −1/d and c2 6= −1/d we have

δΛAi j = ∂i∂ jΛ+δi j
c2 − c1

1+ dc1
∂ 2Λ , δΛEi j = 0 , (4.173)

while for c1 = −1/d with c2 arbitrary, as well as for the case c1 6= −1/d with c2 = −1/d, we
get

δΛAi j = ∂i∂ jΛ−
1
d
δi j∂

2Λ , δΛEi j = 0 . (4.174)
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Note that in the latter case, the trace Aii is gauge invariant. Depending on the values of c1 and
c2, the theory thus splits into three classes6. When c1 = c2 = −1/d, the field strength Fi jk as
defined above is no longer invariant. Rather, it transforms as follows under (4.174)

δFi jk =
2
d
δk[i∂ j]∂

2Λ , (4.175)

and since Aii is gauge invariant, we cannot redefine the field strength by adding a term to
it that makes it gauge invariant. Instead, taking H to be given by (4.140), gauge invariance
requires that the coefficients h1 and h2 be related as

h1 = −h2(d − 1) . (4.176)

This condition for d = 2 reads h1 = −h2, but equation (4.164) implies that in this case the
magnetic terms add up to zero. Hence the traceless theory with a nontrivial magnetic sector
requires d ≥ 3.

Similarly, the electric field strength F0i j as defined above is no longer gauge invariant.
Instead, the invariant electric field strength is now

F̃0i j := Ȧi j − ∂i∂ jφ −
1
d
δi j(Ȧkk − ∂ 2φ) , (4.177)

which is gauge invariant under (4.174). The Lagrangian of the traceless theory is obtained by
integrating out Ei j from (4.167), which turns out to imply the condition g1 + d g2 = 0, and
produces the result

Ltraceless[Ai j ,φ] =
1

2g1
F̃0i j F̃0i j −

h1

4
Fi jkFi jk +

h1

2(d − 1)
Fi j j Fikk , (4.178)

which is traceless in the sense of (4.166). This is intimately linked to the conservation of the
trace of the quadrupole moment. Furthermore, the fact that the Lagrangian is independent of
Aii gives rise to a Stückelberg symmetry δAi j = δi jχ with parameter χ that allows us to set
Aii = 0.

The remaining two cases arise when either c1 6= −1/d and c2 = −1/d, or c1, c2 6= −1/d
but otherwise arbitrary. These cases do not give rise to new theories. This we demonstrate in
Appendix B.

4.8 Spectrum of the scalar charge gauge theory

We now study the spectrum of the scalar charge gauge theory, starting with the traceful case.
We are going to do this by analysing the Fourier decomposition of the gauge invariant objects
Fi jk and F0i j . We will need the equations of motion as well as Bianchi identities. The Bianchi
identities7 are given by

∂[i F jk]l = 0 , (4.179a)

2∂[i F0 j]k − ∂0Fi jk = 0 . (4.179b)

It should be noted that the antisymmetrisation in (4.179b) only involves i and j and not 0. The
equations of motion of the traceful theory can be obtained from equations (4.148a)–(4.148c)

6We do not consider the case c1 = −1/d and c2 6= −1/d as in this case the combination
Ȧi j + c1δi j Ȧkk − ∂i∂ jφ − c2δi j∂k∂kφ in (4.167) is not gauge invariant.

7The second may be checked using the explicit expressions in terms of Ai j . In order to maintain a light notation,
since the 0 index in F0 jk is fixed, we use the convention 2∂[i F0 j]k ≡ ∂i F0 jk − ∂ j F0ik.
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and can be expressed as follows

∂i∂ j F0i j −
g2

g1 + d g2
∂i∂i F0 j j = 0 , (4.180a)

1
g1

�

Ḟ0i j −
g2

g1 + d g2
δi j Ḟ0mm

�

= h1∂mFm(i j) + h2δi j∂mFmnn − h2∂(i F j)nn . (4.180b)

The goal is to decouple the equations and find wave-like equations for the various compo-
nents of F0i j . If we take the time derivative of equation (4.180b) and apply the Bianchi iden-
tity (4.179b), we get the following equation for F0i j

∂ 2
0 F0i j =

�

g1h2 + g2h1 + (d − 1)g2h2

�

δi j

�

∂m∂mF0l l − ∂m∂l F0ml

�

+ g1h1∂m∂mF0i j

− g1h1∂m∂(i F0 j)m − g1h2∂i∂ j F0mm + g1h2∂m∂(i F0 j)m , (4.181)

which no longer involves the magnetic field strength.
The Fourier transformation of the equation above gives

ω2 F̂0i j =
�

g1h2 + g2h1 + (d − 1)g2h2

�

δi j

�

kmkm F̂0l l − kmkl F̂0ml

�

+ g1h1k2 F̂0i j

− g1h1kmk(i F̂0 j)m − g1h2kik j F̂0mm + g1h2kmk(i F̂0 j)m , (4.182)

where F̂0i j(ω, k) is the Fourier transform of F0i j(t, x). If we take the trace of this equation and
apply the Gauss constraint (4.180a) we get

ω2 F̂0 j j = (g1 + (d − 1)g2) (h1 + (d − 1)h2) k
2 F̂0 j j . (4.183)

It can be shown, using the strict version of the bounds for the coupling constants found
in (4.144) that (g1 + (d − 1)g2) > 0 and (h1 + (d − 1)h2) > 0. Hence the velocity squared
of this mode, i.e., (g1 + (d − 1)g2) (h1 + (d − 1)h2) is indeed positive. We restrict ourselves to
the strict versions of the inequalities involving h1 and h2 in order that the magnetic sector is
nontrivial which is needed for propagation.

To find the rest of the modes it is useful to introduce the following projector

Pi j = δi j −
kik j

k2
. (4.184)

Pi j projects along the directions perpendicular to ki . Using this along with equations (4.180a),
(4.183) and (4.182) we find the following modes

ω2(kik j F̂0i j) = v2
1 k2(kik j F̂0i j) , (4.185a)

ω2(Pi j F̂0i j) = v2
1 k2(Pi j F̂0i j) , (4.185b)

ω2
�

Pimkn F̂0mn

�

= v2
2 k2

�

Pimkn F̂0mn

�

, (4.185c)

ω2(Pl i Pn j −
1

(d − 1)
PlnPi j)F̂0i j = v2

3 k2(Pl i Pn j −
1

(d − 1)
PlnPi j)F̂0i j , (4.185d)

where the velocities are given by

v2
1 = (g1 + (d − 1)g2) (h1 + (d − 1)h2) , (4.186a)

v2
2 =

1
2

g1(h1 + h2) , (4.186b)

v2
3 = g1h1 . (4.186c)

It follows from the strict versions of the inequalities in (4.144) that g1(h1+ h2)> 0 as well as
g1h1 > 0, so we see that we get three classes of modes with three different velocities. We also
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know that the Gauss constraint in (4.180a) relates kik j F̂0i j to Pi j F̂0i j . Using this we find that
there are d(d + 1)/2− 1 independent modes, as is to be expected.

We have exclusively focused on the electric sector in this analysis but one can see from the
Bianchi identities and the equations of motions that an oscillating electric field strength leads
to an oscillating magnetic field strength. Furthermore, we observe that there is no universal
velocity as the velocities are not all equal which chimes well with the earlier observation that
these fields are defined on an Aristotelian geometry. It would be interesting to study the
energy-momentum tensor for these theories and the different states of polarisation.

Next, we turn to the traceless case whose Lagrangian is given in (4.178). Now the equa-
tions of motion are given by

0= ∂i∂ j F̃0i j , (4.187a)

0=
1
g1
∂0 F̃0i j − h1∂mFm(i j) +

h1

d − 1
(δi j∂l Flmm − ∂(i F j)l l) , (4.187b)

where F̃0i j is defined in equation (4.177). We now express the Bianchi identities in terms of
F̃0i j

∂[i F jk]l = 0 , (4.188a)

2∂[i F̃0 j]k +
1

d − 1

�

δ jk∂l F̃0il −δik∂l F̃0 jl

�

= Ḟi jk −
2

d − 1
δk[ j Ḟi]l l . (4.188b)

If we differentiate (4.187b) with respect to time and apply (4.188b) and (4.187a) we get

∂ 2
0 F̃0i j = g1h1

�

∂m∂m F̃0i j −
d

d − 1
∂m∂(i F̃0 j)m

�

. (4.189)

The Fourier transformation of this equation is given by

ω2 F̌0i j = g1h1

�

k2 F̌0i j −
d

d − 1
kmk(i F̌0 j)m

�

, (4.190)

where we have defined F̌0i j(ω, k) to be the Fourier transform of F̃0i j(t, x). This then leads to
the following decomposition of the modes

ω2(k j F̌0i j) =
d − 2

2(d − 1)
v2

3 k2(k j F̌0i j) , (4.191)

ω2(PimPjn F̌0mn) = v2
3 k2(PimPjn F̌0mn) , (4.192)

where v2
3 is given in equation (4.186c). In order to arrive at this result we have used that the

Gauss constraint in (4.187a) is given by kik j F̌0i j = 0 when expressed in momentum space.
Due to the tracelessness of F̌0i j this also means Pi j F̌0i j = 0. Using this we find that there are
d(d + 1)/2− 2 independent modes.

As can be seen from the dispersion relations above something special happens for d = 2.
There is only 1 degree of freedom and it is given by k j F̌0i j but it does not propagate. This is
related to the fact that Hmag = 0 for the traceless case in d = 2. We can see this from equation
(4.164) in combination with the condition in (4.176).

4.9 Similarities and differences with partially massless gravitons

The gauge structure of scalar charge theory bears a striking resemblance to the linear theory of
partially massless gravitons [25,26], although they are not the same theories. In this section,
we elucidate the similarities and the differences between these theories (we follow Section 1
of [52]).
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Theories of partially massless gravitons were originally developed to address the cosmo-
logical constant problem (i.e., why the cosmological constant is small and nonzero by relating
its value to the mass of a massive graviton via a gauge symmetry).

On a maximally symmetric curved spacetime, there exists the possibility of considering
particles which are neither fully massive nor fully massless. In particular, in de Sitter space,
where such theories where first developed, it was observed that a theory of gravitons with
more degrees of freedom than a massless theory, but fewer than in a theory of massive gravity,
could be written down [25]. Concretely, such theories are obtained from massive theories of
gravity by imposing a scalar gauge symmetry that removes one degree of freedom.

Let us now describe the linear theory of partially massless gravitons using the Stückelberg
field approach of [53], which is almost identical to the Stückelberg approach of Sections 2.7
and 4.2 (see for further details [52]).

The dynamics of a massive graviton H̃µν of mass m on a (3 + 1)-dimensional maximally
symmetric Lorentzian background with metric ḡµν is described by Fierz–Pauli theory [54].
For generic m2 6= 0, this has five degrees of freedom, while for m2 = 0, the now massless
graviton field H̃ enjoys linearised diffeomorphism invariance, which leads to the two degrees
of freedom of a massless graviton.

Regardless of the value of m2, we can introduce gauge redundancy into the theory via
Stückelberg fields Aµ and ψ, in terms of which we write H̃µν as

H̃µν = Hµν + ∇̄(µAν) + ∇̄µ∇̄νψ , (4.193)

where ∇̄ is the Levi-Civita connection of ḡ. The new gauge symmetries Σ and Λ act as

δHµν = ∇̄(µΣν) , δAµ = ∇̄µΛ−Σµ , δψ= −Λ . (4.194)

It can be shown [52] that after performing a field redefinition that untangles φ and Hµν, and
then writing the theory in terms of this redefined H ′µν, for the special choice of background

Ricci scalar R̄= 6m2 the action becomes independent of the field ψ. As in Section 2.7, we can
then gauge fix Aµ = 0 (while keeping the field ψ free), leading to

δH ′µν = ∇̄µ∇̄νΛ+
m2Λ

d − 1
ḡµν , (4.195)

on a (d + 1)-dimensional background.
Although this procedure is very similar to what we described in Sections 2.7 and 4.2, there

are some crucial differences. First and foremost, the additional Stückelberg field ψ is a new
ingredient that is not part of the construction in (2.87), and the gauge transformation itself is
also different since H ′µν contains a term linear in Λ that has no derivatives acting on Λ. Second,
the role of time is different: the partially massless graviton Hµν has both temporal and spatial
components, while the fracton gauge field Ai j only has spatial components. In the same vein,
there is no analogue of the Lagrange multiplier φ in the theory of partially massless gravitons.

It would be interesting to explore this analogy further. In particular, there is a non-linear
theory of partially massless gravitons (see, e.g., [52]), and it could be worthwhile to investigate
if a similar construction exists for fractons.

5 Aristotelian geometry

For the remainder of this paper we will concern ourselves with coupling the scalar field theory
and the scalar charge gauge theory to curved spacetime. As explained in Section 2.6, the
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proper geometric framework is that of Aristotelian geometry, the details of which we provide
in this section.

The motivations to place these theories on a curved spacetime are the same as for relativis-
tic field theories. In no particular order – and without being exhaustive – understanding the
coupling to curved space helps with computing correlation functions of for example the energy
momentum tensor, it can aid the search for Weyl-type anomalies, it helps with formulating a
theory of fluid dynamics that obeys the same conservation equations, etc.

Originally coined by Penrose [55], Aristotelian geometry captures the geometry of absolute
time and space. In the context of gravitational theories, Aristotelian geometry plays the same
role in Hořava–Lifshitz gravity, see e.g., [56,57], and Einstein–æther theory8 [59] as Lorentzian
geometry plays in Einstein gravity.

5.1 Geometric data

The first systematic treatment of Aristotelian geometry in the formulation we will employ was
given in [34], where it was used in the description of boost-agnostic fluids. An Aristotelian
geometry on a (d + 1)-dimensional manifold M consists of a 1-form τµ – the clock form –
and a co-rank 1 symmetric tensor hµν of Euclidean signature, whose kernel is spanned by a
vector vµ, i.e., hµνvν = 0. As above, Greek indices µ,ν, . . . = 0, . . . , d are spacetime indices.
The degeneracy of hµν implies the following decomposition

hµν = δabea
µeb
ν , (5.196)

where a, b = 1, . . . , d are purely spatial tangent space indices, where the vielbeins ea
µ transform

under local SO(d) rotations. Crucially, neither hµν nor τµ are assigned particular tangent
space transformations. Hence, Aristotelian geometry can be viewed as a “proto-geometry”
in the sense that Lorentzian, Galilean and Carrollian geometries all arise from Aristotelian
geometry via the introduction of the appropriate boost symmetry.9 Together (τµ, ea

µ) form a

square matrix with inverse (vµ, eµa ), where the following relations are satisfied

eµa eb
µ = δ

b
a vµea

µ = 0= τµeµa vµτµ = −1 ea
µeνa − vντµ = δ

ν
µ . (5.197)

The last of these relations – the completeness relation – will prove particularly useful in our
considerations of Aristotelian geometry below. The volume form is locally given by
vol= e dd+1 x , where e is the determinant of (τµ, ea

µ).
At this stage, let’s explicitly exhibit the equivalence between Aristotelian geometry and the

geometric description of Einstein–æther theory. In [59], Einstein–æther theory is described
by a metric gµν and a vector uµ satisfying gµνu

µuν = −1. By defining uµ = gµνu
ν, we can

formally identify uµ = vµ, uµ = τµ and gµν + uµuν = hµν, which completes the identification
between Aristotelian geometry and the geometric data of Einstein–æther theory.

5.2 Aristotelian connections and intrinsic torsion

We now seek an affine connection satisfying the following Aristotelian analogue of metric
compatibility

∇µτν =∇µhνρ = 0 , (5.198)

which, via the completeness relation (5.197), also imply that

∇µvν =∇µhνρ = 0 . (5.199)

8For the relation between Hořava–Lifshitz gravity and Einstein-æther theory, see [58].
9Sometimes the realisation of the boost symmetry is accompanied by the introduction of additional gauge

fields, such as the mass gauge field in Newton–Cartan geometry.
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Under infinitesimal general coordinate transformations parameterised by ξµ, an affine con-
nection Γ transforms as

δξΓ
ρ
µν = $ξΓ

ρ
µν + ∂µ∂νξ

ρ , (5.200)

where $ξΓ
ρ
µν represents the tensorial part of the transformation. In terms of the Aristotelian

data, this transformation property can be achieved by the following affine connection

Γρµν = −vρ∂µτν +
1
2

hρλ
�

∂µhλν + ∂νhλµ − ∂λhµν
�

+ Y ρµν , (5.201)

where Y ρµν is an arbitrary tensor, and where the first two terms are required to obtain the
non-tensorial piece ∂µ∂νξ

ρ in (5.200). Imposing (5.198) leads to constraints on the tensor Y .
Starting with the condition ∇µτν = 0, we find that

0=∇µτν = ∂µτν − Γρµντρ ⇒ Y ρµντρ = 0 . (5.202)

Similarly, the condition ∇µhνρ = 0 translates to

0=∇µhνρ = ∂µhνρ − 2Γλ
µ(νhρ)λ = −2τ(ρKν)µ − 2Y λ

µ(νhρ)λ , (5.203)

where

Kµν = −
1
2

$vhµν (5.204)

is the extrinsic curvature,10 which satisfies

vµKµν = 0 . (5.205)

The property (5.203) thus implies that

Y λµν = −hλκτνKµκ + Cλµν , (5.206)

with
Cλ
µ(νhρ)λ = 0 . (5.207)

In summary, metric compatibility in the sense of (5.198) can be achieved with the following
affine connection (which also featured in [34])

Γρµν = −vρ∂µτν +
1
2

hρλ
�

∂µhλν + ∂νhλµ − ∂λhµν
�

− hρλτνKµλ + Cρµν , (5.208)

where the tensor Cρµν is such that

Cρµντρ = 0 , Cρ
µ(νhλ)ρ = 0 . (5.209)

This is a torsionful connection with torsion given by

2Γρ[µν] = −vρτµν + 2hρλτ[µKν]λ + 2Cρ[µν] =: Tρµν + 2Cρ[µν] , (5.210)

where we defined
τµν = 2∂[µτν] . (5.211)

10The name “extrinsic curvature” is perhaps a bit of a misnomer, since in general it is not an extrinsic curvature
of anything. In the case where τ obeys the Frobenius condition τ∧dτ= 0, and so defines a foliation, Kµν becomes
the extrinsic curvature of the leaves of the foliation.
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In the language of [60], the intrinsic torsion of an Aristotelian geometry11 is precisely
captured by τµν and Kµν – in other words, the intrinsic torsion is Tρµν. If we require that the
connection we employ is minimal in the sense that the torsion is given only by the intrinsic
torsion, we must have Cρ[µν] = 0. In this case the conditions in (5.209) imply that Cρµν = 0,
that is to say, the symmetric part of the C tensor vanishes as well. To see this, note that the
second equation of (5.209) implies that Cρµνvν = 0 and the fact that Cρ[µν] = 0 tells us that also

Cρµνvµ = 0. The first equation of (5.209) implies that Cρµν = hρλCλµν. Hence, without loss
of generality we can assume that Cλµν is entirely spatial, i.e., all contractions with vρ vanish.
In terms of Cλµν the second equation of (5.209) and the vanishing of the intrinsic torsion tell
us that C(µν)ρ = Cµ[νρ] = 0. These two conditions can only be satisfied if Cµνρ = 0. Hence,
demanding that the torsion is intrinsic and that the affine connection is metric compatible
leads to our final result for the connection

Γρµν = −vρ∂µτν +
1
2

hρλ
�

∂µhλν + ∂νhλµ − ∂λhµν
�

− hρλτνKµλ . (5.212)

A particularly simple class of Aristotelian geometries are those with vanishing intrinsic
torsion, namely those for which

dτ= 0 , Kµν = 0 . (5.213)

In this case τ is locally exact: τ = d t, but we will assume that this is true globally so that
there is a foliation of the geometry where each leaf is described by t = constant with t being
the absolute time. In this case the elapsed time T1 =

´
γ1
τ along a given path γ1 with fixed

endpoints is the same as the elapsed time T2 =
´
γ2
τ along any other path γ2 with the same

endpoints.

ADM type description of torsion-free Aristotelian geometry

We can write the torsion-free Aristotelian data in ADM type variables, i.e.,

τ= d t , h= hi j

�

d x i + N id t
� �

d x j + N jd t
�

, v = −∂t + N i∂i , (5.214)

and ht t = ht i = 0 with hi j the inverse of hi j . The extrinsic curvature Kµν = −
1
2Lvhµν is then

given by

Ki j =
1
2
∂thi j −

1
2
LN hi j , (5.215)

where the second Lie derivative is a d-dimensional Lie derivative along N i . The other compo-
nents follow from vµKµν = 0. When the intrinsic torsion vanishes we have that Ki j = 0. Equa-
tion (5.214) is obviously not the most general ADM-type parametrisation of an Aristotelian
geometry which would have a general unconstrained τ and hi j .

5.3 Field theory on Aristotelian backgrounds

Consider a generic field theory described by the action S[Φ;τµ, hµν] with field content ab-
stractly denoted by Φ on a (d + 1)-dimensional Aristotelian background given by τµ and hµν.
The variation of the action (see also [34]) is given by

δS[Φ;τµ, hµν] =
ˆ

dd+1 x e
�

−Tµδτµ +
1
2

Tµνδhµν + EΦδΦ
�

, (5.216)

11Aristotelian geometry can be viewed as the intersection of Carroll and Newton–Cartan geometry, which have
intrinsic torsion described by Kµν and τµν, respectively [60].
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where Tµ is the energy current, Tµν the momentum-stress tensor12 and EΦ is the Euler-
Lagrange equation for Φ, and where δτµ, δhµν and δΦ are arbitrary variations. For simplicity
we have assumed that Φ is a scalar. Out of the energy current and the momentum-stress tensor,
we can build the energy-momentum tensor Tµν, which is a (1,1)-tensor given by [34]

Tµν = −Tµτν + Tµρhρν . (5.217)

Invariance of the action (5.216) under general coordinate transformations infinitesimally pa-
rameterised by the vector ξµ implies that

δξS =
ˆ

dd+1 x e
�

−Tµδξτµ +
1
2

Tµνδξhµν + EΦδξΦ
�

= 0 , (5.218)

leading to the Ward identity

0= e−1∂µ(eTµν) + Tµ∂ντµ −
1
2

Tµρ∂νhµρ − EΦ∂νΦ . (5.219)

This can also be written in the following form

0=∇µTµν − Γ
µ

[µσ]T
σ
ν + Γ

σ
[µν]T

µ
σ − EΦ∂νΦ , (5.220)

where we used the connection given in (5.208) that satisfies the Aristotelian analogue of metric
compatibility. On shell, using the equation of motion of the matter fields Φ, the Ward identity
becomes

0=∇µTµν − Γ
µ

[µσ]T
σ
ν + Γ

σ
[µν]T

µ
σ , (5.221)

which expresses energy-momentum conservation.
If our theory enjoys anisotropic Weyl invariance, we once more obtain a corresponding

Ward identity. Under anisotropic Weyl transformations infinitesimally parameterised by Ω,
the fields τµ, hµν and Φ transform as

δΩτµ = zΩτµ , δΩhµν = 2Ωhµν , δΩΦ= −DΦΩΦ , (5.222)

where DΦ is the scaling dimension of Φ. Invariance amounts to the statement that

δΩS =
ˆ

dd+1 x e
�

−TµδΩτµ +
1
2

TµνδΩhµν + EΦδΩΦ
�

= 0 , (5.223)

which to the following ward identity:

−zτµTµ + Tµνhµν − EΦDΦΦ= 0 . (5.224)

This can also be expressed as

−zτµvνTµν + hνρhρµTµν − EΦDΦΦ= 0 . (5.225)

On shell, using the matter field equations of motion, this leads to the vanishing of the z-
deformed trace of the energy-momentum tensor

−zτµvνTµν + hνρhρµTµν = 0 . (5.226)

In order to compute the currents in (5.216) it is important that the field theory is defined on
an arbitrary Aristotelian geometry. If we couple a field theory to a restricted class of geometries

12Since vµhµν = 0 the momentum-stress tensor is determined up to a term proportional to vµvν. The projection
of Tµν along τµ and hνρ gives the momentum, while the projection along hµρhνσ gives the stress tensor which is
symmetric as a result of the symmetry of Tµν.
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such as the torsion-free geometries discussed above then the restriction to vanishing intrinsic
torsion (5.213) has implications for the field theoretic quantities that we are able to extract
as responses to varying the background sources since imposing conditions on the background
also constrains the allowed variations of the sources. In other words, when we impose that the
background is such that the intrinsic torsion vanishes, the variations we are allowed to make
must preserve this condition and so are no longer arbitrary (see [61] for a similar discussion
in the context of Newton–Cartan geometry). For example, if τµ is exact so that τµ = ∂µT for
some scalar field T , then δτµ must be exact as well, δτµ = ∂µδT . This means that we only
have access to the divergence of the energy current (which is proportional to the variation of
T) when we assume the torsion to be zero.

Below we will put the complex scalar field theory on an arbitrary Aristotelian geometry
with general intrinsic torsion. For the case of the scalar charge gauge theory we will for sim-
plicity restrict ourselves to the case of vanishing intrinsic torsion.

6 Coupling the scalar fields to curved spacetime

We will illustrate the method of coupling the complex scalar theories of Section 2 to an arbitrary
Aristotelian geometry for one specific model. The other theories can be coupled in a similar
fashion.

The particular Lagrangian of a scalar field theory with global dipole symmetry that we will
consider is

L= Φ̇Φ̇? −m2 |Φ|2 −λ(∂iΦ∂ jΦ−Φ∂i∂ jΦ)(∂iΦ
?∂ jΦ

? −Φ?∂i∂ jΦ
?) , (6.227)

where Φ is a complex scalar of mass m and λ is a coupling constant. This Lagrangian is
invariant under the global transformation

Φ→ ei(α+βi x
i)Φ , (6.228)

where α is the parameter of a global U(1) transformation, while βi is the parameter of the
dipole transformation. Following the Noether procedure of Section 2.7 we can gauge this
symmetry with the help of Ai j and φ. To this end we define

X̂ i j = ∂iΦ∂ jΦ−Φ∂i∂ jΦ+ iAi jΦ
2 , (6.229)

which transforms as X̂ i j → e2iΛX̂ i j under the gauge transformation (4.113), in which case the
gauge invariant Lagrangian reads

L= (∂tΦ− iφΦ)(∂tΦ
? + iφΦ?)−m2 |Φ|2 −λX̂ i j X̂

?
i j . (6.230)

The curved space generalisation of the Lagrangian above is

Lscalar = e
�

(vν∂νΦ+ iφΦ)
�

vµ∂µΦ
? − iφΦ?

�

−m2 |Φ|2 −λhµνhρσX̂µρ X̂ ?νσ
�

, (6.231)

where
X̂µν = Pρ(µPσ

ν)

�

∂ρΦ∂σΦ−Φ∇ρ∂σΦ
�

+ iAµνΦ
2 , (6.232)

in which ∇ρ is covariant with respect to the Aristotelian connection (5.212) and where the
spatial projector Pρµ is defined by

Pµν = hµρhρν = δ
µ
ν + vµτν . (6.233)
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The symmetric gauge field Aµν is defined to be purely spatial, i.e., we demand that

vµAµν = 0 . (6.234)

The Lagrangian (6.231) is gauge invariant under the curved space generalisation of the gauge
transformations (2.80):

δφ = −vµ∂µΛ , δAµν = Pρ(µPσ
ν)∇ρ∂σΛ . (6.235)

The transformation of the matter field Φ is unchanged, i.e., δΦ= iΛΦ.
As we will see in the next section and as was discussed in [31] there are restrictions on the

background geometry when coupling the scalar charge gauge theory to a curved Aristotelian
geometry. However, we see here that there are no constraints on the kind of the Aristotelian
backgrounds we can couple the scalar theory to. In other words, if we are happy to consider
the gauge fields φ and Aµν as background fields, we can put the fracton field theory on any
Aristotelian background we like. As per the discussion in Section 5.3 we can obtain both
the energy current and the momentum-stress tensor by varying the background geometry in
(6.231) and similar Lagrangians for other complex scalar models.

For m = 0, we can generalise (6.231) to be invariant under the following (anisotropic)
Weyl transformations

δτµ = zΩτµ , δhµν = 2Ωhµν , δΦ= −DΦΩΦ , (6.236a)

δφ = −zΩφ , δAµν = 0 , (6.236b)

where z = (d + 4)/3 and DΦ = −(d − 2)/3. Note that in d = 2 dimensions z = d = 2 and
DΦ = 0. In this case the action whose Lagrangian is (6.231) is anisotropic Weyl invariant. For
d = 3 we need to add curvature terms (non-minimal couplings) to make the theory anisotropic
Weyl invariant. First of all we notice that for m= 0 we have

δΩLscalar = −DΦevν∂ν (ΦΦ
?) vµ∂µΩ−DΦλhµνhρσ

�

Φ?2Xνσ∇µ∂ρΩ+Φ2X ?µρ∇ν∂σΩ
�

. (6.237)

We have the following useful results

δΩKµν = (2− z)ΩKµν − hµνvρ∂ρΩ , (6.238a)

δΩΓ
ρ
µν = −zvρτν∂µΩ− hρσhµστνvλ∂λΩ

+ hρλ
�

hλν∂µΩ+ hλµ∂νΩ− hµν∂λΩ
�

, (6.238b)

δΩRµσ = −∇µδΓρρσ +∇ρδΓ
ρ
µσ + 2Γλ[ρµ]δΓ

ρ

λσ
, (6.238c)

hµαhσβδΩR(µσ) = −hµαhσβ
�

(d − 2)∇(µ∂σ)Ω+ hµσhρλ∇ρ∂λΩ
�

. (6.238d)

Hence for d = 3 we have

hµαhσβδΩ

�

R(µσ) −
1
4

hµσhαβRαβ

�

= −hµαhσβ∇(µ∂σ)Ω . (6.239)

If we define X̃νσ for d = 3 (so that DΦ = −1/3) as

X̃νσ = X̂νσ −
1
3
Φ2Pµν Pρσ

�

R(µρ) −
1
4

hµρhαβRαβ

�

, (6.240)

then X̃νσ transforms homogeneously under Ω (i.e., without derivatives).
Using furthermore that

vµ∂µΦ−
Dφ
d

KΦ , (6.241)
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where K is the trace of Kµν, scales homogeneously under Ω we can write down the following
anisotropic Weyl invariant theory in d = 3 dimensions

Lscalar = e
��

vν∂νΦ+ iφΦ+
1
9

KΦ
��

vµ∂µΦ
? − iφΦ? +

1
9

KΦ?
�

−λhµνhρσX̃ ?µρ X̃νσ

�

. (6.242)

If we compute the energy-momentum tensor of this theory it will obey the z-deformed traceless
condition (5.226).

Referring back to equation (2.32) and the discussion of improvements of the Noether
energy-momentum tensor, it is this result, the Weyl invariant coupling to an arbitrary Aris-
totelian space, that guarantees the existence of Θµν, the improved energy-momentum tensor
used in equation (2.32).

If we consider the complex scalar field theory on a fixed curved background we can ask if
it still has a global dipole symmetry. This will be the case provided that we can set both the
gauge fields and their transformations (6.235) to zero. In other words, the scalar field theory
whose Lagrangian on a curved spacetime is given by (6.231) in which we set φ = 0 = Aµν
admits a global symmetry of the form δΦ= iΛΦ provided Λ obeys the conditions

vµ∂µΛ= 0 , Pρ(µPσ
ν)∇ρ∂σΛ= 0 . (6.243)

On a generic background there need not exist any non-constant Λ that obeys these equations.

7 Scalar charge gauge theories on Aristotelian geometry

We will now couple the scalar charge gauge theory to curved Aristotelian spacetime. Unlike
for the case of the complex scalar fields, the coupling of the scalar charge gauge theory to
curved spacetime is less straightforward. Perhaps the analogy with partially massless gravitons
makes this somewhat less surprising. The coupling of the scalar charge gauge theory to curved
space (but not spacetime) has previously been considered in [31]. To facilitate comparison,
we begin by coupling the scalar charge gauge theory to a partially gauge fixed torsion-free
Aristotelian background that admits a timelike foliation whose leaves are a priori arbitrary
Riemannian geometries. We recover previous results that require the spatial geometry to obey
certain conditions in order for the theory to maintain gauge invariance. We then generalise
this coupling to Aristotelian spacetime. We summarise our results regarding the coupling to
curved space in Table 1 and to curved spacetime in Table 2.

7.1 Coupling the scalar charge gauge theory to curved space

In order to get started we will first look at a special class of torsion-free Aristotelian geometries
for which the Riemannian geometry on constant time slices is time-independent. We will
partially gauge fix the (d + 1)-dimensional diffeomorphism invariance so that τ = d t and
hµνd xµd xν = hi jd x id x j with ∂thi j = 0. In other words we consider the simpler problem of
curving up the geometry on constant t slices. This is a d-dimensional Riemannian geometry,
and we denote by Di the Levi–Civita connection of this geometry.

7.1.1 The magnetic sector

In this subsection we only consider the magnetic part of the Lagrangian, i.e., the curved gen-
eralisation of

Lmag = −
h1

4
Fi jkFi jk −

h2

2
Fi j j Fikk . (7.244)
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Let us define Fi jk to be
Fi jk = DiA jk − DjAik , (7.245)

and the gauge transformation to be

δAi j = Di∂ jΛ . (7.246)

Note that the right-hand side is symmetric in (i j) since we are using the Levi-Civita connection.
The object Fi jk is covariant under d-dimensional general coordinate transformations of the
form x i → x ′i = x ′i(x) but is no longer invariant under the Λ gauge transformations. Instead
we now find that

δΛFi jk = Di Dj DkΛ− Dj Di DkΛ= Ri jk
l DlΛ . (7.247)

One way to possibly deal with this is to introduce a new gauge field Ai that transforms as
δAi = ∂iΛ and then to define

F̌i jk = DiA jk − DjAik − Ri jk
lAl = Fi jk − Ri jk

lAl . (7.248)

However, we will show in appendix C that this procedure leads to a Stückelberging of the
dipole symmetry in that Ai j now always appears in the combination Ai j−D(iA j). We show that
this remains true if we include a complex scalar field that is minimally coupled to (φ, Ai). The
field Ai j − D(iA j) is not a gauge field and so its presence does not correspond to any genuine
gauge invariance. This procedure therefore does away with the need to introduce Ai j in the
first place and is thus unwanted.

Here we will show that for a specific relation between h1 and h2 the magnetic Lagrangian
can be coupled to a curved geometry without invoking Ai provided the geometry on the con-
stant time slices is a space of constant sectional curvature, thus reproducing a result found
in [31]. The curved generalisation of the magnetic part of the Lagrangian is

Lmag = −
p

h
�

h1

4
h jmhkn +

h2

2
h jkhmn

�

hil Fi jkFlmn , (7.249)

where Fi jk is as in (7.245) and where h= det hi j . The gauge variation of the Lagrangian is

δΛLmag = −
p

h
�

h1

2
h jmhkn + h2h jkhmn

�

hilRi jkaFlmn∂
aΛ . (7.250)

For d = 3 the Riemann tensor can be written as

Ri jkl = hikR jl − h jkRil + h jlRik − hilR jk −
R
2

�

hikh jl − h jkhil

�

. (7.251)

In this case the variation can be written as

δLmag =
p

h
�

(h1 + h2)h
mn
�

Rl
a −

R
3
δl

a

�

+h1

�

Rmn −
R
3

hmn
�

δl
a +

h1 + 2h2

6
Rhmnδl

a

�

Flmn∂
aΛ . (7.252)

Hence, in order to have invariance in d = 3 we need to assume that the Ricci tensor is pure
trace, i.e., Ri j =

R
3 hi j and furthermore we need to take h2 = −h1/2. This is precisely the value

for which the magnetic part is independent of the trace of Ai j .
In fact we can generalise this result to general dimension d. If the Riemann tensor for a

d-dimensional manifold is given by

Ri jkl =
R

d(d − 1)
(hikh jl − hilh jk) , (7.253)
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then substitution into equation (7.250) shows that the Lagrangian is invariant if we take
h1 = −(d − 1)h2, which is the same condition we met in (4.176) in the traceless theory. Due
to (4.164), this also implies that the d = 2 scalar charge gauge theory cannot be coupled to
any curved background in a gauge-invariant way. We come back to the case d = 2 in Section
7.1.4. Given (7.253) it follows that the Einstein tensor is Gi j = −

d−2
2d Rhi j . Using the twice

contracted Bianchi identity DiGi j = 0 this tells us that R must be constant for d ≥ 3. Therefore
spaces of the form (7.253) are spaces of constant sectional curvature.

Consider again the case d = 3 with h2 = −h1/2. In this case the variation of the magnetic
part of the Lagrangian is

δLmag =
p

hh1

�

Rmn −
R
3

hmn
�

(7.254)

×
�

1
4

hi j Fmi j∂nΛ+
1
4

hi j Fni j∂mΛ+ hi j Fi(mn)∂ jΛ−
1
2

hmnhi jhkl Fikl∂ jΛ

�

,

where the second parenthesis has been made symmetric and traceless in m and n. We can
make Lmag gauge invariant by adding a Lagrange multiplier term

LLM =
p

hh1

�

Rmn −
R
3

hmn
�

Xmn , (7.255)

where Xmn is a traceless symmetric Lagrange multiplier that transforms as

δΛXmn = −
�

1
4

hi j Fmi j∂nΛ+
1
4

hi j Fni j∂mΛ+ hi j Fi(mn)∂ jΛ−
1
2

hmnhi jhkl Fikl∂ jΛ

�

. (7.256)

In higher dimensions, the Riemann tensor is no longer determined only in terms of the Ricci
tensor, and we generically expect that a similar procedure would involve a Lagrange multiplier
with four indices, i.e., Xi jkl .

7.1.2 The electric sector

We next consider the electric sector with g1+d g2 > 0, i.e., the traceful electric theory. For the
moment we still restrict ourselves to geometries of the formτ= d t and hµνd xµd xν = hi jd x id x j

with ∂thi j = 0. On such a geometry the Lagrangian of the electric sector of the scalar charge
gauge theory is given by

Lelec =
p

h
�

1
2g1

hikh jl F0i j F0kl −
g2

2g1(g1 + d g2)
(hi j F0i j)

2
�

, (7.257)

where we defined
F0i j = Ȧi j − Di∂ jφ , (7.258)

which, unlike Fi jk, is invariant under the gauge transformations δφ = ∂tΛ and δAi j = Di∂ jΛ,
i.e.,

δF0i j = 0 . (7.259)

It is thus straightforward to put the traceful electric theory on the curved space described by
τ= d t and hµνd xµd xν = hi jd x id x j . The traceless electric theory has g1+d g2 = 0 and needs
to be treated independently.
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7.1.3 The traceless scalar charge gauge theory on curved space

To end our considerations of scalar charge gauge theories on curved space, let us explicitly
demonstrate how the traceless scalar charge gauge theory (4.178) couples to curved space,
thereby reproducing the results of [31] for d = 3. In this case both the electric and the magnetic
sector are traceless. The gauge transformations of the gauge fields of the traceless theory on
curved space are

δAi j = Di DjΛ−
1
d

hi j D
2Λ and δφ = Λ̇ , (7.260)

where D2Λ= hi j Di DjΛ. The electric and magnetic field strengths are given by

F̃0i j = Ȧi j − Di Djφ −
1
d
(hkl Ȧkl − D2φ)hi j , (7.261)

Fi jk = 2D[iA j]k . (7.262)

The electric field strength is invariant under (7.260), while the magnetic field strength trans-
forms as

δFi jk = Ri jk
l DlΛ+

2
d

hk[i∂ j](D
2Λ) , (7.263)

which is the generalisation of (4.175). The curved space traceless theory is given by

L[Ai j ,φ] =
p

h
�

1
2g1

hikh jl F̃0i j F̃0kl −
h1

4
hil
�

h jmhkn −
2

d − 1
h jkhmn

�

Fi jkFlmn

�

. (7.264)

It is easy to verify that this theory is gauge invariant on backgrounds that satisfy the rela-
tion (7.253). We also see that the traceless electric theory, which is given by the above La-
grangian with h1 = 0, i.e.

Ltraceless electric[Ai j ,φ] =
p

h
1

2g1
hikh jl F̃0i j F̃0kl , (7.265)

can be coupled to any curved space.

7.1.4 2+ 1 dimensions

In Section 4.6 we mentioned that for d = 2 we can consider the CS-like theory given in (4.163).
If we couple this to curved space we find

L= k
4π
εi jhkl

�

AikȦ jl +φDkFi jl

�

, (7.266)

where Fi jk is now given by (7.245) and where εi j is the Levi-Civita symbol. Under the gauge
transformations δφ = ∂tΛ and δAi j = Di∂ jΛ we find that

δL= k
4π
Λεi j∂iφ∂ jR , (7.267)

where we used that any 2-dimensional Riemann tensor is of the form Ri jkl =
R
2 (hikh jl−hilh jk)

with an arbitrary Ricci scalar R. The Lagrangian is (7.266) is gauge invariant provided the
spatial geometry has constant curvature R [31,32].
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7.1.5 Summary of coupling to curved space

We have summarised the coupling of the scalar charge gauge theory to (d + 1)-dimensional
Aristotelian geometry with absolute time and time-independent Riemann geometries on the
leaves of the foliation in Table 1 below.

The scalar charge gauge theory with a traceful electric sector and a traceless magnetic
sector coupled to curved space for d ≥ 3 is described by the Lagrangian

L=
p

h
�

1
2g1

hikh jl F0i j F0kl −
g2

g1(g1 + d g2)
(hi j F0i j)

2

+h1

�

−
1
4

h jmhkn +
1

2(d − 1)
h jkhmn

�

hil Fi jkFlmn

�

. (7.268)

The magnetic and electric field strengths, respectively, are defined in (7.245) and (7.258),
while the background geometry is subject to the condition (7.253). In particular, the theory
(7.268) is not traceless in the sense of (4.166) since the electric part depends on the trace
of Ai j . For d = 3, we introduced a Lagrange multiplier Xmn that restricts the background
geometry, which led to the following Lagrangian

L=
p

h
�

1
2g1

hikh jl F0i j F0kl −
g2

g1(g1 + 3g2)
(hi j F0i j)

2

−
h1

4

�

h jmhkn − h jkhmn
�

hil Fi jkFlmn + h1

�

Rmn −
R
3

hmn
�

Xmn

�

. (7.269)

Similar Lagrange multiplier terms can be constructed in higher dimensions.
We have summarised the coupling to curved space in the Table 1 below.

Table 1: Summary of the spatial backgrounds to which the scalar charge gauge the-
ories can couple in a gauge-invariant way. The electric theory is given in (7.257) if
it is traceful and in (7.265) if it is traceless. The magnetic theory is given in (7.249).
Recall that the scalar charge gauge theory, for which h2 = −(d−1)h1, only has a non-
trivial magnetic sector for d ≥ 3 (c.f., (4.164)). The condition for constant sectional
curvature is given in (7.253).

Dim. Theory Spatial geometry

d = 2 magnetic theory with h1 + h2 > 0 flat

electric theory (traceful and traceless) any

CS-like theory constant sectional curvature

d ≥ 3 magnetic theory with h2 6= −(d − 1)h1 flat

magnetic theory with h2 = −(d − 1)h1 constant sectional curvature

electric theory (traceful and traceless) any

Note that Table 1 agrees with Table 1 of [31] with the understanding that 3-dimensional
Einstein spaces must have a constant Ricci scalar (as follows from the covariant constancy
of the Einstein tensor) and are therefore spaces of constant sectional curvature (which in
turn follows from the fact that the Weyl tensor vanishes identically in 3 dimensions). For the
higher dimensional cases we also find that the coupling of traceful theories is restricted to
flat backgrounds (due to the magnetic sector), but when the magnetic theory is traceless the
theories can be coupled to backgrounds of constant sectional curvature (this generalises the
result of [31] since the electric sector can be traceful).
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7.2 Coupling the scalar charge gauge theory to curved spacetime

In this section, we couple the scalar charge gauge theory to any torsion-free Aristotelian space-
time. This means that we generalise the previous results by allowing for time-dependent hi j

and that we furthermore add a shift vector N i as in (5.214). We will however refrain from
using the ADM parametrisation here and instead use a spacetime covariant notation.

We generalise the symmetric tensor gauge field Ai j by replacing Ai j → Aµν satisfying

vµAµν = 0 and A[µν] = 0 . (7.270)

The absence of torsion implies that the gauge transformation of the symmetric tensor gauge
field can be written as13

δAµν = Pρµ Pσν ∇ρ∂σΛ , (7.271)

which preserves (7.270), while the scalar φ transforms as

δφ = −vµ∂µΛ . (7.272)

We replace the field strengths F0i j and Fi jk by the following quantity

Fµνρ =∇µAνρ −∇νAµρ − 2Pσρ τ[µ∇ν]∇σφ . (7.273)

By construction, this field strength satisfies

vρFµνρ = 0 , (7.274)

and transforms under (7.271) as

δFµνρ = Rµνρ
σ∂σΛ , (7.275)

where the Riemann tensor of the Aristotelian connection (5.212) is given by (1.4). Further-
more, by explicitly writing out the definition of the field strength, we see that

3F[µνρ] = Fµνρ + Fρµν + Fνρµ = 0 , (7.276)

which, together with the fact that Fµνρ is antisymmetric in its first two indices, implies that
the field strength is hook symmetric.

The electric part of the field strength is symmetric in its two indices

−vµhνκhρλFµνρ = −hνκhρλ
�

vµ∇µAνρ +∇ν∂ρφ
�

, (7.277)

which transforms as

δ
�

−vµhνκhρλFµνρ
�

= −vµhνκhρλRµνρ
σ∂σΛ . (7.278)

The magnetic part of the field strength is

hµσhνκhρλFµνρ = hµσhνκhρλ
�

∇µAνρ −∇νAµρ
�

, (7.279)

which transforms as

δ
�

hµσhνκhρλFµνρ
�

= hµσhνκhρλRµνρ
α∂αΛ . (7.280)

13If we drop the assumption of a torsion-free background, we must explicitly symmetrise the projectors since
∇ρ∂σΛ is no longer symmetric, i.e.,

δAµν = Pρ(µPσ
ν)∇ρ∂σΛ .
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7.2.1 The magnetic sector

The Lagrangian with the condition (4.176) (for d ≥ 3) already implemented is

Lmag = eh1

�

−
1
4

hνλhρκ +
1

2(d − 1)
hνρhλκ

�

hµσFµνρFσλκ , (7.281)

and the variation is now

δLmag = eh1

�

−
1
2

hνλhρκ +
1

d − 1
hνρhλκ

�

hµσRµνρ
αFσλκ∂αΛ . (7.282)

Since the Aristotelian geometry is taken to be torsion-free we have the usual algebraic
Bianchi identity R[µνρ]

α = 0 which implies that the Ricci tensor Rµν = Rµρν
ρ is symmetric.

Using that ∇µvσ = 0 and thus that 0 = [∇µ,∇ν]vσ = −Rµνρ
σvρ, it follows that the Ricci

tensor is spatial, i.e., vµRµν = 0. Hence the only contraction of Rµν is what we will call the
Ricci scalar R= hµνRµν. The identity 0= [∇µ,∇ν]τρ = Rµνρ

στσ implies that Rµν = Rµρν
σPρσ .

The condition that makes the magnetic Lagrangian gauge invariant is

hµκhνλRµνρ
σ =

R
d(d − 1)

�

Pκρhσλ − hσκPλρ
�

, (7.283)

for any torsion-free Aristotelian spacetime.

7.2.2 The electric sector

The Lagrangian of the traceful electric sector is now

Lelec = e
�

1
2g1

hρλhσκ −
g2

g1(g1 + d g2)
hρσhλκ

�

vµvνFµρσFνλκ , (7.284)

and its variation is

δLelec = e
�

1
g1

hρλhσκ −
2g2

g1(g1 + d g2)
hρσhλκ

�

vµFµρσvνRνλκ
α∂αΛ . (7.285)

Equation (7.277) tells us that vµhρκhσλFµρσ is symmetric in κ and λ. Furthermore, the alge-
braic Bianchi identity R[µνρ]

σ = 0 and the fact that Rµνρ
σvρ = 0 tell us that vνRνλκ

α is also
symmetric in κ and λ. Hence the electric Lagrangian is gauge invariant provided we demand
that

vνRνλκ
α = 0 , (7.286)

for any torsion-free Aristotelian spacetime. We do not need to contract the κ and λ indices
with hσκhρλ because any contraction of vνRνλκ

α with vµ is zero. Therefore the condition
(7.286) tells us that the Riemann tensor is entirely spatial, i.e., all possible contractions with
vµ and τµ now vanish.

7.2.3 Summary of coupling to curved spacetime

The combined Lagrangian that describes the full theory with a traceful electric sector and a
traceless magnetic sector is given by

L= Lelec +Lmag

= e
��

1
2g1

hρλhσκ −
g2

g1(g1 + d g2)
hρσhλκ

�

vµvνFµρσFνλκ (7.287)

+ h1

�

−
1
4

hνλhρκ +
1

2(d − 1)
hνρhλκ

�

hµσFµνρFσλκ

�

,
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where d ≥ 3. The background must now satisfy the conditions (7.283) and (7.286), which
can be summarised into one condition as

Rµνρ
σ =

R
d(d − 1)

�

hµρPσν − hνρPσµ
�

. (7.288)

This condition generalises (7.253) to the case of an arbitrary torsion-free Aristotelian back-
ground and can be imposed using an appropriate Lagrange multiplier as in (7.255). We sum-
marise the state of play in the table below.

Table 2: Summary of the torsion-free Aristotelian spacetimes to which the scalar
charge theories can couple in a gauge-invariant way.

Theory Curved torsion-free

Aristotelian background

Magnetic theory (7.281) with h2 = −(d − 1)h1 (d ≥ 3) obeying (7.283)

Magnetic theory (7.281) with h2 6= −(d − 1)h1 (d ≥ 2) flat

Traceful electric theory for d ≥ 2 (7.284) obeying (7.286)

It would be interesting to generalise the traceless electric theory (7.265) and the Chern–
Simons like theory of Section 7.1.4 to curved spacetime and furthermore to drop the assump-
tion that the background geometry is torsion-free.

8 Discussion and outlook

In this paper we have shown how to couple fractonic theories to curved spacetime. This space-
time is not the familiar one of Lorentzian geometry, rather, it is an Aristotelian geometry de-
scribed not by a metric but in terms of an Aristotelian structure consisting of τµ and hµν as
discussed in Section 5. We have shown how to couple the complex scalar theory with dipole
symmetry to an arbitrary curved background, which, to the best of our knowledge, has been
an open problem in the theoretical description of fractons. Additionally, we presented how
the scalar charge gauge theory couples to torsion-free Aristotelian spacetimes, generalising
previous results in the literature where the coupling to curved space was considered [31]. In
order to couple both the electric and magnetic sector we find that there are two cases. If the
magnetic sector depends on the trace of Aµν then the background must be flat. If the magnetic
sector is traceless, i.e., obeys the condition (4.176), then the background must satisfy a severe
restriction on its curvature, namely (7.288), which can be enforced using a Lagrange multi-
plier. We have shown that the electric sector of the scalar charge gauge theory, regardless of
whether it is traceful or traceless, can be coupled to any torsion-free Aristotelian background.

Along the way, we have derived new results for the complex scalar theory with dipole
symmetry that describes fracton matter. In particular, we have found a no-go theorem that tells
us that such a theory cannot simultaneously enjoy linearly realised dipole symmetry, contain
spatial derivatives, and be Gaussian. The case with linearly realised dipole symmetry that is
also Gaussian thus contains no spatial derivatives, and we have shown that this an example of
a Carrollian theory. Conversely, if the theory is Gaussian and has spatial derivatives, the dipole
symmetry is non-linearly realised and the theory becomes a special case of a Lifshitz theory
with polynomial shift symmetry. We have gauged the dipole symmetry using the Noether
procedure, and the dynamics of the resulting symmetric tensor gauge field is described by
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scalar charge gauge theory, for which we have provided a Faddeev–Jackiw type Hamiltonian
analysis and elucidated the gauge structure using generalised differentials.

This opens up a number of interesting avenues for further research, some of which we list
below.

Vector charge gauge theory There exist other interesting rank 2 symmetric gauge theories,
one of them is the “vector charge theory” [21]. It is governed by gauge transformations
of the form Ai j → Ai j + 2∂(iΛ j) with the corresponding vector-flavoured generalised
Gauss law ∂i E

i j = ρ j and leads to mobility restrictions of a another kind and gives rise
to one-dimensional particles that move on a line (lineons). Many of the results and tools
of this work should generalise to this case.

Fracton hydrodynamics The theory of fracton hydrodynamics has been considered in, e.g.,
[62–66]. As we have shown in this work, fractons couple to Aristotelian geometry.
In [34], the theory of boost-agnostic fluids was coupled to Aristotelian geometry, and
it would be very interesting to include dipole symmetry in the approach of [34] and
thus develop a theory of fracton hydrodynamics on curved space. As demonstrated in
that paper, this would allow us to use the technology of hydrostatic partition functions
to extract hydrodynamic information.

Carroll theories As mentioned in Section 2.4 the free (or Gaussian) uncoupled matter theory
has Carrollian symmetry and the quanta are rather unconventional Carrollian particles.
Even though the non-Gaussian and Aristotelian fractonic theories do not inherit these
enhanced symmetries it is tempting to ask if we can gain further insights into the physics
of fractons by perturbing around the Carrollian theories (see also [37, Appendix A]).14

Charge–Dipole symmetries and their spacetimes Much of the fascinating fractonic physics
emerged by generalising beyond the usual symmetries (see, e.g., [13]). For the proto-
typical charge and dipole symmetries, i.e., the first two lines in (2.76), this could mean
to classify all Lie algebras and their spacetimes with so(d) rotations, two vectors, and
two scalars. A classification in this direction which also uncovers further coincidental
isomorphisms will be given in a future work [76].

Gauge structure and asymptotic symmetries Since the scalar charge theory is a gauge the-
ory the question of conserved charges is intimately related to asymptotic charges and
symmetries. Indeed, in Section 4.2 a first step in this direction is taken when we recover
the charge and dipole charge using a Regge–Teitelboim type [45, 46] analysis. A more
elaborate analysis of the asymptotic symmetries might be interesting, especially since
boosts, that often complicate the analysis for the Lorentzian theories, are absent. For
this reason we find it reasonable to expect an enhanced asymptotic symmetry algebra.

Higher spins As emphasised repeatedly, see, e.g., [5,21,43] a generalisation to higher spins
might be an interesting endeavor. Especially since many of the no-go results, as nicely
summarised in [77], fail due to the non-Lorentzian symmetries and, what is possibly
even more relevant, the absence of asymptotic momentum eigenstates for isolated parti-
cles (which helps to circumvent, e.g., the Weinberg–Witten theorem [78]). Higher spin
symmetries are also closely tied to gauge symmetries and our elaborations in Section 4.2
uncover the interesting place at which the gauge structure of this fractonic theory sits,
see (4.137). This might present a starting point for generalisations to higher rank and
dual representations (see for instance [44]).

14Curiously this resonates with early ideas of perturbations around Carrollian (“zero signature”) geome-
tries [67–69]. See also, e.g., [70–75] for more recent interesting works on Carrollian geometry.
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Partially massless fractons In Section 4.9 we have highlighted similarities between the scalar
charge theory and partially massless gravitons. It might be interesting to understand if
there is more to it and if one can formulate a nonlinear theory of “partially massless
fractons” (of possibly even higher spin [79–84]).
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A Electrodynamics

The purpose of this of appendix is mainly pedagogical. We will illustrate some of the concepts
and ideas of the main text in the simpler and more familiar setting of electrodynamics.

A.1 The gauge sector

We start by defining the gauge potential Ai ∼ i and its canonical conjugate πi with the equal-
time Poisson bracket

{Ai(x),π
j(y)}= δ j

iδ(x − y) . (A.289)

The indices i, j run from 1 to d, the spatial dimensions.
The gauge transformations are given by

δΛAi = ∂iΛ , δΛπ
i = 0 , (A.290)

where Λ= Λ(t, x)∼ • . They are generated by the gauge generator

G̃[Λ] =
ˆ

dd x [−Λ∂iπ
i + ∂i(Λπ)] . (A.291)

Using the differential we can write pure gauge potentials as

(dΛ)i = ∂iΛ . (A.292)

Since the discussion of the gauge sector follows mutatis mutandis from Section 4.2 we will
be brief. Let us emphasise that this discussion is restricted to spatial slices, but generalises to
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spacetimes for Poincaré invariant electrodynamics. We define the gauge invariant “curvature”
or “magnetic field”

Fi j = (dA)i j = 2∂[iA j] ∼
i
j , (A.293)

where the Young tableaux represents the antisymmetry of the indices. The curvature vanishes
when the potential is pure gauge

Fi j = 2∂[i∂ j]Λ= 0 (⇔ d2Λ= 0) . (A.294)

Conversely, a vanishing curvature implies that the potential is pure gauge, i.e., F = dA= 0⇒
A= dΛ, this shows that the curvatures fully capture the gauge symmetries. The derivative of
the antisymmetric tensors is given by

(dT )i jk = ∂[i T jk] . (A.295)

The final class of tensors we want to introduce are totally antisymmetric tensors T[i jk] = Ti jk
which have the following Young tableaux

Ti jk ∼
i
j
k

. (A.296)

The differential Bianchi identity follows

∂[i F jk] = 2∂[i∂ jAk] = 0 (⇔ dF = d2A= 0) (A.297)

and conversely ∂[i T jk] = 0 implies that T jkl is the curvature of a potential. Explicitly

∂[i T jk] = 0 =⇒ Ti jk = 2∂[iA j] (⇔ dT = 0=⇒ T = F = dA) . (A.298)

In summary, we have shown that there exists an exact sequence that we can schematically
depict as

• d
−→

d
−→

d
−→ . (A.299)

For the Hamiltonian density we demand rotational invariance and gauge invariant (basi-
cally so that the constraints fulfill a first-class system). To lowest order in derivatives of the
gauge invariant quantities this leads to

H =
g
2
πiπi +

h
4

F i j Fi j . (A.300)

In principle the parameters g and h are free and could in principle be set to zero, in contradis-
tinction to the Poincaré invariant theory. We can then write the Hamiltonian action

L[Ai ,π
i ,φ] = πiȦi −H+φ∂iπ

i − ∂i(φπ
i) , (A.301a)

= πi(Ȧi − ∂iφ)−H , (A.301b)

where we have introduced the Lagrange multiplier φ which enforces the constraint. This
theory has d − 1 degrees of freedom in d spatial dimensions. The variation is given by

δL=
�

−π̇i + h∂kF ki + J i
�

δAi +
�

Ȧi − gπi − ∂iφ
�

δπi

+
�

∂iπ
i + J0

�

δφ + ∂0θ
0 + ∂iθ

i , (A.302)
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where

θ0 = πiδAi , θ i = πiδφ − hF i jδA j . (A.303)

We have to add

δΛφ = ∂0Λ (A.304)

to the gauge symmetries (A.290) to show that the action is gauge invariant

δΛL= 0 . (A.305)

Solving the equations of motion for π and substituting it into the action leads to the “covariant
form” of the action

L[Ai ,φ] =
1

2g
(Ȧi − ∂iφ)(Ȧ

i − ∂ iφ)−
h
4

F i j Fi j . (A.306)

The fact that we do not write the first term in the usual Poincaré covariant form − 1
2g F0i F0i

is a manifestation of the Aristotelian structure, where we have no natural nondegenerate
Lorentzian metric that would allow for these index manipulations.

Another perspective is to consider emergent low energy U(1) gauge theories. In general
they are determined by Aristotelian geometry however there might be emergent Lorentz in-
variance and a “speed of light” determined by some microscopic Hamiltonian. In that case,
like for, e.g., some U(1) spin liquids, there would then be a natural nondegenerate Lorentzian
metric.

A.2 3+ 1 dimensions

In three spatial dimensions we can use the epsilon tensor to define the magnetic field as
Bi = εi jk∂ jAk =

1
2ε

i jkF jk, which we can use to write the generic term Hamiltonian (A.300) as
H = 1

2(gπ
iπi + hBiBi). However in 3+ 1 dimensions there is the option to add another term

to the Hamiltonian

Hθ = θ πiBi . (A.307)

We will now show that this term is closely related to the usual θ term of the Witten effect. We
start by adding the term to the generic Hamiltonian and complete the square

Hd=3 =H+Hθ = 1
2

�

�

p
gπi +

θ
p

g
Bi

�2

+

�

h−
θ2

g

�

BiBi

�

. (A.308)

Next we change coordinates according to

Q i = Ai , P i = πi +
θ

g
Bi[A] , (A.309)

where the square brackets indicate that this is the magnetic tensor of Ai . This is a canonical
transformation as can be seen from

πi(Ȧi − ∂iφ)−HD=3 = P i(Q̇ i − ∂iφ)−K− θ
2g
(∂0F0 + ∂i F

i) , (A.310)

where the new Hamiltonian is given by

K = 1
2

�

gP i Pi +

�

h−
θ2

g

�

Bi[Q]Bi[Q]

�

(A.311)
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and the boundary term or “generating function” F is

F0 =Q iB
i , F i = εi jkQ jQ̇k − 2φBi . (A.312)

This means that the addition of the θ term to the Hamiltonian leads, after a canonical trans-
formation, to an shift in the coupling constants of the B2 term plus a boundary term. This
means the equations of motion stay unaltered (up to the shift). However, the addition of the
boundary term has nontrivial effects for the charges and quantum mechanics [85].15

For 2+1 dimensions there is the possibility to add an εi j F
i j term to the Hamiltonian, which

is a boundary term that leaves the EOM unaffected.

B Field redefinitions for cases 2 and 3

In this appendix, we show that the two remaining cases of Section 4.7 do not lead to new
theories.

Case 2: When c1 6= −1/d and c2 = −1/d, the gauge transformation again takes the form
(4.174), which implies that we cannot construct a gauge invariant field strength by augmenting
Fi jk by adding a suitable term involving Aii . With the Hamiltonian (4.140), gauge invariance
again imposes the condition (4.176). The gauge invariant electric field strength is the same
as in case 1 and thus given by (4.177). The Lagrangian in this case, obtained by integrating
out Ei j from (4.167), therefore takes the form

L2[Ai j ,φ] =
1

2g1
F̃0i j F̃0i j +

(dc1 + 1)2

2d(g1 + d g2)
(Ȧii)

2 −
h1

4
Fi jkFi jk +

h1

2(d − 1)
Fi j j Fikk , (B.313)

and is not independent of the trace Aii due to the second term in the above expression for L2,
in contrast to the traceless theory we considered above in case 1. In deriving this result, we
have assumed that g1 + d g2 6= 0. The trace Aii is gauge invariant and hence it is like adding
a scalar field to the theory of case 1. We thus conclude that this case does not lead to an
interesting deformation of the scalar gauge theory and we will not consider it any further.

Case 3: When c1, c2 6= −1/d the trace Aii is no longer gauge invariant, which can be used to
construct a gauge invariant magnetic field strength invariant

F̂i jk = 2∂[iA j]k + 2δk[i∂ j]Al l
c2 − c1

1+ dc2
, (B.314)

which is gauge invariant under (4.173). The Hamiltonian is again given by (4.140) written in
terms of the field strength above, and there is no longer any constraint on the parameters g2
and h2 in contrast to cases 1 and 2. The gauge invariant electric field strength now reads

F̂0i j = Ȧi j − ∂i∂ jφ + c1δi jȦkk − c2δi j∂
2φ . (B.315)

By integrating out the electric field from (4.167), we see that the Lagrangian in this case is
given by

L3[Ai j ,φ] =
1

2g1
F̂0i j F̂0i j −

g2

2g1(g1 + d g2)
(F̂0ii)

2 −
h1

4
F̂i jk F̂i jk −

h2

2
F̂i j j F̂ikk . (B.316)

15To make this more obvious we can write ∂0F0+∂i F
i = 2Bi(Q̇ i−∂iφ) = 1/4εµνρσFµνFρσ where the last equality

sign uses a lorentzian metric.
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As in case 2, we have assumed that g1 + d g2 6= 0.
The case c1 = c2 6= −1/d has the same gauge transformations as used in the previous

sections. In this case the magnetic field strength F̂i jk is the same as in the undeformed case
Fi jk while the electric field strength can be written as

F̂0i j = F0i j + c1δi j F0kk , (B.317)

where F0i j is the electric field strength of the undeformed theory. In this case the Lagrangian
L3 becomes

L3[Ai j ,φ] =
1

2g1
F0i j F0i j +

�

(1+ dc1)2

2d(g1 + d g2)
−

1
2d g1

�

(F0ii)
2 −

h1

4
Fi jkFi jk −

h2

2
Fi j j Fikk .

(B.318)

This theory is not essentially different from the undeformed theory (4.153b) studied in the
previous sections. It is simply related by a redefinition of the parameter g2. Alternatively, we
can start with g2 = 0 and generate its presence by deforming the Poisson bracket and Gauss
constraint with c1 = c2 6= −1/d.

Finally, we show that the case c1 6= c2 and both different from −1/d does not lead to a new
theory either. To see this define

Ǎi j = Ai j +
c1 − c2

1+ dc2
δi jAkk , (B.319)

which transforms as

δǍi j = ∂i∂ jΛ . (B.320)

Note that the gauge transformation of the Lagrange multiplierφ remains unchanged. In terms
of this redefined gauge field, which transforms in the same way as the original, we can write
the invariant magnetic field strength as

F̂i jk = 2∂[iǍ j]k , (B.321)

while the electric field strength becomes

F̂0i j =
˙̌Ai j − ∂i∂ jφ + c2δi j(

˙̌Akk − ∂ 2φ) (B.322a)

= F̌0i j + c2δi j F̌0kk , (B.322b)

which is the same as (B.317) but with c1 replaced with c2, allowing us to conclude that this is
also the same theory as the undeformed theory (4.153b).

C Stückelberging the dipole symmetry

Consider equation (7.248). We introduce a new gauge field Ai which transforms as δAi = ∂iΛ

and we use this to build the gauge invariant field strength

F̌i jk = DiA jk − DjAik − Ri jk
lAl = Fi jk − Ri jk

lAl . (C.323)

We can write

F̌i jk = DiA jk − DjAik − Ri jk
lAl = Di

�

A jk − DjAk

�

− Dj (Aik − DiAk)

= Di

�

A jk − D( jAk) −
1
2

F jk

�

− Dj

�

Aik − D(iAk) −
1
2

Fik

�

, (C.324)
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where Fi j = ∂iA j − ∂ jAi . Note that the combination

Â jk = A jk − D( jAk) (C.325)

is gauge invariant, so one way of thinking about Ai is as a Stückelberg field that removes the
symmetric tensor gauge symmetry from the theory as we can now perform a field redefinition
from A jk to Â jk and in this new theory the magnetic sector is a gauge theory for Ai that contains
a symmetric rank 2 tensor field Â jk which is not a gauge field. Furthermore, the electric field
strength of the next section can be written as

F0i j =
˙̂Ai j −

1
2
∂0Fi j + Di

�

∂0A j − ∂ jφ
�

, (C.326)

which contains the electric field strength ∂0A j − ∂ jφ, Fi j and the non-gauge field Âi j .
Using the identity

∂iΦ∂ jΦ−ΦDi∂ jΦ+ iΦ2Ai j =DiΦD jΦ−ΦD(iD j)Φ+ iΦ2Âi j , (C.327)

we see that also in the matter sector we can formulate things in terms of the non-gauge field
Âi j . Here the covariant derivatives Di contains Ai (as well as the Levi-Civita connection). We
see that introducing the Ai field amounts to Stückelberging the dipole gauge symmetry as
there is now no longer an Ai j gauge field, and hence this is the same as saying that there is
no dipole gauge symmetry. So this is a non-solution to the problem of putting the theory on
curved space. In order to recover dipole gauge symmetry on curved space one would have to
reinstate the Σi gauge symmetry but that is equivalent to setting Ai = 0 with Ai j transforming
as usual, which brings us back to square one.

References

[1] C. Chamon, Quantum glassiness in strongly correlated clean systems: An ex-
ample of topological overprotection, Phys. Rev. Lett. 94, 040402 (2005),
doi:10.1103/physrevlett.94.040402.

[2] J. Haah, Local stabilizer codes in three dimensions without string logical operators, Phys.
Rev. A 83, 042330 (2011), doi:10.1103/physreva.83.042330.

[3] S. Vijay, J. Haah and L. Fu, A new kind of topological quantum order: A dimensional hier-
archy of quasiparticles built from stationary excitations, Phys. Rev. B 92, 235136 (2015),
doi:10.1103/PhysRevB.92.235136.

[4] S. Vijay, J. Haah and L. Fu, Fracton topological order, generalized lattice gauge theory, and
duality, Phys. Rev. B 94, 235157 (2016), doi:10.1103/PhysRevB.94.235157.

[5] M. Pretko, Emergent gravity of fractons: Mach’s principle revisited, Phys. Rev. D 96, 024051
(2017), doi:10.1103/PhysRevD.96.024051.

[6] C. Xu, Gapless bosonic excitation without symmetry breaking: An algebraic spin liquid with
soft gravitons, Phys. Rev. B 74, 224433 (2006), doi:10.1103/physrevb.74.224433.

[7] H. Yan, Hyperbolic fracton model, subsystem symmetry, and holography, Phys. Rev. B 99,
155126 (2019), doi:10.1103/PhysRevB.99.155126.

[8] S. Bravyi and J. Haah, Quantum self-correction in the 3D cubic code model, Phys. Rev. Lett.
111, 200501 (2013), doi:10.1103/PhysRevLett.111.200501.

58

https://scipost.org
https://scipost.org/SciPostPhys.12.6.205
https://doi.org/10.1103/physrevlett.94.040402
https://doi.org/10.1103/physreva.83.042330
https://doi.org/10.1103/PhysRevB.92.235136
https://doi.org/10.1103/PhysRevB.94.235157
https://doi.org/10.1103/PhysRevD.96.024051
https://doi.org/10.1103/physrevb.74.224433
https://doi.org/10.1103/PhysRevB.99.155126
https://doi.org/10.1103/PhysRevLett.111.200501


SciPost Phys. 12, 205 (2022)

[9] B. M. Terhal, Quantum error correction for quantum memories, Rev. Mod. Phys. 87, 307
(2015), doi:10.1103/RevModPhys.87.307.

[10] B. J. Brown and D. J. Williamson, Parallelized quantum error correc-
tion with fracton topological codes, Phys. Rev. Research 2, 013303 (2020),
doi:10.1103/PhysRevResearch.2.013303.

[11] R. M. Nandkishore and M. Hermele, Fractons, Annu. Rev. Condens. Matter Phys. 10, 295
(2019), doi:10.1146/annurev-conmatphys-031218-013604.

[12] M. Pretko, X. Chen and Y. You, Fracton phases of matter, Int. J. Mod. Phys. A 35, 2030003
(2020), doi:10.1142/S0217751X20300033.

[13] A. Gromov, Towards classification of fracton phases: The multipole algebra, Phys. Rev. X 9,
031035 (2019), doi:10.1103/PhysRevX.9.031035.

[14] M. Pretko, The fracton gauge principle, Phys. Rev. B 98, 115134 (2018),
doi:10.1103/PhysRevB.98.115134.

[15] K. Slagle and Y. Baek Kim, Quantum field theory of X-cube fracton topological
order and robust degeneracy from geometry, Phys. Rev. B 96, 195139 (2017),
doi:10.1103/PhysRevB.96.195139.

[16] C. Duval, G. W. Gibbons, P. A. Horvathy and P. M. Zhang, Carroll versus Newton and
Galilei: Two dual non-Einsteinian concepts of time, Class. Quantum Grav. 31, 085016
(2014), doi:10.1088/0264-9381/31/8/085016.

[17] E. Bergshoeff, J. Gomis and G. Longhi, Dynamics of Carroll particles, Class. Quantum
Grav. 31, 205009 (2014), doi:10.1088/0264-9381/31/20/205009.

[18] J. de Boer, J. Hartong, N. A. Obers, W. Sybesma and S. Vandoren, Carroll symmetry, dark
energy and inflation, arXiv:2110.02319.

[19] L. Marsot, Planar Carrollean dynamics, and the Carroll quantum equation,
arXiv:2110.08489.
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