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Abstract

Following the growing success of generative neural networks in LHC simulations, the
crucial question is how to control the networks and assign uncertainties to their event
output. We show how Bayesian normalizing flows or invertible networks capture un-
certainties from the training and turn them into an uncertainty on the event weight.
Fundamentally, the interplay between density and uncertainty estimates indicates that
these networks learn functions in analogy to parameter fits rather than binned event
counts.

Copyright M. Bellagente et al.
This work is licensed under the Creative Commons
Attribution 4.0 International License.
Published by the SciPost Foundation.

Received 03-05-2021
Accepted 08-10-2021
Published 21-07-2022

Check for
updates

doi:10.21468/SciPostPhys.13.1.003

Contents

1 Introduction 2

2 Generative networks with uncertainties 2
2.1 Uncertainties on event samples 3
2.2 Invertible Neural Networks 3
2.3 Bayesian INN 5

3 Toy events with uncertainties 7
3.1 Wedge ramp 8
3.2 Kicker ramp 9
3.3 Gaussian ring 11
3.4 Errors vs training statistics 12
3.5 Marginalizing phase space 13

4 LHC events with uncertainties 16

5 Outlook 18

References 19

1

https://scipost.org
https://scipost.org/SciPostPhys.13.1.003
http://creativecommons.org/licenses/by/4.0/
https://crossmark.crossref.org/dialog/?doi=10.21468/SciPostPhys.13.1.003&amp;domain=pdf&amp;date_stamp=2022-07-21
https://doi.org/10.21468/SciPostPhys.13.1.003


SciPost Phys. 13, 003 (2022)

1 Introduction

The role of first-principle simulations in our understanding of large data sets makes LHC
physics stand out in comparison to many other areas of science. Three aspects define the
application of modern big data methods in this field:

· ATLAS and CMS deliver proper big data with excellent control over uncertainties;

· perturbative quantum field theory provides consistent precision predictions;

· fast and reliable precision simulations generate events from first principles.

The fact that experiments, field theory calculations, and simulations control their uncertainties
implies that we can work with a complete uncertainty budget, including statistical, systematic,
and theory uncertainties. To sustain this approach at the upcoming HL-LHC, with a data set
more than 25 times the current Run 2 data set, the theory challenge is to provide faster simu-
lations and keep full control of the uncertainties at the per-cent level and better.

In recent years it has been shown that modern machine learning can improve LHC event
simulations in many ways [1]. Promising techniques include generative adversarial networks
(GAN) [2–4], variational autoencoders [5, 6], and normalizing flows [7–11], including in-
vertible networks (INNs) [12–14]. They can improve phase space integration [15,16], phase
space sampling [17–19], and amplitude computations [20,21]. Further developments are fully
NN-based event generation [22–26], event subtraction [27], event unweighting [28, 29], de-
tector simulation [30–39], or parton showering [40–44]. Generative models will also improve
searches for physics beyond the Standard Model [45], anomaly detection [46, 47], detector
resolution [48, 49], and inference [50–52]. Finally, conditional GANs and INNs allow us to
invert the simulation chain to unfold detector effects [53, 54] and extract the hard scattering
process at parton level [55]. The problem with these applications is that we know little about

1. how these generative networks work, and

2. what the uncertainty on the generative network output is.

As we will see in this paper, these two questions are closely related.
In general, we can track statistical and systematic uncertainties in neural network outputs

with Bayesian networks [56–59]. Such networks have been used in particle physics for a
long time [60–62]. For the LHC we have proposed to use them to extract uncertainties in jet
classification [63] and jet calibration [64]. They can cover essentially all uncertainties related
to statistical, systematic, and structural limitations of the training sample [65]. Similar ideas
can be used as part of ensemble techniques [66]. We propose to use a Bayesian INN (BINN)
to extract uncertainties on a generated event sample induced by the network training.

Because Bayesian networks learn the density and uncertainty maps in one pass, their rela-
tion offers us fundamental insight into the way an INN learns a distribution. While Bayesian
classification [63] and regression networks [64] highlight the statistical and systematic nature
of uncertainties, our Bayesian generative network exhibits a very different structure. We will
discuss the learning pattern of the Bayesian INN in details for a set of simple toy processes in
Sec. 3, before we apply the network to a semi-realistic LHC example in Sec. 4.

2 Generative networks with uncertainties

We start by reminding ourselves that we often assume that a generative model has learned a
phase space density perfectly, so the only remaining source of uncertainty is the statistics of
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the generated sample binned in phase space. However, we know that such an assumption is
not realistic [63,64], and we need to estimate the effect of statistical or systematic limitations
of the training data. The problem with such a statistical limitation is that it is turned into a
systematic shortcoming of the generative model [25]— once we generate a new sample, the
information on the training data is lost, and the only way we might recover it is by training
many networks and comparing their outcome. For most applications this is not a realistic or
economic option, so we will show how an alternative solution could look.

2.1 Uncertainties on event samples

Uncertainties on a simulated kinematic or phase space distribution are crucial for any LHC
analysis. For instance, we need to know to what degree we can trust a simulated pT -distribution
in mono-jet searches for dark matter. We denote the complete phase space weight for a given
phase space point as p(x), such that we can illustrate a total cross section as

σtot =

∫ 1

0

d x p(x) with p(x)> 0 . (1)

In this simplified notation x stands for a generally multi-dimensional phase space. For each
phase space position, we can also define an uncertainty σ(x).

Two contributions to the error budget are theory and systematic uncertainties, σth/sys(x).
The former reflects our ignorance of aspects of the training data, which do not decrease when
we increase the amount of training data. The latter captures the degree to which we trust our
prediction, for instance based on self-consistency arguments. For example, we can account for
possible large, momentum-dependent logarithms as a simple function of phase space. If we
use a numerical variation of the factorization and renormalization scales to estimate a theory
uncertainty, we typically re-weight events with the scales. Another uncertainty arises from the
statistical limitations of the training data, σstat(x). For instance in mono-jet production, the
tails of the predicted pT -distribution for the Standard Model will at some point be statistics lim-
ited. In the Gaussian limit, a statistical uncertainty can be defined by binning the phase space
and in that limit we expect a scaling like σstat(x) ∼

p

p(x), and we will test that hypothesis
in detail in Sec. 3.

Once we know the uncertainties as a function of the phase space position, we can account
for them as additional entries in unweighted or weighted events. For instance, relative uncer-
tainties can be easily added to unweighted events,

evi =











σstat/p
σsyst/p
σth/p
{xµ, j}
{pµ, j}











, with µ= 0 ... 3 for each particle j. (2)

The entries σ or σ/p are smooth functions of phase space. The challenge in working with this
definition is how to extractσstat without binning. We will show how Bayesian networks give us
access to limited information in the training data. Specific theory and systematics counterparts
can be either computed directly or extracted by appropriately modifying the training data [63,
64].

2.2 Invertible Neural Networks

To model complex densities such as LHC phase space distributions, we can employ normalizing
flows [7,10,13,14]. They use the fact we can transform a random variable z ∼ pZ(z) using a
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bijective map G : z→ x to a random variable x = G(z) with the density

pX (x) = pZ(z)

�

�

�

�

det
∂ G(z)
∂ z

�

�

�

�

−1

= pZ

�

G−1(x)
�

�

�

�

�

det
∂ G−1(x)
∂ x

�

�

�

�

. (3)

Given a sample z from the base distribution, we can then use the map G to generate a sample
from the target distribution going in the forward direction. Alternatively, we can use a sample x
from the target distribution to compute its density using the inverse direction. We will suppress
the subscripts in the distributions pZ , pX whenever the density is clear from the context, to
lighten the notation.

For this to be a useful approach, we require the base distribution pZ to be simple enough to
allow for efficient sample generation, G to be flexible enough for a non-trivial transformation,
and its Jacobian determinant to be efficiently computable. If these constraints are fulfilled, G
gives us a powerful generative pipeline to model the phase space density,

base distribution z ∼ pZ

G(z)→
←−−−−−→
← G(x)

phase space distribution x ∼ pX , (4)

where G(x) = G−1(x).
To fulfill the first constraint, we choose the base distribution pZ to be a multivariate Gaus-

sian with zero mean and an identity matrix as the covariance. The construction of G relies
on the property that the composition of a chain of simple invertible nonlinear maps gives us a
complex map. In contrast, the determinant of the Jacobian of the composition remains simple
in the sense that we can decompose it into the product of determinants of each of the indi-
vidual transformations. There exists a broad literature of different transformations, each with
different strengths and weaknesses [10]. We rely on the real non-volume preserving flow [13]
in the invertible neural network (INN) formulation [12].

An INN composes multiple transformation maps into coupling layers with the following
structure. The input vector z into a layer is split in half, z = (z1, z2), allowing us to compute
the output x = (x1, x2) of the layer as

�

x1
x2

�

=

�

z1 � es2(z2) + t2(z2)
z2 � es1(x1) + t1(x1)

�

, (5)

where si , t i (i = 1,2) are arbitrary functions, and � is the element-wise product. In practice
each is a small multi-layer perceptron. This transformation has the benefit of being easily
invertible. Given a vector x = (x1, x2) the inverse is given by

�

z1
z2

�

=

�

(x1 − t2(z2))� e−s2(z2)

(x2 − t1(x1))� e−s1(x1)

�

. (6)

Additionally, its Jacobian is an upper triangular matrix

∂ G(z)
∂ z

=

�

diag
�

es2(z2)
�

finite
0 diag

�

es1(x1)
�

�

, (7)

whose determinant is just the product of the diagonal entries, irrespective of the entries on the
off-diagonal. As such, it is computationally inexpensive, easily composable, yet still allows for
complex transformations.

We refer to the overall map composing a sequence of such coupling layers as G(z;θ ),
where we collected the parameters of the individual nets s, t of each layer into a joint θ . Note
that each coupling layer has a separate set of nets, whose indices we suppress (e.g. sl , t l for
the l-th layer). We can then train the overall model via a maximum likelihood approach. It
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relies on the assumption that we have access to a data set of N samples D = {x1, . . . , xN} of
the intractable target phase space distribution p∗X (x) and want to fit our model distribution
pX (x;θ ) via the INN G. The maximum likelihood loss is

LML = −
N
∑

n=1

log pX (xn;θ ) = −
N
∑

n=1

log pZ

�

G(xn;θ )
�

+ log

�

�

�

�

det
∂ G(xn;θ )
∂ xn

�

�

�

�

. (8)

Given the structure of G(x;θ ) and the base distribution pZ , each of the terms is tractable and
can be computed efficiently. We can approximate the sum over the complete training data via
a mini-batch and optimize the overall objective with a stochastic gradient descent approach.
Note that one can see this maximum likelihood approach as minimizing the Kullback-Leibler
(KL) divergence between the true but unknown phase space distribution p∗X (x) and our ap-
proximating distribution pX (x;θ ).

2.3 Bayesian INN

The invertible neural net provides us with a powerful generative model of the underlying data
distribution. However, it lacks a mechanism to account for our uncertainty in the transforma-
tion parameters θ themselves. To model it, we switch from deterministic transformations to
probabilistic transformations, replacing the deterministic sub-networks s1,2 and t1,2 in each of
the coupling layers with Bayesian neural nets. In this section, we first review the structure of
a classical Bayesian neural net (BNN) [57,67] as used in a supervised learning task, and then
explain how we can use BNNs for our problem of modeling the phase space density, extending
the INN into a Bayesian invertible neural net (BINN).

Bayesian Neural Net Assuming a data set D consisting of N pairs of observations (xi , yi),
D = {(x1, y1), . . . , (xN , yN )}, in the supervised learning problem we want to model the relation
y = fθ (x) through a neural network parameterised by weights θ . Placing a prior over the
weights and allowing for some observation noise, the generative model is given as

θ ∼ p(θ ) ,

yi|θ ,xi ∼ p(yi|θ ,xi), i = 1, . . . , N .
(9)

In case of a regression with yi ∈ R we often use a Gaussian likelihood,
p(yi|θ ,xi) =N

�

yi| fθ (xi),α−1
�

, and a Gaussian prior over the weights p(θ ) =N
�

θ |0,β−11
�

,
with precisions α,β and 1 the identity matrix of suitable dimensionality [64]. We are not
bound to these distributions and could for example choose a prior with a strongly sparsifying
character for further regularization [68,69]. Given the highly nonlinear structure of fθ the pos-
terior p(θ |D) is, for practically relevant applications, analytically intractable. While MCMC-
based approaches can work for specific use cases and small networks [70], they quickly become
too expensive for large architectures, so we instead rely on variational inference (VI) [71]. A
VI-based model approximates the posterior p(θ |D) with a tractable simplified family of dis-
tributions, qφ(θ ), parameterized by φ. We will rely on mean-field Gaussians throughout this
work, learning a separate mean and variance parameter for each network weight. These pa-
rameters are learned by minimizing the KL-divergence

min
φ

KL
�

qφ(θ ), p(θ |D)
�

. (10)
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However, this objective is intractable, as it relies on the unknown posterior. Using Bayes’
theorem we reformulate it as

KL
�

qφ(θ ), p(θ |D)
�

= −
∫

dθ qφ(θ ) log
p(D|θ )p(θ )/p(D)

qφ(θ )

= −
∫

dθ qφ(θ ) log p(D|θ )−
∫

dθ qφ(θ ) log
p(θ )

qφ(θ )
+ log p(D) . (11)

Now, the log evidence log p(D) is bounded from below as

log p(D) = KL
�

qφ(θ ), p(θ |D)
�

+

∫

dθ qφ(θ ) log p(D|θ )− KL
�

qφ(θ ), p(θ )
�

≥
∫

dθ qφ(θ ) log p(D|θ )− KL
�

qφ(θ ), p(θ )
�

. (12)

Maximizing this evidence lower bound (ELBO) then is equivalent to minimizing Eq.(10), giving
us as the objective without the intractable posterior

LELBO =
N
∑

i=1

¬

log p(yi|θ ,xi)
¶

θ∼qφ(θ )
− KL

�

qφ(θ ), p(θ )
�

. (13)

This turns the inference problem into an optimization problem, which allows us to take ad-
vantage of gradient descent methods such as Adam [72]. As the choice of prior p(θ ) is under
our control, the KL-term between the variational posterior and the prior is tractable. The
intractable expectation in the first term we can approximate by taking S samples from the
variational posterior and instead of computing the gradient over the whole data set in each
iteration switch to a stochastic gradient setup, approximating the sum with a mini-batch of
size M , giving us

LELBO ≈
N
M

M
∑

i=1

1
S

S
∑

s=1

log p(yi|θ (s),xi)− KL
�

qφ(θ ), p(θ )
�

, with θ (s) ∼ qφ(θ ) . (14)

In practice, it is often sufficient to approximate the expectation via a single sample (S = 1) per
forward pass to keep the computational cost low and further rely on local re-parametrization
[73] to reduce the variance of the gradients.

Bayesian INN As discussed in Sec. 2.2, our generative model of the density consists of a
map G : z→ x from a base distribution pZ(z) to the phase-space pX (x) parameterized via an
INN. Replacing the deterministic sub-networks s1,2 and t1,2 in Eq.(5) with BNNs, we get as the
generative pipeline for our BINN

θ ∼ p(θ ),

x |θ ∼ pX (x |θ ) = pZ(G(x;θ ))
�

�

�det
∂ G(x;θ )
∂ x

�

�

� .
(15)

Given a set of N observations D = {x1, . . . , xN}, we can approximate the intractable posterior
p(θ |D) as before with a mean-field Gaussian as the variational posterior qφ(θ ). Learning
the map and the posterior then is achieved by maximizing the equivalent of the ELBO loss in
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Eq.(14) for event samples,

L=
N
∑

n=1

〈log pX (xn|θ )〉θ∼qφ(θ ) − KL
�

qφ(θ ), p(θ )
�

=
N
∑

n=1

¬

log pZ

�

G(xn;θ )
�

+ log
�

�

�det
∂ G(xn;θ )
∂ xn

�

�

�

¶

θ∼qφ(θ )
− KL

�

qφ(θ ), p(θ )
�

≈
N
M

M
∑

m=1

1
S

S
∑

s=1

log pZ

�

G(xm;θ (s))
�

+ log
�

�

�det
∂ G(xm;θ (s))

∂ xm

�

�

�− KL
�

qφ(θ ), p(θ )
�

, (16)

with a mini-batch of size M and S samples θ (s) from the variational posterior qφ(θ ). By design
all three terms, the log likelihood, the log determinant of the Jacobian as well as the Kullback-
Leibler divergence can be computed easily. Automatic differentiation [74] allows us to get the
gradients of L with respect to φ in order to fit our generative pipeline via a stochastic gradient
descent update scheme.

3 Toy events with uncertainties

Before we tackle a semi-realistic LHC setup, we first study the behavior of BINNs for a set of
toy examples, namely distributions over the minimally allowed two-dimensional parameter
space where in one dimension the density is flat. Aside from the fact that these toy exam-
ples illustrate that the BINN actually constructs a meaningful uncertainty distribution, we will
use the combination of density and uncertainty maps to analyse how an INN actually learns
a density distributions. We will see that the INN describes the density map in the sense of a
few-parameter fit, rather than numerically encoding patches over the parameter space inde-
pendently.

The default architecture for our toy models is a network with 32 units per layer, three layers
per coupling block, and a total of 20 coupling blocks. It’s implemented in PYTORCH [74]. More
details are given in Tab. 1. The most relevant hyperparameter is the number of coupling blocks
in that more blocks provide a more stable performance with respect to several trainings of the
same architecture. Generally, moderate changes for instance of the number of units per layer
do not have a visible impact on the performance. For each of the trainings we use a sample of

Table 1: Hyper-parameters for all toy models, implemented in PYTORCH

(v1.4.0) [74].

Parameter Flow

Hidden layers (per block) 3
Units per hidden layer 32
Batch size 512
Epochs 300
Trainable weights 75k
Optimizer Adam
(α, β1, β2) (1× 10−3, 0.9, 0.999)
Coupling layers 20
Training size 300k
Prior width 1
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300k events. The widths of the Gaussian priors is set to one. We check that variations of this
over several orders of magnitude did not have a significant impact on the performance.

3.1 Wedge ramp

Our first toy example is a two-dimensional ramp distribution, linear in one direction and flat
in the other,

p(x , y) = Linear(x ∈ [0, 1])×Const(y ∈ [0,1]) = x × 2 . (17)

The second term ensures that the distribution p(x , y) is normalized to one, and the network
output is shown in Fig. 1. The network output consists of unweighted events in the two-
dimensional parameters space, (x , y). We show one-dimensional distributions after marginal-
izing over the unobserved direction and find that the network reproduces Eq.(17) well.

In Fig. 2 we include the predictive uncertainty given by the BINN. For this purpose we
train a network on the two-dimensional parameter space and evaluate it for a set of points
with x ∈ [0,1] and a constant y-value. In the left panel we indicate the predictive uncertainty
as an error bar around the density estimate. Throughout the paper we always remove the
phase space boundaries, because we know that the network is unstable there, and the uncer-
tainties explode just like we expect. For this example, this is taken into account by restricting
x , y ∈ [0.1,0.9]. The relative uncertainty grows for small values of x and hence small val-
ues of p(x , y), and it covers the deviation of the extracted density from the true density well.
These features are common to all our network trainings. In the central and right panel of Fig. 2
we show the relative and absolute predictive uncertainties. The error bar indicates how much
σpred varies for different choices of y . We compute it as the standard deviation of different
values of σpred, after confirming that the central values agree within this range. As expected,
the relative uncertainty decreases towards larger x . However, the absolute uncertainty shows
a distinctive minimum in σpred around x ≈ 0.45. This minimum is a common feature in all
our trainings, so we need to explain it.

To understand this non-trivial uncertainty distribution σpred(x) we focus on the non-trivial
x-coordinate and its linear behavior

p(x) = ax + b , with x ∈ [0,1] . (18)

Because the network learns a density, we can remove b by fixing the normalization,

p(x) = a
�

x −
1
2

�

+ 1 . (19)
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Figure 1: Two-dimensional and marginal densities for the linear wedge ramp.
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Figure 2: Density and predictive uncertainty distribution for the wedge ramp. In the
left panel the density and uncertainty are averaged over several lines with constant
y . In the central and right panels, the uncertainty band on σpred is given by their
variation. The green curve represents a two-parameter fit to Eq.(23).

If we now assume that a network acts like a fit of a, we can relate the uncertainty ∆a to an
uncertainty in the density,

σpred ≡∆p ≈
�

�

�

�

x −
1
2

�

�

�

�

∆a . (20)

The absolute value appears because the uncertainties are defined to be positive, as encoded in
the usual quadratic error propagation. The uncertainty distribution has a minimum at x = 1/2,
close to the observed value in Fig. 2.

The differences between the simple prediction in Eq.(20) and our numerical findings in
Fig. 2 is that the predictive uncertainty is not symmetric and does not reach zero. To account
for these sub-leading effects we can expand our very simple ansatz to

p(x) = ax + b , with x ∈ [xmin, xmax] . (21)

Using the normalization condition we again remove b and find

p(x) = ax +
1− a

2 (x
2
max − x2

min)

xmax − xmin
. (22)

Again assuming a fit-like behavior of the flow network we expect for the predictive uncertainty

σ2
pred ≡ (∆p)2 =

�

x −
1
2

�2

(∆a)2 +
�

1+
a
2

�2
(∆xmax)

2 +
�

1−
a
2

�2
(∆xmin)

2 . (23)

Adding xmin or xmax leads to an x-independent offset and does not change the x-dependence
of the predictive uncertainty. The slight shift of the minimum and the asymmetry between
the lower and upper boundaries in x are not explained by this argument. We ascribe them to
boundary effects, specifically the challenge for the network to describe the correct approach
towards p(x)→ 0.

The green line in Fig. 2 gives a two-parameter fit of∆a and∆xmax to the σpred distribution
from the BINN. It indicates that there is a hierarchy in the way the network extracts the x-
independent term with high precision, whereas the uncertainty on the slope a is around 4%.

3.2 Kicker ramp

We can test our findings from the linear wedge ramp using the slightly more complex quadratic
or kicker ramp,

p(x , y) = Quadr(x ∈ [0,1])×Const(y ∈ [0, 1]) = x2 × 3 . (24)
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We show the results from the network training for the density in Fig. 3 and find that the
network describes the density well, limited largely by the flat, low-statistics approach towards
the lower boundary with p(x)→ 0.

In complete analogy to Fig. 2 we show the complete BINN output with the density p(x , y)
and the predictive uncertaintyσpred(x , y) in Fig. 4. As for the linear case, the BINN reproduces
the density well, deviations from the truth being within the predictive uncertainty in all points
of phase space. We remove the phase space boundaries restricting x , y ∈ [0.05, 0.95], as
the network becomes unstable and the predictive uncertainties grows correspondingly. The
indicated error bar on σpred(x , y) is given by the variation of the predictions for different y-
values, after ensuring that their central values agree. The relative uncertainty at the lower
boundary x = 0 is large, reflecting the statistical limitation of this phase space region. An
interesting feature appears again in the absolute uncertainty, namely a maximum-minimum
combination as a function of x .

Again in analogy to Eq.(21) for the wedge ramp, we start with the parametrization of the
density

p(x) = a (x − x0)
2 , with x ∈ [x0, xmax] , (25)

where we assume that the lower boundary coincides with the minimum and there is no con-
stant offset. We choose to describe this density through the minimum position x0, coinciding
the the lower end of the x-range, and xmax as the second parameter. The parameter a can be
eliminated through the normalization condition and we find

p(x) = 3
(x − x0)2

(xmax − x0)3
. (26)

If we vary x0 and xmax we can trace two contributions to the uncertainty in the density,

σpred ≡∆p ⊃
9

(xmax − x0)4

�

�

�

�

(x − x0)
�

x −
x0

3
−

2xmax

3

�

�

�

�

�

∆x0 ,

and σpred ≡∆p ⊃
9

(xmax − x0)4
(x − x0)

2 ∆xmax , (27)

one from the variation of x0 and one from the vriation of xmax. In analogy to Eq.(23) they
need to be added in quadrature. If the uncertainty on ∆x0 dominates, the uncertainty has a
trivial minimum at x = 0 and a non-trivial minimum at x = 2/3. From ∆xmax we get another
contribution which scales like ∆p ∝ p(x). In Fig. 4 we clearly observe both contributions,
and the green line is given by the corresponding 2-parameter fit to the σpred distribution from
the BINN.
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Figure 3: Two-dimensional and marginal densities for the quadratic kicker ramp.
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Figure 4: Density and predictive uncertainty distribution for the kicker ramp. In the
left panel the density and uncertainty are averaged over several lines with constant
y . In the central and right panels, the uncertainty band on σpred is given by their
variation. The green curve represents a two-parameter fit to Eq.(27).

3.3 Gaussian ring

Our third example is a two dimensional Gaussian ring, which in terms of polar coordinates
reads

p(r,φ) = Gauss(r > 0;µ= 4, w= 1)×Const(φ ∈ [0,π]) . (28)

We define the Gaussian density as the usual

Gauss(r) =
1

p
2π w

exp
�

−
1

2w2
(r −µ)2

�

. (29)

The density defined in Eq.(28) can be translated into Cartesian coordinates as

p(x , y) = Gauss(r(x , y);µ= 4, w= 1) ×Const(φ(x , y) ∈ [0,π])×
1

r(x , y)
, (30)

where the additional factor 1/r comes from the Jacobian. We train the BINN on Cartesian co-
ordinates, just like in the two examples before, and limit ourselves to y > 0 to avoid problems
induced by learning a non-trivial topology in mapping the latent and phase spaces. In Fig. 5
we once again see that our network describes the true two-dimensional density well.

In Fig. 6 we show the Cartesian density but evaluated on a line of constant angle. This form
includes the Jacobian and has the expected, slightly shifted peak position at
rmax = 2+

p
3 = 3.73. The BINN returns a predictive uncertainty, which grows towards both

boundaries. The error band easily covers the deviation of the density learned by the BINN and
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Figure 5: Two-dimensional and marginal densities for the Gaussian (half-)ring.
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Figure 6: Cartesian density and predictive uncertainty distribution for the Gaussian
ring. In the left panel the density and uncertainty are averaged over several lines
with constant φ. In the central and right panels, the uncertainty band on σpred is
given by their variation. The green curve represents a two-parameter fit to Eq.(31).

the true density. While the relative predictive uncertainty appears to have a simple minimum
around the peak of the density, we again see that the absolute uncertainty has a distinct struc-
ture with a local minimum right at the peak. The question is what we can learn about the INN
from this pattern in the BINN.

As before, we describe our distribution in the relevant direction in terms of convenient fit
parameters. For the Gaussian radial density these are the mean µ and the width w used in
Eq.(28). The contributions driven by the extraction of the mean in Cartesian coordinates reads

σpred ≡∆p ⊃
�

�

�

�

G(r)
r
µ− r

w2

�

�

�

�

∆µ ,

and σpred ≡∆p ⊃
�

�

�

�

(r −µ)2

w3
−

1
w

�

�

�

�

∆w . (31)

In analogy to Eq.(23) the two contributions need to be added in quadrature for the full, fit-like
uncertainty. The contribution from the the mean has a minimum at r = µ= 4 and is otherwise
dominated by the exponential behavior of the Gaussian, just as we observe in the BINN result.
In the central and right panels we show a one-parameter fit of the BINN output and find that
the network determined the mean of the Gaussian as µ= 4±0.037. We observe that including
∆w doesn’t improve the goodness of the fit.

3.4 Errors vs training statistics

Even though it is clear from the above discussion that we cannot expect the predictive uncer-
tainties to have a simple scaling pattern, like for the regression [64] and classification [63]
networks, there still remains the question how the BINN uncertainties change with the size of
the training sample.

In Fig. 7 we show how the BINN predictions for the density and uncertainty change if we
vary the training sample size from 10k events to 1M training events. Note that for all toy
models, including the kicker ramp in Sec. 3.2, we use 300k training events. For the small
10k training sample, we see that the instability of the BINN density becomes visible even for
our reduced x-range. The peak-dip pattern of the absolute uncertainty, characteristic for the
kicker ramp, is also hardly visible, indicating that the network has not learned the density well
enough to determine its shape. Finally, the variation of the predictive density explodes for
x > 0.4, confirming the picture of a poorly trained BINN. As a rough estimate, the absolute
uncertainty at x = 0.5 with a density value p(x , y) = 0.75 ranges around σpred = 0.11 ... 0.15.
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Figure 7: Dependence of the density (upper) and absolute uncertainty (lower) on
the training statistics for the kicker ramp. We illustrate BINNs trained on 10k, 100k,
and 1M events (left to right), to be compared to 300k events used for Fig. 4. Our
training routine ensures that all models receive the same number of weights updates,
regardless of the training set size.

For 100k training events we see that the patterns discussed in Sec. 3.2 begin to form. The
density and uncertainty encoded in the network are stable, and the peak-dip with a minimum
around x = 2/3 becomes visible. As a rough estimate we can read offσpred(0.5)≈ 0.06±0.03.
For 1M training events the picture improves even more and the network extracts a stable
uncertainty of σpred(0.5) ≈ 0.03± 0.01. Crucially, the dip around x ≈ 2/3 remains, and even
compared to Fig. 4 with its 300k training events the density and uncertainty at the upper phase
space boundary are much better controlled.

Finally, we briefly comment on a frequentist interpretation of the BINN output. We know
from simpler Bayesian networks [63,64] that it is possible to reproduce the predictive uncer-
tainty using an ensemble of deterministic networks with the same architecture. However, from
those studies we also know that our class of Bayesian networks has a very efficient built-in reg-
ularization, so this kind of comparison is not trivial. For the BINN results shown in this paper
we find that the detailed patterns in the absolute uncertainties are extracted by the Bayesian
network much more efficiently than they would be for ensembles of deterministic INNs. For
naive implementations with a similar network size and no fine-tuned regularization these pat-
terns are somewhat harder to extract. On the other hand, in stable regions without distinctive
patterns the spread of ensembles of deterministic networks reproduces the predictive uncer-
tainty reported by the BINN.

3.5 Marginalizing phase space

Before we move to a more LHC-related problem, we need to study how the BINN provides
uncertainties for marginalized kinematic distribution. In all three toy examples the two-
dimensional phase space consists of one physical and one trivial direction. For instance, the
kicker ramp in Sec. 3.2 has a quadratic physical direction, and in a typical phase space problem
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we would integrate out the trivial, constant direction and show a one-dimensional kinematic
distribution. From our effectively one-dimensional uncertainty extraction, we know that the
absolute uncertainty has a characteristic maximum-minimum combination, as seen in the cen-
tral panel of Fig. 4.

To compute the uncertainty for a properly marginalized phase space direction, we remind
ourselves how the BINN computes the density and the predictive uncertainty by sampling over
the weights,

p(x , y) =

∫

dθ q(θ ) p(x , y|θ ) ,

σ2
pred(x , y) =

∫

dθ q(θ ) [p(x , y|θ )− p(x , y)]2 . (32)

If we integrate over the y-direction, the marginalized density is defined as

p(x) =

∫

d y p(x , y) =

∫

d ydθ q(θ ) p(x , y|θ )

=

∫

dθ q(θ )

∫

d y p(x , y|θ )≡
∫

dθ q(θ ) p(x |θ ) , (33)

which implicitly defines p(x |θ ) in the last step, notably without providing us with a way to
extract it in a closed form. The key step in this definition is that we exchange the order of the
y and θ integrations. Nevertheless, with this definition at hand, we can define the uncertainty
on the marginalized distribution as

σ2
pred(x) =

∫

dθ q(θ ) [p(x |θ )− p(x)]2 . (34)

We illustrate this construction with a trivial p(x , y) = p(x , y0), where we can replace the trivial
y-dependence by a fixed choice y = y0 just like for the wedge and kicker ramps. Here we find,
modulo a normalization constant in the y-integration

σ2
pred(x) =

∫

dθ q(θ ) [p(x |θ )− p(x)]2

=

∫

dθ q(θ )

∫

d y [p(x , y0|θ )− p(x , y0)]
2

=

∫

d ydθ q(θ ) [p(x , y0|θ )− p(x , y0)]
2 =

∫

d yσ2
pred(x , y0) = σ

2
pred(x , y0) . (35)

Adding a trivial y-direction does not affect the predictive uncertainty in the physical
x-direction.

As mentioned above, unlike for the joint density p(x , y|θ ), we do not know the closed form
of the marginal distributions p(x) or p(x |θ ). Instead, we can approximate the marginalized
uncertainties through a combined sampling in y and θ . We start with one set of weights θi
from the weight distribution, based on one random number per INN weight. We now sample
N points in the latent space, z j , and compute N phase space points x j using the BINN con-
figuration θi . We then bin the wanted phase space direction x and approximate p(x |θi) by a
histogram. We repeat this procedure i = 1 ... M times to extract M histograms with identical
binning. This allows us to compute a mean and a standard deviation from M histograms to
approximate p(x) and σpred(x). The approximation of σpred should be an over-estimate, be-
cause it includes the statistical uncertainty related to a finite number of samples per bin. For
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Figure 8: Marginalized densities and predictive uncertainties for the kicker ramp.
Instead of the true distribution we now show the training data as a reference, to
illustrate possible limitations. We use 10M phase space point to guarantee a stable
prediction.

N � 1 this contribution should become negligible. With this procedure we effectively sample
N ×M points in phase space.

Following Eq.(33), we can also fix the phase space points, so instead of sampling for each
weight sample another set of phase space points, we use the same phase space points for each
weight sampling. This should stabilize the statistical fluctuations, but with the drawback of
relying only on an effective number of N phase space points. Both approaches lead to the same
σpred for sufficiently large N , which we typically set to 105 ... 106. For the Bayesian weights
we find stable results for M = 30 ... 50.

In Fig. 8 we show the marginalized densities and predictive uncertainties for the kicker
ramp. In y-direction the density and the predictive uncertainty show the expected flat behav-
ior. The only exceptions are the phase space boundaries, where the density starts to deviate
slightly from the training data and the uncertainty correctly reflects that instability. In x-
direction, the marginalized density and uncertainty can be compared to their one-dimensional
counterparts in Fig.4. While we expect the same peak-dip structure, the key question is if the
numerical values for σpred(x) change. If the network learns the y-direction as uncorrelated
additional data, the marginalized uncertainty should decrease through a larger effective train-
ing sample. This is what we typically see for Monte Carlo simulations, where a combination of
bins in an unobserved direction leads to the usual reduced statistical uncertainty. On the other
hand, if the network learns that the y-directions is flat, then adding events in this direction
will have no effect on the uncertainty of the marginalized distribution. This would correspond
to a set of fully correlated bins, where a combination will not lead to any improvement in
the uncertainty. In Fig. 8 we see that the σpred(x) values on the peak, in the dip, and to the
upper end of the phase space boundary hardly change from the one-dimensional results in
Fig.4. This confirms our general observation, that the (B)INN learns a functional form of the
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density in both directions, in close analogy to a fit. It also means that the uncertainty from the
generative network training is not described by the simple statistical scaling we observed for
simpler networks [63,64] and instead points towards a GANplification-like [4] pattern.

4 LHC events with uncertainties

As a physics example we consider the Drell-Yan process

pp→ Z → e+e− , (36)

with its simple 2→ 2 phase space combined with the parton density. The training set consists of
an unweighted set of 4-vectors simulated with MADGRAPH5 [75] at 13 TeV collider energy with
the NNPDF2.3 parton densities [76]. We fix the masses of the final-state leptons and enforce
momentum conservation in the transverse direction, which leaves us with a four-dimensional
phase space. In our discussion we limit ourselves to a sufficiently large set of one-dimensional
distributions. For these marginalized uncertainties we follow the procedure laid out in Sec. 3.5
with 50 samples in the BINN-weight space. In Tab. 2 we give the relevant hyper-parameters
for this section.

To start with, we show a set of generated kinematic distributions in Fig. 9. The positron
energy features the expected strong peak from the Z-resonance. Its sizeable tail to larger
energies is well described by the training data to Ee ≈ 280 GeV. The central value learned by
the BINN becomes unstable at slightly lower values of 250 GeV, as expected. The momentum
component px is not observable given the azimuthal symmetry of the detector, but it’s broad
distribution is nevertheless reproduced correctly. The predictive uncertainty covers the slight
deviations over the entire range. What is observable at the LHC is the transverse momentum
of the outgoing leptons, with a similar distribution as the energy, just with the Z-mass peak at
the upper end of the distribution. Again, the predictive uncertainty determined by the BINN
covers the slight deviations from the truth on the pole and in both tails. In the second row
we show the pz component as an example of a strongly peaked distribution, similar to the
Gaussian toy model in Sec. 3.3.

While the energy of the lepton pair has a similar basic form as the individual energies, we
also show the invariant mass of the electron-positron pair, which is described by the usual Breit-
Wigner peak. It is well known that this intermediate resonance is especially hard to learn for

Table 2: Hyper-parameters for the Drell-Yan data set, implemented in PYTORCH

(v1.4.0) [74].

Parameter Flow

Hidden layers (per block) 2
Units per hidden layer 64
Batch size 512
Epochs 500
Trainable weights ∼ 182k
Number of training events ∼ 1M
Optimizer Adam
(α, β1, β2) (1× 10−3, 0.9, 0.999)
Coupling layers 20
Prior width 1
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Figure 9: One-dimensional (marginalized) kinematic distributions for the Drell-Yan
process. We show the central prediction from the BINN and include the predictive
uncertainty from the BINN as the blue band. The red band indicates the statistical
uncertainty of the training data per bin in the Gaussian limit.

a network, because it forms a narrow, highly correlated phase space structure. Going beyond
the precision shown here would for instance require an additional MMD loss, as described in
Ref. [25] and in more detail in Ref. [54]. This resonance peak is the only distribution where
the predictive uncertainty does not cover the deviation of the BINN density from the truth.
This apparent failure corresponds to the fact that generative networks always overestimate
the width and hence underestimate the height of this mass peak [25]. This is an example of
the network being limited by the expressive power in phase space resolution, generating an
uncertainty which the Bayesian version cannot account for.

In Fig. 10 we show a set of absolute and relative uncertainties from the BINN. The strong
peak combined with a narrow tail in the Ee distribution shows two interesting features. Just
above the peak the absolute uncertainty drops more rapidly than expected, a feature shared by
the wedge and kicker ramps at their respective upper phase space boundaries. The shoulder
around Ee ≈ 280 GeV indicates that for a while the predictive uncertainty follows the increas-
ingly poor modelling of the phase space density by the BINN, to a point where the network
stops following the truth curve altogether and the predictive uncertainty is limited by the ex-
pressive power of the network. Unlike the absolute uncertainty, the relative uncertainty keeps
growing for increasing values of Ee. This behavior illustrates that in phase space regions where
the BINN starts failing altogether, we cannot trust the predictive uncertainty either, but we see
a pattern in the intermediate phase space regime where the network starts failing.

The second kinematic quantity we select is the (unobservable) x-component of the mo-
mentum. It forms a relative flat central plateau with sharp cliffs at each side. Any network
will have trouble learning the exact shape of such sharp phase space patterns. Here the BINN
keeps track of this, the absolute and the relative predictive uncertainties indeed explode. The
only difference between the two is that the (learned) density at the foot of the plateau drops
even faster than the learned absolute uncertainty, so their ratio keeps growing.

Finally, we show the result for the Breit-Wigner mass peak, the physical counterpart of the
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Figure 10: Absolute and relative uncertainties as a function of some of the kinematic
Drell-Yan observables shown in Fig. 9.

Gaussian ring model of Sec. 3.3. Indeed, we see exactly the same pattern, namely a distinctive
minimum in the predictive uncertainty right on the mass peak. This pattern can be explained
by the network learning the general form of a mass peak and then adjusting the mean and the
width of this peak. Learning the peak position leads to a minimum of the uncertainty right at
the peak, and learning the width brings up two maxima on the shoulders of the mass peak. In
combination Fig. 9 and 10 clearly show that the BINN traces uncertainties in generated LHC
events just as for the toy models. Again, some distinctive patterns in the predictive uncertainty
can be explained by the way the network learns the phase space density.

5 Outlook

Controlling the output of generative networks and quantifying their uncertainties is the main
task for any application in LHC physics, be it in forward generation, inversion, or inference. We
have proposed to use a Bayesian invertible network (BINN) to quantify the uncertainties from
the network training for each generated event. For a series of two-dimensional toy models
and an LHC-inspired application we have shown how the Bayesian setup indeed generates an
uncertainty distribution, over the full phase space and over marginalized phase spaces. As
expected, the learned uncertainty shrinks with an improved training statistics. Our method
can be trivially extended from unweighted to weighted events by adapting the simple MLE
loss.

An intriguing result from our study is that the combined learning of the density and uncer-
tainty distributions allows us to draw conclusions on how a normalizing-flow network like the
BINN learns a distribution. We find that the uncertainty distributions are naturally explained
by a fit-like behavior of the network, rather than a patch-wise learning of the density. For
the LHC, this can be seen for instance in the non-trivial uncertainty for an intermediate Breit-
Wigner resonance. These results are another step in understanding GANplification patterns [4]
and might even allow us to use INNs to extrapolate in phase space.
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Obviously, it remains to be seen how our observations generalize to other generative net-
works architectures. For the LHC, the next step should be an in-depth study of INN-like net-
works applied to event generation.
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