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Fingerprints of quantum criticality in locally resolved transport
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Abstract

Understanding electrical transport in strange metals, including the seeming universality
of Planckian T -linear resistivity, remains a longstanding challenge in condensed matter
physics. We propose that local imaging techniques, such as nitrogen vacancy center mag-
netometry, can locally identify signatures of quantum critical response which are invisi-
ble in measurements of a bulk electrical resistivity. As an illustrative example, we use a
minimal holographic model for a strange metal in two spatial dimensions to predict how
electrical current will flow in regimes dominated by quantum critical dynamics on the
Planckian length scale. We describe the crossover between quantum critical transport
and hydrodynamic transport (including Ohmic regimes), both in charge neutral and fi-
nite density systems. We compare our holographic predictions to experiments on charge
neutral graphene, finding quantitative agreement with available data; we suggest fur-
ther experiments which may determine the relevance of our framework to transport on
Planckian scales in this material. More broadly, we propose that locally imaged transport
be used to test the universality (or lack thereof) of microscopic dynamics in the diverse
set of quantum materials exhibiting T -linear resistivity.
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1 Introduction

The strange metal, which exists at temperatures above the superconducting Tc of the high-
Tc superconductors, remains one of the most mysterious phases of quantum matter found
in Nature. Most famous among these mysteries is T -linear resistivity [1–3], which seems to
persist well below the Debye temperature (above which classical phonon scattering gives this
result [4]). The absence of particle-like excitations, revealed by photoemission [5,6], suggests
that the strange metal is best described by non-quasiparticle theories of strongly correlated
electrons. Given the apparent proximity of many strange metals to a quantum phase tran-
sition at zero temperature [7, 8], it has been conjectured for some time that this T -linear
resistivity may partially or wholly be a consequence of quantum critical dynamics above a
quantum critical point (hidden by superconductivity) [9]. The T -linear resistivity then arises
as a consequence of a quantum mechanical “bound": the Drude scattering time should obey
τ¦ ħh/kBT [10,11]. The saturation of this bound in a strange metal is quantitatively consistent
with numerous experiments [2, 3, 12, 13]. Many exotic theories of strange metals, including
those based on field theories of quantum criticality [14–16], Sachdev-Ye-Kitaev chains [17,18],
and gauge-gravity duality [19, 20], have been proposed to elucidate why this Planckian scat-
tering time can ultimately enter the resistivity. Unfortunately, because (in large part) theo-
ries based on either standard frameworks (kinetic theory) or non-standard ones (criticality
or holography) strive to reproduce the same Planckian T -linear resistivity, it has been notori-
ously challenging to select which (if any) of these theories gives a qualitative and predictive
theoretical foundation for strange metallic transport.

Here, we argue that novel experimental techniques, such as scanning single-electron tran-
sistors (SET) [21] or nitrogen vacancy center magnetometry (NVCM) [22–24], could be used
to reveal quantum critical dynamics (or its absence) in transport experiments on strange met-
als, by locally studying how current flows in response to an applied electric field. After all,
ordinary transport measurements report a single number: the resistivity ρ, or conductivity
σ = 1/ρ, at a fixed temperature. But a local imaging experiment can (indirectly) return a
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Figure 1: Cartoon of current flow through a constriction; the widths wx and w y are
depicted. Region O is unshaded; region I (the constriction) is shaded gray. We take
wx � w y , so the physics is largely insensitive to the small value of w y .

function σ(x ), which relates local current Ji(x ) to local electric field Ei(x ) via

Ji(x ) =

∫

d2 x ′ σi j(x − x ′)E j(x
′) . (1)

Here the i, j indices correspond to spatial directions; repeated indices are summed over. To-
day, the literature contains extensive measurements on the homogeneous part of this equation
(uniform current response to uniform electric field), yet very little data in only select materials
on the non-local response arising due to the x-dependence in σi j(x ). Knowledge of the whole
function σi j(x ) may reveal a stunning amount of universality between all strange metals,
strongly hinting at a universal origin (perhaps arising from quantum criticality); or, it may re-
veal that Planckian universality is an illusion, with non-universal, material-specific phenomena
responsible for ρ ∼ T in a strange metal. Directly coupling a metal to electromagnetic waves
gives correlators at ω = ck, with c the large speed of light. In order to measure σ(k,ω→ 0),
a more indirect approach implementable in present-day experiments is necessary.

2 Locally resolved transport

We now explain a method to calculate Ji(x ), and thus σ(k), in an engineered device geometry,
which was first proposed and studied in the context of viscous hydrodynamic electron flow
in [22, 25]. Consider (1) in the presence of a non-trivial geometry, as depicted in Fig. 1. If
we attempt to apply a uniform electric field, the presence of “hard walls" will force current to
move around them; the local forcing of these currents will necessarily arise from local electric
fields that build up due to space charges rearranging themselves in the metallic leads. So we
may write

E j(x ) = E(0)j + Ẽ j(x ) , (2)

where E(0)j is a constant background field, and Ẽ j denotes the perturbation to the electric field
arising due to the device walls. We separate the computational domain to regions I (inside)
and O (outside) the “walls" of the device, where we assume current cannot flow: Ji(x ∈ I) = 0.
We make the ansatz that Ẽi(x ∈ O) = 0 and

Ẽi(x ∈ I) = −
∫

I

d2 x ′
�

bδi jδx ,x ′ +σi j(x − x ′)
�−1
σ
(0)
jk E(0)k , (3)

where σ(0)jk is the zero wave number Fourier mode of σi j(x ), and the limit b→ 0 is taken. We
may now calculate the current flow pattern Ji by combining (1), (2) and (3) to evaluate Ji(x)
in region O.
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We consider (1) to be exact with σi j(x , x ′) = σi j(x − x ′), even in the presence of an
inhomogeneous device: the “effective" electric field Ẽi inside of region I (outside the physi-
cal domain of the metal) encodes boundary conditions analogously to the method of image
charges in electrostatics. The limit b → 0 effectively encodes the condition that “image cur-
rents" cancel out the otherwise uniform current imposed by E(0)i . For more detailed discussions
of our algorithm, we refer readers to Appendix A. We emphasize the numerical efficiency that
the only matrix inversion required to solve the linear systems in (1) and (3) takes place in re-
gion I. As long as region I contains ∼ 103 grid points, we can perform the calculation without
specialized numerical methods. Note also that this algorithm can be done regardless of the
shape of region I, and its complement O; see the appendices.

So far, we have established a framework for calculating current distributions. This can be
further generalized to the distributions of an arbitrary operator O through

O(x ) =O0(x ) +

∫

d2 x ′σOJi
(x − x ′)Ẽi(x

′) , (4)

where Ẽi is the induced electric field and σOJi
is the generalized conductivity tensor: see

Appendix I for details. The O0 corresponds to the response to the external constant field E(0)i
and will typically vanish (especially if O is not a spatial vector operator). In Appendix I, we
apply (4) to calculate the bulk charge distribution, n(x ) or µ(x ), in order to determine the
total conductance.

3 Conductivity

By our assumed translation invariance in (1), it suffices to calculate the Fourier transform

σi j(k) =

�

δi j −
kik j

k2

�

σ(k) , (5)

where k2 = k2
x+k2

y . Note that current conservation in two dimensions demands thatσi j(k) can
be characterized by a single function σ(k), as above. We then calculate the (real) conductivity
via the holographic correspondence (see the appendices):

σ(k) = lim
ω→0

Im GR
JJ (ω, k)

ω
= lim
ω→0

1
ω

Im
∂r ay(r = 0)

ay(r = 0)
. (6)

Here, GR
JJ (ω, k) is the Fourier transform of the retarded Green’s function; ay(r = 0) corre-

sponds to a fluctuating bulk gauge field, evaluated at the boundary (r = 0) of the bulk gravity
theory. We note that in principle, one could try to implement a holographic “constriction ge-
ometry" and compute exactly σi j(x , x ′) through it; however, to obtain the spatial resolution of
our images by solving the inhomogeneous holographic model, we would require the numerical
inversion of matrices with at least 105 − 106 rows and columns, since the holographic PDEs
would need to be solved in an additional bulk radial direction.

4 Zero density

We begin by studying the resulting physics when the charge density n= 0. More precisely, our
holographic model describes a 2 + 1-dimensional conformal field theory (CFT), with global
U(1) symmetry, studied at finite temperature T . Based on very generic arguments, we may
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anticipate some of our numerical results. If the constriction is extremely large, then at finite
temperature we expect charge transport to be ohmic at long wavelengths:

Ji = σ0(Ei − ∂iµ) , (7)

where µ is the local chemical potential and σ0 is the (incoherent) conductivity [11,20]. Note
that (7) is a hydrodynamic prediction, despite this phrase often meaning viscous finite den-
sity transport (which we will observe once n 6= 0). Indeed at zero density, the charge degree
of freedom does not interact with other hydrodynamic modes (energy and momentum), and
therefore the long wavelength physics of charge transport will appear identical to textbook
ohmic theory. In ohmic transport, the current profile is sharpest near the corners of the con-
striction. This universal result follows the same mathematics responsible for the blow-up of
electric field magnitudes near the sharp corners of a lightning rod [22].

At sufficiently short length scales, hydrodynamics breaks down. Letting c denote the speed
of light in the CFT, we estimate that the length scale below which hydrodynamics does not
exist is `Pl = ħhc/kBT [1]; for simplicity in what follows, we will generally work in units where
ħh = c = kB = 1. For a CFT, this result follows from dimensional analysis: T is the only
dimensionful parameter in the theory. Hence, we expect that when wx � `Pl, the current
distribution looks ohmic, and when wx � `Pl, the current distribution does not look ohmic.
When wx � `Pl, it is natural to expect that the theory looks essentially like a zero temperature
CFT. Unfortunately, in this particular problem, the response of a pure CFT is pathological [26,
27]. Current conservation and conformal invariance together imply [26]

GR
JµJν
= K |p|

�

ηµν −
pµpν
p2

�

, (8)

where ηµν = diag(−1, 1,1), pµ = (ω, k), p =
p

pµpνηµν and K is a constant characterizing
the CFT. In the limitω→ 0 at k fixed, GR

JJ is purely real, and σ(k) = 0 is predicted by the CFT.
Because we are in fact at finite temperature, there will be small corrections to σ(k), which
depend on the ratio k/T [28]. In holographic models, general arguments [20] imply that

σ(k)∼ exp (−αk/T ) , (9)

where α is a theory-dependent constant. Since σ(k) decays extremely rapidly with T , we
qualitatively expect that the longest wavelength current distribution that can fit inside the
constriction will dominate the current profile, and therefore predict an approximately sinu-
soidal profile of current flow through the constriction, with “wavelength" of order wx . This
distribution is peaked away from the constriction edges, so is easily distinguished from Ohmic
transport. We call this sinusoidal current distribution on short length scales quantum critical.
Details of this argument are in Appendix D.

Thus we have clear predictions: for a fixed constriction width wx , at temperatures
T ¦ 1/wx , we will see that the current profile through the constriction is peaked at the sides;
for T ® 1/wx , it is peaked in the middle. This feature, along with other key predictions above,
are precisely observed in our numerical computations of the current distribution, presented in
Fig. 2. By comparing to a simple “kinetic” prediction for a Fermi liquid, this plot further justi-
fies that our “fingerprint" actually does discern between two different models of short-distance
transport: a quantum critical regime vs. an ohmic regime.

In the appendices, we show that non-interacting Dirac fermions exhibit the same sharply
peaked current profile as the holographic model on scales much smaller than the Planckian
length scale, due to (9) also being obeyed. This is further evidence for our claim that this is a
signature of quantum critical transport. The results of [29] for theories with z > 1 suggest that
even non-relativistic critical systems may have similar non-local response, in which σ(k) ex-
ponentially decays with large k (although the Planckian length scale will scale differently with
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Figure 2: Simulated examples of current flow at zero density through a slit
of wx = 3 µm and w y = 0.04 µm. The distribution evolves from doubly
peaked in the Ohmic regime to singly peaked at the center in the quantum critical
regime. The “kinetic" prediction for physics on length scales smaller than Planckian,
`ee = `mr � wx(known as the ballistic limit), is further shown in the dashed green
curve.

temperature). Exponential decay in σ(k) analogous to (9) will always lead to the sinusoidal
current profile, which is our “fingerprint" of quantum criticality.

5 Finite Density

Now, let us generalize to finite density n> 0 (the sign of n does not matter for what follows).
Again, we first state a few generic expectations. As before, at sufficiently long wavelengths,
σ(k) will be approximately hydrodynamic [20,30]:

σ(k) = σ0 +
n2

ηk2
. (10)

The above expression has both an incoherent conductivity σ0, and a “coherent" piece which
arises from the overlap of charge current and momentum (which is universal at finite density)
[20]. Generically, n, η and σ0 are all functions of T and µ, which may explicitly be calculated
holographically. However, the key prediction of (10) is that for sufficiently large wavelength,
the current profile will be dominated by the viscous term. The viscous current profile through
a constriction with our boundary conditions is known [22, 25, 31] to be semi-circular: like
the quantum critical regime, the current has a maximum in the middle of the constriction;
however, it is also much less sharply peaked.

Qualitatively, our predictions for the quantum critical regime are identical to before. Quan-
titatively, it is not necessary for (9) to hold, as the precise form of spectral weight will depend
on details of the low energy theory. Holographically, this low energy regime (when µ � T)
is known to exhibit local quantum criticality [32]; see the appendices. As before, we have
numerically confirmed this prediction in Fig. 3.
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Figure 3: Simulated examples of current flow distribution at finite density (Q = 0.5,
as defined in the appendices) through a slit of wx = 3 µm and w y = 0.04 µm.
The distribution evolves from semi-circular in the viscous regime to sinusoidal in the
quantum critical regime.

6 Comparison to Experiment

The recent experiment [22] imaged current flow patterns in high quality monolayer graphene.
At zero density, these authors observed ohmic profiles at all temperature scales; however,
modeling the current distributions at charge neutrality by Fermi liquid Boltzmann transport
theory may be questioned: charge neutral graphene has no Fermi surface, and an interaction
length comparable to the Planckian length scale (suggesting the breakdown of quasiparticles).
After all, since the only scale at zero density is T , the effective “Planckian" length scale must
be [12,33]

`qc ∼
1
C
ħhvF

kB T
, (11)

where vF ≈ 106 m/s is the Fermi velocity, C is a dimensionless number relating `qc to the
effective fine structure constant in graphene. Although the experiment [22] was unable to
probe physics at both T ¦ 1/wx and T ® 1/wx , as wx ≈ 3 µm while `qc ∼ 300 nm, we can
still compare their data to our theory of charge neutral quantum critical transport to estimate
whether the observed change in current profiles with temperature is compatible with our model
when the parameters are physically realistic.

We chose the effective speed of light c in our holographic model to correspond to vF. Hence,
to fit the experimental data at T = 297 K and 128 K, we are left with one fit parameter: C . Put
another way, in our zero density model, the only free parameter to be tuned is the combination
`qc/wx ∼ 1/Tfitwx . Here Tfit is defined to be the effective temperature where, assuming C = 1
in (11) (consistent with our holographic model which also set ħh= vF = kB = 1), the resulting
fit best matches the experimentally measured current profile. We find that (in natural units)
1/Tfitwx ≈ 0.05 and 0.11 for T = 297 K and T = 128 K, respectively (Fig. 4(a)). Importantly,
observe that the ratio of these fitting temperatures is close to the ratio of experimental temper-
atures, which implies we can meaningfully extract our model’s estimate of the dimensionless
constant C ≈ 0.18. The constant C we obtain is very close to the experimental result C ≈ 0.2
reported in [12], providing a quantitative check on the validity of our approach.

We advocate that future experimental work studies flow of the Dirac fluid through con-
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Figure 4: Normalized current profile | j| across the slit of wx ≈ 3 µm at the charge
neutrality point at 297 K and 128 K. The solid lines indicate the best fit based on
the holographic model, 1/Tfitwx = 0.05 and 0.11 for 297 K and 128 K, respectively,
Shown in the dashed green curve is the predicted behavior in a constriction of width
600 nm for the experimental temperature at T = 128 K. Details of the fitting method
are provided in the appendices.

strictions of order 600 nm in width at T ∼ 100 K; in this regime, and using higher resolution
magnetometry, it should be possible to easily distinguish between “Fermi liquid" and quan-
tum critical transport phenomena, as shown in Fig. 4. Of course, even if transport were to
look quantum critical, as in Fig. 4 – this may not be sufficient to demonstrate the absence
of quasiparticles; more realistic kinetic theories [34,35] which incorporate both electron and
hole dynamics must also be analyzed, and the breakdown of semiclassical dynamics on length
scales smaller than ħhvF/kBT must be accounted for. Without doing an exhaustive analysis
here, we anticipate that the model of [34,35] still suggests viscous-like flows due to the emer-
gence of approximate momentum conservation of electron and hole fluids separately; their
momentum-dependent conductivity σ(k) ∼ 1/(1 + v2τc,1τc,2k2) is quite different from the
quantum critical regime, where we have predicted (9).

In experiments on graphene samples using hBN substrates one typically finds that the main
source of disorder is inhomogeneity in charge density, which are called charge puddles. The
amplitude of charge puddles is around 30 K (namely, the fluctuations in local Fermi temper-
ature of this order), and their size is around 100 nm [30, 36]. Since these numbers are both
small relative to what we advocating to detect quantum critical flows, it is likely reasonable to
neglect the charge puddles when studying flows in our proposed device. Further experimental
work along these lines is warranted.

7 Outlook

We have proposed a simple and generic signature for quantum criticality in the spatially re-
solved transport of strange metals (see Tab. 1). Using state-of-the-art local probes, local trans-
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Table 1: Summary of how to distinguish between different qualitative flow regimes.

ohmic ballistic viscous quantum critical

current
profile

conductance log wx
p

nwx n2w2
x/⌘ exp(�↵̃/wx)

TABLE 1. Summary of how to distinguish between di↵erent
qualitative flow regimes.port may soon be imaged in the Dirac fluid of graphene [12,37], magic angle twisted bilayer

graphene [38–40], or high-Tc superconductors, where strange metallic behavior is often be-
lieved to result from quantum criticality.

The ability to image current flows will unambiguously distinguish between ohmic and
non-ohmic flow patterns. Whether or not transport indeed looks ohmic at `Pl, along with
the current distribution that arises on shorter length scales, could be a critical experimentally
observable hint at the nature of the strange metal. Moreover, quantum critical and ballistic
current profiles should be clearly distinguishable in future experiments, and may give a key
clue into the origin of T -linear resistivity: quasiparticle [41, 42] or not. Even without a high
resolution image, additional measurements can shed further light into the transport physics.
For example, by studying the width wx dependence of the conductance through the constric-
tion, one can clearly distinguish between all 4 transport regimes, as summarized in Tab.1.
Alternatively, we could measure vortices in a strip geometry (see the appendices). Whatever
the geometry, by keeping the device fixed but changing the temperature T , one can in principle
image at a low temperature T where wx � `Pl, and a high temperature where wx � `Pl.

By comparing the results of imaging experiments, which reveal a fundamental scattering
length `, to prior measurements of scattering times τ (e.g. [5,6]), we can extract an effective
velocity scale v = `/τ; whether or not this is the Fermi velocity or something different may
be an important clue to the microscopic nature of the strange metal, and the role of electron-
phonon interactions [43, 44]. In particular, if electron-phonon scattering within a Boltzmann
framework captures T -linear resistivity, we predict an ohmic-to-ballistic crossover as constric-
tion size approaches `Pl, in contrast to the quantum critical crossover in Fig. 3.

Experimental challenges we anticipate include accurate imaging on the Planckian length
scales (which can approach 10 nm or even smaller). While such magnetometers have not yet
been developed to operate at the requisite temperatures to image strange metal, important
progress is underway [24]. More importantly, our simple constriction geometry may be chal-
lenging to etch at 10 nm scales. Alternative approaches could use current noise [45] or the
intrinsic disorder of a device to generate spatially or temporally inhomogeneous images which
can be interpreted using extensions of our theoretical framework.
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A Comments on our algorithm for calculating current flow

As been argued in the main text, the nonlocal responses due to the geometry are encoded in
the effective electric field Ẽi . The challenging problem is to provide an actual prediction for Ẽi ,
such that we may explicit evaluate the integral in Eqn. (1) and predict a flow pattern that can be
observed in experiment. Unfortunately, an exact microscopic model for Ẽi does not exist, even
within “canonical" frameworks like Boltzmann transport. For example, in Boltzmann kinetic
theory, one must impose an infinite number of boundary conditions describing how incident
particles at all momenta reflect off of the boundary. In practice, models usually assume some
simple scattering mechanism at the boundary, with at most a few fitting parameters: e.g.,
all particles scatter off the wall at a random angle. In a similar spirit, we rely on a qualitative
method first used in [25], and later [22], by solving Eqn. (1), Eqn. (2) and Eqn. (3) consistently.

Our approach only requires a computation of σi j(x − x ′), which can be done in the homo-
geneous theory, together with a specification of the regions where current cannot flow. Nev-
ertheless, we are able to calculate highly inhomogeneous flow patterns Ji(x ). This is possible
because Eqn. (1) can be thought of as a generalization of the integral form of a standard trans-
port equation, such as Ohm’s Law. In ohmic transport, the homogeneous equation ∇2φ = 0
can lead to inhomogeneous flows Ji = −σ∇iφ when φ obeys non-trivial boundary conditions.
For us, the non-trivial boundary conditions are imposed by Eqn. (3), which lead to Ji = 0 in
region I.σi j(x−x ′) in Eqn. (1) can loosely be understood as an analogue of the current Green’s
function σohmic

i j ∝ δi j − ∂i∂ j(∇2)−1 suitable for ohmic transport: σohmic
i j encodes the fact that

J ∝ E for transverse flows, while ∂iJi = 0. Hence, the fact that the Green’s function is ho-
mogeneous does not mean it cannot generate flows through inhomogeneous regions via our
algorithm. In general, σi j(x − x ′) qualitatively differs from an ohmic theory, and hence Ji(x )
differs qualitatively for different transport regimes (e.g. ohmic vs. quantum critical).

In experiments, it is routine and straightforward to check the validity of the linear response
assumption when generating images of current flow [22], so we limit ourselves to this regime.
We will not calculate higher order corrections to Ji(x ) that arise from the accumulation of
charge near region I, or any other effects second order or higher in Ei .

Note that our procedure does not generate the unique solution to Eqn. (1) [31]: the reason
is that, as noted above, our ansatz Eqn. (3) amounts to a specific choice of boundary conditions.
This is analogous to a well-known situation in fluid mechanics, where one may solve for the
fluid flow around an object using either “no stress" (Neumann) or “no slip" (Dirichlet) boundary
conditions. In, for example, the recent studies on electron hydrodynamics [22, 46], typically
“no slip" assumptions are made in order to compare theory with experiment. This can be
justified for a few reasons: “no slip" boundary conditions seem most compatible with data;
boundary conditions interpolating between the two options typically do not lead to flows that
differ qualitatively from the “no slip" flow; and, a choice simply needs to be made before
experiment can be compared to a model. We anticipate that, as in this hydrodynamic problem,
our simple choice of boundary conditions is likely to not have any finely-tuned parameters
(since the b → 0 limit simply enforces Ji = 0 in region I), and will thus likely model actual
experiments reasonably well. Indeed, we will later compare our approach to experimental
data, and find good agreement.

One check we can make is that our particular regulated b → 0 limit does not change
our prediction, relative to any other similar regulatory scheme. Physically, we interpret Ẽi as
the electric fields generated by any “space charges" which accumulate on the walls in such
a way as to block any current from flowing through the constriction walls (i.e. in region I).
Consider deforming Ẽi → Ẽi − ∂iφ̃, where φ̃ is the electric potential arising from some other
distribution of space charges. Assuming φ̃ has compact support inside region I , then we can
extend the function φ̃ to the entire plane (containing both I and O). The Fourier transform of
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Figure 5: Current flow through a channel geometry with mixed boundary condi-
tions. (a): we divide the computational domain into three regions: region I repre-
sents the “hard wall” that currents cannot flow (Ji(x ∈ I) = 0); region B supports
the mixed boundary conditions outside region I; region O denotes the rest domains
outside region I. (b): viscous flow pattern along the line y = 0 in region O. Exactly at
γ= γ∗ ≈ 0.51, the current profile becomes flat corresponding to the no-stress bound-
ary condition. Above γ∗, the current profile will quickly diverge whenever γ¦ 0.56;
while below γ∗, the distribution evolves from flat to parabolic pattern. The dashed
line is calculated with the no-slip boundary condition introduced in the main text, i.e.
in the absence of region B, and it coincides with the results of γ→ 0. The difference
between the dashed and solid lines in their tails is due to the finite width of region
B. (c): the quantum critical flow pattern remains fixed under the mixed boundary
condition.

this function is kiφ̃(k) with φ̃(k) regular. Upon inserting such a function into Eqn. (1) we find
that, upon using Eqn. (4), φ̃ does not affect the current either in region I or in region O. Thus,
any straightforward modification of our computational algorithm by simply changing the form
of regulator b (e.g. b→ b(x)) will not change our prediction.

B Adding an additional boundary layer in a channel

It is possible to take into account of other boundary conditions within our framework by as-
suming that Ẽi exists in an additional boundary layer (which we call B). As an illustrative
example, let us consider a current flowing through a channel geometry, as depicted in Figure
5. The channel extends from x = −x0 to x = +x0. We would like to impose the following
boundary condition: [47]

∂x Jy ||x |=x0
= λ−1Jy ||x |=x0

, (B1)

where the slip length λ allows to interpolate between the no-slip (λ = 0) and no-stress
(λ→∞) boundary conditions, familiar from hydrodynamics. In the main text, our boundary
conditions correspond to λ= 0.

In order to numerically study λ > 0, we generalize the ansatz Eqn. (3) to include a non-
vanishing Ẽi outside region I but within region B. Specifically, we require the current to stop
in region I again: Ji(x ∈ I) = 0, and the normal derivatives of parallel currents to vanish in
region B: ∂x Jy(x ∈ B) = 0 (we will see how to obtain λ <∞ below). We then solve Eqn. (1),
Eqn. (2) and (B1) self-consistently according to the following scheme:

1. Prepare the initial value for Ẽi(x ∈ I) according to Eqn. (3).
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2. Compute Ẽi(x ∈ B) from the no-stress boundary condition ∂x Jy(x ∈ B) = 0,

Ẽi(x ∈ B) = −
�

∂xσyi(x ∈ B, x ′ ∈ B)
�−1 ◦ ∂xσy j(x

′ ∈ B, x ′′ ∈ I) ◦ Ẽ j(x
′′ ∈ I) , (B2)

where ◦ denotes the convolution: A(x , y) ◦ B(y , z) =
∫

dyA(x , y)B(y , z).

3. Solve Ẽi(x ∈ I) under the constraint Ji(x ∈ I) = 0 in the presence of nonzero Ẽi(x ∈ B),

Ẽi(x ∈ I) = −
�

σi j(x ∈ I , x ′ ∈ I)
�−1 ◦

�

J (0)j + γσ jk(x
′ ∈ I , x ′′ ∈ B) ◦ Ẽk(x

′′ ∈ B)
�

,

(B3)

where 0< γ < 1 is a parameter to control the step size, and J (0)j is the constant current
generated by external fields.

4. Repeat with step 2 and 3 until convergence is reached. The final current profile in region
O is given by

Ji(x ∈ O) = J (0)i +σi j(x ∈ O, x ′ ∈ I) ◦ Ẽi(x
′ ∈ I) + γσi j(x ∈ O, x ′ ∈ B) ◦ Ẽi(x

′ ∈ B) .
(B4)

Note that the resulting current distribution does not directly satisfy the no-stress boundary
condition due to the presence of γ < 1, even if we have enforced it in step 2. However, the
current profile will, in general, not be close to zero in region B, as it would in the algorithm of
the main text. For this reason, we believe this simple method allows us to qualitatively capture
the physics of a finite slip length λ.

In viscous fluids, we expect a parabolic current profile for no-slip boundary conditions,
while a flat profile for no-stress boundary conditions [30]. In our simulation Fig. 5(a), we find
the flat profile exists only with a fine-tuned step size γ = γ∗. By varying the step size below
γ∗, the current distributions interpolate between the flat and parabolic limits. For γ > γ∗, our
algorithm will quickly diverge; still, we find a narrow window for concave profiles to exist (see
Fig. 5(b)).

In the quantum critical case, the current profile remains essentially fixed with the mixed
boundary condition (Fig. 5(c)). There is no fine-tuned step size, and for all 0 ≤ γ ≤ 1, the
algorithm converges. This is heuristically understood as follows: the quantum critical flow
pattern already satisfies the mixed boundary condition even derived from the no-slip boundary
condition (see Appendix D).

We plan to describe more systematically the question of generalizing boundary conditions
in more complicated geometries, such as the constriction, in a future paper. The primary
lesson from this first example is two-fold: firstly, the algorithm described in the main text is
flexible and can be generalized, and secondly, the no-slip boundary condition tends to capture
more “universal" features than a no-stress-like boundary condition. Note that in Fig. 5(b),
the boundary condition with a flat current profile is very finely-tuned; for any smaller value
of γ, the current profile is peaked at the center of the panel, with a roughly parabolic profile
between the channel walls and the center.

C The gravity background and conductivities

We now provide setups of the holographic correspondence. We consider the Einstein-Maxwell
theory in d = 2 boundary spatial dimensions (or 4 bulk spacetime dimensions) [20]

S =

∫

d4 x
p

−g
�

1
2κ2

�

R+
6
L2

�

−
1

4e2
F2
�

. (C1)
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The static and isotropic metric solving the equation of motions is the AdS4-RN geometry [48],

ds2 =
L2

r2

�

− f (r)dt2 +
dr2

f (r)
+ dx2 + dy2

�

, (C2)

where the emblackening factor is

f (r) = 1−
�

1

r3
+
+
µ2

r+γ2

�

r3 +
µ2

r2
+γ

2
r4. (C3)

The spacetime has a horizon at r = r+ with Hawking temperature

T =
1

4πr+

�

3−
µ2r2

+

γ2

�

. (C4)

We have grouped the coefficients into γ2 = 2e2 L2/κ2 representing the relative strength of the
couplings. The profile of the U(1) gauge field is At = p(r) = µ − e2ρr with µ = e2ρr+. To
further facilitate our calculations, we define the dimensionless parameters

Q ≡
µr+
γ

, u≡
r
r+

, w≡ωr+ , q ≡ kr+ . (C5)

All radial derivatives below, denoted with primes, refer to ∂ /∂ u.
To calculate σ(k) holographically, we must find the equations of motion of the Einstein-

Maxwell theory, and subsequently linearize them about (C2). Ultimately, this will lead to
second-order ordinary differential equations corresponding to fluctuations in the bulk fields:

δAµ = aµ(r)e
−iωt+ikx , (C6a)

δgµν = hµν(r)e
−iωt+ikx . (C6b)

The direction of momentum is chosen as k = kx̂ without loss of generality (the background
is rotation invariant in x and y). Using parity (y →−y) symmetry, we can divide the pertur-
bation modes into transverse modes (odd under parity): ay , ht

y , hx
y and longitudinal modes

(even under parity): at , ax , ht
t , ht

x , hx
x , hy

y . Only the odd modes contribute to σ(k). Note
that we are working in the gauge ar = hrµ = 0.

D Heuristic argument for the sinusoidal quantum critical current
profile

Here we present a more quantitative argument for the flow pattern in a quantum critical
regime. For simplicity, let us begin by calculating flow patterns in a channel, in which cur-
rent is restricted to flow in the region |x | ≤ wx/2; we will then argue that our conclusions do
not qualitatively change in a constriction.

Imagining putting the flow onto a periodic grid with x ∼ x +wx identified, and restricting
to the line y = 0, [49] showed that given the ansatz

Ẽy(x) = −a
∑

p∈Z
Jy(xp)δ(x − xp) , (D1)

with xp = ±wx p/2 and a ∼ b−1→∞ (cf. Eqn. (3)), the distribution of current will be given
by

Jy(x , y = 0) = J0

�

1−

∑∞
n=1 cn cos(kn(x +wx/2))

∑∞
n=1 cn

�

, (D2)
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Figure 6: Numerical test of the heuristic argument for the sinusoidal current profile
Jy(x) with quantum critical conductivity σ(k) = exp(−ak). (a): the best fitting
distance d (D4) versus the exponent a and the width wx . We obtain the blue curve
by a fixed exponent a = 1.43 µm, the red curve by a fixed width wx = 3 µm. Upon
rescaling 1/wx (for blue) as well as a (for red) to a/wx , we find that the curves
coincide. In the transient regime a/wx ® 0.5, d increases with respect to a/wx .
When a/wx ¦ 0.5, however, they saturate to d ≈ wx/7, indicating a non-changing
profile. This is supported by plot (b), which demonstrates that the current profiles
collapse once a/wx ¦ 0.5: the spatial profiles plotted here correspond to data taken
at every other square (red) plot point in (a).

where cn = σ(kn = 2πn/wx) in a channel, and J0 is the total current. Observe that if we had
ohmic flow, where cn = constant, we would have Jy = J0 a uniform current distribution. If we
instead take cn∝ 1/n2, we would find precisely the quadratic flow profile Jy ∝ (wx/2)2− x2

from Poiseuille flow [30] in a viscous fluid. We saw that, when σ(k) is given by Eqn. (8) in
the quantum critical regime, cn ≈ e−α

∗n for a constant α∗∝ `Pl/wx . Hence (D2) is dominated
only by the n= 1 mode Jy ∝ 1+ cos(2πx/wx) showing a sinusoidal profile (up to a constant
shift). This agrees with our expectations that the lowest Fourier modes dominate Jy(x), stated
in the main text.

Now that we are confident this method captures flow patterns in a channel, we may
ask what happens when we change the geometry to a constriction geometry. In this case,
we know the form of the current profiles in ohmic (Jy ∝ [(wx/2)2 − x2]−1/2) and viscous
(Jy ∝ [(wx/2)2−x2]+1/2) regimes [31]. We find that these imply (asymptotically) cn∝ n−1/2

and cn∝ n−3/2 respectively. A crude formula that relates the two would be:

cconstriction
n ∝

q

cchannel
n /n . (D3)

We certainly do not claim that this is a generic result. But, at least taking the trend suggested
by (D3) seriously, we expect that since, in the quantum critical regime, cchannel

n ∝ e−α
∗n, (D3)

implies that cconstriction
n ∝ e−α

∗n/2/
p

n. This is qualitatively the same current flow pattern, and
is still dominated by the n= 1 mode.

The argument above is not mathematically rigorous: in particular, it does not capture
boundary effects in the quantum critical regime. To confirm our expectations that again Jy(x)
is dominated by long wavelength Fourier modes, we have numerically studied the current flow
profiles, where we find that, for a quantum critical flow, the boundary is effectively pushed
in by a distance d. At sufficiently small wx/`Pl, d saturates to a constant d ≈ wx/7. More
specifically, we choose manually σ(k) = e−ak with exponent a∝ `Pl in our numerics. Solving
for the current flow pattern through the constriction, we fit the current distribution Jy(x) with
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a modified sinusoidal function

Jy = A
�

1+ cos
�

2πx
wx − d

��

, (D4)

where A and d are two fitting parameters. We set a current cutoff 10−3 to discard regions
that is originally outside the constriction but now carries nearly zero current. We consider two
cases: one with a fixed exponent a, and one with a fixed width wx . As shown in Fig. 6(a),
the curves from the two cases collapse onto a single one upon rescaling a, 1/wx → a/wx . The
distance d increases with respect to a/wx in the transient regime when 0.3® a/wx ® 0.5 (for
a/wx � 1 the flow appears ohmic). When a/wx ¦ 0.5, however, the flow enters a strongly
quantum critical regime with d ≈ wx/7, and we find that consistent with our expectations –
the current profile asymptotes to a universal curve dominated by approximately a single “sine
wave": see Fig. 6(b).

E Critical transport at zero density

In this section, we will calculate the spectral weight σ(k) both numerically and analytically. At
zero density, the perturbation of the gauge field will decouple from gravitational modes, and
the equation of motion for the transverse mode ay becomes

�

f (u)a′y
�′
+

�

w2

f (u)
− q2

�

ay = 0 . (E1)

We impose the infalling boundary condition at horizon u= 1, which implies

ay(u→ 1) = (1− u)−iw/3F(u) , (E2)

where F(u) is a regular function about u = 1. Plugging this into (E1), and taking the u→ 1
limit, we find that

F(u)≈ 1− (1− u)

�

iw
3
−

q2

3− 2iw

�

. (E3)

The overall constant of proportionaliy in F(u) is not important in calculating σ(k) [20]. Now
we solve (E1) numerically in the domain u ∈ [0, 1], using the boundary condition (E3) at
horizon. The resulting spectral weight, calculated via Eqn. (5) in the main text, is shown in
Fig. 7(a).

A. Small q

To better understand the behavior of σ(q) at finite q, we first use a perturbative approach to
study the effects of small q (q� 1, or k� T in more physical units), following the Wronskian
construction in [50]. The transverse modes ay can be expanded at small ω as

ay(q, u) = ay,0(q, u) + iway,0(q, 1)2ay,1(q, u) , (E4)

where ay,1 is the Wronskian partner of the regular solution ay,0. We now take the normaliza-
tion ay,0(q, u→ 0) = 1. The conductivity therefore becomes

Re σ(q) =
1
e2

ay,0(q, 1)2 . (E5)

Next, we expand ay,0 with respect to q� 1:

ay,0(q, u)≈ a(0)y,0(u) + q2a(1)y,0(u) +O(q4) . (E6)
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Figure 7: Spectral weight and conductance at zero density. (a): momentum depen-
dence of spectral weight of current. Inset shows the exponential decay of the spec-
tral weight with respect to q. (b): Numerical result matches the heuristic argument
G ∼ σ(k = 1/wx) at wx < 1/T (see S9

The reason why q2 is the leading order correction is that there is no Linear-in-q terms in the
equation of motion. The above modes then satisfy

�

f (u)a(0)′y,0 (u)
�′
= 0 , (E7a)

�

f (u)a(1)′y,0 (u)
�′
= a(0)y,0(u) . (E7b)

Solving them with regular solutions, we obtain

ay,0(q, u)≈ 1−
2
p

3

�

arctan
�

1+ 2u
p

3

�

−
π

6

�

q2 +O(q4) , (E8)

where integral constants are chosen to satisfy the normalization condition. Then, plugging it
into (E5), we arrive at

Re σ(q)≈
1
e2

�

1−
2π

3
p

3
q2 +O(q4)

�

, (E9)

where the leading order correction is O(q2).

B. Large q

Now consider the regime where q� 1 (k� T in more physical units). If the system were at
T = 0 (q→∞ limit here), the solution would be exactly

ay,0(q)≈ e−qu . (E10)

The near horizon solution should therefore be exponentially suppressed. Following the Wron-
skian argument above, we may conclude that Re σ(q) = ay,0(q, 1)2∝ e−2q.

This idea becomes more concrete when taking the WKB limit of the equation of motion.
Specifically, we write (E1) as a “Schrödinger-like” equation

−∂ 2
u∗

ay + V (u)ay = w2ay , (E11)

where ∂u∗ = f (u)∂u and V (u) = q2 f (u). Following the standard manipulation [20], we arrive
at

Im GR
Jy Jy
(q, w)∝ e−2quo × exp

¨

−2

∫ uo

0

ds

�√

√ q2

f (s)
−

w2

f (s)2
− q

�«

, (E12)
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where uo is the turning point at which V (uo) = w2 and should be approximated as uo ≈ 1 with
large q and small w. The exponential decay thus emerges from the “Boltzmann” weight of the
WKB limit, from which we extract the critical q as

q∗ =
1

2
∫ 1

0 ds/
p

f (s)
=

1

22F1(
1
3 , 1

2 , 4
3 , 1)

≈ 0.36. (E13)

F Critical transport at finite density

Now we perturb the bulk theory by a finite chemical potential. The excitations of bulk gravita-
tional modes now mix with the gauge field fluctuations, resulting in coupled Einstein-Maxwell
equation of motions. Fortunately, the linearized equation of motions for the transverse modes
can be decoupled by the master fields [51]

Φ±(u) = −
µ

u
q f (u)

w2 − q2 f (u)
(qhy′

t +whx′
y)−

�

4Q2q2 f (u)
w2 − q2 f (u)

u+ 2g±(q)

�

ay , (F1)

where

g±(q) =
3
4

�

1+Q2
�

±

√

√ 9
16
(1+Q2)2 + q2Q2 , (F2)

with the constraint 0<Q2 < 3. The decoupled equation of motions are

�

f (u)Φ′±
�′
+

�

−
f ′(u)

u
+

w2 − q2 f (u)
f (u)

− 2g±(q)u

�

Φ± = 0. (F3)

Similar to E, we write the ansatz as

Φ±(u→ 1) = (1− u)−iw/(3−Q2)F±(u) , (F4)

with

F±(u)≈ 1− (1− u)
3−Q2 − 2g± − q2 + iw(3− 3Q2)/(3−Q2) +w2(6− 2Q2)(3− 3Q2)/(3−Q2)3

3− 2iw−Q2
,

(F5)
being found by taking u→ 0 in equation of motions. In terms of the master fields, the spectral
weight becomes [51]

Re σ(q) = Re σ+(q) +Re σ−(q)

= χ lim
ω→0

1
ω

�

g+(q)
g+(q)− g−(q)

Im GR
Φ+Φ+
(q, w)−

g−(q)
g+(q)− g−(q)

Im GR
Φ−Φ−
(q, w)

�

,
(F6)

and their dependence on q and Q is plotted in Fig. 8. In Fig. 8(a), we find that the spectral
weightσ+ associated with the Φ+ mode reduces to our prior results exactly at Q = 0, indicating
that the σ+ contribution to spectral weight contains the incoherent conductivity (current flow
which does not arise from momentum dynamics). Moving towards larger density, contribution
of the incoherent conductivity gets smaller. To identify the critical momentum above which
the σ+ starts to drop, a similar WKB method to the above can be carried out:

q∗(Q) =
1

2
∫ 1

0 ds/
p

f (s)
=

1

2
∫ 1

0 ds/
p

1− (1+Q2)s3 +Q2s4
. (F7)

We find a drop of q∗ when Q→
p

3 in Fig. 8(a).
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Figure 8: Spectral weight at finite desnity. (a): σ+ against q for various Q. Inset
shows the critical q∗ from the WKB limit. (b): σ− against q for Q = 0.5,1, 1.5. All
the curves scale as q−2 at small q. Inset shows that the exponential decay at large
q depends on Q. The dependence is more clear in (c), where the normalized σ−
becomes non-monotonic against Q for large q.

Meanwhile, Fig. 8(b) shows a singular scaling for the spectral weight associated with the
Φ− mode at small q:

Re σ− ∼
1
q2

. (F8)

This divergence arises from the q−2 divergence in hydrodynamic spectral weight at finite den-
sity, arising from viscous effects. Hence, σ− contains the “Drude weight" from the frequency-
dependent electrical conductivity. To see it more clearly, we extend the hydrodynamic re-
sult to finite momentum using the quasinormal mode result σ−(w, q) ∼ (q2 − iw)−1, and
we find σ−(ω)|q→0 ∼ i/ω + πδ(ω), where the delta function comes from the identity
1/(x + iε) = 1/x + iπδ(x).

A. Spectral weight in an extremal black hole

At large q, σ± decay exponentially, for analogous reasons to what we observed at zero density.
To quantify this more directly, we may use a standard matching argument, taking advantage
of an emergent IR AdS2 ×R2 geometry [20]. Indeed, we note that if T = 0, the equation of
motion (F3) for master field Φ− reduces to

�

f (u)Φ′−
�′
+

�

12u(1− u) +
w2

f (u)
− q2 − 6ug−(q)

�

Φ− = 0 , (F9)

where f (u) = 1− 4u3 + 3u4, and g−(q) = 1−
p

1+ q2/3.
Here, we first work in the limit k� T � 1.
Inner region (u→ 1): let us define the new radial coordinate

ζ=
w

6(1− u)
. (F10)

Then (F9) becomes, in the near horizon limit ζ/w→∞,

∂ 2
ζ Φ− +

�

1−
q4/72
ζ2

�

Φ− = 0 . (F11)

This is the equation of motion for AdS2 ×R2 spacetime [20].
The exact solution can be found as

Φ−(ζ) = a−,I

�

1+
i
ζ

q4

144

�

eiζ ≈ a−,I

�

i
ζ

q4

144
(1+ ...) + 1+ . . .

�

, (F12)
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where in the last step, we expand the solution into ζ→ 0 limit for further matching argument.
Outer region (u→ 0): in the near boundary region, we can safely set w = 0 and q = 0,

where later is due to the fact that the UV boundary theory is insensitive to small k. The (F9)
now becomes

�

f (u)Φ′−
�′
+ 12u(1− u)Φ− = 0 . (F13)

The solution to it is given by

Φ−(u) = c1u+ c2

§

7u− 6
6(1− u)

−
u

36

�

23
p

2 arctan
�

1+ 3u
p

2

�

+ 20 log(1− u)− 10 log(1+ 2u+ 3u2)
�ª

.

(F14)
The asymptotic behaviors of the above solution are

Φ−(u→ 0) = −c2 +
�

c1 +
c2

36
(6− 23

p
2arccot(

p
2))
�

u+ . . . , (F15a)

Φ−(u→ 1) =
�

c1 −
c2

36
(42+ 23

p
2arctan(2

p
2)− 10 log6)

�

−
�

c1 +
c2

108
(17− 69

p
2arctan(2

p
2) + 30 log6)

�

(1− u) + . . . . (F15b)

Matching: comparing the same order of (1−u) and (1−u)0 for Φ− in the overlap region:
ζ→ 0 from inner region, and u→ 1 from outer region, together with (F15a), we find

Im GR
Φ−Φ−

∝
w
q4

. (F16)

Taking into account of the weight (F6), we thus obtain (F8).
Now, let us study the limit T � k. A black hole arises from the AdS2 ×R2 spacetime with

the horizon located in the AdS2 coordinate ζ at ζ+∝ 1/T . The imaginary part of the retarded
Green’s function can be found as [20]

Im GR
Φ−Φ−

∼ (T/µ)2νq−1 , (F17)

where

νq =
1
2

r

1+ 4
�

q2/6+ 1−
Æ

1+ q2/3
�

(F18)

is determined through (F9) in the IR scaling region. We find that

Im GR
Φ−Φ−
(q� 1)∼ 1 ,

Im GR
Φ−Φ−
(q� 1)∼ (T/µ)

q

2
3 q ,

(F19)

thus, at q � 1, σ− will go to zero with µ→∞ (Q →
p

3). In other words, the exponential
decay coefficient now depends on both µ and T .

B. Current distributions

To sketch out the phase diagram spanned by µ and T , we plot the curvature (∂ 2
x | j|) at the

center of the constriction in Fig. 9(a). Three regimes are clearly visible in the plot: (I) ohmic
transport driven by incoherent conductivity for µ � T (approximately zero density), and
wx ¦ 1/T ; (II) viscous transport when µ ¦ T , and wx ¦ 1/max(T,µ); (III) quantum critical
transport when wx ® 1/max(T,µ). At large µ, in this holographic model, we observed that
it is not the Planckian length scale that governs the crossover to “quantum critical" current
profiles; this appears related to the existence of hydrodynamic sound modes with wavelength
1/µ [52]. This particular feature of our model may not generalize to other models of quantum
critical dynamics. In Fig. 9(b), we showed the 2D current flow pattern as a supplementary to
the current distributions at y = 0 in the main text.
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Figure 9: (a): curvature of the current profile at the constriction center, given by
d2| j|(y = x = 0)/dx2, against T and Q. Here Q reparameterizes µ via Q ∝ µr+,
4πTr+ = 3−µ2r2

+. There are three different regimes: (I) the Ohmic regime, (II) the
viscous regime, and (III) the quantum crtical regime. (b): 2D current distribution
and streamlines for 1/Twx = 0.01 and 0.5 with the same slit width as in the main
text. The top line is at zero density (Q = 0), while the bottom line is at finite density
(Q = 0.5).

G Details of comparison to experiments

We now detail how we analyzed the experimental data from [22], which imaged current flow
through a constriction in monolayer graphene near the charge neutrality point at temperatures
128 K and 297 K. (We leave further details on the experimental techniques to [22]). Given a
raw image of two dimensional data for the currents jx ,y(x , y), with the x and y coordinates
aligned as in the main text, we focus on analyzing the magnitude of currents | j| along a fixed
y = yc line. We symmetrize the data about the point x = xc . Here, the points xc , yc represent
the central points that we must determine.

To optimize xc , yc as well as the free parameter C (defined in the main text), we proceed
as follows. First, we take C ≈ 0.2, as reported in [12]. We then fix xc and yc by minimizing
the root mean square error (RMSE) on the resulting fits. Once xc and yc are determined, we
then find the value of C which minimizes RMSE between our theory and experiment. Because
the scanning resolutions of the experimental magnetometry were 0.1441 µm and 0.1478 µm
for 297 K and 128 K, respectively, we applied a Gaussian filter to our theoretical simulation to
mimic the smearing of current, as imaged by the limited-resolution magnetometer [22]. The
results of our analysis were highlighted in the main text.

We subsequently fitted this experimental dataset with simple kinetic theory model of trans-
port, which assumes a well-defined Fermi surface. While charge neutral graphene does not
have a Fermi surface, these models have been used previously [23] to fit imaging data near
charge neutrality. Using the Boltzmann model of [22], which takes in two input parameters `ee
(momentum-conserving scattering length) and `mr (momentum-relaxing scattering length):

σ(k) =
2`ee`mr

2`ee − `mr + `mr

Æ

1+ k2`2
ee

, (G1)

we find that the optimal fits have `ee ≈ 80 nm at both temperatures, while `mr ≈ 1300 nm
at 128 K and 150 nm at 297 K (Fig. 10(b)); RMSEs are similar for both the holographic and
the kinetic models. We emphasize that these parameters are not very tightly constrained by
the kinetic model [22]: the quality of fit in this context is sensitive to

p

`ee`mr [30], which
appears optimized close to `qc in our holographic fit. As this length scale signals the breakdown
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Figure 10: A comparison between holographic (left) and kinetic (right) predictions.
The holographic fitting has already been presented in the main text. The solid lines
indicate the best fit; while the green curves predicts for a constriction of width 600 nm
at experimental temperature T = 128 K.

of hydrodynamics, we believe that the holographic model is superior to the single Fermi surface
model.

Another crosscheck on the nature of transport can be done by looking into the structure
of vortices in a strip geometry. As shown in Appendix J, the quantum critical flow develops a
multi-vortex structure, while in a kinetic model with

p

`ee`mr ∼ 1/T , the number of vortices
is limited (one for ballistic flow, while two for viscous flow [53]).

H Free Dirac fermion

Here, we apply the field theory to study non-interacting Dirac fermions in (2 + 1)-D. The
Euclidean correlator is [20]

〈Jµ(K)Jν(−K)〉= T
∑

pn

∫

d2p
(2π)2

tr[γµγλPλγνγδ(Kδ − Pδ)]

P2(K − P)2

= T
∑

pn

∫

d2p
(2π)2

�

2δµν
P2
+
−K2δµν + 2KµKν − 4PµPν

P2(K − P)2

�

, (H1)

where Kµ = (kn, k) and kn = (2n + 1)πT , and in the second step we apply the change of
variables P → K−P in half of the equations. The first term – it is related to the Drude weight –
is always real and is not our interest here, thus we focus on the second term. After performing
the Matsubara summation and analytically continuing it to real frequencies, we obtain

Im GR
Ji J j
(ω, k) = Im

∑

ss′

∫

d2p
(2π)2

Li j

4EpEk−p

ss′[nF (sEp) + nF (s′Ek−p)− 1)]

ω+ iε− sEp − s′Ek−p

= −
∑

ss′

∫

d2p
(2π)2

πLi j

4EpEk−p
ss′[nF (sEp) + nF (s

′Ek−p)− 1)]δ(ω− sEp − s′Ek−p) ,

(H2)
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where, by taking k = (k, 0) and p = p(cosθ , sinθ ),

Lx x =ω
2 + k2 − 4p2 cos2 θ , (H3a)

L y y =ω
2 − k2 − 4p2 sin2 θ . (H3b)

The real part of the conductivity is again given by

Re σ(k)≡ lim
ω→0

Im GR
Jy Jy
(ω, k)

ω
. (H4)

We first focus on the low temperature limit: ω � T � k. The (H2) is nonzero only if
ss′ = −1 and the two cases equal to each other. The delta function reduces to

δ(ω− Ep + Ek−p) = δ(p− p0)

�

�

�

�

1−
p− k cosθ

Ek−p

�

�

�

�

−1

, (H5)

where

p0 =
ω2 − k2

2(ω− k cosθ )
. (H6)

Then, (H2) becomes

Im GR
Jy Jy
(ω, k)|ss′=−1 =

1
2π2

∫ arccos ωk

−arccos ωk

dθ

∫ ∞

0

dpp
πL y y[nF (Ep)− nF (Ek−p)]

4EpEk−p

�

�

�1− p−k cosθ
Ek−p

�

�

�

δ(p−p0) . (H7)

Taking the linear dispersion relation of Dirac fermions Ep = p and

Ek−p =
Æ

(k− p cosθ )2 + p2 sin2 θ , we find approximately

Re σ(k)≈ lim
ω→0

1
ω

−k
8π

∫ π/2

−π/2
dθ

1
cos3 θ

�

1
eβp0 + 1

−
1

eβ(p0−ω) + 1

�

≈
kβ
4π

∫ π/2

0

dθ
exp(−β k

2cosθ )

cos3 θ

=
kβ
4π

K0(kβ/2) +
1

2π
K1(kβ/2) , (H8)

where Kn(z) is the modified Bessel function of the second kind, and it decays exponentially at
large z. Next, the high temperature limit ω� k � T is considered in the appendix of [54],
where they found

Im GR
Jy Jy
(z)≈ −Im

T log 2
2π

�

z(2− 2z2)
p

z2 − 1
+ 2z2

�

, (H9)

where z ≡ (ω+ iε)/k. The real part of the conductivity thus becomes

Re σ(k)≈
T log 2
πk

. (H10)

We find that it has the same scaling ∼ 1/k as the ballistic transport with a Fermi surface.
The numerical interpolation of the conductivity between the high and low temperature

limits is shown in Fig. 11(a). In Fig. 11(b) we plot the predicted current profiles for free Dirac
fermions.

More generally, we emphasize that whenever there is a finite “Fermi surface", we expect to
have σ(k)∼ k−1 on length scales short compared to any interaction scales, but long compared
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Figure 11: Conductivity and current profiles for free Dirac fermions. (a): the con-
ductivity scales ∼ 1/k at kβ � 1 while decays exponentially at kβ � 1 as shown
in the inset. (b): the predicted current profile evolves from a flat to a singly peaked
distribution upon decreasing the temperature.

to the Compton wavelength (i.e. k � kF) [55]. In this thermal case, we have kF → T . This
scaling follows from the fact that σ(k) becomes dominated by quasiparticles obeying v ·k = 0
near the Fermi surface. Schematically (see [55] for a more formal discussion), in the ballistic
limit of a kinetic theory, one finds that, after ignoring the Drude weight,

σ(k)∼
∫

FS

dd−1p v2δ(vp · k)∼ k−1 , (H11)

where the factor of k−1 comes from the identity δ(ax) = δ(x)a−1 and from the integral over
the Fermi surface. In particular, this argument demonstrates that if electron-phonon scattering
is responsible for Planckian resistivity, and an electronic quasiparticle is still well-defined on
length scales short compared to the Planckian length, then regardless of the Fermi surface or
microscopic model, we will find σ(k) ∼ k−1 when k`Pl � 1. This is sharply contrasted with
the quantum critical case of either the free Dirac fermions or the holographic models described
in the main text.

I Conductance

As highlighted in the main text, we can use (4) to determine the response of other fields
to the application of a uniform electric field (up to Ẽi generated by the constriction). For
practical purposes, we will focus on the choice O = n, the charge density, in applying the
generalized response equation (4). This will allow us to calculate the conductance G ≡ I/V
(or equivalently the resistance R ≡ G−1) associated to the constriction; here I is defined to
be the total current along any fixed line y = y0, and V is the potential difference across the
constriction, measured at large distance y � wx ,y (note the value of x will not be important).
To obtain V , the potential distribution is required. Since chemical potential and voltage are
thermodynamically conjugate to density, we can calculate V by choosing O = n. Indeed,
charge density is related to the chemical potential through

n(x ) =

∫

d2 x ′χnn(x − x ′)µ(x ′) , (I1)

where χnn is the static charge susceptibility, given by the retarded Green’s function as
χnn(k) = limω→0 GR

nn(ω, k), with ω a complex frequency. Due to isotropy, a generalized con-
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Figure 12: (a): log-linear plot of resistivity against the width wx at various T at
zero density. At high T in the Ohmic regime, R ∼ − log wx ; while lowering T , R
enhances at small wx but keeps Ohmic scaling at large wx with decreased R. (b):
conductance over width against the width at various T at finite density. At high T in
the viscous regime, G ∼ w2

x ; while at low T , G approximately has the same viscous
scaling but with decreased G. (c): log-log plot of conductance against 1/T . At high
T , G ∼ constant for zero density while G ∼ T2 for finite density. After decreasing
T below 1/T ∼ wx , two curves coincide at the scaling G ∼ exp(−α′/T ) (α′ ≈ 5 as
shown in the inset) indicating the quantum critical nature.

ductivity σµJi
can be defined as

σµJi
(k) = χ−1

nnσnJi
(k)≡ χ−1

nn lim
ω→0

GR
nJi
(ω, k)

iω
= χ−1

nn
−iki

k2
lim
ω→0

GR
nn(ω, k) =

−iki

k2
, i = x , y ,

(I2)
where in the third step we used the current conservation Ward identity: iωn= ikiJi . Now, the
potential difference can be determined by V = µ(y � wx ,y)−µ(−y �−wx ,y) from numerical
solutions of (4).

The resulting conductance for zero density at a fixed T is shown in Fig. 7(c); in the range
plotted, the state is in the quantum critical regime. We find that at small width, the conduc-
tance is exponentially suppressed as the effective scattering length 1/T becomes largrer than
w; at larger width, the conductance grows logarithmically against the width saturating the
same scaling as the Ohmic transport [31] (see Fig. 12(a)).

Schematically, we expect
G ∼ σ(k = 1/wx) (I3)

(up to logarithmic corrections). In particular, this heuristic argument suggests that for ohmic
transport G ∼ 1 (close to G ∼ log wx , which arises from more accurate calculation [31]),
G ∼

p
nwx in a ballistic regime, G ∼ n2w2

x/η in a viscous regime (in agreement with [25]),
and G ∼ exp(−α̃(µ, T )/wx) in a quantum critical regime with dynamical critical exponent
z = 1 (a new prediction of this paper).

We present the conductances of our constriction geometry across the hydrodynamic to
quantum critical crossover, both at zero and finite density, in Fig. 12(a,b). Both the ohmic
G ∼ log wx and viscous G ∼ w2

x scaling have been reproduced by our model at high enough
T ; the exponential suppression with respect to smaller width has been confirmed in Fig. 7(c)
at zero density. Upon decreasing T , we find that only at zero density and at large width wx ,
the conductance is enhanced. Unlike the viscous flow, the concave current distribution for
quantum critical transport does not lead to collective reductions on resistivity, but suggests a
resistive “squeezed” motion in crossing the slit. Further, we estimate G ∼ σ0 ∼ T0 in the Ohmic
regime, while G ∼ n2/η ∼ T2 in the viscous regime; they together enter into the quantum
critical regime with G ∼ exp(−α′/T ) as predicted by the holographic model (Fig. 12(c)).

As it is possible to measure conductances without using local imaging methods, the expo-
nential conductance may be a simpler signature for quantum critical transport accessible in
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Figure 13: Vortices in a strip geometry. (a): the constriction (gray area) is located
at y = ±wx/2 and |x | ≥ wx/2 with wx = 1 µm and w y � wx . The current en-
ters through a slit at y = −wx/2 and exists through a slit at y = wx/2. (b): 2D
current distribution of Jy and streamlines for 1/Twx = 0.5. The number of vortices
would increase with increasing strip length. The tiny asymmetry is due to numeri-
cal discretization. The horizontal dashed line indicates the line at which the current
distributions in (c) are calculated. (c): current distribution of Jy on the line y = 0
for the kinetic model (red) and our holographic model at zero density (blue). The
inset zooms on the backflows. By fixing `ee = `mr but changing

p

`ee`mr, the kinetic
model shows the ohmic-to-ballistic crossover. However, our holographic model indi-
cates that the current density has a (minor) increase away from the center x = 0 in
the intermediate regime, and begins to oscillate around zero in the quantum critical
regime corresponding to the multi-vortex structure developed in (b). Note that the
magnitude of the vorticity is much weaker than in the ballistic regime.

experiment.

J Vorticity in a strip geometry

In this section we study the quantum transport in a different strip geometry [53, 56, 57]
(Fig. 13(a)). Note that our numerical codes allow us to simply change the region I in nu-
merics and use the same σ(k) which we used for the constriction geometry.

The current distribution of a quantum critical flow is shown in Fig. 13(b). We find that
vortices are developed due to the nonlocal k-dependence of the conductivity; however, the
quantum critical flow shows distinctive behavior when compared to either ohmic, ballistic or
viscous flow [53]. In Fig. 13(c), we compare our holographic model at zero density to the
kinetic model discussed in Appendix G. We can estimate that

p

`ee`mr is the underlying length
scale for transport, as is the Planckian length 1/T in the quantum critical model.

Note that both models exhibit an ohmic transport regime on long length scales, and there-
fore when wx is large, the current distributions look very similar. Upon decreasing wx relative
to either

p

`ee`mr or 1/T , the two models will enter into different regimes of transport, and
correspondingly the current distributions appear rather different. The kinetic model displays
the ohmic-to-ballistic crossover whenever `ee = `mr(which we have assumed), and will develop
one vortex in the ballistic regime. On the other hand, our holographic model has an unusual
(minor) increment of the current away from the center in the intermediate regime, then the
current starts to oscillate around the zero point in the quantum critical regime. Such oscil-
lation, with negative currents indicating backflows against applied field, induces muti-vortex
structure in Fig. 13(b). Yet, the vorticity strength in the quantum critical regime is relatively
weaker than that of a ballistic flow, which could be an experimental signature of the difference
between the ohmic-to-ballistic crossover versus an ohmic-to-quantum critical crossover.
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