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Abstract

This paper studies 3d \ = 4 supersymmetric gauge theories on an elliptic curve, with the
aim to provide a physical realisation of recent constructions in equivariant elliptic coho-
mology of symplectic resolutions. We first study the Berry connection for supersymmetric
ground states in the presence of mass parameters and flat connections for flavour sym-
metries, which results in a natural construction of the equivariant elliptic cohomology
variety of the Higgs branch. We then investigate supersymmetric boundary conditions
and show from an analysis of boundary ’t Hooft anomalies that their boundary ampli-
tudes represent equivariant elliptic cohomology classes. We analyse two distinguished
classes of boundary conditions known as exceptional Dirichlet and enriched Neumann,
which are exchanged under mirror symmetry. We show that the boundary amplitudes
of the latter reproduce elliptic stable envelopes introduced by Aganagic-Okounkov, and
relate boundary amplitudes of the mirror symmetry interface to the mother function
in equivariant elliptic cohomology. Finally, we consider correlation functions of Janus
interfaces for varying mass parameters, recovering the chamber R-matrices of elliptic
integrable systems.
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1 Introduction

This paper studies 3d N/ = 4 supersymmetric gauge theories on E, X R, where E is a complex
elliptic curve with complex structure parameter 7, and Ramond-Ramond boundary conditions
are imposed. The aim is to give a precise physical construction of work on the equivariant
elliptic cohomology of conical symplectic resolutions, elliptic stable envelopes, and elliptic
R-matrices [1-8].

A supersymmetric gauge theory on E. X R can be regarded as an infinite-dimensional
supersymmetric quantum mechanics on R. An important question is to determine the space of
supersymmetric ground states, which can be understood as the cohomology of a supercharge
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E; R

Figure 1: The set-up of this paper is supersymmetric gauge theories on E, x R.

provided the system remains gapped. This has a straightforward answer in the presence of
generic mass deformations. Suppose we can turn on mass deformations such that the gauge
theory has only isolated massive and topologically trivial vacua, indexed by a. Then there are
corresponding supersymmetric ground states |a) on E. x R labelled in the same manner.

The richness of this problem arises in determining supersymmetric ground states for non-
generic mass deformations and more broadly how they depend on background fields on E; xR
associated to flavour symmetries.

Let us consider a supersymmetric gauge theory with an abelian flavour symmetry T acting
on elementary matter supermultiplets.’ This flavour symmetry acts on the Higgs branch mod-
uli space of the supersymmetric gauge theory, which we denote by X, and the isolated massive
vacua are the fixed points X = {a}. The computation of supersymmetric ground states on
E. xR is then compatible with the following parameters associated to the flavour symmetry:

* Real mass parameters valued in t = Lie(T).

* A background flat connection on E; for the flavour symmetry T, parametrised by the
rk T-dimensional complex torus

ET ::t®RET' (1)

The total parameter space is therefore
tx Ep 2 (R x E )™M (2)

and these parameters can be regarded as expectation values of scalar fields in a background
vector multiplet for the symmetry T in the supersymmetric quantum mechanics.

The dependence of supersymmetric ground states on these parameters is controlled by a
Berry connection. A consequence of supersymmetry is that the Berry connection is enhanced
to a solution of generalised Bogomolny equations [9-12]. The asymptotic behaviour of the
solution is controlled by the effective supersymmetric Chern-Simons couplings in the vacua and
there are 't Hooft monopole singularities at loci where the supersymmetric quantum mechanics
fails to be gapped.

We will not need the full structure of the supersymmetric Berry connection here. Instead,
we use a consequence of the generalised Bogomolny equations that there is a complex flat
Berry connection in the real directions t and a holomorphic Berry connection in the complex
directions E;, which commute with each other. This induces the structure of a holomorphic
vector bundle £ on each complex torus {m} x E;, which has a piecewise constant dependence
on the mass parameters m € t.

The piece-wise constant dependence is controlled by a hyperplane arrangement in the
space of mass parameters t constructed from hyperplanes where the gauge theory is no longer
completely massive. To describe the hyperplanes geometrically, let us denote by T,, € T the
1-parameter subgroup of the flavour symmetry generated by a mass parameter m € t. We then
have

!Topological symmetries transforming monopole operators are incorporated in the main text.
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Figure 2: An example of a hyperplane arrangement in t = R? arising in supersymmet-
ric QED with Higgs branch X = T*CP? and flavour symmetry T = U(1)? generated
by mass three parameters (m, m,, ms) obeying the constraint m; + my + ms = 0.
There are six faces of maximal dimension where the fixed locus X '= consists of three
isolated points a = 1,2, 3, six faces of dimension one where it is a union of a point
a = 1 and a moduli space T*CP! connecting @ = 2,3 or permutations thereof, and
the origin where it is the whole T*CP2.

* For a generic mass parameter, X 'm = {a}.

* For a non-generic mass parameter, X ' # {a} and an extended moduli space opens up.
This happens along hyperplanes through the origin.

In general, the fixed locus X’ and the structure of the holomorphic vector bundle £ on
{m} x E; depends on a face of the hyperplane arrangement. As example of a hyperplane
arrangement for supersymmetric QED is illustrated in figure 2.

For a generic mass parameter, lying in a face of maximal dimension or chamber of the
hyperplane arrangement, X ' = {a} and the holomorphic vector bundle admits a holomorphic
filtration

0C&, C&,C - C& =E, (3)

giving a complete flag on each fibre. The factors of automorphy of the holomorphic line bun-
dles £, = &,./&,, , are fixed by the effective supersymmetric Chern-Simons couplings in the
massive vacuum a. The collection of line bundles {£,}, or equivalently the associated graded
G(&) =P, L,, can also be regarded as a section of a holomorphic line bundle on the union

of identical copies E(Ta) = E; associated to each of the vacua a,
Ell;({a}) =] |EW. €
a

This is the T-equivariant elliptic cohomology variety of the fixed point set X = {a}.

As the mass parameters are specialised to lie on faces of the hyperplane arrangement of
lower dimension this structure becomes more intricate. We argue that on a general face of the
hyperplane arrangement, £ is encoded in a holomorphic line bundle on the equivariant elliptic
cohomology variety of the fixed locus T, C T,

Ell;(XTm) — E;. (5)

This is an N-sheeted cover of the space of T-flat connections E, which is obtained by making
certain identifications on the sheets of Ell({a}). Here N is the number of massive vacua a. At
the origin of the hyperplane arrangement, m = 0, this is the equivariant elliptic cohomology
variety Ell;(X) of the entire Higgs branch X. This is why equivariant elliptic cohomology arises
in this problem.

With the structure of the supersymmetric Berry connection in hand, we study boundary
conditions compatible with the flavour symmetry T and the supercharge whose cohomology
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computes supersymmetric ground states. The fundamental objects of study are boundary am-
plitudes (B|a), defined as the path integral on E, x R, with the boundary condition B at x> = 0
and a supersymmetric ground state |a) at x> — 0o, as illustrated in figure 3.

a2 :

Figure 3: A boundary amplitude is computed from a partition function on E. x R
with the boundary condition B at x> = 0 and a massive vacuum a at x> — oo.

The boundary amplitudes can be regarded as elliptic genera of effective two-dimensional
theories obtained by reduction on R, . From an analysis of boundary mixed 't Hooft anoma-
lies and effective supersymmetric Chern-Simons couplings, we can determine how boundary
amplitudes transform under global background gauge transformations on E, for the flavour
symmetry T. This identifies boundary amplitudes as sections of holomorphic line bundles on
E;.

Furthermore, suppose a boundary condition B is compatible with a mass parameter m
on some face of the hyperplane arrangement. Then we show that the collection of bound-
ary amplitudes defined using supersymmetric ground states on that face of the hyperplane
arrangement transform in such a way that they glue to a section of a holomorphic line bun-
dle on Ell;(X ™). This provides a recipe to construct equivariant elliptic cohomology classes
from suitable boundary conditions. We illustrate this by computing the boundary amplitudes
of Neumann boundary conditions representing the elliptic cohomology classes of holomorphic
Lagrangian sub-manifolds in X.

We then consider two distinguished collections of UV boundary conditions whose elements
are in 1-1 correspondence with vacua a. In abelian gauge theories, they have an explicit
construction as follows:

1. Exceptional Dirichlet

Exceptional Dirichlet boundary conditions D, mimic the presence of a vacuum a at infin-
ity in the presence of a mass parameter m and are supported on the attracting set of the
vacuum a under gradient flow for the moment map of the T,,-action on X. This allows
boundary amplitudes to be computed as interval partition functions on E. x [0, £] with
the boundary condition B at x> = 0 and the exceptional Dirichlet boundary condition D,
at x> = {, opening up the possibility of using results from supersymmetric localisation.

2. Enriched Neumann

Enriched Neumann boundary conditions N, involve Neumann boundary conditions for
the gauge fields and couplings to C*-valued chiral multiplets via boundary superpo-
tentials and twisted superpotentials. They are supported on unions of attracting sets
corresponding to the stable envelopes introduced in [13]. We demonstrate that their
boundary wavefunctions and amplitudes reproduce the construction of elliptic stable
envelopes [5].

We make the observation that these two distinguished classes of boundary conditions are ex-
changed under 3d mirror symmetry [14]. In fact, we derive the form of enriched Neumann
boundary conditions N, by colliding exceptional Dirichlet boundary conditions D, with the

6


https://scipost.org
https://scipost.org/SciPostPhys.13.1.005

Scil SciPost Phys. 13, 005 (2022)

mirror symmetry interface introduced in [15]. In the process, we identify correlation func-
tions of this mirror symmetry interface with the mother function in equivariant elliptic coho-
mology [8].

To make the connection with elliptic stable envelopes more precise, we consider supersym-
metric Janus interfaces for the real mass parameters m. These are interfaces representing a
position dependent profile m(x>) connecting different faces of the hyperplane arrangement.
We mainly focus on interfaces interpolating between chambers of the hyperplane arrangement
or between the origin and a chamber, as illustrated in figure 4. A crucial observation is that
the computation of boundary amplitudes and overlaps are independent of the profile in the
intermediate region. This allows flexibility in computing the overlaps of boundary conditions
compatible with mass parameters on different faces on the hyperplane arrangement.

y me ¢ m e ¢

m e ¢
me¢

Figure 4: The left figure illustrates schematically a Janus interpolation func-
tion m(x®) between chambers ¢, ¢’. The right shows the projection onto the
mass parameter plane in supersymmetric QED implementing between chambers
¢ ={m; <my<ms}and & ={my <m; < my}.

An important example is the correlation function of the Janus interface interpolating be-
tween a supersymmetric ground state (| at m = 0 and an enriched Neumann boundary |N/5)
condition for a generic mass parameter m in some chamber of the hyperplane arrangement.
The matrix of such boundary amplitudes represents a collection of T-equivariant elliptic coho-
mology classes on X labelled by 8. We show that they reproduce precisely the elliptic stable
envelopes [5].

Finally, we consider the correlation functions of Janus interfaces between enriched Neu-
mann boundary conditions defined for mass generic mass parameters in two different cham-
bers of the hyperplane arrangement. We argue that independence of the profile function im-
plies that they obey the same algebraic relations as chamber R-matrices of elliptic quantum
integrable systems and check this correspondence explicitly in examples. We further exploit
the independence of the profile to reproduce the decomposition of such R-matrices into elliptic
stable envelopes.

The work in this paper has applications to half-indices or partition function of supersym-
metric boundary conditions on three-manifolds M5 with boundary dM; = E; [16-19]. In
combination with our previous work [20], this can be used to shed light on the role of elliptic
stable envelopes in implementing mirror symmetry of vertex functions [5, 73, 74]. We will
return to this topic in a future publication [21].

Note added: in the process of completing this project we became aware of related ongo-
ing work of Mykola Dedushenko and Nikita Nekrasov [22], and we are grateful to them for
agreeing to coordinate the release.
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2 Preliminaries

We introduce here background and assumptions on 3d N/ = 4 gauge theories that we will
need to connect with equivariant elliptic cohomology. This will serve to set up notation and
introduce some constructions that are important for this paper but not commonly covered
in the literature, such as the role of effective supersymmetric Chern-Simons couplings and
domain walls between isolated massive vacua.

2.1 Data and Symmetries

We provide a brief summary of 3d A/ = 4 supersymmetric gauge theories, referring the reader
to [15,23] for more details.

We consider theories specified by a compact connected group G and a linear quaternionic
representation of the form Q = T*R where R is a unitary representation. The R-symmetry is
SU(2)¢ x SU(2)y, with vector multiplet scalars ¢*8 transforming in the adjoint of SU(2). and
hypermultiplet scalars X in the fundamental of SU(2)y. The flavour symmetry is of the form
G % Gy, where

* The Coulomb branch symmetry G, has an abelian subgroup given by the topological
symmetry
Te =Hom(m,(G), U() = Z(*G), (6)
which we assume is the maximal torus.

* The Higgs branch flavour symmetry
Gy = Nyw)(G)/G (7

is the normaliser of the unitary representation G C U(R) modulo G. The hypermultiplets
roughly transform in a quaternionic representation of G x Gy.

We can introduce FI parameters {*® and mass parameters m”® by turning on expectation values
for background twisted vector multiplets and vector multiplets. In most of this article we turn
on only generic real parameters

(=0 m:=m"", (8)

leaving unbroken maximal tori U(1), x U(1)y and T, x Ty of the R-symmetry and flavour
symmetry respectively. We normalise the unbroken R-symmetries to have integer weights.

We can break to 3d A/ = 2 supersymmetry by introducing a real mass parameter € for the
following combination of R-symmetries,

Tt = U(].)H_U(l)c, (9)

which becomes a distinguished flavour symmetry from a 3d /' = 2 perspective. The vector
multiplet scalars decompose into a real scalar ¢ = ¢'? transforming in a vector multiplet
and a complex scalar ¢ = ¢!! transforming in an adjoint chiral multiplet. Similarly, the
hypermultiplet scalars decompose into a pair of scalars X = X!, ¥ = X2 transforming in chiral
multiplets in unitary representations R, R*. Finally, there is a superpotential

W=y uc, (10)

where u¢ : T*R — g* ®5 C is the complex moment map for the G action on the hypermultiplet
representation T*R.
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2.1.1 Comment on Notation

Our notation is somewhat of a compromise between standard notation in supersymmetric
gauge theory and the mathematics literature on equivariant elliptic cohomology. We therefore
take this opportunity to summarise some notation used in this paper.

* We define T := Ty x T, as the maximal torus of the 3d N/ = 2 flavour symmetry acting
on elementary chiral multiplets. We denote the corresponding Lie algebra by t and use
a shorthand notation x = (m,€) € t to denote collectively the associated real mass
parameters.

* We define T; := T¢ x Ty x T, as the total 3d N/ = 2 flavour symmetry acting on el-
ementary chiral multiplets and monopole operators. We denote the corresponding Lie
algebra by t; and use a shorthand notation x; = (¢, m, €) € t; to denote collectively the
associated real parameters.

In comparing with the mathematics literature, the complexification of Ty is often denoted by
A and the complexification of T, by #.

2.1.2 Example

A running example is supersymmetric QED, with G = U(1) and Q = T*CN where CV de-
notes N copies of the charge +1 representation. The flavour symmetries are G, = U(1) and
Gy = PSU(N). Correspondingly, we introduce an FI parameter { € R, mass parameters
(my,...,my) €RN " with >’ m, =0.

() »

Figure 5: Supersymmetric QED with N flavours represented as a quiver.

The hypermultiplets decompose into chiral multiplets with complex scalar components
(X4, Y,), which transform with charge (+1,—1) under the gauge symmetry, in the anti-funda-
mental and fundamental representation of Gy = PSU(N) and with charge (+1,+1) under T,.
The chiral multiplets ¢, X,, Y, have total real mass —2¢, o —m, + €, —0 + m, + € respectively.
This is represented as a quiver in figure 5.

2.2 Supersymmetric Vacua

We assume the gauge theory flows to an interacting superconformal fixed point (without a
decoupled free sector) and, upon introducing generic real FI and mass parameters, has iso-
lated, massive, topologically trivial vacua. We label the isolated vacua by indices, a, 3, -+ and
denote the number of them by N.

The isolated supersymmetric vacua can be regarded as solutions of the classical vacuum
equations, which are summarised as the simultaneous critical points of the complex 3d N' = 2
superpotential W and the real superpotential

h=O"(MR"‘[‘P,(PT]_C)‘H“'.UH,R"‘G'.Ut,R

(11)
=0 (ugr+[p, 0" ]=80)+x-urg,

where ug, Uy g, ¢ g are the real moment maps for the G, Ty, T, action on T*R. In the second
line, we have used the shorthand notation x = (m,€) and urg = (Uy g, U, ) for the mass
parameters and moment maps for T = Ty x T,. Our assumptions require that for generic mass
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and FI parameters there are isolated critical points where the gauge symmetry is completely
broken.

The supersymmetric vacua admit the following combinatorial description. Each supersym-
metric vacuum « is specified by a set of r := rank(G) distinct weights

a {Qla"*agr} (12)

appearing in the G x Ty x T, weight decomposition of the hypermultiplet representation T*R.
These weights are the charges of the hypermultiplet fields that do not vanish in the vacuum.
If we decompose into components

0i = (Pis PHi>PLi) > (13)
the vector multiplet scalar o is fixed by the equations
pPi*0+ppi-m+p.;-e=0, (14)

foralli=1,...,r.
To define a supersymmetric vacuum, the gauge components must satisfy

1. {p1,...,p,} span b*,
2. { € Cone™(pq,...,p,) C b,

where h) C g is the Cartan subalgebra of G. Here we regard the FI parameter ¢ as an element
of h* through the inclusion t. = Z(h*) C h*. These conditions resemble JK residue prescrip-
tions appearing in the computation of supersymmetric observables and can be understood by
realising supersymmetric vacua as fixed points on the Higgs branch, which is discussed below.

Finally, due to the hypermultiplet field expectation values, the Higgs branch flavour and
R-symmetries preserved in a massive vacuum a are shifted compared to the UV gauge theory.
When needed, we distinguish the unbroken symmetries in a massive vacuum a by a superscript
U (1);‘;), TIEI“), or from the perspective of 3d A = 2 flavour symmetries T(® = TISI“) X Tt(a).
However, we mostly drop the superscript to lighten the notation with the understanding that
these symmetries are shifted as appropriate for the supersymmetric massive vacuum.

2.2.1 Example

In supersymmetric QED, the complex and real superpotentials are

N
W=y> XY,
a=1
N N (15)
h=> (0 —me+e)X >+ > (—o+my+e)|V,*—{o.
a=1 a=1

There are N isolated critical points for generic mass and FI parameters. The critical points
a=1,...,N corresponds to non-vanishing expectation values |X,|* = { and o = m,—e when
{>0,and |Y,|? =—{ and 0 = m, + € when { < 0.

2.3 Chern-Simons Couplings

An important characteristic of vacua a are the effective supersymmetric Chern-Simons terms
for flavour symmetries and R-symmetries, which are obtained from a 1-loop computation by
integrating out massive degrees of freedom [24-28].

10
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We keep track of supersymmetric Chern-Simons terms for A" = 2 flavour symmetries Ty,
which are encapsulated in pairings

Ka:foFf—>Z, (16)

where Iy C t; denotes the co-character lattice of T;. As mentioned above, here Tf = Tg x T
denotes the symmetries preserved in the massive vacuum o, which may be shifted compared
to the UV gauge theory definition.

The supersymmetric Chern-Simons terms K|, are piece-wise constant in the parameters x ¢
and may jump across loci where an extended moduli space of supersymmetric vacua opens
up. This structure is controlled by a vector central charge function

Cy = Ka(xf,xf). an

The central charge function determines the tension of 2d N’ = (0,2) domain walls, which
correspond to solutions of the gradient flow equations for the real superpotential h in (11). A
domain wall interpolating between vacua a and f3 has tension proportional to |C, —Cg|. This
cuts out loci

{C,—Cp=0}Cty, (18)

where the tension of a domain wall connecting a and 8 vanishes and a compact moduli space
opens up. There are additional loci where a non-compact moduli space attached to a single
vacuum o opens up. We refer to the connected components of the complement of these loci
as chambers. The couplings K, are constant within chambers.

For a 3d N' = 4 gauge theory broken to A/ = 2 by the mass parameter €, the potential
supersymmetric Chern-Simons terms for flavour symmetries are restricted to the following:

* A mixed Ty-T supersymmetric Chern-Simons term «,, : Iy x I, — Z.

* A mixed U(1)y-T; coupling, which becomes a mixed flavour T;-T; supersymmetric
Chern-Simons term K'g Ty x T = Z.

* A mixed Ty-U(1); coupling, which becomes a mixed flavour Ty-T, supersymmetric
Chern-Simons term K‘g Iy x I — Z.

* A mixed U(1)y-U(1). coupling, which becomes a flavour T,-T, supersymmetric Chern-
Simons term K, : I} x [} — Z.

where T, Iy, I, denote the co-character lattices of T, Ty, T; respectively. The vector central
charge function decomposes

Coq =Ky(xf,x5) =x4(m,{) + Kg(e, 0)+ K‘I;(m, €)+x(e,€) (19)

and we write collectively K, = (k, Kg, KI; ,Kq). We note that the terms linear in the FI param-
eter arising from Chern-Simons couplings involving T can be obtained by evaluating the real
superpotential h at a supersymmetric vacuum,

hly =Ka(m, ) +x5(e,0). (20)

However, in a supersymmetric gauge theory all the coefficients are generated at 1-loop by
integrating out massive fluctuations around a supersymmetric vacuum a.

11
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2.3.1 N =4 Limit

In the limit € — 0 where A = 4 supersymmetry is restored, the vector central charge function
simplifies dramatically to
Co= Ka(m> ) (21)

and depends only on the N' = 4 supersymmetric Chern-Simons coupling k, : Iy X Iz — Z
between a vector multiplet and a twisted vector multiplet. In this limit, loci in the space of
mass and FI parameters where supersymmetric vacua fail to be isolated are all of the form

{Ca:Cﬂ}Ctthc. (22)

Their projections onto the two factors are linear hyperplanes through the origin, forming hy-
perplane arrangements in the spaces of mass and FI parameters t;, t-. We refer to the con-
nected components of the complement of the hyperplanes, or equivalently the faces of the
hyperplane arrangement of maximal dimension, as chambers €, €.

These hyperplane arrangements are a fundamental structure throughout this paper. Vari-
ous quantities depend in a piece-wise constant way on the mass and FI parameters, such that
they depend only on a choice of face of the hyperplane arrangement. In particular, x, is in-
dependent of the chambers, Kg depends on a chamber €., KI; depends on a chamber ¢, and
K, depends on both.

In this paper, we will ultimately set € = 0. However, in section 3 we will introduce an-
other expectation value for the vector multiplet for the N' = 2 flavour symmetry T, and our
computations will therefore be sensitive to all of the effective supersymmetric Chern-Simons
couplings, x4, k&, k1, %,

a’

2.3.2 Example

Let us determine the effective supersymmetric Chern-Simons terms in supersymmetric QED.
We introduce fundamental weights ey, ..., ey for Ty; and a fundamental weight e, for T,. Then

Kg=—€,®ec, (23)

which is independent of the mass and FI parameters.

When e = 0 the vector central charge is C, = —m,{ and the loci {(mg—m,){ = 0} split the
space of FI parameters into two chambers depending on the sign of {, and mass parameters
into N! chambers labelled by a permutation of m; > m, > --- > my. Our default chambers
are

¢c=1{{>0},

24
Cy={m;>my>--->my}. 24

This hyperplane arrangement is illustrated for N = 3 in figure 6.
The remaining supersymmetric Chern-Simons couplings in the default chambers are

c_
Ko, =¢€®ec,

KI(;I:(Z(ea—eﬁ)+2(6ﬂ—ea)>®et, (25)

p<a p>a

Keg=((N—2a+1)e,Qe;.

These couplings are unchanged when € # 0, provided |e| < [m,—mg|. It is straightforward to
check that h|, = —{(m,—e) when { > 0, which reproduces the supersymmetric Chern-Simons
couplings x,, k& above.
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Wi 2
{3,1,2} —
{3,2, 1}
{1,3,2}
Wa 3 Mo — My
{2,3,1}
{1,2,3}
{2, 1,3}
W31

)

Figure 6: The hyperplane arrangement in t; = R? for supersymmetric QED with
N = 3 with horizontal coordinate m,—m; and vertical coordinate my—m,. The cham-
bers are labelled by permutations of {1,2,3}. The default chamber m; > m, > mg is
shaded.

2.4 Higgs Branch Geometry

To connect with equivariant elliptic cohomology, we view a supersymmetric gauge theory
through the lens of its Higgs branch. This means we first set m = 0, keeping { generic, such
that the theory flows to a smooth sigma model onto a Higgs branch. We can then turn the
mass parameter back on as a deformation of the sigma model.

The Higgs branch is the hyper-Kihler quotient

X =pc (0)npg'()/G, (26)

where ¢, ug are the real and complex moment maps for the G-action on the quaternionic rep-
resentation Q. Under our assumptions, for a generic ¢ this is a smooth hyper-Kiahler manifold.
We view X as a Kdhler manifold with a holomorphic symplectic form. The FI parameter { is a
Kéhler parameter and X depends on the chamber ¢.. The holomorphic symplectic structure
is independent of { within each chamber. We typically fix a chamber and omit this from the
notation.

The flavour symmetries are realised as follows:

* The topological symmetry is T = Pic(X)®,U(1) and has co-character lattice [ = Pic(X).
The chamber ¢ C Pic(X) ®; R containing  is the ample cone of X.

* The flavour symmetry Ty is a maximally commuting set of Hamiltonian isometries of X
leaving the holomorphic symplectic form invariant.

* The flavour symmetry T, is a Hamiltonian isometry of X transforming the holomorphic
symplectic form with weight +2.

Under our assumptions, the Hamiltonian isometries Ty have isolated fixed points that are
identified with the massive supersymmetric vacua {a}.

Let us now re-introduce the mass parameters m, € in the sigma model description. A
mass parameter x = (m, €) is a deformation of the sigma model by the real moment maps
h;., he : X — R for the corresponding Hamiltonian isometries of X,

hm=m'MH,R:

(27)
he =€- nu't,]R)
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where ugy g, U, g now denote the moment maps for the T = Ty x T, action on X. Provided
m, € are generic, the critical points are the massive vacua,

Crit(h,,) = Crit(h,, + h.) = {a}. (28)

2.4.1 Algebraic Description

For many computations, it is convenient to introduce an algebraic description of the Higgs
branch as a holomorphic symplectic quotient

X = ug'(0)/Ge, (29)

where G is the complexification of the gauge group and the superscript denotes a stability
condition depending on the chamber €. containing .

From this perspective, Ty, T; combine with gradient flow for the associated moment maps
to give an action of the complexification of Ty, T, on X by complex isometries transforming
the holomorphic symplectic form with weight 0, +2 respectively. The vacua a are again the
fixed points of these actions.

The algebraic description provides a convenient way to enumerate the collections of weights
@, of the tangent spaces T, X, which will play an important part in this paper. First, the tangent
bundle is constructed as the cohomology of the complex

0—>gc—T'R— g —0, (30)

restricted to the stable locus, where the first map is an infinitesimal complex gauge transfor-
mation and the second is the differential of the complex moment map.

The terms in this complex transform as representations of G x T; x T,. We introduce formal
grading parameters w = (s, v, t) such that a weight p = (p, py, p;) is represented by a Laurent
monomial w€ = sPyPH P, Recall from section 2.2 that fixed points a are in 1-1 correspondence
with collections of weights (o4,..., 0,) appearing in the weight decomposition of T*R. Since
the gauge components span h*, we may solve the r equations

wli = gPiyPHi tPi = ] (31)

uniquely for the r components of s. We denote the solution associated to a supersymmetric
vacuum a by s,. The character of T,X is obtained from that of the tangent complex by the
substitution s = s,

ChT,X =ChQ—Chgc—t*Chg}. S

=S4

32
= Z VAH tlt , ( )
AED,

from which the weights A = (Ay, A;) € ®, can be determined.

2.4.2 Reproducing Chern-Simons Couplings

From a sigma model perspective, the supersymmetric Chern-Simons terms «, Kg arise from

classical contributions to the vector central charge given by the values of the moment maps at
critical points,
Kq(m, &) =hy(a),

kS(e,{) =h(a).
H

The remaining «, ¥, arise from a 1-loop contribution from integrating out massive fluctu-
ations around a critical point. To describe these contributions cleanly, we introduce some
notation for tangent weights.

(33)

14
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As above, let &, denote the collection of weights in the T weight decomposition of T, X.
We assume here that elements of ®, are pair-wise linearly independent for all critical points
a, which is the GKM condition for the Hamiltonian T-action on X [29, 30]. This assumption
is satisfied in the supersymmetric QED example and in more general abelian theories where
X is hyper-toric [31]. It is also satisfied for supersymmetric quiver gauge theories where X is
the cotangent bundle of a partial flag variety.

Introducing mass parameters x = (m, €), there is a decomposition

P, =% UP, (34)

where
d={1€d,|1-x>0},

35
& ={1€®,|A-x <0}, (35)

denote the collections of positive and negative weights. This decomposition depends only on
the chamber € containing x. We denote the corresponding decomposition of the tangent space
by

T,X=N;®N,_ . (36)

The form of this decomposition is constrained by the transformation properties of the holomor-
phic symplectic form. As the holomorphic symplectic form transforms with weight +2 under
T,, if A € ® then A* € &_, where we define 1* = —2¢, — A and e, is the fundamental weight
of T,.

The remaining supersymmetric Chern-Simons terms KI; , K, are obtained by integrating
out the massive fluctuations corresponding to tangent directions at the critical point a. The
sign of the correction is correlated with the sign of the mass of a fluctuation, with the result

KZ+%a=£(Z Y mx)

)Leq); AED
1
:5(2 A®et—Zet®A) 37)
)Lefb; Ae@;
1
- E(A‘;_a’z) ® €:>
where
AE=>"2 (38)
acdE

and we regard the sum Kg + K, as a pairing I' x ' — Z. In the second line, we re-arranged
the sum using the transformation properties of the holomorphic symplectic form. Despite
the factor of half, this defines an integer pairing due to contributions of pairs of weights A, A*
with opposite sign. The result depends only on the chamber € containing the mass parameters
x =(m,e).

2.4.3 Example

In supersymmetric QED, the Higgs branch is the holomorphic symplectic quotient obtained by
imposing the real and complex moment map equations,

N N
DX =Y =¢ D XY, =0, (39)
a=1 a=1
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and dividing by G = U(1) gauge transformations. The holomorphic symplectic form on X is
induced from Q = ). dX, A dY, under the quotient. In both chambers €, = {£{ > 0}, we
have

X =T*CP" !, (40)

which is a symplectic resolution of the minimal nilpotent orbit in s[(N, C). The two chambers
are distinguished by the identification of the ample cone €. = Pic(X) ®, R..

The flavour symmetry Ty acts by Hamiltonian isometries (X,,Y,) — (e %X, eti0%y,),
while T, transforms (X,,Y,) — (e!?X,,e!?Y,). There are N fixed points {a} corresponding to
the image of X, = v/ when { > 0 and Y,, = v/— when { < 0 under the quotient. They are
the coordinate lines in the base CPV .

The mass parameters (my, ..., my), € act by Hamiltonian isometries induced by the trans-
formations of the coordinates X, Y,,, with moment maps

N
== > (X, > — Y, [%),
a=1
" (41)
he =€ > (1X* + 1Y, 1?).
a=1

The supersymmetric Chern-Simons couplings k, K‘g are recovered from the values of these
moment maps at critical loci,

Ka(m: C) = hm(a) = _maC>
kG (€,0) = he(a) =€l

To describe the remaining supersymmetric Chern-Simons levels, let us fix the default cham-
ber €. = {{ > 0} and determine the weight spaces ®,. We have

(42)

N

ChQ—Chge—t 2Chgi =t"'s"! Zvﬁ—l—t Z vl —t?—1. (43)
B=1

The expectation value of X, determines s 'v,t™! = 1, and thus
VB, o Va
ChT,X = — —.
X=]1 S Tt [1 . (44)
Bra ® pra P
The tangent weights at a vacuum « are therefore
q)a:{e[j_ea:ﬂ#a}u{_zet_eﬁ-i_ea’/j#a}’ (45)
coinciding with the tangent weights of X = CPN~! at coordinate hyperplanes in the base.
Suppose € = 0 with the mass parameters in the default chamber €y = {m; > my > --- >

my}, or turning on a small mass parameter €, the corresponding chamber ¢ where
le| < |mg —mg|. Then the decomposition into positive and negative weights is

<I>;’={e/5—ea,[5 <alu{—2e,—egt+ey > a},

46
® ={ep—eq B >alU{—2e, —epg+eyf <a}l. (46)
We have
= Z(eﬁ —e,)+ Z(—Zet —egteg),
f<a f>a
(47)
A= Z(eﬁ —ey)+ Z(—Zet —epgteq),
B>a B<a
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and

SO A= D ea—ep)+ D (g —en) + (N —2a-+ e, (48)

p<a p>a

We therefore recover the remaining supersymmetric Chern-Simons couplings,

KI; = (Z(ea—eﬁ)+ Z(Cﬂ —ea)) Qe,,

f<a f>a

(49)
Ke=(N—2a+1)e,®e,.

The supersymmetric Chern-Simons couplings in other chambers for the mass parameters
(mq,...,my), € can be computed similarly.

2.5 Hyperplane Arrangements

We now re-visit the hyperplane arrangement in the space t; of mass parameters from the
perspective of a massive sigma model on X.

First, a domain wall preserving A = (0, 2) supersymmetry in the deformed sigma model is
a solution of the gradient flow equations on X for the moment map h, = h,, + h. connecting
critical points a, 3. The tension of domain walls is again controlled by the vector central
charge via the formula |C, —Cg|. From the perspective of a massive sigma model, this receives
a classical contribution from x, Kg and a 1-loop correction from KI; , Ko, as detailed above.

Figure 7: Families of gradient flows attached to supersymmetric vacua.

Solutions of the gradient flow equation on X are not isolated. Acting with T generates
an S! family of gradient flows between vacua a, 8 that sweep out a compact curve CP! C X.
Furthermore, there are non-compact families of gradient flows extending out from a super-
symmetric vacuum « to infinity. These possibilities are illustrated in figure 7.

These families of gradient flows generate the 1-skeleton of X, which can be represented
by the GKM graph [29,30]. This is a representation of the supersymmetric vacua and families
of domain walls connecting them, which consists of the following elements:

* Vertices labelled by supersymmetric vacua {a}.

* Internal edges a — f3 representing curves ¥, = CP! labelled by a tangent weight
Aedin (—q>/§).

* External edges a «<— 00 and a — 00 representing curves 2, = C labelled by a tangent
weight A € (—) and & respectively.

The arrows represent directions of positive gradient flow for fixed parameters x = (m, €). The
GKM assumption ensures there is at most one internal edge connecting any pair of vertices.
Supersymmetric QED with N = 3 is illustrated in figure 8.
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2€t + e — e *2675 + €2 — €3

€1 — €2
€2 — €3

2e; +e1 —eg > > > —2e; +e1 —e3
{ n \

2e; + €9 — e3 —2e; +e1 —eg

Figure 8: The GKM diagram for the Higgs branch X = T*CPM of supersymmetric
QED with N = 3 in the default chamber ¢ = {m; > my > ms}.

Now consider the hyperplane arrangement in the space t = t; @ R of mass parameters
x = (m, €). The hyperplanes where the critical locus of the moment map h, is larger than the
set of isolated critical points {a} take the form

W, ={A-x =0}, (50)

where A is a tangent weight in the GKM graph. When such a hyperplane is crossed, the arrow
on the corresponding edge flips orientation. We distinguish two types of hyperplane:

 If A labels an internal edge a — f3, the hyperplane W, corresponds to a locus where a
compact Higgs branch 2, = CP! opens up.

* If A labels an external edge connecting a, the hyperplane W, corresponds to a locus
where a non-compact Higgs branch X; = C opens up.

We are primarily interested in the limit € — 0. Then gradient flows for the moment map h,,
correspond to domain walls preserving 2d N = (2, 2) supersymmetry whose tension receives
a classical contribution only from C, = h,,(a). Furthermore, the hyperplane arrangement
degenerates as follows. Recall that an incoming edge with weight A € —&_ is always paired
with an outgoing edge with weight A* € <I>;’. In the limit € — 0O,

W}L:W}L* :{AH'mZO} (51)

and there is no distinction between internal and external hyperplanes. The hyperplanes are
all of the form W, = {C, = Cg} and reproduce the hyperplane arrangement in the space ty
of mass parameters discussed previously.

3 3d N =4 Theories on an Elliptic Curve

In this section we consider elementary aspects of 3d N' = 4 supersymmetric gauge theories
on R x E_, where E_ is a complex torus with complex structure modulus 7. We focus on the
computation of supersymmetric ground states and their supersymmetric Berry connection over
the space of mass parameters and flat connections on E_ for flavour symmetries. We show that
this leads naturally to algebraic constructions appearing in equivariant elliptic cohomology.
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3.1 Supersymmetry

Let us first decompose the 3d N/ = 4 supersymmetry algebra on R x R? as a 1d N/ = (4,4)
supersymmetric quantum mechanics on R. The supersymmetry algebra can be written

(@4,Q8P) = e/PePp,
(Q@M,QPP) = eBePH + eBZB 4 B 7B 4 CABAB (52)
{Q",QP%} = /BeBp,

where H := P, _ is the Hamiltonian and P := P, , and P := P__ become central charges from
the perspective of supersymmetric quantum mechanics. The remaining scalar central charges
are associated to global symmetries, Z4F = {48 . J. and Z% = m*" - J,;, while C*B4P arises
from a vector central charge associated to domain walls and is bi-linear in the mass and FI
parameters.

As in section 2, we set the complex parameters to zero, m** =0 and t** = 0, and de-
fine m := m*~ and ¢ = {*~. We then consider a 3d N’ = 2 subalgebra commuting with
T, := U(1)y —U(1)¢, which becomes a 1d N = (2, 2) subalgebra in supersymmetric quantum
mechanics. The supercharges are fr, J_rjr, jr;, Q:; and the non-vanishing commutators
are . .

{Q".Q =P,
{QI",QT}=H+Z+C,
{Q7.Qy=H-Z+cC,
@,y =P,
where we define Z := Z+~+Z*~ and C = C*~"". The Higgs and Coulomb flavour symmetries
are now on the same footing with Z = m -Jy + { - J;. In the presence of a domain wall in the
xb2-plane interpolating between massive vacua a, 3, C = C, — Cp where C, = k,(m, {) is the
central charge function (21).

As the combination T, is now a flavour symmetry, it is possible to turn on a real mass
parameter €. This deforms the central charges furtherto Z =m-Jy +{-J-+€-J; and C, has
a more general form (19). In shorthand notation, Z = Xg-Jf and C, = Ka(xf,xf).

(53)

3.2 Reduction on Elliptic Curve

Let us now place such a theory on E; x R where E_ is the elliptic curve with complex
structure modulus 7 = 7, + iT, and area T, > 0. This is implemented by forming the
complex combination x' + ix? and making the identifications (x!,x?) ~ (x! + 1,x?) and
(x1,x>) ~ (et + 71, %2+ 72).

It is also convenient to introduce real coordinates (s, t) and identifys ~s+1and t ~ t+1,
such that x! = s 4+ 7t and x2 = 7,t. This gives a continuous isomorphism of groups
E, — S' x S! induced by the transformation x! + ix? — (€27 e2™), These coordinates
are illustrated in figure 9.

We impose R-R boundary conditions, which preserves the full supersymmetry. We can also
now introduce background flat connections A; = (A¢,Ap,A,) on E for all 3d N = 2 flavour
symmetries. This background preserves the same supersymmetry algebra (53), but now

i i
P=+T—2(3t—'r85)+f—2(zf Jf):

g i (54)
P=—T—2(3t—’r35)—T—2(zf Jf) N
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Figure 9: Coordinates on the elliptic curve E..

where
zf :=§Af’tdt—r§Af’5ds (55)

and we again combine Zp = (z¢,25,2,) in shorthand notation. From the perspective of
N = (2,2) supersymmetric quantum mechanics, the real parameters xy and complex flat
connections z; combine as expectation values for the triplet of scalar fields in a background
vector multiplet for the 3d V' = 2 flavour symmetry T}.

It is often convenient to restrict attention to a sector with fixed KK momentum and flavour
charge, whereupon Z = x - v, and

P=+L(n—rm)+i(zf ~yf) ,
To To (56)

P=—Ltn—em— L (3 v,)
To To f Yf ’

where (m, n) € Z? are KK momenta conjugate to the coordinates (s, t) and y 7€ F}/ is a weight
of the flavour symmetry T.

A global background gauge transformation z; — z +(v¢—Tuy) is specified by a pair of co-
characters ug, v¢ € Iy associated to the cycles with coordinates s, t. In the sector with flavour
weight v, this can be absorbed by shifting the KK momenta (m,n) — (m—yg-us,n—ys - v¢).

3.2.1 Infinite-Dimensional Model

It is often useful to invoke an infinite-dimensional model for the effective N' = (2,2) super-
symmetric quantum mechanics.

Let us fix a generic FI parameter {, such that in the absence of mass parameters the theory
flows to a smooth sigma model onto the Higgs branch X in flat space. Passing to E, x R and
setting the background connection z; = 0, the system is described by an A" = (2,2) quantum
mechanics whose target is the space of smooth maps

X =Map(E,. - X), (57)

which is an infinite-dimensional Kdhler manifold. The kinetic terms involving derivatives along
E. are obtained by coupling to a background vector multiplet for the S! x S symmetry of X
induced by translations of the coordinates (s, t).

The mass parameters x = (m, €) and background connections z = (2, 2,) are introduced
by coupling to a background vector multiplet for the induced action of T = Ty x T, on X and
turning on expectation values for the scalar fields. The background flat connection gz is ex-
pected to induce a flat connection on the target X' that deforms the action of the supercharges.
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3.3 Supersymmetric Ground States

Let us now consider states of the supersymmetric quantum mechanics annihilated by all four
of the supercharges generating the 1d NV = (2,2) supersymmetry algebra (53). We refer to
such states as supersymmetric ground states. Supersymmetric ground states are necessarily
annihilated by H + C, Z, P, P.

As usual in supersymmetric quantum mechanics, if the spectrum is gapped, it is convenient
to introduce a cohomological description of supersymmetric ground states. For this purpose,
we consider the supercharge ' _

Q:=Q +qQ,, (58)
which satisfies Q% = 2P and commutes with the central charges Z, P. We then restrict attention
to states in the supersymmetric quantum mechanics annihilated by Z, P, which requires

X =0 (59)
(n—mt)+zp-7,=0,

where (m, n) are the KK momenta conjugate to the coordinates (s, t) and y¢ € F}’ is a weight of

T¢. The supercharge Q becomes a differential and its cohomology is an alternative description

of supersymmetric ground states.

We can provide a heuristic picture of supersymmetric ground states using the infinite-
dimensional quantum mechanics with target space X = Map(E.,X). For simplicity we set the
flat connection for the topological symmetry to zero, z; = 0. The supercharge Q is then a
twisted equivariant deformation of the de Rham differential on X,

Q=ex (d + LVZ) el (60)
where

* h, is the moment map for the Hamiltonian isometry generated by the mass parameters
m, €. Here we abuse notation and write h, = h,, + h, for the moment map on both X
and X = Map(E,, X).

* V, is a combination of the vector field 8, — 7, generating the S! x S! group action on
X induced by translations of the coordinates (s, t) and the vector field generating the
S! C T action on X with parameters z = (zy, 2,).

This type of supercharge was already encountered in [32] and has recently been further studied
in quiver supersymmetric quantum mechanics [33, 34]. It arises whenever an N = (2,2)
supersymmetric quantum mechanics is coupled to background vector multiplets.

The supersymmetric ground states can be analysed by applying standard arguments in
supersymmetric quantum mechanics to this infinite-dimensional model. First, we can scale the
superpotential h, in order to localise supersymmetric ground states around Crit(h,) ¢ X'. The
supersymmetric ground states can then be obtained from the cohomology of the equivariant
differential d + 1, on Crit(h, ), which is the equivariant cohomology of Crit(h,) localised at
the equivariant parameter z.

Introducing a background connection z. would further deform the supercharge Q by the
addition of a background flat connection on X'. This does not materially change the outcome
for supersymmetric ground states provided the FI parameter { is generic and therefore we set
it to zero for simplicity.

This computation of supersymmetric ground states is clearly sensitive to the mass param-
eters x € t and will jump along the loci W, C t introduced in section 2. We consider various
cases in turn before presenting the general construction.
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3.3.1 Generic Mass Parameters

First suppose the mass parameters lie in the complement of all of the loci W, = {A - x = 0}.
Then condition that supersymmetric ground states are annihilated by the central charge
Z = xy - J; implies that they are uncharged under flavour symmetries, or y; = 0. In turn,
P =0 implies they have zero KK momentum, n, m = 0.

From the perspective of supersymmetric quantum mechanics to X, the critical points of h,
are constant maps E, — a. In the limit that the coefficient in front of the superpotential is sent
to infinity, there are normalisable perturbative ground states given by Gaussian wavefunctions
localised at constant maps E, — a, which may be chosen to be orthonormal. Since h, is the
moment map for a Hamiltonian isometry of a Kdhler manifold X and the spectrum is gapped,
there are no instanton corrections and this is an exact description of supersymmetric ground
states.

We can introduce another description of the supersymmetric ground states as follows. Let
us fix a generic mass parameters in some chamber € C t. We then define

* |a)¢ is the supersymmetric ground state obtained from the path integral on E, x R, with
the supersymmetric vacuum a at infinity x° — +o00,

* «(al is the supersymmetric ground state obtained from the path integral on E, x R_ with
the supersymmetric vacuum a at infinity x> — —oo.

These states are orthonormal,
c{alBle =044, (61)

which is interpreted as the partition function on E, x R with vacuum a at x> — —oo and
vacuum f3 — +00. Note that the normalisation is independent of the potential background
connection z. This basis of supersymmetric ground states depends on the chamber € for the
real mass parameters x = (m, €).

3.3.2 Mass Parameters on Walls

Now consider supersymmetric ground states when the real mass parameters lie on a wall
W, = {A - x =0} for some weight A € ¢, of the tangent space at the vacuum a.

Then, we claim that provided A - z ¢ Z + 1Z, there are again N supersymmetric ground
states of zero KK momentum and flavour charge, but whose properties now depend on whether
A corresponds to an internal or external edge in the GKM diagram, as discussed in section 2.
Thus there is a doubly-periodic array of distinguished points in the space of background flat
connections z

AZEL+TZ, (62)

where supersymmetric ground states may carry KK momenta and flavour weight, and the
nature of these points again depends on whether A is an internal or external edge.

We now prove this using our infinite-dimensional description of the effective N = (2,2)
quantum mechanics, considering external and internal edges in turn.

External Edge

If A € &, is an external edge, the critical locus of the superpotential is
Crit(h,) = {y # a} UMap(E,, ), (63)

where ¥, = C. There are N — 1 ground states localised around constant maps E, — y with
y # a, as in the discussion of generic mass parameters. However, the ground state associ-
ated to a is different. We must now consider the cohomology of the remaining differential
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Q =d + 1y, which is the equivariant cohomology of the critical locus Map(E;, ), localised
at the background flat connection z.

Provided the background flat connection is not a distinguished point, A -z ¢ Z + TZ, the
vector field V, has a single fixed point corresponding to the constant map E. — a, with asso-
ciated supersymmetric ground state |a). There is now some ambiguity in the normalisation as
unitarity is lost in describing supersymmetric ground states cohomologically [35]. A natural
choice is to define |a) as the Poincaré dual of the equivariant fundamental class of the constant
map {E, — a} inside the critical locus Map(E., X;). This is normalised such that

(a]a) = l_[ (n+mt+A-2)
n,mez
H(A-z,7)
=—
n(7)
where the first line is the equivariant Euler class of the normal bundle to the constant map
E. — a inside Map(E_, %,). In the second line, we use zeta-function regularisation to define
this in terms of the Jacobi theta function (2, 7) and Dedekind eta function n(t).
When the background flat connection satisfies A - 2z € Z + 17, the fixed locus of V is non-
compact, the supersymmetric quantum mechanics is not gapped and the cohomological de-
scription of supersymmetric ground states breaks down.

(64)

Internal Edge

If A € &, N (—®p) labels an internal edge connecting a and f3, the critical locus of the real
superpotential is

Crit(h) = {y # a, f} UMap(E., ), (65)
where now X, = CP!. There are now N — 2 supersymmetric ground states corresponding to
constant maps E,; — y with y # a, f. However, for the supersymmetric ground states associ-
ated to a, 3, we must again consider the cohomology of the remaining differential d +t,,, which
is the equivariant cohomology of the component Map(E, ¥, ) localised at the background flat
connection z.

This component of the critical locus is compact, so the supersymmetric quantum mechanics
is gapped and the cohomological construction of supersymmetric ground states is valid for any
background flat connection z. Nevertheless, there are interesting phenomena at the loci where
the fixed locus of V, does not consist of isolated points.

Provided A -z ¢ Z + 1Z, the vector field V, has isolated fixed points on Map(E., X, ) corre-
sponding to the constant map E, — a and E, — f3. There are therefore two supersymmetric
ground states, which normalised such that

(afa) = nlr:elz(n+mr +A-2)= i%’
(ﬁ|/5>=n,l;lz(n+mr—k-z):iq% (66)

(alB) = (Bla) =0.
When A -z € Z+ 1Z the fixed locus of V, is non-isolated and the above supersymmetric ground
states are not linearly independent. To find a linearly independent basis of supersymmetric
ground states that extends across this locus one can, for example, pass to the linear combina-

tions
()
,ﬁl(l 2, T)

2)= 3 0a) +1B),

1) = (l) —=18)),

(67)
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which mix the contributions from the supersymmetric vacua a, f3.

3.3.3 Vanishing Mass Parameters

We may continue this process to construct supersymmetric ground states on the intersection
series of loci W,, W,,, ... . Instead, we skip to the endpoint and consider the case of vanishing
mass parameters x = 0, or equivalently the intersection of all hyperplanes W, with A running
over all edges of the GKM diagram.

The real superpotential now vanishes and we must consider the equivariant cohomology
of the whole X = Map(E,,X), localised at the background flat connection z. Provided the
background flat connection is generic, now meaning A -z ¢ Z+ 77 for all tangent weights, the
vector field V, has only isolated fixed points corresponding to constant maps E, — a. Following
the discussion above, there are then N supersymmetric ground states |a), normalised such that

@lpy = [ 1124295, (68)

Ao, n(7)

They are the equivariant fundamental classes of the constant maps {E; — a} inside X. We
will see below that these supersymmetric ground states play the role of the fixed point basis
in T-equivariant elliptic cohomology of X.

If A-2 € Z + 17, this construction breaks down. If A is an external edge of the GKM
diagram, the supersymmetric quantum mechanics is not gapped. If A € <I>jl' N (—<I>/§) is an
internal edge, we must take linear combinations corresponding to de Rham cohomology classes
on Map(E.,X;). These loci can of course further overlap leading to more intricate structures.

Finally, let us consider the relationship between the supersymmetric ground states |a), for
generic mass parameters in some chamber € and the supersymmetric ground states |a) at the
origin. We have seen that in the limit x — 0, the supersymmetric ground states |a)s are no
longer appropriate. However, we claim that

e [T 222 g,

VRS, 3 n(T)

[7:222 o) (al,

Aedt 77(1')

(69)

with the understanding that this holds for computations preserving the supercharge Q used in
the cohomological construction of supersymmetric ground states. This is compatible with the
normalisations set out above.

We will discuss this relation further using boundary conditions and supersymmetric locali-
sation in section 5. In that context, computations involving supersymmetric ground states are
independent of the real mass parameters, so it is convenient to write this as an equality

e [T A2 g,

redy n(T)

l_[ im@(iﬂ = (al.

AEPE n(T)

(70)

However, as we discuss further in section 7 it is more accurate to say that the sets of super-
symmetric ground states are related by the action of a Janus interface interpolating between
vanishing mass parameters and mass parameters in a chamber €.
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3.3.4 Example

In supersymmetric QED, there are supersymmetric vacua a = 1,...,N, mass parameters
my,...,my, € and background flat connections z;,...,2y, ;. Let us choose the default cham-
bers €; ={{ >0} and € = {m; > --- > my, |€| < |m, —mgl}. Then

'ﬁl(z _7&1(—22 —Z +Za)
Cl_[ P_ l_[l d d = |a>7

(r) n(7)
o H(z /5<“ W (—22, — 25 +2,) 71)
1\w»p VT 4% T4 al
'Q n(f) ,gf n(z) = {al,
and (5 —5) (2 )
—zg +
(alB) =b4p l_[ 1P Fal TR T R (72)

pa @ (o)

3.4 Supersymmetric Berry Connection

A more systematic approach to supersymmetric ground states and their dependence on the
background parameters is via the supersymmetric Berry connection. The form of the Berry
connection is dictated by the fact that the mass parameters x; = (¢, m, €) and background con-
nections z; = (2, 2y, 7,) transform as the real and complex scalar components of 1d N = (2,2)
vector multiplets [9-11].

Let us denote the number of supersymmetric ground states by N. Then there is a Berry
connection on the rank-N vector bundle of supersymmetric ground states over t; x Er ;- Here
t; parametrises the real parameters x; and

Ep, :=Tf ®,E; (73)

is the complex torus parametrising background flat connections zy modulo gauge transforma-
tions z; — z; + (vp + TUf).

The Berry connection is enhanced to a solution of the generalised U(N) Bogomolny equa-
tions on t; x Er » which is perhaps best described as a rank-N hyper-holomorphic connection
on ty X ty X E, that is invariant under translations in the additional t; direction.

Concretely, this involves a pair (A, ®) consisting of

* a connection A on a principal U(N) bundle P on t; x Er,,

° a t}/-valued section ® of Ad(P), which arises from the components of the hyper-holomor-
phic connection in the additional directions.

The asymptotic behaviour in the non-compact t;-directions is that of a generalised doubly-
periodic abelian monopole whose charges are controlled by the effective supersymmetric Chern-
Simons couplings [11]. In an asymptotic region |x;| — ©o in some chamber &, P splits as
a direct sum of principal U(1) bundles P, and the solution is abelian (A,, ®,) with leading
growth

2
o, — T—”Ka(xf)+---, (74)
2

where we regard the effective /' = 2 supersymmetric Chern-Simons couplings in the chamber
¢s as a linear map K, : [y — 1"}’. In particular, contracting with the real parameters shows
that

Xp @y > Cytenn, (75)
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where C, = K,(xy, x) is the vector central charge function in section 2.3. This type of bound-
ary condition when rkT; = 1 was introduced in the construction of doubly-periodic monopole
solutions in [36-38].

Let us fix parameters ({,2.) and focus on the supersymmetric Berry connection for the
remaining parameters (x,z) € t x Ep. The analysis of supersymmetric ground states in the
previous section indicates the supersymmetric Berry connection will have important features
at real co-dimension three loci S, C t x E; labelled by tangent weights A € ¢, and defined by

A-m=0,

76
A-z2€Z+TZ. (76)

Based on the considerations of the previous section and the explicit form of the supersymmetric
Berry connections for supersymmetric quantum mechanics with targets %, = CP! and ©; = C,
we expect the following behaviour:

* If A € &, corresponds to an external edge of the GKM diagram, there is a singular ’t
Hooft monopole configuration centred on S,, where the spectrum of the supersymmetric
quantum mechanics fails to be gapped.

* IfA € ®,N(—%p) corresponds to an internal edge of the GKM diagram, there is a smooth
SU(2) monopole configuration centred on S;, which mixes the supersymmetric ground
states associated to a, f3.

These loci can intersect in higher co-dimension leading to more intricate configurations, for
example smooth SU(k) monopole configurations with 1 < k < N.

We will not attempt a full analysis of the Berry connection and its connection to doubly-
periodic monopoles here. Instead, we will focus on a particular algebraic construction that
makes direct contact with equivariant elliptic cohomology.

3.5 Spectral Data

Let us now consider the supersymmetric Berry connection using the picture of supersymmetric
ground states as elements of the cohomology of the supercharge Q. We consider the real and
complex parameters in turn:

* The supercharge depends on the real parameters x; such that
o, Q=-[%,Ql, (77)

where ® € t}/ are hermitian operators independent of x¢. They play the role analogous
to a moment map for the symmetry T in the supersymmetric quantum mechanics. This
descends to a complexified flat connection D, , =Dy, +@ for supersymmetric ground
states along t;.

* The supercharge Q depends holomorphically on the background connection z, so the
anti-holomorphic derivative commutes with Q and descends to a holomorphic Berry
connection D;, on supersymmetric ground states along Er,.

In the language of [39], this is consistent with the effective quantum mechanics being of BAA-
type. The Berry connections commute,

[D;,, Dy, 1=0, (78)

which form part of the generalised Bogomolny equations. Thus the Berry connection D;

determines the structure of a rank N holomorphic vector bundle £ on each slice {x;} x Er,,
that varies in a covariantly constant way with the mass parameters x;.
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The asymptotic boundary conditions imply that for parameters x; in a given chamber
¢s C ty in the space of mass and FI parameters the holomorphic vector bundle admits a
holomorphic filtration

0C &y C&, C-C&, =€, (79)

where &, is a rank i holomorphic subbundle labelled by a vacuum a;, generated by holomor-

phic sections of £ with a decay rate fixed by C,, . This follows from [41] for the doubly periodic

monopoles we consider, following classic analogous results for monopoles in R® [42-44].
One can take the associated graded bundle:

GE&)=PcL., (80)

which splits by construction as a sum of holomorphic line bundles £, = &, /&,, . A section
of £, transforms with factor of automorphy

so(2f + vy +TUp) = e_iea(zf’“f)sa(zf), (81)

where
Ou(zf,us) = 27T(Ka(zf,,uf) + Ko(us,2¢) + TKa(,uf,uf)) . (82)

The supersymmetric ground states |a), introduced above will transform as sections of the
holomorphic line bundles £,. Note that the factor of automorphy depends on the chamber
¢f C t; through the Chern-Simons couplings K,,.

There are a number of algebraic approaches to the generalised Bogomolny equations obeyed
by the supersymmetric Berry connection. For example, the scattering method would study the
scattering problem for D, ; and the associated spectral data. This would generalise the classi-
cal scattering methods [40,42,45] and correspond to the z-spectral data for doubly periodic
monopoles [37].

3.5.1 Elliptic Cohomology Variety

Here we present an alternative spectral construction that makes direct contact with equivariant
elliptic cohomology. Let us again fix parameters ({, z.-) and focus on the supersymmetric Berry
connection for the remaining parameters (x,z) € t x Er. We denote the chamber containing
the mass parameters x by € C t.

In place of the scattering problem for D, across the origin of the mass parameter space,
recall that our analysis of supersymmetric ground states using the infinite-dimensional super-
symmetric quantum mechanics model showed that

e [T1222) 1) (83)

A€dy 7’)(1’)

as x — 0 in each chamber ¢, where |a) denotes the common set of supersymmetric ground
states at the origin of O € t of the space of mass parameters.

Let us first check that this is consistent with the supersymmetric Berry connection. Re-
call that the supersymmetric ground states |a), transform as sections of the holomorphic line
bundles £, whose factors of automorphy are fixed by the Chern-Simon levels K,,. The super-
symmetric ground states |a) will then transform as sections of holomorphic line bundles £/,
whose factors of automorphy are shifted by the additional Jacobi theta functions

[1 [ hA-z) (84)
ree. (7
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This is equivalent to shifting the supersymmetric Chern-Simons couplings as follows,

1
K;:Ka+§ ZA@A

AED,

1
:Ka+Kg+—ZA®7L,
r€d,

(85)

where in the second line we have used (37) for the supersymmetric Chern-Simons levels KI: ,
K. Since K, Kg are independent of the chamber € for the mass parameters, the factors of
automorphy of |a) have the same property and therefore (83) is consistent with the supersym-
metric Berry connection.

With this observation in hand, the supersymmetric ground states at the origin O € t of the

mass parameter space have a remarkable property:

* The holomorphic line bundles L, [Z;j are isomorphic on restriction to the locus

A -z € Z + ©Z where the weight A € &, N (—®) labels an internal edge of the GKM
diagram of X.

We provide a detailed argument for this result in appendix A. Concretely, the factors of auto-
morphy defined by the shifted Chern-Simons couplings K (;, K [’3 are equivalent (in a way made
precise in the appendix) on restriction to the locus A -z € Z + 7Z in the space of background
flat connections Er,.

This means the collection of holomorphic line bundles £, on the space of background flat
connections Ey_ is equivalent to a single holomorphic line bundle on an N-sheeted cover

Ep(X):= (|_|E(Tj‘)) /A, (86)

a

where:

. E(T‘;) =Ty ®; E; are N copies of the torus of background flat connections for the full
flavour symmetry Ty = T x T associated to the supersymmetric vacua a.

* A identifies the copies E(T‘;) and E(Tf ) at points A-z € Z+ 7Z where A € &, N(—®p) labels
an internal edge of the GKM diagram.

This is the extended T-equivariant elliptic cohomology variety? of X [1-4]. Note that copies
of the space of flat connections are only identified along the components parametrising flat
connections for the non-topological flavour symmetry T C Ty. It is therefore sometimes con-
venient to consider the non-extended equivariant elliptic cohomology variety by removing the
factors of Er_, which is denoted by Ell;(X).

More generally, on a generic face of the hyperplane arrangement in the space of mass
parameters, the holomorphic line bundles associated to supersymmetric ground states combine
to a section of a line bundle on the equivariant elliptic cohomology variety

Ep(XTm), (87)

where the X' is the fixed locus of the symmetry T,, C T generated by the mass parameters
m. In particular, if m lies in a chamber of the hyperplane arrangement and X '» = {a}, then
Er({a}) consists of N independent copies of E without identifications.

2Note that in general, the elliptic cohomology of a variety X is a scheme. However, we assume the GKM
property which implies that E;(X) is in fact a variety [8].
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We could regard the collection of varieties E;(X ') as m € t varies over the space of mass
parameters together with the holomorphic line bundles generated by supersymmetric ground
states as as a kind of spectral data for the supersymmetric Berry connection on tx E;. It would
be interesting to pin down its relation to the usual spectral data associated to the generalised
Bogomolny equations, for example using the scattering method.

3.5.2 Gauge Theory Picture

There is an another description of the elliptic cohomology variety from the perspective of
supersymmetric gauge theory, without passing to a sigma model on X.

We first imagine the un-gauged theory with target space T*R and regard G as an additional
flavour symmetry with real mass parameter o and background flat connection specified by u.
In this case, the parameter space of background flat connections is

Er, x Eg, (88)

where
Ec=(E;®gb)/W (89)

parametrises background flat connections for G. The coordinates on the latter are Weyl-
invariant functions of the coordinates u. For generic mass parameters and flat connections
there is a single supersymmetric ground state corresponding to the fixed point at the origin of
T*R. The elliptic cohomology variety as constructed above is Er, x Eg.

If we now fix a generic FI parameter { and gauge the symmetry G, recall that there are N
supersymmetric vacua « in flat space labelled by sets of weights {p;, ..., 0,} of Gx T satisfying
conditions in section 2.2. This fixes the components of the real vector multiplet scalar in a
supersymmetric vacuum a via the equations

Pa O+pPyq-x=0, (90)

for a =1,...r. Similarly, in the effective supersymmetric quantum mechanics on R x E. this
fixes the gauge holonomy in a supersymmetric ground state, up to gauge transformations, via

Pa Ut P 2g+t Pt %t EL+TL. 91)

The set of N solutions modulo gauge transformations, u,(z), generate an N-sheeted cover of
E; as the background flat connections z is varied. Trivially including the flat connection for
the topological symmetry, this becomes an N-sheeted cover of Er,. This gives a construction
of the extended equivariant elliptic cohomology variety

c: ET(X)‘—>ETf x Eg. (92)

In this construction, the coordinates u are identified with the elliptic Chern roots. This perspec-
tive on the elliptic cohomology variety will be useful in our discussion of Dirichlet boundary
conditions in section 4.

3.5.3 Example

Let us consider supersymmetric QED with N flavours in the default chamber €, = {{ > 0}.
There are background flat connections z; = (z¢,21,...,2y,%.) for the flavour symmetries
Ty = T¢ x Ty % T,. They are subject to >, z, € Z+ 7Z.
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The supersymmetric ground states |a) transform under background gauge transformations
with factors of automorphy determined by the shifted levels

K =—e,®ec+e, ®ec

a

1
+ - (6 _ea)®(e _ea)
4 };1 Y Y (93)

1
+ 2 Z(—Zet —e, tey)(—2e,—e, +eg).
r#a

If we restrict to background flat connections with z, —zg € Z + 7Z, it is straightforward to
check that 6, — 6 € Z and therefore the factors of automorphy of the supersymmetric ground
states |a) and |B) coincide.

The spectral curve E;(X) is therefore constructed from N identical copies E (@)

7, of the space

of background flat connections parametrised by z¢ = (2¢,%1,- - -, 2y, %.). The copies E (a), E(Tf )

Ty
are identified along the loci z, —2zp € Z + 7Z for all distinct pairs, say a < f3.

4 Boundary Amplitudes

We now consider boundary conditions preserving at least N' = (0,2) supersymmetry. Build-
ing on the description of boundary conditions in Rozansky-Witten theory [46-48], the study
of N' = (2,2) boundary conditions in supersymmetric gauge theories was initiated in [15].
Various aspects of such boundary conditions have been further studied in [20, 35,49, 50,52].
N = (0,2) boundary conditions were studied in [16-18, 53].

To a boundary condition B preserving the flavour symmetry Ty, we will associate a state
|B) in the supersymmetric quantum mechanics on R x E; studied in section 3. We will study
the boundary amplitudes (B|a) formed from the overlap with supersymmetric ground states
and how they transform under large background gauge transformations on E, according to
the boundary ’t Hooft anomalies of B. We show that if a boundary condition is compatible
with real mass parameters m, the collection of boundary amplitudes assemble into a section
of a holomorphic line bundle on the elliptic cohomology variety Ell;(X '), focussing on the
cases where the mass parameters are zero or generic. In this way, we associate equivariant
elliptic cohomology classes to boundary conditions.

4.1 Assumptions

We consider boundary conditions preserving at least 2d A/ = (0,2) supersymmetry in the
xb2-plane, generated by er, QI;. In many cases, they will preserve a larger V' = (2,2)
supersymmetry generated by fr, J_r;, Q*~,Q_*. All such boundary conditions preserve the
combination Q = er + er; and are compatible with cohomological construction of super-
symmetric ground states introduced in section 3.

For N' = (2, 2) boundary conditions, we require that they preserve a boundary vector and
axial R-symmetry U(1), x U(1), and at least a boundary flavour symmetry Ty % T.. For
N = (0, 2) boundary conditions, we require a boundary R-symmetry and at least a boundary
flavour symmetry Ty = T x Ty x Ty. In the case of an N/ = (2, 2) boundary condition,

Ty :=U@)y —U()a, (94)

which is twice the left-moving R-symmetry.
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The boundary vector and axial R-symmetry may be the same as the bulk R-symmetry
U(1)y x U(1)c and hence T; = T,. However, the bulk R-symmetry may be spontaneously
broken at the boundary, but a linear combination of the bulk R-symmetries and flavour sym-
metries is preserved and becomes U(1)y x U(1)4. When this happens, we will draw attention
to this distinction, but will abuse notation and still denote Ty = T x Ty x T}

We will also encounter boundary conditions where a mixed gauge-flavour anomaly breaks
some subgroup of the above symmetries, and deal with this subtlety as it arises in the article.
We will see this problem is immaterial when passing to the boundary amplitudes associated to
the boundary condition.

A boundary condition preserving Ty X T may or may not be compatible with turning on
the associated real mass and FI parameters. In this section, we exclusively set € = 0 and de-
note the chambers of the hyperplane arrangements for the remaining FI and mass parameters
{, m by €., €. If a boundary condition is compatible with FI and mass parameters on a face
of the hyperplane arrangement, it will be compatible with all such parameters on that face.
We then say the boundary condition is compatible with that face. We mostly consider bound-
ary conditions compatible with mass and FI parameters in given chambers of the hyperplane
arrangements.

4.1.1 Higgs Branch Image

An important characteristic of a boundary condition is the Higgs branch image, which is a
rough description of the boundary condition in the regime where the bulk gauge theory flows
to a sigma model on X. A N = (0,2) boundary condition satisfying the conditions above has
support on a Kahler sub-manifold in X invariant under T. For a ' = (2, 2) boundary condition,
the additional supersymmetry ensures the support is a holomorphic Lagrangian in X.

The compatibility with FI and mass parameters can be neatly understood from this per-
spective. First, compatibility with FI parameters in a fixed chamber €. is necessary for the
boundary condition to preserve supersymmetry and define a reasonable boundary condition
in a regime where the bulk gauge theory flows to a sigma model to X. Second, compatibility
with mass parameters in a chamber € requires that

* a right boundary condition on x® < 0 has support S C U, X o
¢ a left boundary condition on x3 > 0 has support S C U X

where X : denotes the attracting and repelling sets of the critical point a generated by a positive
gradient flow for the moment map h,, : X — R for all mass parameters m € €.

The origin of the latter characterisation is that the BPS equations for the supercharges
QI*, Q7 generating the N = (0,2) supersymmetry algebra are inverse gradient flow for
the moment map h,, in the x>-direction [15]. With our conventions, the moment map h,,

decreases as x> — oo, and increases as x> — —oo.

4.1.2 Anomalies

Boundary conditions are subject to mixed 't Hooft anomalies for the R-symmetries U(1)y,
U(1), and flavour symmetries T, Ty, which are of paramount important in the presence of
background connections on E.. They may also suffer from gauge anomalies.

We keep track of boundary 't Hooft anomalies using an anomaly polynomial [16]. The
anomaly polynomial of an N = (0, 2) boundary condition is bilinear in the curvatures fy, f,,
fc, fy, associated to U(1)y, U(1),, T, Ty. If the boundary condition preserves a boundary
gauge symmetry, it may also depend on an associated curvature f.

The computation of boundary amplitudes on E. will yield elliptic genera that involve a
background for the left-moving R symmetry T;. They will therefore only detect boundary
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anomalies of T;, rather than those of the vector and axial R-symmetries separately. With
this in mind, we only turn on a field strength f;, which may be implemented in the anomaly
polynomial by substituting f;; ~ f; and f, ~ —f;.

We therefore consider boundary anomalies for T, x Ty x T;. We will later encounter
Neumann boundary conditions where the gauge anomaly does not vanish, and also Dirichlet
boundary conditions where the gauge symmetry becomes a boundary flavour symmetry, which
we treat as they arise. Putting aside these cases for now, the boundary anomaly polynomial of
an N = (0, 2) boundary condition takes the form

P =K(f;,£;), (95)

where we have introduced a shorthand notation f; = (f,fy,f;) and K : Ty x I — Z is a
pairing on the co-character lattice of the boundary flavour symmetry Ty = T x Ty x T}, For
an N = (2, 2) boundary condition, the anomaly polynomial specialises to

P = k(fy,fo) +kC(EL, £o) + Kk (£, £,) + (£, 1), (96)

where the coefficients k, k¢, k7, k are pairings with the same structure as the supersymmetric
Chern-Simons terms k,, k5, k, X, in section 2.

For convenience, we define P, to be the polynomial above with pairings set to the cor-
responding supersymmetric Chern-Simons terms, encoding the contribution to the boundary
anomaly from anomaly inflow from a massive vacuum a at x> — +00. Thus —P, encodes the

anomaly inflow from the vacuum at x> — —o0.

4.2 Boundary Amplitudes

Aboundary condition preserving at least 2d V' = (0, 2) supersymmetry in the x"2-plane shares
a common pair of supercharges fr, er; with the 1d /' = (2,2) subalgebra along x> annihi-
lating supersymmetric ground states on E.. In particular, the boundary condition preserves the
combination Q = QfL + er;, whose cohomology we use to compute supersymmetric ground
states.

To a right or left N' = (0, 2) boundary condition B, we can therefore associate boundary
state |B) or (B| respectively in the effective supersymmetric quantum mechanics on R x E._.
The overlaps of boundary states with supersymmetric ground states associated to vacua a are
known as boundary amplitudes. Boundary amplitudes can be represented as a path integral
on E. x Ry or E; x Rs, with the boundary condition at x®> = 0 and and the vacuum a at

x3 — —00 or x® — +00. This is illustrated in figure 10.

xX° — —0Q0 xX° — +00

Figure 10: Boundary amplitudes for left and right boundary conditions

The presence of the vacuum a at infinity breaks the gauge symmetry of the theory on
E; xR5q or E; X Re(. One is led to consider boundary ’t Hooft anomalies and anomaly inflow
from the remaining Ty = T¢ X Ty x T}, flavour symmetry.® This may be computed by making

3Note that strictly speaking there is the usual subtlety in that the Tj; and U(1), appearing here are actually
the unbroken symmetries TIEI“) and U(1)§_}’) discussed in section 2.2.
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the analogous substitutions to (14) in the boundary anomaly polynomial for the boundary con-
dition (if the boundary condition supports a boundary gauge symmetry), replacing (o, m, €)
with (f, fy, f;), and then adding the anomaly polynomial P, encoding anomaly inflow from a.

The boundary amplitudes can be regarded as the elliptic genera on E, of effective 2d
N =1(0,2) or N = (2,2) theories obtained by reduction on a half-line. The mixed anomalies
of the effective theory are simply the sum of the boundary mixed ’t Hooft anomalies and
the anomaly inflow from the supersymmetric Chern-Simons terms associated to the isolated
massive vacua. As they are elliptic genera, the amplitudes therefore transform as sections of
holomorphic line bundles on the torus Er, of background flat connections z; = (2¢,2n, %),
whose quasi-periodicities are fixed by this sum [54].

In section 5, we will compute boundary amplitudes using supersymmetric localisation on
E. x I where I is a finite interval, replacing the vacuum at infinity by a distinguished class of
boundary conditions at finite distance that generate states in the same Q-cohomology class.
The anomaly inflow from supersymmetric Chern-Simons terms is reproduced by the boundary
't Hooft anomalies of these boundary conditions.

The boundary amplitudes transform under large gauge transformations as follows,

Falzp + v +7pp) = (D) el P70l 2 ) g (50, (97)

where
O0u(tis,27) =27 (ko(ur, 2p) + ko(zp, 1) + Tho(uir, us)) (98)

and k,, is the total boundary mixed 't Hooft anomaly from the boundary condition and anomaly
inflow from the vacuum a.

The contribution £, : [y — Z is known as the linear anomaly [54]. We expect that with
a careful identification of the Z, fermion number in the elliptic genus with an R-symmetry
whose background flat connection implements R-R boundary conditions, the linear anomaly
may be considered as a mixed anomaly between flavour and R-symmetry, and placed on the
same footing as 0,,. In this work, we follow the conventions of [55,56] for " = (0, 2) boundary
conditions and give a concrete geometric description of the linear anomaly for the amplitudes
we consider.

To write down expressions for boundary amplitudes, it is convenient to view the elliptic
curve as E, = C*/q” with g = e*™* and write the background flat connections as*

g — eZnizC , x = eZm’zH , t= eZm’zt , (99)

or collectively a; = e2™% and a = e?>™*, where recall zr = (2¢,21,%,) and z = (zy, 2). In this
notation, the quasi-periodicities of boundary amplitudes becomes

fa(e¥™a;) = (—1)4U0f, (ap),

_ —2k, (i) (100)
falg"rag) = (=1)eq lirina T ().
It is useful to define the normalised theta function,
T (z;
9(a) =i 2D (101)

n(7)

where 1, (z; 7) is the Jacobi theta function and 1(7) is the Dedekind eta function. It transforms

under large background gauge transformations as #(qx) = —x_lq_%ﬁ(x). This combination
appears naturally in the computation of the elliptic genera of 2d N = (0, 2) supersymmetric

“In the remainder of this article, if the bulk T, symmetry is re-defined to a boundary T;, we will still use z, and
t to denote the (exponentiated) background holonomies for T;, with this understanding implicit.
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. x
gauge theories [55,56] and, up to a factor of ¢z to ensure modularity, it is the same combi-

nation used in reference [5].

As in the discussion of supersymmetric ground states in 3.3, our construction of boundary
amplitudes will depend on the real mass parameters m. We consider the cases of generic mass
parameters and zero mass parameters in turn.

4.2.1 Generic Masses

First consider generic mass parameters in some chamber, m € €. Recall from section 3.3 that
the supersymmetric ground states |a), and ¢(a| are defined by placing a massive supersym-
metric vacuum at x> — +00 and x® — —o0.

For a boundary condition B that is compatible with mass parameters in the chamber ¢,
the boundary amplitudes are then defined as follows.

* The boundary amplitude ((a|B) is defined by the path integral on E, x R, with a right
boundary condition B at T = 0 and the massive vacuum a at T — —00.

* The boundary amplitude (B|a), is defined by the path integral on E_ x R, with a left
boundary condition B at T = 0 and the massive vacuum a at T — +00.

The boundary amplitudes transform as in (100) with
ki :=kp+K,, (102)

where kj is the mixed 't Hooft anomaly of the boundary condition B. If B suffers from a gauge
anomaly, by kz we mean the anomalies in the unbroken flavour symmetries in the vacuum a
as discussed at the beginning of section 4.2. The + sign is for the vacuum at +o00.

The contribution to the linear anomaly is more tricky to pin down. In section 5, we will
formulate boundary amplitudes as elliptic genera of effective 2d N/ = (0, 2) theories obtained
by reduction on an interval. If these only involve standard A" = (2,2) multiplets, the linear
anomaly is determined by the difference between the sum of the T, weights of chiral multiplets
and Fermi multiplets that contribute to the boundary amplitude. Since the linear anomaly is
only defined mod 2, we have the relation

(f®e, =—k. (103)

We will also see that equation (103) is true for the more exotic periodic boundary matter
considered in section 6.

4.2.2 Vanishing Mass Parameters

We now consider boundary amplitudes obtained from the overlaps with supersymmetric ground
states |a) and (a| appropriate for vanishing mass parameters.

Such boundary amplitudes may be computed even if the boundary condition B is incom-
patible with turning on mass parameters. However, if the boundary condition B is compatible
with mass parameters in the chamber €, using the relationship between supersymmetric
ground states (70) we have

(alB) = ¢{alB) x [ | #(ah),

AEDE

(Bla) = (Bla)e x [ | 9(ah).

AED,

(104)
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They transform as in equation (100) with

1
. c _2:
k= kB:I:(Ka+Ka)+4A€@ A®A, (105)

using the form of K‘I; + K in equation (37) and the additional contribution from the normalisa-
tion in (104). As in our discussion of supersymmetric ground states, an important compatibility
condition is that this is independent of the chamber €. The normalisation also modifies the
linear anomaly of the boundary amplitudes to

+ il 1
ea:—kB"rZAH:I:EZ?Lt, (106)

AEPT AED,

which is again independent of the chamber €;; due to the symplectic pairing of weights. Addi-
tionally, both Zj give equivalent factors of automorphy due to the symplectic pairing and the
fact that the linear anomaly is sensitive only to parity.

The factors of automorphy of the boundary amplitudes are now independent of the cham-
ber for the mass parameters. Additionally, on the loci

AZ2€EZ+TZ, (107)

where A € &,N(—®g) is any internal edge of the GKM diagram of X, k, and kg define isomor-
phic line bundles (see appendix A). Following the discussion in section 3, this implies that the
boundary amplitudes transform as a section of a holomorphic line bundle on the spectral curve
E7(X).> The boundary amplitudes {a|B) of a given boundary condition B therefore represent
a class in the T-equivariant elliptic cohomology of X .

4.2.3 Lagrangian Branes

Suppose we have a left / right N/ = (2,2) boundary condition B that flows to a Lagrangian
boundary condition L C X in the sigma model to X.

First, suppose that the boundary condition is compatible with the mass parameters in some
chamber €. This means concretely that L c | J, X : for a left / right boundary condition. Then
we propose that the boundary amplitudes with mass parameters turned on are given by

A 2Dy
caB) =[] 9la”) _ [ oo ")

peasty D@ iy BV
e —2- 22 (108)
(Bla) . l_[ ¥(a )_ l_[ (e tyTMH)
¢ ) Ay ’
Acd-(L) ¥(a*) Acd-(L) B(thvrn)

where <I>§(L) C <I>j denotes the weights of the tangent space T,L C T,X*. This is the elliptic
genus of the N/ = (2,2) chiral multiplets parametrising the fluctuations in T,L. This will
be derived using supersymmetric localisation in section 5, by introducing boundary conditions
that generate boundary states in the same Q cohomology classes as the supersymmetric ground
states |a) -

When the mass parameters are set to zero, we instead consider the overlaps with the su-
persymmetric ground states |a). The right boundary amplitude may be computed from the

>Note that in section 3 we ignored the contribution of the linear anomaly for the sake of brevity. However it is
easy to check that the factors of automorphy arising from the linear anomaly coincide on the loci -2 € Z+ 7Z in
the sense of appendix A.
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above result as follows,

(Bla) = (Bla)e [ ] #(a*)

Aedy

=[] 9 [] @

Aed (L) Aed(L)+

=[] o [] o@h

A€dL(L)+ Aed(L)+

=[] #@h,

r€d,(L)+

(109)

where <I>if(L)l denotes the complement of <I>j(L) C @i. A similar computation yields the same
result for (B|a). Note again the consistency check that there is no dependence on a chamber
for the mass parameters.

This boundary amplitude corresponds to the elliptic genus of ' = (0, 2) Fermi multiplets
parametrising the normal directions to T, L C T,X with weights ®,(L)*. The set of boundary
amplitudes (a|B) represent a section of a holomorphic line bundle on E;(X), which is the
elliptic cohomology class of L C X.

4.2.4 Example

Let us consider an example from supersymmetric QED. We fix the default chambers and con-
sider the boundary condition N, defined by a N/ = (2,2) Neumann boundary condition for the
vector multiplet:

F3,=0, o0=0, D3o=0, (110)

together with the hypermultiplet boundary condition
DsXp =0, Y3=0, f=1,.,N. (111)

This flows to a compact Lagrangian brane supported on L = CPY~! C X and is therefore
compatible with any chamber for the mass parameters.

The Neumann boundary condition has a mixed 't Hooft anomaly between the boundary
gauge symmetry and the bulk U(1). R-symmetry and T, flavour symmetry, encoded in a con-
tribution to the anomaly polynomial,

f(—f¢ + Nfy(),) for a right boundary condition, 112)
f(+f; + Nfy(),) for a left boundary condition.

Here, fy;(1). denotes the field strength for the U(1); R-symmetry at the boundary.

If we were to consider the boundary condition in isolation, we could define an unbroken
boundary axial R-symmetry U(1), generated by the current J, = Jy(q), = NJr,, which does
not suffer a mixed gauge anomaly. This would implemented in the anomaly polynomial by
setting fy;(1), = f, and f; = £Nf,.

However, since we ultimately consider boundary amplitudes where the gauge symmetry
is broken anyway, we instead consider the full boundary anomaly with U(1), = U(1)y and
U(1), = U(1).. For example, for the left boundary condition we have

N
PINI=f-fc+f, £+ > (F—15) £,
p=1

N
=f-fo—f, f,— > (F—f) f+...,
B=1

(113)
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where in the second line we only keep track of A" = 2 flavour symmetries. The first term arises
from anomaly inflow, the second from gauginos surviving the Neumann boundary condition
for the vector multiplet, and the remaining terms from fermions in the hypermultiplets.

Let us now consider the boundary amplitudes. The spaces of positive and negative weights
in the default chamber are

& (L) ={ep —eq, f > al,

87(1) = {ep —ewB < a}, (e

and therefore

. ﬁ(t_zva/vﬁ) . ﬂ(t_zva/vﬂ)
¢<a|N>—/!:!LW, (N|a>¢—/gxm~ (115)

These are the elliptic genera of the N' = (2,2) chiral multiplets corresponding to the positive
and negative weight fluctuations in T,CP" ! respectively.

It is straightforward to check that these boundary amplitudes transform according to (102),
where kg is obtained via substituting f = ff; —f; in the anomaly for N. For example, for the
boundary amplitude (N|a)¢, the total boundary mixed t Hooft anomaly is

P = PINJlg=gz £, + Pa
=2(N—a)ff +2 Z(fg — 1L, (116)

B>a

which reproduces the quasi-periodicity of the boundary amplitude. Note now f; and f; are
field strengths for the symmetries Tt(a) and Tlga) in the vacuum a, as defined in section 2.2.
The boundary amplitudes at the origin of the mass parameter space are

(a|N) = (N|a) = l_[’t?(t VaVp ), (117)
B#a

which is the elliptic genus of Fermi multiplets parametrising the cotangent directions at each
fixed point @ € CPN~1. They represent the elliptic cohomology class of the compact Lagrangian
submanifold CPN~! ¢ X. By construction they transform according to quasi-periodicities
(105).

4.3 Boundary Overlaps

The overlap (B!|B") of boundary states can be defined as the partition function on E, x [0, £]
with R-R boundary conditions on E.., with a left boundary condition B! at x> = 0 and right
boundary condition B” at x2 = £. The computation of such partition functions has been ad-
dressed using supersymmetric localisation in [57].

The overlap of boundary conditions is independent of the length £. This gives two ways to
interpret the boundary overlap:

1. Sending ¢ — O, it is the elliptic genus of the effective 2d N = (0, 2) or N' = (2, 2) theory
obtained by colliding the boundary conditions B!, B".

2. Sending £ — oo and expanding in isolated massive vacua a in the intermediate region,
it can be expressed in terms of the boundary amplitudes

(B'|B") = Z<Bl|a>m<a|sf>

—ZB|a Y{a|B") l_[ﬁ( %

r€d,

(118)
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In the first line, we assume we can turn on mass parameters in a chamber € compatible
with both boundary conditions.

These interpretations are both compatible with the transformation properties under large back-
ground gauge transformations, namely that the boundary overlap transforms with a factor of
automorphy fixed by the sum k; + k, of boundary anomalies from B! and B'.

This is because the only possible 't Hooft anomalies arise from boundary chiral fermions
and anomaly inflow. In colliding the boundary conditions, the contributions from anomaly
inflow to the left and the right cancel out. In the decomposition into boundary amplitudes,
the factor of automorphy of each term in the first line are, using (102)

kl +kr :(kl_Ka)+(kr +Ka)’ (119)

where k; , are the boundary 't Hooft anomalies of B, The second decomposition also has the
same factors of automorphy,

kl+kr=(kl—;<a—;<§+%r Z?L@?L)+(kr+l<a+i<g+% >iren)

red, A€,
1
— E E AR A,

AED,

(120)

and so all of these interpretations are compatible.

Let us finally mention an important subtlety. We have already encountered the fact that
Neumann boundary conditions for the vector multiplet generically have mixed 't Hooft anoma-
lies for the unbroken boundary gauge symmetry. This is not problematic for boundary ampli-
tudes as the gauge symmetry is completely broken in a massive vacuum a anyway. However,
for overlaps (B!|B") between pairs of Neumann boundary conditions, a mixed ’t Hooft anomaly
between a boundary gauge symmetry and flavour symmetry Ty will require a specialisation of
the background flat connections z; for consistency. An example is presented below.

4.3.1 Example

Let us continue with the example of supersymmetric QED with N flavours, and compute the
overlap (N|N) of the Neumann boundary condition N supported on CP¥~! C X.

In the limit £ — 0, we recover a 2d N = (2,2) gauge theory with G = U(1) and N chiral
multiplets of charge +1. The computation of the elliptic genus is subtle due to the mixed G—T}
anomaly with coefficient 2N. This is an example presented in [55]. The result is

_ ds n(t)? o 9(ts " vp)
(NIN) = jgrzms H(t—2) ﬁ(tsvfgl)

a=1

121
:il—[ﬁ(t_zva/vﬁ)’ (121)
a 'ﬁ(vﬁ /va)
where the JK contour T' selects poles at s = v,t™!, and single-valuedness of the integrand
requires t2N = 1 due to the mixed anomaly.

The latter is a consequence of considering the overlap between left and right Neumann
boundary conditions N; one cannot simultaneously make both of the redefinitions below equa-
tion (112) to define boundary axial R-symmetries with no mixed gauge anomaly. The G—U(1).
anomaly of the N chiral multiplets in the limit £ — 0 is equal, as expected, to the sum of the
anomalies of the left and right N boundary conditions given in (112).

The same result is reproduced by the decomposition into boundary amplitudes given in

equations (115) and (117) obtained in the opposite limit £ — ©0, but global consistency
requires t2N = 1.

38


https://scipost.org
https://scipost.org/SciPostPhys.13.1.005

Scil SciPost Phys. 13, 005 (2022)

4.4 Boundary Wavefunctions

We will introduce another decomposition by cutting the path integral using an auxiliary set
of Dirichlet supersymmetric boundary conditions. This type of construction has been used ex-
tensively in the literature on supersymmetric localisation [ 58-64] and analysed systematically
in [50,65].

There is significant freedom in the choice of auxiliary Dirichlet boundary conditions. Dif-
ferent choices have advantages and disadvantages, especially in how the auxiliary boundary
conditions interact with mass parameters. We describe two choices of auxiliary boundary con-
ditions that preserve ' = (2,2) and N = (0, 2) supersymmetry.

4.4.1 N =(2,2) Cutting

The first method uses boundary conditions that preserve 2d A/ = (2,2) supersymmetry and
involves Dirichlet boundary conditions for the vector multiplet [15]. Specifically, we consider
the following Dirichlet boundary conditions D, :

* An NV = (2,2) Dirichlet boundary condition for the 3d N' = 4 vector multiplet, where
the complex scalar vanishes at the boundary ¢ = 0, as does the parallel component of
the field strength F;, = 0.

* A N = (2,2) Neumann-Dirichlet boundary condition for the hypermultiplet. This de-
pends on a polarisation or Lagrangian splitting ¢ of the representation Q = T*R.® Let us
write R = CV with polarisation denoted by a sign vector ¢ € {}" specifying

X4,Y, ifeg =+
(X,,.Y.,) = (Xp.Yp) il ep forf=1,...,N. (122)
(Yﬂ9_X[5) leﬂ = —
The boundary condition specifies that
DiX,|=0, Y,|=0 (123)

and in particular X, 5 transform in A/ = (2, 2) chiral multiplets at the boundary.

In addition to the bulk flavour symmetry Ty, the boundary conditions support a boundary
G, flavour symmetry, generated by global gauge transformations at the boundary. Placing
the boundary condition on E_, in addition to the background flavour connection with holon-
omy as = ™% we may also introduce a background flat connection for the boundary G,
symmetry with holonomy s = e2™“, We therefore denote the boundary conditions by D,(s).

We now cut the path integral as follows. We first impose the above Dirichlet boundary con-
ditions on the left and right of the cut. This introduces a pair of boundary flavour symmetries
Gy, G,. We then introduce N boundary N = (2,2) chiral multiplets &5 coupled to the bulk
hypermultiplet fields to the boundary via a superpotential

N
W=ZX%I¢/5—¢/5IX;[,, (124)
p=1

which involves the hypermultiplet fields with Neumann boundary conditions. The boundary
superpotential identifies the boundary flavour symmetries G, Gé and imposes (omitting the
subscript on the polarisation)

_ow v’ ow _ oW

= = Y =— = = — =
g oX,| ¢ € o|X! ¢ d¢

X|—1X., (125)

®This is a decomposition of the representation T*R = L & L*, where L is a Lagrangian. We will use the two
terminologies interchangeably.
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thus identifying the hypermultiplet fields on each side. We then gauge the remaining diagonal
G, boundary symmetry to G, by introducing a dynamical 2d N = (2, 2) vector multiplet.
This leads to a decomposition of boundary overlaps

(B'|B"|B!|B") = (—)ff du Z,(s) (B'|D(s)|B'D¢(s)) (Dc(s)|B" D, (s)IB") , (126)
JK

where Z.(s) is the elliptic genus of the boundary vector multiplet and chiral multiplets.
We refer to (D,(s)|B|D.(s)|B) as the wavefunction of a right boundary condition B and
(B|D.(s)|B|D,(s)) as the wavefunction of a left boundary condition B. Note that the integrand
is independent of the choice of polarisation, with the dependence on ¢ in Z,.(s) cancelled by
the dependence of the wavefunctions.

The integral is over a real contour in the parameter space E; of flat connections and per-
formed according to the JK residue prescription for elliptic genera [55,56]. Provided there is
no anomaly for the total boundary G symmetry obtained by summing the contributions from
B!, B, the integrand is invariant under s — gs and there are a finite set of poles.

4.4.2 Example

For supersymmetric QED with N hypermultiplets,

R P Py

= . (127)
B(e72) 51 0(tsee vﬁﬁ)

Z,(s)

Let us reconsider the normalisation of the Neumann boundary condition N supported on the
base CPN™! C X from this perspective. For this boundary condition, it is convenient to choose
the polarisation ¢ = (+,...,+). Then we also have

N ’l?(ts_lVﬁ)

(NlDe(S)lNlDe(s» = (DS(S)|N|D€(8)|N> = m >
B

(128)
B=1

which reproduces the elliptic genus of the ' = (2, 2) chiral multiplets arising from the hyper-
multiplet fields X4 that have Neumann boundary conditions at both boundaries. Putting these
components together we find

__ n(@)? g Ftsvg") 9(es™lvg) B(es )
(NIN) = ﬁKdu 9(t=2) p=1 B(ts~1vp) ﬁ(tsvgl) ﬁ(tsv,;l)

(129)

n(q)? 1y Bts™ vp)
= — d 5
§, i e

which agrees with the previous computation (121).

4.4.3 N =(0,2) Cutting

The N = (2,2) cutting has some inconvenient features. First, it depends on a choice of po-
larisation €. Second, there may not exist a polarisation that is compatible with all the su-
persymmetric massive vacua {a}, meaning that some of the overlaps (D,(s)|a|D.(s)|a) break
supersymmetry and vanish. Finally, the auxiliary boundary conditions D,(s) may not be com-
patible with introducing mass parameters in the same chamber as a given boundary condition
B.

40


https://scipost.org
https://scipost.org/SciPostPhys.13.1.005

Scil SciPost Phys. 13, 005 (2022)

To circumvent these difficulties, we consider an alternative set of auxiliary boundary con-
ditions preserving only N = (0, 2) supersymmetry. The additional flexibility will allow us to
make more canonical choices that are compatible with all supersymmetric massive vacua and
mass parameters in any chamber.

Let us first note that a 3d A/ = 4 vector multiplet decomposes into a 3d N/ = 2 vector
multiplet and an adjoint chiral multiplet with scalar component . A 3d N = 4 hypermultiplet
decomposes into a pair of 3d N = 2 chiral multiplets X and Y. They decompose further under
2d N = (0, 2) supersymmetry as follows:

* The 3d N = 2 vector multiplet decomposes into a A/ = (0, 2) chiral superfield S con-
taining A; — io as its scalar component, and a A" = (0, 2) Fermi field strength multiplet
T, containing F.

* The 3d N = 2 chiral multiplets ¢, X, Y decompose into A/ = (0, 2) chiral multiplets o,
®y, ¥y, and N = (0, 2) Fermi multiplets ¥, Wy, Uy.

Alternatively, we could have first decomposed under N = (2, 2) supersymmetry, before further
decomposing under N/ = (0, 2) supersymmetry. From this perspective, the above supermulti-
plets arise from a chiral multiplet (S, \i@, ), a twisted chiral field strength multiplet (¢, T), and
chiral multiplets (®x, ¥y ) and (®y, —Px).
Let us now describe the auxiliary N' = (0, 2) boundary conditions. First, we always assign
a Dirichlet boundary condition for the 3d N = 2 vector multiplet. This supports a boundary
G, flavour symmetry and allows us to introduce a background flat connection with holonomy
s = 2™ We then assign a Neumann boundary condition for the A" = 2 chiral multiplet
containing ¢,
V,|=0, D;3&,|=0. (130)

This is in contrast with the A/ = (2, 2) Dirichlet boundary condition for a 3d N = 4 vector
multiplet, which would assign a Dirichlet boundary condition to ¢.

We then introduce two sets of auxiliary boundary conditions, with Neumann and Dirichlet
boundary conditions for all the hypermultiplet scalar fields. In terms of N' = (0, 2) supermul-
tiplets, they are:

D¢(s): x| =¥y =0, D3®x| = D3®y| =0, (131)
Dp(s): @x|=%y|=0, DyWy| = D3Wy|=0.
The subscripts therefore signify whether N' = (0, 2) chiral or Fermi multiplets obey Neumann
boundary conditions. We note that the D boundary condition is compatible with all super-
symmetric vacua. We can then associate wavefunctions (D.(s)|B) and (Dz(s)|B) to a right
boundary condition B and wavefunctions (B|D.(s)) and (B|Dg(s)) to a left boundary condi-
tion.

There are now four ways to cut the path integral by introducing the boundary conditions
D¢, Dg on each side with appropriate superpotential couplings. Different choices will reflect
different mathematical interpretations of the overlaps. We describe two of the four explicitly.

First, let us assign a left D boundary condition on the right of the cut and a right D on the
left of the cut. They are then coupled by a boundary superpotential given in terms of boundary
superfields as

szxd9+<1>xl |y + By |- [y + |- T, =T, - |y, (132)

where T, is an auxiliary boundary Fermi multiplet in the adjoint representation of G, whose
N =2 flavour charges are fixed by invariance of the superpotential. This identifies the bound-
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ary G symmetries and imposes

\I’Xl - |\I/X/, ‘le == |‘1>X/, \IJyl == |\Py/, (I)yl == |<I>Yv,

- S (133)
o, —|@, =0, T |=T,=T,,

which identifies X| = |X’, Y| = |Y’ and ¢| = |¢’ and their super-partners across the interface.
We then gauge the remaining diagonal G boundary symmetry by introducing a dynamical 2d
N = (0, 2) vector multiplet.

This interface leads to the decomposition of overlaps into boundary amplitudes,

(B'1B"|B'|B") = jé du, Zyr (s) (B'1Dc(s)|B'IDc(s)) (Dp (s)IB" IDp(s)IB") , (134)

where Zv,rw (s) is the contribution of the dynamical N' = (0,2) vector multiplet and Fermi
multiplet T, at the boundary together with a minus sign (—)" from the gauge integral,

Zyr, () = (@0 | [o6™)9(e%™). (135)

aEG

The product is over roots a of G.
The second type of interface assigns the boundary conditions D to both sides of the cut
and introduces the boundary superpotential

fdzxd9+<1>x| Ty —Tx - [y + @y |- Ty =Ty - [®y, + @, | - T, = T, - [Dyr, (136)

where Ty, Iy, and T, are boundary Fermi multiplets in the appropriate representations. The

superpotential couplings identify
¢X|_|q>X/:O’ ¢Y|_|¢Y/:0, \IIX|:FX:|\IJX/J lpylzryzl\:[lyl, (137)
q)cp|_|q>gp’:0: ‘I/¢|:F¢:|\IJSD/,

which again identifies the fields across the interface. We then gauge the remaining diagonal
G symmetry by introducing an N = (0, 2) vector multiplet. This interface allows overlaps to
be constructed from wavefunctions,

(BllB"IBllB">=§ du Zyy, Zp(s) (B'|Dg(s)|B'1Dc(s)) (Dc(s)IB IDc(s)IB™) ,  (138)
JK

where Z(s) is the elliptic genus of the boundary Fermi multiplets Iy and Ty.

It is straightforward to check that this decomposition is equivalent to the first. The Fermi
multiplets Ty, Iy implement a flip of the left boundary condition for the 3d N/ = 2 chiral
multiplets X, Y from Dirichlet to Neumann. For the decompositions of overlaps, the ratio of
the wavefunctions (D (s)|B|D.(s)|B) and (Dz(s)|B|Dr(s)|B) is precisely the contribution Zp(s)
of the boundary Fermi multiplets.

The remaining two decompositions are constructed in a similar manner. In summary, the
four possible decompositions of an overlap into wavefunctions are

(B'|B") = § du Zyr, (s)(B'IDc(s)|B'IDg(s)) (Dp(s)|B"|Dp(s)|B")
= jg du Zv,rw(s)<BI|DF(5)|BZ|DF(S)> (Dc(s)IB"[D¢(s)|B")

(139)

= jﬁ du Zyp Z:(s) (B! D¢ (5)|B' D¢ (s)) (De(s)|B" D (s)IB")

= jﬁ du Zy;, Z¢(s) (B' Dy (s)|B D () (De (5)|B D (5)IB") .
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Here Z(s) is the elliptic genus of auxiliary A/ = (0, 2) chirals Cx and Cy coupled to ¥y and
Uy at the analogous interface to (136) with the roles of chirals and Fermis interchanged. It is
easy to check from the charge assignments that Z; = Z; L

If both B!, B" prescribe Neumann boundary conditions for the vector multiplet, the integral
is a JK residue prescription [55-57]. As before, if the effective 2d N = (0, 2) theory has mixed
't Hooft anomalies involving the gauge symmetry, it is necessary to restrict the background flat
connections to ensure the integrand is periodic and the contour integral is well-defined. In
section 5, we will consider boundary conditions involving Dirichlet for the vector multiplet,
which enforce a different pole prescription.

For the wavefunctions for the auxiliary boundary conditions themselves, by setting
B! = Dy (s’) in the top line of (139), consistency requires that

(Dp(sIDc(s)) = Zyp, ()76 (w—u). (140)

Here 5 (u—u’) should be considered as a pole prescription around a pole of rank r at u = v’
of residue 1. The wavefunctions involving other combinations of D., Dy are related by a
normalisation by Z. or Zr.
The wavefunction (140) is consistent with its path integral representation on E, x [0,£].
If s # s’ the system breaks supersymmetry and the path integral vanishes. If s = s/, sending
¢ — 0, the remaining fluctuating 2d N = (0,2) supermultiplets are the adjoint chiral &,
charged under T;, and an adjoint chiral S neutral under T;. The Cartan components of the
latter naively gives a factor
(—o, (141)

which is singular. However, noting that
2mi Res,_o9(q; e2™) 1 = n(q) 2, (142)
we replace the contribution of the S by

6 (u—u')
n(q)?"

where the delta function is regarded as a pole prescription as above. If we combine this with
the off-diagonal contribution of S and the adjoint chiral ¢, we reproduce (140).

(=) (143)

4.4.4 Example

Let us take supersymmetric QED with N hypermultiplets and again consider the overlap of the
Neumann boundary condition supported on CPY~! c X. By taking the limit £ — 0, one has
the following wavefunctions

(Dp(s)INIDg(s)IN) = (N|Dr(s)IN|Dg(s)) =

N
-1 —1..,-1
’ﬁag)ljlﬁ(t svg1),
p=1
N

PeOINIDOIN) = NIDONIPe) = o5 | [ 505
p=1 B

(144)

In the first line, the remaining degrees of freedom after collapsing the interval are the chiral
multiplet ¢, and the N Fermi multiplets Wy,. Similarly, in the second line, the remaining
degrees of freedom are &, and the N chiral multiplets &y 5
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The various contributions to the cutting formula are

Zyr, = (@),

(145)

N N
Zr=| |00t sv D)ot s vg),
r /H ( SVﬁ )U(t s Vﬁ) l:[ﬁ(tsv 1)’0(1‘.8_1\//5)

and using any of the four decompositions in equation (139), the normalisation of the Neumann
boundary condition agrees with (121).

4.5 Wavefunctions to Amplitudes

We now explain how to pass from wavefunctions to boundary amplitudes. We present the
results for boundary amplitudes constructed from the supersymmetric ground states |a) and
wavefunctions constructed from the A" = (0,2) boundary conditions Dg(s) and D.(s). These
combinations are canonical in the sense that they do not depend on a choice of chamber or
Lagrangian splitting. Other choices are found from the relations presented in previous sections.

We will derive the results using consistency between the decompositions into boundary
amplitudes and wavefunctions considered thus far. We will introduce boundary condition rep-
resentatives of the supersymmetric ground states and a derivation of the same results utilising
supersymmetric localisation in section 5.

Let us then compare the decomposition of an overlap into wavefunctions and boundary
amplitudes. For this purpose, it is most convenient to start from the decomposition into wave-
functions using the auxiliary Dirichlet boundary condition Dy(s),

<Blle>=§ du Zyy, Zc(s) (B'|Dp(s)|B'IDg(s)) (Dg(s)|B"IDg()IB") . (146)
JK

Let us assume B! and B prescribe a Neumann boundary condition for the vector multiplet.
Then the poles contributing to the JK residue prescription arise entirely from the contribution
Zc(s) of the auxiliary chiral multiplets and are in 1-1 correspondence with supersymmetric
vacua a.

Let us describe this concretely, returning to the description of supersymmetric vacua in
section 2.2. The contribution of the auxiliary chiral multiplets may be expressed in terms of
the weight decomposition of the matter representation T*R as

1
Ze(s)= l_[ e’ (147)

0€T*R

where we have denoted the G x Ty x T, fugacities collectively as w = (s, v, t), and weights as
o =(p, Py, P:)- The JK residue prescription for the elliptic genus [55, 56] selects the rank r
poles given by

wéi=1, i=1,...,r, (148)

where the collection of G weights {p;,...,p,} obey the conditions outlined in section 2.2.
Such collections are in 1-1 correspondence with supersymmetric vacuum a. Recall we may
invert the weights to obtain a unique value of the boundary gauge flat connection u = u,, and
denote s, = e2™ta,

This implies the following crucial property of the contribution of the integrand:

1

(2m’)rufieus ZV’FW(S)ZC(S) = l_[

AED,
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In the above, the contribution of the N = (0, 2) vector multiplet and adjoint Fermi I}, play the
role of the complex moment map and quotient in (32).

This is consistent with the decomposition into boundary amplitudes (118) provided the
wavefunction (Dp(s)|B) evaluates to the boundary amplitude (a|B) at s = s,. In summary,
consistency demands that

(Dp(s4)IB) = (alB), (150)
(27 Res 2y, (6) (cB) = [ | g (alB). (151)
* rED,

Note that this implies the supersymmetric ground states |a) lie in the same Q-cohomology
classes as the boundary states generated by a boundary condition of the form Dg(s,). We
return to this observation in the next section.

It is also useful to consider the wavefunctions of the supersymmetric ground states them-
selves. Compatibility with the above results and the normalisation of supersymmetric ground
states requires that

(Dp(s)la) = | | 9a™, (152)
AED,
2ni)" Res Zyr. () (Dc(s)|a) =1. (153)

4.5.1 Mathematical Interpretation

Let us now discuss the interpretation of the boundary wavefunctions in terms of equivariant
elliptic cohomology. We have already seen that the boundary amplitudes (a|B) transform as
sections of holomorphic line bundles on E (T‘;‘) that glue to a section of a holomorphic line bundle
on E;(X). The wavefunction repackages this information using the gauge theory description
of E;(X) described in section 3.5.2.

First note that the auxiliary Dirichlet boundary conditions break the gauge symmetry, leav-
ing a boundary G flavour symmetry, which we have denoted G;. The corresponding wavefunc-
tion (Dy(s)|B) therefore transforms as a section of a line bundle on the spectral curve Ey %X Eg,
where the flat connection s parametrises E;. The associated boundary amplitudes obtained
by setting s = s,

(a|B) = (Dg(s4)|B), (154)

represent the equivariant elliptic cohomology class obtained by pull back via the inclusion
¢ : Er(X) — Ep x E;. In the mathematics literature we reference, e.g. [5,8,51,76] equivariant
elliptic cohomology classes are often given in this ‘off-shell’ form, as classes on Ey + X Eg, with
the pull back implicit.

4.5.2 Example

Let us return to supersymmetric QED and check the relation between the boundary amplitudes
and wavefunctions of the Neumann boundary condition N supported on CPY~! c X. The
wavefunctions were given in (144). We then have s, = v,t ! and

(Dp(sa)INIDp(s)IN) = [ [0t 2vqvy (155)
B#a
which agrees with the boundary amplitude (a|N|a|N) in (117). Similarly, we find

2@ Resse, ONIDON) = [T 5oy (156)
pa a
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5 Exceptional Dirichlet

5.1 The Idea

In this section, we introduce another perspective on the supersymmetric ground states. The
idea is to find a distinguished class of boundary conditions that are equivalent to a vacuum
at x> — £00, at least for the purpose of computations preserving the supercharge Q. This
is illustrated in figure 11. This can lead to a convenient method to compute boundary am-
plitudes using supersymmetric localisation. Such boundary conditions preserving N = (2,2)
supersymmetry were first considered in [15], and have been studied further in [20, 66].

R
8

Figure 11: Vacuum boundary conditions.

5.2 N =(2,2) Exceptional Dirichlet

First consider generic mass parameters in some chamber ¢. We consider V' = (2, 2) boundary
conditions D], D(lx which mimic a vacuum a at x> — +oo for computations preserving the
supercharge Q. Wrapping such boundary conditions on E, will produce boundary states in the
same Q-cohomology class as the supersymmetric ground states |a)¢, ¢(al.

In particular:

* The boundary amplitude ((a|B) = <D(§|B{D;|B> is the path integral on E_ x [—{,0] with
R-R boundary conditions with the right boundary condition B at x> = 0 and the distin-
guished boundary condition D(ll at x3 =—(.

* The boundary amplitude (B|a), = (BID;{BID;) is the path integral on E, x [0, {] with
R-R boundary conditions with the left boundary condition B at x> = 0 and the distin-
guished boundary condition D, at x3=1.

If we can find UV gauge theory constructions of the distinguished boundary conditions D(lx, D)
this will provide a convenient method to compute boundary amplitudes using supersymmetric
localisation on E. times an interval.

There are two important consistency checks on any proposal for such distinguished bound-
ary conditions:

 From the perspective of a massive sigma model to X, the BPS equations for 2d N' = (2, 2)
supersymmetry are gradient flow for the real moment map h,, : X — R. Therefore, to
mimic a massive vacuum a at x> — +00, the boundary conditions D;’l must flow to
Lagrangian branes supported on the repelling/attracting manifolds X7 C X.

* By anomaly inflow, the boundary anomalies of D, Dé must match the effective super-

symmetric Chern-Simons couplings in the vacua a. In our conventions, if we denote the
boundary anomalies of D] by k,, kg, k{: , kg, Ehey should match the effective supersym-
metric Chern-Simons couplings «, Kg, xH %, introduced in section 2 in the chamber

a
¢. The boundary anomalies of Dfl should be minus these.
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If the latter condition is satisfied, it is guaranteed that overlaps with other boundary conditions
B!, B" will transform in the same way as the boundary amplitudes (B!|a)¢, ¢ (a|B") under large
background gauge transformations.

5.2.1 Construction in Abelian Theories

A UV gauge theory construction of the distinguished boundary conditions D(lx, D] in abelian 3d
N = 4 gauge theories was found in [15] and are known as exceptional Dirichlet. This proposal
passes the first consistency check by construction. That they pass the second consistency check
was proven in [20].

To construct exceptional Dirichlet boundary conditions, recall that in the vacuum «a the
real vector multiplet scalar o is uniquely determined by (having turned off €)

pi-o+py;-m=0, (157)

where o; = (p;, Pu 1> P¢;) withi =1,...,r are the set of weights associated to the vacuum a.
This in turn determines the effective real masses in the vacuum a of all remaining hypermul-
tiplets. Fixing a chamber for the real mass parameters, we may split the hypermultiplet fields
into those with zero, positive and negative mass.

For the right exceptional Dirichlet boundary condition, we define a splitting ¢, as in equa-
tion (122) such that Y, er consist of hypermultiplet fields with negative real mass in the vacuum
a, or those which both have zero real mass and attain an expectation value in a. Then the
right exceptional Dirichlet boundary condition D], is defined as follows.

* AN =(2,2) Dirichlet boundary condition for the vector multiplet. The boundary value
of ¢ is fixed by requiring the effective complex mass of all hypermultiplets with expec-
tation values in a vanish. For m¢c =0, ¢| =

* A Neumann-Dirichlet boundary condition for hypermultiplets

0, if Y, has negative real mass in a,
D/ X.|=0, Y, |— e . . (158)
@ c, ifY,. has zero real mass in a and attains a vev,

where c is the expectation value in the vacuum a.

The Higgs branch image of D, is precisely the repelling set X, C X, since the hypermultiplet
fields Xer are exponentially suppressed under the inverse gradient flow.

For the left exceptional Dirichlet boundary condition Dl we instead take Y, to be chirals
of positive real mass in the vacuum a, or those which have zero real mass and attain a vev.
Similarly, the image of the boundary condition D(lx is X' CX.

Wrapping the theory on E_, a feature common of both left and right boundary conditions
is that the boundary gauge flat connection u is fixed in terms of z;;, 2, to the value determined
by the vacuum, i.e. the unique solution of

Pi-u+tpy;-zy+p iz =0. (159)

This condition is not required to be invariant under shifts of Z + 7Z, as the gauge symmetry is
broken to a flavour symmetry at the boundary due to the Dirichlet boundary condition for the
vector multiplet. We denote the distinguished value of the boundary holonomy u,, and also
Sq = eZm'ua.

The above construction can be elegantly rephrased in terms of weights. The splitting cor-
responds to introducing the decomposition

Q=QIuQ uq’ (160)
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of the matter representation Q = T*R into weight spaces, which after the evaluation at the
fixed point (32), correspond to positive, negative and zero weights respectively. Note that if
a chiral X has positive real mass, its corresponding weight in T*R is in fact d/dX and thus
corresponds to an element of Q, .

We note that

Q) ={0i,0f =—2¢,—p; fori=1,...,r}, (161)

where p; are the weights which label the vacuum a, and p; the weights corresponding to
their partners from the same hypermultiplet. After evaluation at the vacuum, w¢ = 1 for
i=1,...,r (or equivalently s = s,), the character of Qg is precisely cancelled by uc and the
gauge group quotient in (32). One also has

0EQ, & pfeqQ (162)

again corresponding to pairs of chirals in the same hypermultiplet.
The polarisation is then rephrased in terms of weight spaces as

. d/dX% € Q,U{p;,i=1,...,r},
g
@ d/dy, € Qiufpl,i=1,...,r},
@ ! ' (163)
| d/dXegl € Q,Uf{o;,i=1,...,r},
g
@ d/dYsé‘ € Q U{p/,i=1,...,r}.

5.2.2 Anomalies

Let us derive the boundary anomalies of D/, and check they match the supersymmetric Chern-
Simons levels in the vacuum a.

First, the boundary anomalies involving the topological symmetry come purely from anoma-
ly inflow and therefore trivially match the Chern-Simons couplings k, Kg. As in section 2,
they coincide with the bilinear couplings appearing in the moment maps h,,, and h,. at the fixed
point a. This matching was shown in detail for abelian theories in [20].

Let us therefore focus on anomalies arising from bulk fermions, computed using the results
in [16]. We focus on N = 2 flavour symmetries, and first compute the anomaly polynomial for
zero boundary expectation values ¢ = 0. The boundary condition initially supports an addi-
tional flavour symmetry G, with field strength f;, generated by global gauge transformations
at the boundary. Using the description (163), the undeformed anomaly is

1 17 1 1
SRS S I (RIS § (GRS | (CRIE [ (G et
i=1 i=1

e<€Qt e€Q,

where we have denoted F = (f;, fy, f; ). Turning on the expectation value c, G, is broken and
f; is set to the value determined by solving p; -F=0 for i = 1,...,r. This is analogous to the
substitution in the character (32).

Evaluating the above and re-introducing the terms from anomaly inflow, we recover

1 1
PLD;] = kalfir, fe) + kG (L, o)+ AZCP (£ = AZ@ (A-£2, (165)
eef eed

which matches the Chern-Simons levels (37), i.e. P[D]=P,.

One similarly recovers P[Dé] = —P,, due to the opposite Lagrangian splitting and contri-
bution from anomaly inflow due to the orientation of the boundary. This agrees with anomaly
inflow from placing a massive supersymmetric vacuum a on the left.
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5.2.3 Orthonormality

Another consistency check is to show that the interval partition functions of left and right
exceptional Dirichlet boundary are orthonormal:

(DLID) =64 (166)

The configurations contributing to the localised path integral on E. x I have constant profiles
for the hypermultiplet scalars [19]. This implies that if @ # 8, the boundary expectation
values and holonomies are incompatible and break supersymmetry. If a = 3, taking £ — 0,
the remaining fluctuating degrees of freedom consist of a neutral N = (2, 2) chiral multiplet
(S, \f’w) of R-charge 0 and r chiral multiplets (®x , , Wy, ) for each X ¢r of vanishing mass. The
former is naively singular, with a contribution - -

92\
’ 167
( 9(1) (167)
however this is cancelled by the contribution from the r chiral multiplets
b
i1 Twe) [eies (168)

i=1,.,r

when evaluated at the value of the boundary holonomy of G, determined by both D(lx and D).
This recovers the expected normalisation (166).

5.2.4 Example

Let us consider supersymmetric QED in the default chambers. The exceptional Dirichlet bound-
ary conditions are given by Dirichlet for the vector multiplet and the following boundary con-
dition for the hypermultiplets,

D3Y/3 :0, Xﬂ:C(Saﬁ’ /5 <a,

D’ :
@ DyXg=0, Yz=0 B>a
346 ) p ) 5

(169)

D3Xﬁ=0, Yﬁ=0, [3’<a,

D! :
@ DBYﬁZO, Xﬂ:C5OL[57 ﬂZa,

(170)
where ¢ # 0. In both cases, as X, = c, the effective real and complex mass parameters of this
hypermultiplet field must vanish. This requires requires c = m, and ¢ = m, ¢, where m, ¢
are the complex mass parameters for Ty;.”

Wrapping on E_, the choice of vacuum a uniquely determines the value of the holonomy
u of the gauge field at the boundary

U=2pq—3% :=U, = sv, t=1 (171)

according to the hypermultiplet scalar X, with a non-vanishing expectation value.

Next, we check the support of the right boundary conditions in X = T*CPV~!. Let
{eq,€q, -+) € CP"~! C X denote the projective subspace generated by the fundamental
weights e, , €q,, -+ of Ty. The supersymmetric vacua or fixed points are a = (e,). Now

7 Although we ultimately set the complex mass and FI parameters parameters to zero, which determines a fixed
maximal torus U(1)y x U(1), it is sometime convenient to include them when discussing boundary conditions
and interfaces in flat space.
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consider the subspaces U, = (e,,...,ey) and inclusions t, : U,,; — U,. Then the right
exceptional Dirichlet boundary conditions have support®

N1U, — N*U,, (172)
where N1 denotes the co-normal bundle. This has the following interpretation:

* The coordinates X for § > a parametrise the base U,,.

¢ The coordinates Y5 for 5 < a parametrise the co-normal directions to U, .
B p a

* The pull back ¢;N LU, is excluded due the constraint X, = ¢ # 0.

This support is the attracting set X in the default chamber. Note that the closure of the
attracting set is the whole co-normal bundle X_(; = N1U,. This is illustrated in terms of the
hyper-toric diagram in figure 12. A similar argument shows that the left boundary conditions
are supported on X .

X, I? — 1Y,

3 1 X, 12 =1y, 2

Hs

3

Figure 12: The hyper-toric diagram for the Higgs branch of supersymmetric QED
with N = 3, see e.g. [15]. The slice XgYg =0 for all § = 1,2,3 is a fibration over
R? with typical fibre (5!)?, where one combination of the circles degenerates along
each of the hyperplanes #g defined by the vanishing of the hypermultiplet (Xg, Yp).
The diagram is an illustration of the base. The fibre fully degenerates to a point at
each vacuum {1, 2, 3}. The support of each exceptional Dirichlet boundary condition
D! in the default chamber is shown. For D and D, we subtract the intersection
with hyperplanes H; and #, respectively. For D] there is no such intersection. The
direction of inverse gradient flow in the default chamber is shown by the dotted
arrow.

Finally, we check the boundary anomalies reproduce the supersymmetric Chern-Simons
coupling in the vacuum a in equations (23) and (25). We initially introduce separate field
strengths f;, and f, for the vector and axial R-symmetries. For the right boundary condition,
starting with ¢ = 0, the anomaly polynomial is

—fafc—fva+(Z(f§—fa)+Z(fa —fﬂ))fA- (173)

f<a p>a

8These Higgs branch images are found by taking the intersections of the Lagrangian submanifold of T*R = C?¥
specified by the splittings (169) and (170) with the moment map constraint e = 0. One does not quotient by
the gauge group because it is broken at the boundary by the Dirichlet boundary condition for the vector multiplet.
Neither does one impose the real moment map ug = {, which arises as a D-term constraint, because it is absorbed
into the boundary condition for . See section 3 of [15] for more details.
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The first term comes from anomaly inflow from the mixed Chern-Simons term coupling the
gauge symmetry to the topological symmetry, or equivalently the FI parameter. The second
comes from gauginos, and the third from hypermultiplet fermions.

Now turning on ¢ # 0, a combination of Ty, U(1)y and G is broken. This can be seen as
breaking G, and a re-definition of the boundary symmetries Ty and U(1)y,

B _ ;B.,bulk ap
JP=y +5%7,,
o oH ¢ (174)
JV:JU(I)H_JG'

In the anomaly polynomial, this sets f; = f; —f;,. Thus the boundary 't Hooft anomaly poly-
nomial for the right exceptional Dirichlet boundary condition is

PIDL] =—fafe +fufe+( D (f — )+ D (G — D))+ fRa—N—Dfs. (175

f<a p>a

Note now fy and f, are field strengths for the boundary symmetries (174). This matches
the supersymmetric Chern-Simons levels in the default chamber, after replacing f, = —f; and
f, =f;. Similarly P[D]=—P[D’].

5.3 N =(0,2) Exceptional Dirichlet

We now consider the case of vanishing mass parameters and construct boundary conditions
D,, whose boundary states on E_ lie in the same Q-cohomology class as the supersymmetric
ground states |a). Such boundary conditions will have the property that:

* The boundary amplitude («|B|a|B) = (D,|B) is given by the path integral on E. x [—{, 0]
with R-R boundary conditions with right boundary condition B at x> = 0 and the distin-
guished boundary condition D,, at x3 = —.

* The boundary amplitude (B|a|B|a) = (B|D,,) is given by the path integral on E x [0, {]
with R-R boundary conditions with left boundary condition B at x> = 0 and the distin-
guished boundary condition D, at x> = {.

Note that we have not introduced separate notation for left and right boundary conditions, as
we will see momentarily that they take the same form. With explicit UV gauge theory construc-
tions of such boundary conditions, this provides a convenient way to compute the boundary
amplitudes via supersymmetric localisation. Recall these amplitudes glue to a section of a
holomorphic line bundle on E;(X).

Three consistency checks on a proposal such a class of boundary conditions are:

* The boundary condition D, should flow to Dirichlet boundary conditions in a massive
sigma model to X supported at the fixed points a € X.

* By anomaly inflow, the boundary anomalies should match the shifted supersymmetric
Chern-Simons couplings given in (85),

1
|D,) : Ka+1<g+—z7t®l,
r€d,

1
R o
(Dol © —kyq Ka+4ZA®}\,
r€d,

(176)

which are independent of the chamber for the mass parameters.
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* The corresponding boundary states are normalised with respect to N = (2,2) excep-
tional Dirichlet boundary conditions such that

(D.|B) = (DL|B) x | | #(a™),

AEDY

(BID,) = (BID) x [ [ #(a™),

VRS e

(177)

in agreement with (104).

The last two compatibility checks are of course intimately related. The second ensures that
the overlaps with boundary conditions B! and B" transform in the correct way under large
background gauge transformations.

5.3.1 Construction

The N = (0, 2) exceptional Dirichlet boundary condition D, has a simple construction that is
valid for any supersymmetric gauge theory, and is the same for both left and right. Decompos-
ing into 3d V' = 2 supermultiplets, the boundary conditions are specified as follows:

* The vector multiplet has a Dirichlet boundary condition.
* The adjoint chiral multiplet ¢ has a Neumann boundary condition (130).

* The chiral multiplets X, Y are all assigned Dirichlet boundary conditions with boundary
expectation values as in the vacuum a, completely breaking the boundary G5 symmetry.
The remaining fluctuating degrees of freedom at the boundary are the A" = (0, 2) Fermi
multiplets Uy and Wy .

The support of this boundary condition is the vacuum a € X.
We note that this construction is compatible with the formula (150), reproduced below

(Dp(sy)|B) = (a|B), (178)

relating boundary wavefunctions and amplitudes. The V' = (0, 2) exceptional Dirichlet bound-
ary condition D, is obtained from the N/ = (0, 2) auxiliary Dirichlet boundary condition Dy(s)
by turning on expectations values for hypermultiplet scalars as in the vacuum a. This fixes the
boundary holonomy to s =s,.

5.3.2 Anomalies

Now consider the boundary anomalies of D,. Those involving the topological symmetry T
are the same as for the NV = (2, 2) exceptional Dirichlet boundary conditions and arise from
anomaly inflow. The remaining anomalies arise from fermions in chiral multiplets surviving
at the boundary. In terms of the matter representation T*R, their contribution to the anomaly
polynomial for ¢ = 0 are
1 2
—rfi+5 [ | e PP, (179)
o€T*R

where we have again denoted F = (f;,fy,f;). Turning on ¢ # 0, we must again eliminate f;
by solving p; - F = 0. The above contribution becomes

" l_[ (A-£)>. (180)

Ae@
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Adding in the contributions from anomaly inflow, one obtains

D)+ P =tro(fy, fo) + kS (fr, ) + - ]_[(x £)2,
Ae@

(Dal 1 P =—ro(fy, fc) =G (fr. ) + 5 1‘[@ £)2,

/le<1>

(181)

where the anomaly polynomials of the right and left boundary conditions are related by flip-
ping the contributions «, Kg. This reproduces the expectation (176)

5.3.3 Orthogonality

We now check that the path integral on E, X [0, £ ] with boundary conditions D, at both bound-
aries reproduces the normalisation of supersymmetric ground states |a) in (68). If a # f3, the
partition function will vanish as before. Assuming the contrary, taking £ — 0, there is a con-
tribution from Fermi multiplets Wy, Wy,

1 ﬁ(wg)‘ = (@92 | | 9(ah). (182)

e€T*R AED,

The first factor has a zero of order r, but is cancelled by the remaining contribution of the
adjoint chiral multiplets S and &,. In summary,

(DalDp|DalDp) = 845 | | 9(a™). (183)
AED,

5.3.4 Example

Again let us consider supersymmetric QED in the default chambers. The A = (0, 2) exceptional
Dirichlet boundary conditions are found by imposing a Dirichlet boundary condition for the 3d
N = 2 vector multiplet, a Neumann boundary condition for the chiral multiplet ¢ = (®,,T,),
together with

ngjxﬁ =0, Xﬁ =C5(1ﬁ5

Dyly =0, ¥4 =0, B=1,...,N, (184)

for the hypermultiplets. The Higgs branch image is the fixed point @, in which X, # 0. We do
not impose ¢ —m, ¢ = 0 as for N = (2, 2) exceptional Dirichlet boundary conditions, as here
(p is assigned a Neumann boundary condition.

Setting the expectation value to zero, ¢ = 0, the boundary anomaly polynomial is, initially
keeping track of separate U(1)y and U(1), anomalies:

f, - fc—— (2 +£)+ Z[(fa— —£)% + (—f5 + £ — £ ], (185)

4>|»~

where the + sign is for (a| and the — is for |a). Turning on the expectation value, ¢ # 0, we
again make the redefinitions of boundary symmetries (174) and set f; = {2 —f;,. Let us also
pass to considering only 3d A/ = 2 flavour symmetries, and set f, = —f, = f;. We obtain

F(EL —£,)fo + = Z[(fﬁ £4)2 + (—2f, — £ + £2)%], (186)
ﬁ#a
which agrees with (176) with x, = —e, ® e; and Kg =e, ® ec as expected.
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5.4 Boundary Amplitudes

The exceptional Dirichlet boundary conditions Dfx’r and D, provide an independent way to
compute boundary amplitudes using supersymmetric localisation for the interval partition
function [57]. In this section, we show such computations agree with the formulae derived
via general consistency constraints in section 4.

We begin with the boundary amplitudes with vanishing mass parameters. From the ex-
plicit form of exceptional Dirichlet D, boundary condition as Dy (s) with boundary expectation
values and s =s,, we immediately find that

(a|Bla|B) = (Dr(so)IBIDr(so)IB) ,  (BlalBla) = (BIDg(sq)|BIDp(sq)) » (187)

as required by consistency in (150).

Now let us consider the boundary amplitudes with mass parameters in some chamber.
Specialising to an abelian gauge theory, the exceptional Dirichlet boundary condition D], is
obtained from D, by a coupling to the boundary superpotential

J d?xd6™ (<1>¢| Ty + Wy, |- csg) , (188)

where Cer and T, are boundary chiral multiplets and an adjoint Fermi multiplet respectively.
There is an implicit sum over each component of the polarisation ¢/, that specifies the boundary
condition D]. The boundary coupling implements a flip [16] of the boundary conditions for
the chiral multiplets ,X,Y to those specified in D],.

The elliptic genus of the additional boundary contributions C,, I, is

1 4 1 1
H(t2)" - = : (189)
ple_Q[; d(we) !:1[ F(w8i ) ls=s4 Al;[a H(a?)
We therefore have 1
(BiDglBID) = | | 5ros BIDalBIDG) . (190)

VRS

which reproduces (177). A similar argument applies to boundary amplitudes involving the
left exceptional Dirichlet boundary condition D(lx.

5.4.1 Lagrangian Branes

To illustrate the utility of this approach, we derive the formulae proposed in section 4.2.3 for
the boundary amplitudes of boundary conditions flowing to smooth Lagrangian branes L C X
in the sigma model to X.

An N = (2,2) boundary condition N; flowing to a smooth Lagrangian brane L C X can
be constructed by imposing Neumann boundary conditions for the vector multiplet, together
with a standard boundary condition for the hypermultiplet specified by a polarisation ¢;. The
Lagrangian L is the image under the hyperKéhler quotient of the Lagrangian Q; € Q = T*R
specified by the polarisation.

First note that for the boundary amplitude with D, to be non-vanishing, the polarisation
€; must be compatible with the vacuum a. This means any hypermultiplet scalar which has a
non-zero expectation value in the vacuum a is one of the {X,, }, and not the {Y, }. Equivalently,
this means that Q; contains the weights p;, i = 1,...r which label the vacuum a.

Let us then consider the boundary amplitude (N;|D,). Sending the length of the interval to
zero, the remaining degrees of freedom on E. consist of the A/ = (0, 2) adjoint chiral multiplet
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&, and the Fermi multiplets ¥y_ . The holonomy of the gauge connection is fixed to s,. Thus,
€l

(N|Dy|NL D)

ﬁ(t 2)r l_[ ﬁ(wg*)

eeQ;

[ o (191)

red, (L)

[ #@h.

r€d, (L)

=Sa

Note that the contribution from &, is cancelled by the Fermi multiplets paired with hyper-
multiplet scalars which get expectation values in the vacuum a. This reproduces the for-
mula proposed in equation (109), which is the elliptic genus of Fermi multiplets parametris-
ing (T,L)* c T,. These boundary amplitudes represent the equivariant elliptic cohomology
class of . C X. Note the result vanishes unless {p1,...,0,} C Q;. The boundary amplitude
(DgIN;|D,|N;) gives the same answer.

Let us now assume the left boundary condition N; is compatible with mass parameters in
some chamber, and consider the boundary amplitude <NL|D;|NL|D;>. Sending the length of
the interval to zero, the remaining degrees of freedom on E, consist of the N = (2, 2) chiral
multiplets compatible with both the splitting ¢/, of D, and ¢}, of N; . Assuming {01,...,0,} CQy,
they are precisely the A/ = (2, 2) chirals containing scalars dual to the weights in

Q. NQ;. (192)

At the fixed point, these become the weights in &_ (L) C &, of the tangent space T,L C T, X .
Therefore (NLlD;\NLIDm is given by the (2, 2) elliptic genus

B(we) #(a™)
AR AAE | = I1] (193)
¢ ¢ €QNQy ﬁ(wg) =S4 Aed (L) ﬁ(ak)
and similarly
H(we) (™)
(DN DLINY = [ ] [1 : (194)
¢ ¢ e€QNQE ﬁ(wg) s=s A€d¥(L) ﬁ(al)

This reproduces the boundary amplitudes (108).

5.4.2 Example

Let us return to the Neumann boundary condition N for supersymmetric QED that flows to the
compact Lagrangian brane L = CPY~! ¢ X. In the default chamber, this corresponds to the
polarisation &; = {+,--- ,+}.

In computing the boundary amplitudes with D, the remaining degrees of freedom on E,
are the N Fermi multiplets \I/Yﬁ, B =1,...,N, and a neutral chiral multiplet P,. Thus

N
(DalNy D4 IN,) = ﬁ [ Toe s

—l_[ﬁ(t 2y, Vg -1

p#a

s=vgt—1

(195)

with an identical result for (N; |D,|N;|D,). This reproduces the previous formula (117). Note
that the parameter t corresponds to the left-moving boundary R-symmetry T; = U(1),—U(1),,
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where U(1), is the boundary axial R-symmetry defined in section 4.2.4 and U(1)y, is the bound-
ary vector R-symmetry defined in (174).

The boundary condition N is compatible with mass parameters in any chamber. In the
overlap <N |D£|N |D£>, there are no fluctuating degrees of freedom from the vector multiplet.
The remaining contribution comes from the A" = (2, 2) chiral multiplets containing the scalars
Xg for B > a in the default chamber, evaluated at u = u,. Thus:

B(t722)
(nipz|NIDL) =] -~ (196)

—
poa UG
which reproduces the previous formula (115).

5.5 Wavefunctions of Exceptional Dirichlet

We now consider the wavefunctions of exceptional Dirichlet boundary conditions, either on
the left or right, and at the origin or in a chamber of the mass parameter space,

(DLIDG(9)|[DLIDe(s)),  (Dc(s)IDL|De(s)IDL) (197)
(DalDC(s)lDa|DC(s)>7 (DC(S)|Da|DC(s)|Da) . (198)

Here we use the N' = (0, 2) boundary condition D, to write down wavefunctions, since it is
compatible with the non-vanishing expectation value for X,,.

A common feature is that, similarly to the auxiliary Dirichlet boundary conditions (140),
the wavefunction vanishes unless s = s,. Provided s = s,, collapsing the interval there is
fluctuating adjoint N/ = (0, 2) chiral multiplet S, whose elliptic genus becomes singular. Using
identical reasoning to the discussion surrounding equations (141) to (143) we replace this
contribution by
r 5(r)(u B ua)

n(Q)*

where the delta function is understood as a contour prescription around an order r pole at
u = u, with unit residue.

Let us first consider the wavefunction of the A/ = (0,2) exceptional Dirichlet boundary
conditions D,. In addition to the contribution above, for both left and right boundary con-
ditions, the only other contribution comes from the adjoint chiral multiplet &,. In summary,

(=) (199)

(DD IDLIDS) = (D (IDLIDSID,) = 2 te). (200
e aTee IR T @) (g)2)r
This wavefunction obeys the expected property (153).

For the NV = (2, 2) exceptional Dirichlet boundary conditions, there are additional contri-
butions of the N = (0, 2) chiral multiplets arising from the hypermultiplet fields with Neumann
boundary conditions. For the right boundary condition D, their contribution may be written
in terms of T*R weights as

r

1 1 1 1
!:1[ F(wei) Qle_Q[g F(we)ls=s,  9(t=2)" Ale_@[; 9ar) (201)
Thus .
r r\ _ o r (u—ua)
(PeD;|PeIDL) = sy 1T 5ty 209
AED,
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and similarly

5(r)(u_ua)
<Dé|DC(s)|Dé|DC(s)> = (n(Q29(t2) [ 9(a*) (203)
AEDE

These wavefunctions satisfy the relative normalisations of the boundary states created by the
N =(2,2) and N = (0, 2) boundary conditions (177).

It is easy to check that these wavefunctions are consistent with the formulae for boundary
amplitudes (150). For example, let us consider the right A’ = (0, 2) exceptional Dirichlet D,,.
Then

(Dq|B|D,|B) = f du(n(q)*9(c*))" (Da|Dc(5)IDglDc(s)) (D (s)IBIDE(s)IB)

= (DF(Sa)|B|DF(Sa)|B) ’

where s, = e2™4a as before. This again is simply the evaluation of the ‘Fermi’ wavefunction
of B evaluated at values of the boundary holonomy s fixed by the vacuum. The collection
{{D4|BIDy|B)} qetp. is guaranteed to glue to a single holomorphic line bundle on E7(X). Anal-
ogous statements hold for left and (2, 2) exceptional Dirichlet boundary conditions.

Let us also briefly check that the wavefunctions are consistent with orthogonality. Note
that if a # 3, the contour prescriptions are not compatible. On the other hand, we have

(204)

(DLIDy|DLIDY) = f du (n(g)*8(t>))" Zr(DLIDc(9)|DLIDc()) (De(s)IDL| De(s)IDy) = 1.

(205)
This is because in Zr, at u = u, there is a zero of order r arising from (0,2) Fermis which
become neutral in the vacuum o, multiplied by a factor (n(q)?9(¢t%))" [ ] Acs, #(a’). The n(q)?
comes from the non-zero factor in #(1), and 9(t?) from the Fermi multiplets in the same
hypermultiplets as the Fermis which become neutral. Recalling the description of 5 (u—u,)
in the exceptional Dirichlet wavefunctions as a contour prescription around a pole at u = u,
of order r and unit residue, we recover the correct normalisation above.

5.5.1 Example

We return to the example of supersymmetric QED. The wavefunctions of D, are obtained from
(200) by setting r = 1.

For the wavefunction of D], from equation (169) the remaining fluctuating degrees of
freedom are Fermi multiplets Py, for f < a and oy . for B > a. These contribute

l_[ - —1 (206)
B<a B(ts 1V/5) p>a ﬁ(tsvﬁ ) sv7le=1
and combining with the contribution of the chiral S,
o(u—uy)
(De(s)IDL|De(s)IDL) = a _
" T n(@*9(e) [T (23 T 9GH) (207)
B<a p>a

which agrees with the general formula with repelling weights &_ in (46).
Similarly for Dé, from (170), contributing degrees of freedom from the hypermultiplets
are the N/ = (2, 2) chirals ®x, for f < a and Py, for § = a. So similarly

6(u—uy,)

DLID(s)|DL|D = =

(PalPele)PalPe(s) n(@29(e2) TT 9GL) [] 9(e222) (208)
B<a B>a

57


https://scipost.org
https://scipost.org/SciPostPhys.13.1.005

Scil SciPost Phys. 13, 005 (2022)

where the denominator is constructed from the attracting weights <1>;r.

5.6 Mirror Image

An interesting problem is to understand the mirror dual of the N = (2, 2) exceptional Dirichlet
boundary conditions {D,} of a theory 7. A hint is provided by the Coulomb branch image of
these boundary conditions. Let us denote the Coulomb branch of 7 by X', known in the
mathematics literature as the symplectic dual. The dual theory T has a Higgs branch X', and
Coulomb branch X. There is a canonical isomorphism of fixed points, and we denote them by
{a} in both X and X'. These are the images of the same massive vacua of 7 on its Higgs and
Coulomb branches.

The mirror dual boundary condition for 7 must have a Higgs branch image in X' coincid-
ing with the Coulomb branch image in 7 of D,. We consider the latter first, in the case of
T =SQED[N]. The generalisation to arbitrary abelian theories follows similarly.

For generic real masses, and zero complex masses, the Coulomb branch X' of T is the Ay_;
surface (a resolution of the singularity C?/Zy). The Coulomb branch image of D; is supported
on the fibre ¢ = 0, which we denote S,. This is a fibration, with base R parametrised by o,
and typical fibre S! by the dual photon y. The photon circle shrinks where hypermultiplets
become massless, i.e. when {o —m, = 0}. These are the images of the vacua {a} on X'. Thus
Sy is a chain of N — 1 copies of P! capped on both ends by a copy of C, see figure 13.

C CP! CP! C

ms my my

Figure 13: The slice S, of the Coulomb branch of SQED[3], in our choice of €. The
Coulomb branch image of D] necessarily has support contained in the blue region,
and Di in the red. The real moment map for T¢, hy = —( - o decreases from left to
right, in our choice of €.

The semi-classical analysis of section 3.4 of [15] implies the Coulomb branch support of
D] is necessarily contained in the locus of S, where the effective real mass of X, is negative,
i.e. 0 —m, < 0. This consists of the union of all the divisors P! and copy of C to the left
of a in & in figure 13. These are not just the repelling Lagrangian (X !); for the Morse flow
generated by hy = —( - uc =—¢ -0 on X', which is just the single P! (or C for a = N) to the
left of a. Analogous statements hold for D(lx.

Realising X' as the Higgs branch of 7, this locus is precisely the support of the stable enve-
lope [5,13] of the Ay_; surface, in the chambers @H and %C of mirror mass and FI parameters
under the identifications (mg, ) = (Za,—ﬁ). The Morse flow on X' is with respect to the
function hy = f - iy, which is equal to h after these identifications.

The above suggests that the mirror boundary conditions in T should be supported on the
stable envelope associated to the fixed point a. We have not proved this yet; the semi-classical
analysis only implies a necessary condition for the Coulomb branch support. However, in the
next section we produce the mirror dual boundary conditions explicitly by studying a mirror
symmetry interface, and show that indeed the Higgs branch image of the mirror dual boundary
condition coincides with stable envelopes.

For abelian theories, where X and X' are hyper-toric varieties, the stable envelope contains
the attracting Lagrangian (X')_, but is generically larger [67]. Thus the dual of exceptional
Dirichlet is generically not another exceptional Dirichlet.
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6 Enriched Neumann

An important construction in elliptic equivariant cohomology is elliptic stable envelopes, in-
troduced in [5] and studied further in [6, 8, 68,69]. This can be regarded as a nice basis of
elliptic equivariant cohomology, or an assignment of an elliptic cohomology class to each fixed
point.

We proceed to construct boundary conditions that realise elliptic stable envelopes in two
steps. We first review the construction of a mirror symmetry interface between two mirror dual
theories. Then, colliding the interface with the exceptional Dirichlet boundary conditions we
considered in section 5, we recover a class of Neumann boundary conditions N, enriched by
boundary C*-valued (2, 2) chiral multiplets. These are labelled by vacua, and generate states
in Q-cohomology which coincide with the elliptic stable envelopes. We check this proposi-
tion carefully by computing the wavefunctions and boundary amplitudes, showing agreement
with the expressions in the mathematical literature. We give explicit constructions for abelian
theories, leaving non-abelian examples to future work.

6.1 Mirror Symmetry Interface

We consider the N' = (2,2) mirror symmetry interface between theories T, T, which flows
to a trivial interface in the IR whilst exchanging Higgs and Coulomb branch data [15]. The
mirrors of boundary conditions can be constructed by collision with the interface. Qur aim is to
construct boundary conditions mirror to the exceptional Dirichlet D], and IN)(;. This provides an
alternative basis of supersymmetric ground states and reproduces the construction of elliptic
stable envelopes from supersymmetric gauge theory.

6.1.1 Definition

We consider the mirror symmetry interface between a pair of mirror abelian gauge theories 7
on the left and 7 on the right.

e The theory 7 has G = U(1)" and R = CV with r x N charge matrix Q. It has a Higgs
branch flavour symmetry Ty; = U(1)Y ™" with (N —r) x N charge matrix q.

e The theory 7 has G = U(1)V" and R = C with (N —r) x N charge matrix Q. It has a
Higgs branch flavour symmetry Ty; = U(1)" with r x N charge matrix q.

The Coulomb branch flavour symmetries are T, = Ty and T, = Ty and the mass and FI
parameters are related by (£, m) = (m,—{). The charge matrices are related by

T -1
ORE
Q q

and further details can be found in [15]. Note that the multiplets in T are twisted vector

multiplets and twisted hypermultiplets, with the roles of SU(2)y and SU(2). interchanged.
As is ubiquitous with NV = (2,2) boundary conditions, the mirror symmetry interface de-
pends on choice of polarisation ¢ € {£}", see equation 122. We begin by imposing right
Neumann boundary conditions N, on x® < 0 and left Neumann boundary conditions N_, on

x>0,

N,: D3X,=0, Y,=0,
N_,: Dg)?_g =0, Y,.=0.

—€

(210)
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We then introduce N 2d N = (2, 2) chiral multiplets ; and their T-duals $; at x> = 0, whose
scalar components ¢; , ¢; are valued in C* = R x S!. Finally, we introduce boundary superpo-
tentials’

N
W= X, le % — Q- |§+T - ic),

i=1
N ) B (211)

W=> e, —(@Qpl+q mc);,
i=1
where ¢, ¢ are the complex vector multiplet scalars. We have also introduced complex mass
and FI parameters with (¢, m¢) = (me,—C¢) as this is useful to discuss anomalies, with the
understanding that we will ultimately set them to zero.
The superpotentials identify

* G, Ty and U(1)y as translation symmetries of ¢, or winding symmetries of $ R
el Tc and U(1), as winding symmetries of ¢, or translation symmetries of 5 .

The charges of ¢;, 51- are fixed by the first terms in the superpotentials (211). The second
terms break these symmetries explicitly. They may be interpreted as 2d 0-angles encoding the
contribution to mixed anomalies. This interface reproduces the mirror map between Higgs
and Coulomb branch chiral rings [15].

Another consistency check is that the mirror symmetry interface is anomaly-free for any
polarisation €. This requires anomalies of the Neumann boundary conditions N, and ﬁ_e are
cancelled by those of the boundary chiral multiplets &;, ;. The latter can be seen from the
superpotentials. Recall that the combination

Q-¢+7q e (212)

appearing in the superpotential W is the effective complex mass of $i and encodes its charges
under its translation symmetries G, T. The superpotential W displays a mixed anomaly under
translation symmetries G, Ty or U(1)y of ¢;. Similarly,

Q- @+ qi -mg (213)

is the effective complex mass for ¢; and encodes its charges under its translation symmetries
G, Ty and one obtains the same mixed anomaly by shifting ¢; under G, T or U(1),.
Overall, the contribution to the mixed anomaly from ¢;, ¢; is

N

Z (fy —&;(Q £+ £)) (f+£,(Q - T+ - £)) — 2NE,f, . (214)
i=1

We have denoted by? the field strength for G and identify ?H = —f¢ under mirror symmetry.
In the summation, the first and second factors are the charges of the operators e %% and e®?:,
which create translation and winding modes respectively for ¢;. The final term comes from
the fermions wi" in the V' = (2,2) chiral multiplet ;, which are only charged under R sym-
metries.'® This precisely cancels the mixed anomalies coming from the boundary conditions
N, and N_, at the interface.

We note that such multiplets and similar superpotentials appear ubiquitously in Hori-Vafa mirror symme-
try [70]. In the superpotentials we have represented N/ = (2,2) multiplets by their scalar components, and will
continue to make the same abuse of notation in the remainder of this section.

1°Note that the action of T-duality on ®; dualises the scalar ¢;, and leaves the fermions wii alone. The dual
scalar ¢; and the same fermions comprise the dual V' = (2, 2) twisted chiral multiplet to &,.
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6.1.2 Example

We will consider the mirror symmetry interface for 7 supersymmetric QED with N flavours.
The mirror 7 is an abelian Ay_;-type quiver gauge theory with G = U(1)V™", and X' is the
resolution of the Ay_; singularity C2/Zy. We choose charge matrices corresponding to quiver
conventions, as illustrated in figure 14.

V: V: v,
3 v % e
T '7':
N 1 1
{vp} 3 £

Figure 14: Quiver diagrams for supersymmetric QED and its mirror.

The mass and FI parameters are identified according to (mg,{) = (Ea,—ﬁl) and similarly
for the chambers. In the default chambers €. = {{ > 0} and € = {m; > my, > ... > my} for
supersymmetric QED, the vacua a in the mirror are

17/3 = ,/mpg—my, forp <a,
)?ﬁ = /mg—mg forf >a,

with all other hypermultiplet fields vanishing.

Let us derive the weight space decomposition of the tangent space T,X'. We denote the
matter representation of G x Ty x T, of T by T*R, and work with the fundamental weights of
T. Note T, transforms the holomorphic symplectic form of X' with weight —2.

(215)

- (5 S
ChTR=t> | +-—], (216)
p=1 \°B-1 Sg
Chgc + t*Chgh = (N —1)(1 + t2), (217)

. e 1 . _1 .
where we have identified §; = £2 and §y = £~ 2. Note that £ is the formal parameter we have
associated to T, and will be identified as e?™*c in our computations on E, x I. The choice of
vacuum (215) determines

12 =1, p<a, 5=t g3 <
55 =L P>a, sp=t"Pr2, pxa.
Thus one has _
ChT,X'=ChT*R—Chgc + t*Chgcl, .
— 5—1 t_N+2a + gtN—2a+2 . ( 9)
Therefore in our choice of €.:
&t ={ec+(N—2a+2)e}, &, ={—ec+(—N+2a)e}. (220)
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6.2 Enriched Neumann

We now use the mirror symmetry interface to derive the mirror of the collection of right excep-
tional Dirichlet boundary conditions IN);. The mirror is a collection of right Neumann boundary
conditions N, defined by a polarisation and enriched by C*-valued chiral multiplets coupled
via boundary superpotentials and twisted superpotentials. We refer to these boundary condi-
tions as enriched Neumann.

It was conjectured in [15] that the mirror of exceptional Dirichlet boundary conditions are
again exceptional Dirichlet. This proposal reproduces the same boundary chiral rings, anoma-
lies and Higgs branch support for generic complex FI parameters. However, it fails to capture
the correct Higgs branch support with vanishing complex FI parameter and quarter-BPS bound-
ary operators contributing to the general half superconformal index. Enriched Neumann may
flow to exceptional Dirichlet in special cases, but this is not generically the case.

In summary, as anticipated in appendix B of [ 15], the mirror of exceptional Dirichlet bound-
ary conditions are enriched Neumann boundary conditions.

6.2.1 Definition and Derivation

We focus here on the case where 7T is supersymmetric QED, the extension to general abelian
theories considered in [15] follows straightforwardly. =~ We use the default chambers
¢c = {¢ > 0}and ¢ = {m; > m, > ... > my} with corresponding chambers €., ¢ in
the mirror obtained under the identifications (m,, {) = (Z’a, —m).

Wine, Wint w, W

N, B, N;

Figure 15: Collision of exceptional Dirichlet boundary conditions in T with the mirror
interface to derive enriched Neumann boundary conditions in 7.

We start from the right exceptional Dirichlet boundary conditions for 7 and collide with
the mirror interface to derive right exceptional Neumann boundary conditions for 7. This
is shown in figure 15. The right exceptional Dirichlet boundary conditions D], in the default

chamber are _ _
D3Xﬂ:O, Yﬂ:’é/ﬁi ﬂ:].,...,a—].,

DY, =0, X,=0, (221)
DB?ﬂ:O’ Xﬁzgﬂ, [5=a+1,...N,

where Cg are non-vanishing constants. The boundary condition on the complex scalars in the
twisted vector multiplet requires

1
. +5Cc <a,
gp=1 2° P (222)
) CC s /5 Z a,
where { = —m( is the complex FI parameter.

It is convenient to tailor the choice of polarisation in the mirror symmetry interface with
the exceptional Dirichlet boundary condition. To collide with the right exceptional Dirichlet
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13; associated to the vacuum « it is convenient to use the polarisation ¢ = (+...+—...—),
where the first — is in position a. The interface then has superpotentials

Wine= > (Xple™® —gpl8L ) + > (vple?® — pplitf)

peo pra (223)
Wipe = Z (ed)ﬁ“?/j —M£|$/5) + Z (6_% IXp —M£|<f;/5) ,
p<a p=a

where Mg =@ —Mgyc, Mg = g — Y1 denote the total complex masses of X P, XP. Here we
have abused notation and denoted @, = —@y = %C c-

On collision with the right exceptional Dirichlet boundary condition 13;, we obtain a right
Neumann boundary condition for 7, coupled to the boundary (twisted) superpotential

W= > (Xple ) + (YVale?s — (—{c)da) + D (Vple??),

= pra (224)
W=>"(cpe? —MEIpp) +(—MEpa) + D, (coe % — MLy )
B<a f>a

Colliding with the exceptional Dirichlet boundary breaks the gauge symmetry G = U(1)N~!
at the interface, shifting the U(1), and T, weights of boundary operators charged under G.
From the perspective of T, this can be seen as redefinition of the boundary U(1), and T
symmetries by the addition of a generator of a~|5. This redefinition only alters the charges of

the boundary operators constructed from & ,,®,, which are are modified to those in table 1.

The fermions wi“ are not charged under the gauge symmetry G and are therefore unaffected
by this shift.

Table 1: Charges of operators in the boundary chiral multiplet ¢, in the construction
of right enriched Neumann boundary condition N, in supersymmetric QED.

Operator | G | Ty, | Tc | U1y U(1), Index
ePe 1|-1]o0 1 0 sv 1t
e % o]l 0 | 1] 0 |-(N—2a)]&N2e
Pie o 0 0| -1 F1 1,672

We can now integrate out the boundary chiral multiplets &5 with f§ # a. Let us do this
for B > a; the < a case is treated similarly. The term ¢ =96 in the twisted superpotential
removes e~ %8, promoting 7 p= e®s to a C-valued chiral multiplet. We can also integrate out
¢p using W /0 ¢ = 0. The remaining contributions to the superpotentials are

Wp =Yglng,

~ ~ (225)
Wy = MP | (log ML | —1) — M. |log(—5p).

The boundary superpotential imposes Xg| = 0. The first term in the twisted superpotential is
the 1-loop correction from integrating out the boundary chiral multiplet ng. In combination
they implement a flip of the boundary condition for the hypermultiplet (X, Ys) - see section
5.3 of [15]. The remaining second term in the twisted superpotential contributes to the com-
plexified 2d FI parameter.

This remaining boundary is a right Neumann boundary condition (110) for the vector
multiplet, together with the Lagrangian splitting for hypermultiplets

DJ_Yﬁ :0, X/j=0, ﬁSa,

226
DJ_Xﬁ=O, Y[j=0, ﬁ>a, ( )
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coupled to boundary C*-valued chirals multiplets &, $a with charges summarised in table 1
via the boundary superpotential and twisted superpotential

W= Ya|e¢a - (_§C)¢a 5 W = _((Pl - ma,(C)(;a - t2d90| . (227)

The boundary condition supports a complexified 2d FI parameter'® t,,, such that the boundary
conditions on the real scalar o and dual photon y are

O+iy=toy. (228)

For later, we note that due to the first term in the boundary superpotential only e ™%« with
m > 0 are genuine boundary chiral operators. We refer to this collection of boundary condi-
tions as enriched Neumann and denote them by N.

We can similarly construct the left enriched Neumann boundary conditions N é, mirror
to the exceptional Dirichlet boundary conditions 5(11. We find that N é is defined by a left
N = (2,2) Neumann boundary condition for the vector multiplet (110), together with the
Lagrangian splitting for the hypermultiplets

DJ_XﬂZO, YﬁZO, /j<a,

229
D,Y;=0, X5=0, B>a, (229)

coupled to a boundary C*-valued chiral multiplet &, $, with charges summarised in table 2
via boundary superpotentials

W= |Yae¢a - C(Cqsa > W = _(ga(ltp - ma,(C) . (230)

Note the opposite sign of the contribution {-¢, to the boundary superpotential compared to
(227), which reflects a twist operator with opposite topological charge.

Table 2: Charges of operators in the boundary chiral multiplet ®, in the construction
of right enriched Neumann boundary condition N‘i in supersymmetric QED.

Operator | G | Ty, | Tc | U(1)y U(1), Index
e« |[-1] 1 |0 1 0 sv 't
e9 | 0] 0 |=1| 0 |N+2—2a]|& 1 N-2+20
Ple 0 0 0 -1 F1 1,t72

We now provide two consistency checks by computing the boundary 't Hooft anomalies
and the Higgs branch support of the enriched Neumann boundary conditions N/,.

6.2.2 Anomalies

We now compute the boundary mixed 't Hooft anomalies for the enriched Neumann boundary
conditions N/. As the mirror interface is trivial in the IR and anomaly free, this will agree
by construction with the anomalies of exceptional Dirichlet boundary conditions 13(; in the
mirror. Moreover, as the anomalies of exceptional Dirichlet boundary conditions reproduce
the effective Chern-Simons terms in the vacua a, which match under mirror symmetry, this
must reproduce the anomalies of the exceptional Dirichlet D] in the same theory. We will
check this for supersymmetric QED.

"In the above derivation, t,; =—3,_,10g(—C5) + 2,., log(—¢;).
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A key observation is that the C*-valued chiral multiplets have mixed anomalies between
translation and winding symmetries. This can be seen, for example, from the twisted superpo-
tential, which contains a coupling between 5(1 and the twisted chiral field strength multiplet
containing ¢, as well as the background multiplet for U(1), C Ty containing m, ¢. Thus 3,
can be interpreted as a dynamical complexified theta angle. The mixed anomalies can be seen
by shifting an or performing a gauge or flavour transformation.

With this in mind, we compute the anomaly polynomial of N,. First, the contributions from
the boundary conditions on the bulk vector and hypermultiplets are computed following [16],
with the result

PO o = —ffc + o+ (= D E—E)+ > (), 231)

B<a p>a

The first term comes from anomaly inflow from the bulk mixed Chern-Simons term between
G=U(1)to Tc = U(1), or equivalently the bulk FI coupling. The second term comes from the
gauginos surviving on Neumann boundary condition for the vector multiplet. The remaining
terms arise from fermions in the hypermultiplets. Second, the contribution of the boundary
C*-valued matter can be computed using table 1,

P(N(: )bdy =(f— fz + £y )(fo — (N —2a)f,) — 2f,fy, (232)

where the first term comes from mixed translation-winding anomalies of ¢, and ¢, and the
second from boundary fermions qpi“. Summing the two contributions,

PINGY=—fife +( D5 (6 —f) + D (6 — 1) )i
p<a B>a (233)
+ ffo + fv(za —N— 1)fA .

Note that, beautifully, the gauge anomalies from bulk supermultiplets have been completely
cancelled by the boundary chiral multiplets. This coincides with the boundary mixed 't Hooft
anomalies for the exceptional Dirichlet boundary conditions D, or equivalently the mixed
supersymmetric Chern-Simons terms in a supersymmetric massive vacuum a.

6.2.3 Higgs Branch Support

We now determine the Higgs branch support of the enriched Neumann boundary conditions
N,. To contrast with exceptional Dirichlet, it is convenient to first consider {¢ # 0, where
the Higgs branch is a complex deformation of T*CPY~!. We then set {- = 0 to recover
X =T*CPV L

First, the boundary superpotential requires

__OW o, oW

ol =37 S = Yyle?e +{c=0. (234)
a a

Combined with the boundary condition on the hypermultiplets (226), this implies the support
of N/ is the quotient of the submanifold of T*CN:

Xﬁ=O(ﬁ<a), XaYa:C(Ca Yﬁ=0(ﬂ>a), (235)
by G = U(1).

For non-zero complex FI parameter { # 0, this is the attracting submanifold of the vac-
uum o« in the complex deformation of the Higgs branch and coincides with the support of
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exceptional Dirichlet D]. However, sending { to zero, for enriched Neumann we now have
X4, =0and/or Y, =0 and the support becomes

N1U,UN1 Uy =X, UX, |, (236)
where we have recycled the notation from section 5. This differs from the support of excep-
tional Dirichlet, which remains the attracting submanifold X C X. The support of enriched
Neumann and exceptional Dirichlet boundary conditions for supersymmetric QED with 3 hy-
permultiplets are contrasted in figure 16.

X, 2 — 17,/ X, |2 — |7, /?

3 1 X, 12—, 2 / T X P=1nP

H:; H-

-3

Figure 16: The support of right enriched Neumann boundary conditions (right) and
exceptional Dirichlet (left) for supersymmetric QED with N = 3 hypermultiplets. See
figure 12 for the interpretation of the hyper-toric diagram.

The support of enriched Neumann boundary conditions N, coincides with the cohomolog-
ical stable envelopes of X = T*CPN~! introduced in [13] in the default chamber. We will see
shortly that the boundary amplitudes of enriched Neumann on E, reproduce the correspond-
ing elliptic stable envelopes. A similar computation shows that the support of left enriched
Neumann boundary conditions is the cohomological stable envelope in the opposite chamber
for the mass parameters.

Let us summarise this picture more broadly for exceptional Dirichlet D, and enriched Neu-
mann N, boundary conditions. Although the names of these boundary conditions refer to
explicit UV constructions in abelian theories, we expect the same considerations to apply to
analogous distinguished sets of boundary conditions labelled by vacua a in theories satisfying
our assumptions in section 2.

* Exceptional Dirichlet D],

— ¢ generic: supported on the attracting submanifold X o . © Xye-

- {¢ = 0: supported on the attracting submanifold X C X.
— WhileX ™

g

The closure X, is not generally stable under perturbations away from {c = 0.

In other words, the Higgs branch support jumps upon turning on a complex FI
parameter.

. C Xy s closed for generic {¢, X, C X is generally not closed at {¢ = 0.

¢ Enriched Neumann N Orl

— ¢ generic: supported on the attracting set X . ¢ © Xee-
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- {c = 0: supported on the stable envelope Stab(a) C X, which contains X and

generically a union of some Xy where hy,|g > by

- The support is given by closing X 2. © X in the whole family of complex defor-

mations labelled by { € H%(X,C), including {c = 0. In other words, the Higgs
branch is smoothly deformed upon turning on a complex FI parameter.

It is straightforward to extend our derivation to general abelian theories, whose Higgs
branches are hyper-toric varieties. For a vacuum a, denote by S € {1,...,N} the subset of size
r corresponding to hypermultiplets (X;,Y;) of zero real mass in a. Then we may define the

polarisation
—(e"); jeSs,
(6)); = { (, ) g (237)
(Sa) ji JES.
In [15] it was shown that for { = 0, the Higgs branch image of D/ is the toric variety associ-
ated to the chamber Ag & of the hyper-toric diagram of X, using notation therein. Repeating

our analysis for a general “abelian theory, we find that the image of enriched Neumann bound-
ary conditions NV, for {¢ = 0, are toric varieties associated to the orthants Vs ., obeying

VS,EZ == U AE D AS,E& .
s\e]-:(sa)j

Vj¢s

(238)

These are precisely the cohomological stable envelopes of hyper-toric varieties [67].

We note that the cohomological stable envelopes appeared as an orthonormal basis of
boundary conditions of N/ = 4 quantum mechanics in a work by one of the authors [71],
containing 1d analogues of some of the results we discuss in the remainder of this paper.

Finally, we mention that the difference between exceptional Dirichlet and enriched Neu-
mann boundary conditions is also detected by the general half index [ 16-18] counting quarter-
BPS boundary local operators. We will explore this topic, connecting with the mathematical
literature on vertex functions [72] and exploring their mirror symmetry properties [ 73-75] in
a future work [21].

6.2.4 Enriched Neumann for the Dual

We can also employ these techniques to construct enriched Neumann boundary conditions for
7T, which will realise elliptic stable envelopes of the resolution of the Ay_;-type singularity.
We will construct the left enriched Neumann boundary conditions N é by acting with the same
mirror symmetry interface on the left exceptional Dirichlet boundary conditions D(lx given in
(170).

To do so, we collide with a duality interface specified by the (twisted) superpotential

W= (Yple® —¢pli1l )+ > (Xple ™ — ¢pliL ) ,

p<a p=a

p<a p=a

(239)

Colliding with Dé, similarly to before, the a'™ terms flip the boundary condition for the twisted
hyper (X,,Y,) in 7. In summary, the dual is found to be the left enriched Neumann boundary

condition, which we denote by ﬁé, specified by the splitting:
DLiﬂ:O, ?/5:0, /5£a,

~ ~ (240)
DJ_Y/jZO, XﬂZO, /5>a,
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coupled to N — 1 boundary C*-valued N' = (2,2) twisted chirals 5/5 for B # a, and their
T-duals, via (twisted) boundary superpotentials

W==3"¢4l(Fs— Fp1)— 2. bpl(Fp — Fp),

e P (241)
W = Z (e_¢ﬁ D?/j - (ma,(c - m[g,c)(lgﬁ) + Z (e¢/5 |17/3 — (ma,(c - m,m)cfﬁ) ,
B<a p>a
where we have abused notation and let o, = —@py = %g c- As before, collision with D(lx shifts

the charges of operators at the boundary charged under the gauge symmetry of 7. These are
just the scalars ¢ in the C* valued chirals &5 . Note from the perspective of T the valid twist
operators are e"?# for f < a and e "?s for B > a, where n € Z. The shift in charges can be
encoded in the substitution sv;lt =1 in the characters of these operators:

s vt -yt for B <
T ST reee (242)
e PP sTvgt > v Tvgt® for f>a.

One can also determine the Higgs branch support of the above left enriched Neumann
boundary conditions for 7, following section 5 of [15]. The calculation is similar to that of
7. The result is that the Higgs branch image is given by the G = U(1)¥~! quotient of the
following Lagrangian of the matter representation Q

_ ==0 PiXa=0, (243)
XpYp=mgc—mpc PBFa.
In our case, we set the complex masses to zero, mg = 0.

It is then not hard to check that the Higgs branch support of f\?é in the Ay_; sur-
face matches the putative Coulomb branch images of Dé described in section 5.6. In par-
ticular, the slice Sy of the Coulomb branch of 7 is mapped by mirror duality to a slice
SO = {)?Y?Y =0 Vy =1,...,N}, and the axis labelled by the Coulomb branch moment
map o is mapped to the dual Higgs branch moment map iy = %(l)?N|2— Y|+ X 12— 1711?).
This is illustrated in the figure 17 for the case with 3 hypermultiplets.

C CP! CP! C
> [y
ms my m,
X;=0 551=1:71=0 Y;=0
X,=0 )?2:%2—0 ¥,=0
X3=0 %,=¥,=0 #,=0

Figure 17: The slice S° of the Higgs branch of T. The support of N ., is the blue
region, and ﬁé the red, for @ = 1. The real moment map hz; = m - iy = —¢ - iy on
the Higgs branch of 7 decreases from left to right in our choice of ¢;; = ¢c.

6.3 Amplitudes and Wavefunctions

We now compute the boundary amplitudes and wavefunctions of the mirror symmetry inter-
face and enriched Neumann boundary conditions. We will encounter expressions for elliptic
stable envelopes, which will be expanded on in section 7.
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6.3.1 Mirror Symmetry Interface

We first consider the wavefunction of the mirror symmetry interface, obtained by forming a
sandwich with auxiliary Dirichlet boundary conditions. This provides an integration kernel
that may be used to compute the action of mirror symmetry on the wavefunctions of other
boundary conditions. We will identify this kernel with the mother function in equivariant
elliptic cohomology.

Let us then consider the partition function on E,. x [—{,£], with the mirror interface at
x3 = 0, a left reference Dirichlet boundary condition for 7 at x> = —¢, and a right reference
Dirichlet boundary condition for T at x3 = (. This is illustrated in figure 18.

Vvint: W;nt
Ir (s,8) = T T

DF(S) Ns ]\78 5F (§)

Figure 18: The path integral on E, x [—{, £] which yields the mother function.

There is a choice of NV = (2,2) or N/ = (0, 2) reference Dirichlet boundary conditions,
which will lead to different normalisations of the mirror interface kernel function. To ensure
the set-up is compatible with real masses in any chamber and also to match results in the
mathematical literature [8,76], we will choose the A/ = (0, 2) boundary conditions:

DF(S) . |¢X = |(I)Y = 0,

~ (244)
Dp(s) :  ®g|=%5[=0.
Heres,, a =1,...,r are holonomies around E, for 7, and 5, a’ =1,...,N —r for 7. Recall
that these boundary conditions also impose a Dirichlet boundary condition for the 3d N = 2
vector multiplet, where the gauge connections at the boundary are set equal to s, and §,
respectively, and a Neumann boundary condition for the adjoint chirals ¢, .
We denote the kernel function with this choice of auxiliary Dirichlet boundary conditions
as

Tr(5,5) = (Dp(s)| Z | Dp(S)) - (245)

The kernel functions for other choices of reference Dirichlet boundary conditions are related
by overall normalisations as in section 4. This kernel function may be computed explicitly for
abelian gauge theories and coincides with the mother function [8, 76] in equivariant elliptic
cohomology for hyper-toric varieties.

Here we focus on the wavefunction when 7 is supersymmetric QED with N flavours and
7T is mirror the abelian An_;-type quiver gauge theory, the extension to the abelian case is
straightforward. This will receive contributions from the following sources:

* Colliding the left Dirichlet boundary condition Dg(s) with the right Neumann boundary
condition N,, there remains Fermi multiplets Wy, . Similarly, colliding the right Dirichlet
boundary condition D (5) with the left Neumann boundary condition N_, leaves behind
Fermi multiplets ¥y .

* The remaining fluctuating degrees of freedom from colliding the boundary conditions
for the vector multiplets are adjoint chiral multiplets ¢, 5, with scalar components ¢
and @.
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* The C*-valued N = (2,2) boundary chiral multiplets ®.

Combining the elliptic genera of these contributions will yield the kernel function of the mirror
symmetry interface.

We enumerate the elliptic genera of these contributions in turn. First, the contributions
from the A/ = (0, 2) Fermi multiplets arising from bulk hypermultiplets are

N N
vy [Jo vy, vy o [ 90 /55m0) ). (246)
B=1 B=1
The contributions from the adjoint (0, 2) chirals are
®,: ST, @z 9OV, (247)

.....

The description of the duality interface is slightly non-Lagrangian as it involves boundary su-
perpotentials and twisted superpotentials coupling to ¢4 and its T-dual 5/5 simultaneously.
However, since these couplings are exact for the elliptic genus, it is reasonable to treat the
contributions as isolated 2d C*-valued chiral multiplets.

It is unclear how to compute the R-R sector elliptic genus of these chiral multiplets using
supersymmetric localisation. Instead, we first compute their elliptic genus in the NS-NS sector
by employing an operator counting argument, before performing a spectral flow back to the
R-R sector. This computation is performed in appendix B. The result is

55 ﬁ ﬁ(tZ)T_?l((izfgl)_eﬂ(gfi/gfi_l)gi) |
=1 O(t(svg )Pt~ (8p/5p-1))

(248)

We note that the arguments of the theta-functions in the denominators correspond to the

weights of the boundary operators e *4%# and e®# 9.
Combining the three contributions (246), (247) and (248), yields the result

N
To(s,5) = = [ [0 ((svg )0 Gp/55-1) ) - (249)
p=1

We emphasise that different choices of polarisation ¢ in the definition of the mirror interface
yield the same mirror interface kernel up to a sign, when sandwiched between the N = (0, 2)
reference Dirichlet boundary conditions. Up to an overall sign and a re-definition of gauge
and R-symmetries, this is the mother function for T*PN~! [8,76].

Had we sandwiched with reference N/ = (2, 2) Dirichlet boundary conditions D_,(s) and
D, (5), upon shrinking the interval the remaining fluctuating degrees of freedom are solely the
C*-valued chirals, and the interface kernel would just yield (248).

We now explain why, from our physical perspective, it is natural to identify the duality
interface as generating an element of the T, equivariant elliptic cohomology of X x X ‘e, a
holomorphic line bundle over the variety Elle (X xX").

One may view the partition function of the interface as that of a doubled theory 7 x T
on E, x [0,£], by folding together the two theories 7 and 7. The doubled theory consists of
two sectors which are decoupled in the bulk, but are coupled at the duality interface which
becomes a boundary condition.

The Higgs branch of 7 x 7 is X x X', with an equivariant action of Ty =T % Ty X T,. For
the purposes of this discussion, we denote the image of the massive vacua of 7 on its Higgs
branch X by a, and its Coulomb branch X' by &. Then 7 x 7T has N2 vacua given by a choice
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of (a, @&). Following section 3, the equivariant elliptic cohomology variety of X x X', or spectral
curve for the space of supersymmetric ground states of 7 x T, is:

Elly, (X x X') := ( | | E(T‘;"d)) /(A x A). (250)

(a,a)
In the above

« E*Y >~ 1. @, E are N> copies of the torus of background flat connections for T,
Ty f ez = f
associated to the supersymmetric vacua (a, &).

e A x A identifies:

— The copies E(T‘;’f’) and E%f ) for all 7, at points A-z € Z+tZ, where A € &,N(—®;)
labels an internal edge of the GKM diagram of X.

— The copies E(T);’d) and E(T};’ﬂ) for all y, at points A-% € Z+ tZ where 1 € $; N (—5/3)
labels an internal edge of the GKM diagram of X'. Here # = (2., 2,).

As a boundary condition for 7 x 7T, the interface naturally defines a Q-cohomology class,
or supersymmetric ground state. The mother function Zz(s,$) is now interpreted as its wave-
function, with reference boundary condition Dy(s) x Dy (§). See figure 19.

—_—

W;

int

W;

nt»

Ip (s,8) = TxT

DF(S)XEF (§) Ns XNs

Figure 19: The wavefunction of the duality interface.

By evaluating Z;(s,$) at the values of s and § specified by (a, @), one recovers an N x N
matrix of boundary amplitudes, glued along its rows according to the GKM description of
section 3 for 7, and its columns according to that of 7. These form a section of a holomorphic
line bundle over Elle (X x X'). We do not reproduce the amplitudes explicitly here in the
interest of brevity, since we shall see shortly that we effectively compute them as the boundary
amplitudes of enriched Neumann boundary conditions.

6.3.2 Enriched Neumann

We will first compute the wavefunctions of enriched Neumann boundary conditions from first
principles. We then show that colliding the mirror symmetry interface with exceptional Dirich-
let boundary conditions produces the same wavefunctions using the kernel function.

We first consider the wavefunction of right boundary enriched Neumann,

(Dp(s)IN. |Dp(s)IN) - (251)

After taking the interval length { — 0, the remaining fluctuating degrees of freedom are the
chiral multiplet ¢, Fermi multiplets Wy, fory <a, Py for y > a, and the boundary C* chiral
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multiplet ®,. The contribution of the C* chiral multiplet'? is computed using the same method
as for the mother function and gives the contribution (248) for y = a, except with s =5],. We
return to this observation in the next section. Combining these contributions, we find

l_[ ﬁ(t_lsvy_l) s

", ﬂ(t2)ﬁ(sv_1t§ tN—2a)
l_[ ol ﬂ(sv—lt)ﬁ(EtN 2a)

(Dp(s)INZ|Dg(s)INL) =

ﬁ(t 2) r<a r>a
V(sv,, 1t g¢N—29) (252)
=1 [9(c 7)) — B v h)
l:([x 2 F(EtN—2a) l:!z Y
This expression matches the elliptic stable envelope for X = T*PV~! [5],
(Dp(s)IN. |Dp(s)INL) = Stab(a)g, ¢ - (253)

Recall that the boundary amplitudes at the origin of mass parameter space are constructed
using (0, 2) exceptional Dirichlet, and are, using any of the equivalent results of sections 4 and

(BINZ|BINE) = (Dp(vpt DINZ|Dp(vpt MINE)
ﬁ(vﬁv LgN=2a)
= l_[ff}(vyvﬁ S(EN )

r<a

l_[’l?(t_zvﬁvy_l)

r>a

The collection {(ﬂINO:| BIN, >}/5:1,,..,N glues to give a section of a line bundle over
Er(X) = Ellp(X) x Er,. This is consistent with our description of supersymmetric ground
states in section 3. Since ¥(1) = 0, this matrix of boundary amplitudes is lower-triangular:
it vanishes for f < a. This reflects that the Higgs branch support of the enriched Neumann
boundary condition N, contains only the fixed points § = a.

The boundary amplitudes constructed using N' = (2,2) exceptional Dirichlet boundary
conditions D(lx are simply related to the (0,2) boundary amplitudes by a normalisation:

(DpIN;|DhING ) = (DF(Sﬁ)|N§|DF(Sﬂ)|Nr>Al_[ ﬁ(ll)
cdt
21908 v N—2a -2
HEWGE™) 0 W) o ese
BEEN2) 2 2 ()
1 if f=a,
0 if B<a.

The quasi-periodicities of the non-vanishing overlaps are consistent with the anomalies of the
boundary conditions D;j N r, and are determined by the difference of Chern-Simons levels
K,—Kjg. This matrix of boundary amplitudes is nothing but the pole-subtraction matrix intro-
duced in [5]. The reason for this identification is explained in [21].

One can similarly compute the wavefunction of enriched Neumann for the mirror T. We
consider the wavefunction of left enriched Neumann boundary condition,

(N1 ()|NL1B# @) (255)

12Note that similar ratios of theta functions appeared in [77] in the IR treatment of holomorphic blocks: partition
functions on S! x HS2. There they arise as replacements of contributions of mixed Chern-Simons levels, motivated
by quasi-periodicity and meromorphicity arguments. They occur naturally in our UV perspective as contributions
of C*-valued matter on the boundary torus E, = 3(S! x HS?). We return to this observation in a future work [21]
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After taking interval length { — 0, there are the following contributions from Fermi and chiral
multiplets arising from the boundary conditions for bulk supermultiplets,

\Iji/ . ﬁ(tg)//gy—l) Y < a,
\I'X} : ﬁ(t§),_1/§y) y>a, (256)

By H(£H) WY,

The contribution of the N — 1 C*-valued twisted chiral multiplets is

D) AW 507

l_[ 571 vV l_[ S V. . (257)
y<a ﬁ(t—lg—y)ﬁ(ﬁ) r>a ﬁ(t—lgy—il)ﬁ(tzi)
Putting these contributions together
BT 5,y )
N!|Ds(5)|NLIDs(5)) = i e (258)
(N, | ) Q B(55) (sa_l)g B(e25%)

which, recalling the identifications (m,{) = (Z’, —m), may be identified as the elliptic stable
envelope for the Ay_; surface [5,8]

(NLIDp(5)|NLIDp(5)) = Stab(a)gorr 71 (259)
in the chambers _ _

The inverted E and flipped mass chamber in (259) are consistent with the fact we are consid-
ering wavefunctions of left boundary conditions.

The boundary amplitudes of N Oll are given by evaluating (258) at (218), the value of the
boundary G fugacities § in the vacuum f of T fixed by the expectation values (221):

0 if B>a,

(Vg N2 if p=a,

(N.I1Dp|N,IDg) = (261)

atfe G e N )
(—1)N—oHP1g(¢2) Ty I s if B<a.
VB p<y<a Va

This is upper-triangular, reflecting the fact that N (i contains only the fixed points # < a, see fig-
ure 17. These amplitudes glue to a section of line bundle over Ell5(X M x Er, =E7 (x"), where
we have defined T = T, x T,. This is the extended elliptic cohomology of X', or equivalently
the spectral curve for 7.

6.3.3 Elliptic Stable Envelopes from Duality Interface

We now derive the same wavefunctions and boundary amplitudes for enriched Neumann
boundary conditions by applying the mirror symmetry interface to exceptional Dirichlet. We
shall see this has a well-defined mathematical origin in elliptic cohomology.

Let us first recover the wavefunction of the enriched Neumann boundary condition N by
colliding the interface on the right with IN)(Z. The relevant set-up is illustrated in figure 20.
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Wine Wine @ 0Mde w, W
T T T = T
Dg(s) N,N,  Dp(5) Dc(5) Dr Dg(s) N,

Figure 20: Collision with duality interface = Restriction of mother function

To evaluate the wavefunction, we cut the path integral using auxiliary Dirichlet boundary
conditions in the mirror theory. We choose the polarisation ¢ = {+...+ —...—} for the mir-
ror interface, where the first minus sign is at position a, as in equation (223). This gives a
decomposition of the wavefunction of enriched Neumann as follows,

(Dp()IN? |Dp(s)INT) = } %(n(q)zﬁ(t—z))N‘le(s,g)(BF(§)|5;{5F(§)|5;), (262)
where N i
To(s,9) = () | [9(sv 22), (263)
p=1 5p

and the minus sign comes from the choice of polarisation. The wavefunction of exceptional
Dirichlet in the mirror is

PPN~ - 5(N_1)(ﬂ_ﬂ|a)
D@D OID) = a2 T 9@

_ N V(@ —al,)
 (n(@RO(e2)N1P(E 1 e )

where we have used the tangent weights (220). The delta function is regarded as a contour
prescription around a rank N —1 pole at (218) which is the value in the vacuum a in the mirror
theory. Evaluating the residue reproduces the wavefunction (252). A similar computation
yields the wavefunction of left enriched Neumann boundary conditions in the mirror (258).

Let us now briefly review the constructions in the mathematical literature, see in particular
section 6 of [8], of which this is the precise physical analog. For this discussion we deviate
slightly in notation, and denote the image of the massive vacua of 7 on its Higgs branch X by
a and its Coulomb branch X' by a. Regarding X x X' as a Ty = T¢ x Ty x T, variety, there are
equivariant embeddings

(264)

X=Xx{d}i—"’>XxX’<ii{a}xX’=X’. (265)
Taking the Ty equivariant elliptic cohomology

The latter is precisely what we identified as the extended elliptic cohomology in section 3.
Similarly
Elly, ({a} x X') = Ellz(X") x B, = Ez(X"), (267)

where we have defined T = T, x T, such that Ell7(X ") is the extended elliptic cohomology of
X', and the associated spectral curve for the space of supersymmetric ground states of 7.
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The functoriality of elliptic cohomology then gives maps

ET(X)iElle(X xX‘)fiET(X’). (268)

The main result of [8] is that there exists a holomorphic section m of a particular line bundle
on Elly (X x X ") which can be pulled back by the maps above to give'®

(i)m) Stab(a) (i5)"(m)
l_[)\e$; B(e2mirE) G800 l—heﬁ B(e2mirz)

= Stab(a)gzpp’gq , (269)

which are sections of line bundles on E7(X) and E5(X ") respectively.

Note that more precisely, in the above we have used the ‘wavefunction’ representation of
the sections/classes as described in section 4.5.1. Evaluation of 5,5 and (s,$) at fixed points
will give collections of amplitudes which glue to sections of line bundles over E;(X), E7(X D)
and Elle (X x X') as appropriate.

The physical correspondence is now as follows. The existence of the mother function m
is equivalent to the existence of a duality interface between theories 7 and 7. The mother
function m is itself the wavefunction Z(s,$), or the mirror duality interface kernel, described
previously. The pullbacks, or fixed point evaluations (269) are simply the collision of the
duality interface with exceptional Dirichlet boundary conditions.

6.4 Orthogonality and Duality of Stable Envelopes

We demonstrated in section 5 that left and right N = (2, 2) exceptional Dirichlet boundary con-
ditions are orthonormal, as expected as they represent normalisable supersymmetric ground
states at x — +o00. Since enriched Neumann boundary conditions are mirror to exceptional
Dirichlet, we also expect that they are orthonormal,

(NLUNGINLING ) = 6. (270)

Let us demonstrate this in supersymmetric QED.

First we write down the wavefunction of left enriched Neumann, using the same reasoning
as before. The overlap with auxiliary Dirichlet boundary conditions receives contributions from
the Fermi multiplets Py, for f < aand ¥y . for > a, the chiral ¢, as well as the C* boundary
chiral ®,. The result is

—1,p—1,—N—2+2
G(sv, "t t )

P(E-1t—N-2+2a)

(N(iIDF(s)|N(i|DF(S)> = l_[ ﬂ(t_lsv[;l)

B<a

[ 1o 7). @7

B>a
We note the relation
(NgIDp ()| NgIDg () = (Dp(S)INL o[ DeOINTG),, L, e
= Stab(t - @), ¢ |Vﬁ’_’VL»[5 (272)

= Stab((x)d]pp,gq B

where v : {1,...,N}— {N,..., 1} is the longest permutation in S, . This is as expected, chang-
ing orientation from right to left in the Morse flow is given by inverting the chamber to GI‘?IP P for

13The inversion of chamber and ‘Kéhler’ parameter in the second equation is due simply to our choice of con-
vention for identification of mass and FI parameters compared to [8]. The division by weights in the attract-
ing/repelling weight spaces is related to the holomorphic normalisations of elliptic stable envelopes described
therein.
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mass parameters. The inversion of & arises from anomaly inflow from an oppositely oriented
boundary.

With this wavefunction in hand, we can compute the overlap of left and right enriched
Neumann boundary conditions by cutting the path integral,

(VL [NE g ) = § L @28(2) 2e() (NUD NP ) (D SING D )N )

2mis
s=v),t71

r=1,...N

(273)

The integrand is periodic in s, reflecting the absence of gauge anomalies at either boundary.

The JK contour selects poles in Z-(s) at s = v),t_1 with y = 1,...,N. This generates the

decomposition into boundary amplitudes,

(Vi

N
1
NUNG) = > (N INLy ) (rINg NG T ek 274)
r=1 A€,

Note that <Ni|y|Ni|y> vanishes for y > a, and <}f|N(; |y|N(;) for y < 3, as in our construction of
the pole subtraction matrix. Thus if a < 8, the overlap vanishes trivially. It is straightforward
to check the diagonal components a = 8 evaluate to 1. For a > f3, the vanishing reduces to a
(a—pB+1)-term theta function identity. These identities are straightforward to check for small
N by hand, and can be checked using a computer for larger values of N. One thus reproduces
orthonormality (270).

Mathematically, this is precisely the duality result of Aganagic and Okounkov [5]

2

yef.p.

Stab(a)czfp,gfl \YStab(ﬁ ey, |Y
nleéy ﬁ(al) o

(275)

of orthonormal elliptic cohomology classes, realised as the orthonormality of left and right
enriched Neumann boundary conditions in fixed chambers ¢ and €.

7 Janus Interfaces

Thus far we have tacitly assumed that the real FI and mass parameters are constant. However,
the set-up is consistent with varying profiles {(x2), m(x?®) for the mass parameters in a way
that preserves the supercharge Q. The computation of boundary amplitudes and overlaps are
independent of the profiles of the FI and mass parameters in the x>-direction, except through
constraints that their terminal or asymptotic values place on compatible boundary conditions.

Indeed, such non-trivial profiles for the mass parameters are required to correctly interpret
some of the computations we have performed. For example, suppose we have left and right
boundary conditions B!, B" compatible with chambers ¢, ¢’.* Then computing the overlap
(BY|B") as a partition function on E, x [—¢, £], we must assume a non-trivial profile m(x?) for
the mass parameters interpolating between the chambers ¢ at x3 = 0 and ¢’ at x> = ¢.

Since the computations are independent of the profile m(x?3), we can imagine that the
mass parameters vary from € to another ¢’ in a vanishingly small region A c [—{,{]. This
is known as a supersymmetric Janus interface, which we denote by Js (. The overlap of
boundary conditions is more correctly expressed as a correlation function of the Janus interface
(B!|Jg/|B"). This picture also applies to boundary amplitudes.

14We drop the H subscript on the chamber ¢;; of mass parameters in the rest of this section.
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In this section, we review some aspects of Janus interfaces and re-visit some of the compu-
tations done thus far in a new light, especially in the study of exceptional Dirichlet and enriched
Neumann boundary conditions. We explain how the computation of correlation functions

(NSeeINS) (276)

reproduces chamber R-matrices. We exploit independence of the profile m(x?) to express the
R-matrices in terms of elliptic stable envelopes and explain why they satisfy Yang-Baxter.

7.1 Explicit Constructions

Supersymmetric Janus interfaces have been studied extensively in the literature, beginning
with the case of 4d N = 4 Super Yang-Mills [78-81].

Let us consider Janus interfaces from a 3d N' = 2 perspective (we follow the notation of
[57]) and consider a background vector multiplet (A", o¥, AF,2F, D) for a flavour symmetry

F. The configurations preserving half of the supercharges Q1*, Q™ are given by

Af =dfdx®, of =of(x®), DF =idof,

AF=o0, Af=o. @77)
Crucially, the profile o (x3) for the real vector multiplet scalar is allowed to vary in the x>-
direction provided a compensating profile for the auxiliary field D (x®) is turned on.

In the following, we argue that computations preserving the supercharge Q = er + er;
are independent of the profile in the bulk x® e (—¢,0),and depends only on the terminal values
of(££). We do this by showing that perturbing the action by o (x®) such that §of(££) =0
results in a Q-exact deformation of the action. The usual localisation argument then finishes
the argument.

We apply this to the case where F = Ty, T, and the vector multiplet scalar of = m, {.
However, since in this paper we fix a chamber for the FI parameter and thus a Higgs branch
X, we are primarily interested in varying profiles for the mass parameters.

7.1.1 Mass Janus

Let us first consider the case of F = Ty with varying mass parameters o’/ = m(x?) and back-
ground auxiliary field D = im’(x3). We consider the action of a 3d N’ = 2 chiral multiplet
(¢, ¢p,v,4), F,F) charged under the flavour symmetry Ty. The part of the Lagrangian that
depends on m(x?) is

L =¢m*(x*)¢ +2¢pom(x*)p —dm’'(x*)¢ +iYpm(x>)y, (278)

where m and o act in the appropriate G and Gy representations. A variation in the profile
m(x®) — m(x®) + §m(x3) results in a change in the Lagrangian

5L, =¢5m?p +2¢p5m(c +m)p + pSmd;p + 03p5mep — d3(PpSme) +ipémap. (279)
It is not hard to show that
Q-V,=6L,+3(p5me)—i(¢SmF + Fémep)— pSm?¢, (280)

where 5
Vv, = 2—’;” (pomy_+p_5me) . (281)

Although it appears as given that 6 £, is not Q-exact, we now show that the last two terms in
Q - V,, can be absorbed into a re-definition of the auxiliary fields.
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Let Z,, denote the partition function with the initial mass profile m(x?®), and S[®],, the
corresponding action. Then by the usual localisation argument, we have

Z,= J DdeSI%Im = f D@e S [ Vi (282)

where ® denotes collectively all the dynamical fields.
The auxiliary fields F and F, included to ensure closure of the supersymmetry algebra on

fermions, appear in the action only through the quadratic term f B xI FF. Denoting & to be

the collection of fields without F, F, and S[®'],, the action minus this term, then

S[<I>]m+Q-Vm=S[<I>’]m+J Ly +05(pSmep)+(F—ipSm)(F—idme),  (283)
E_xI

using (280). Substituting the above into (282) and redefining
F—i¢ém—F, F—idm¢ —F, (284)

then we have'®
z = f D& DEDFe =Sl In—[ (FF+6L,)—[ 85($5m¢)
(285)
— J D¢e—5[¢]m+5m—f 35(p5me) )

So provided that 6m(£{) = O, it is true that 2,5, = Z,,- We have shown that Z,, is
independent of the interior profile of m(x*) and only on the values m(£{) at the end points
of the interval.

7.1.2 FI Janus

The FI parameter consists of the real scalar of a background N' = 2 vector multiplet
(A€, 0%, A%, A€, D) coupled to the gauge symmetry via a mixed Chern-Simons term. In an
N = 4 theory, it is the real scalar { = {*~ in an \/ = 4 twisted vector multiplet, coupled to a
N = 4 vector multiplet for the gauge symmetry via an N'= 4 CS term.

In either case, we will be interested in giving the background scalar o a non-trivial profile
inx3,i.e 4 (x3 ). For this to be BPS we require D¢ = iagac. Therefore the (bulk) FI term is

Sp = J i{(x*)D—{'(x*)o . (286)
E_XxI

T

For the coupling of the gauge field to a background for A€, see e.g. [19,20].'® Note that

Q- Sy = % f (Cér*DyA+ (D Ayt e — '€+ Ae)
X E . xI (287)

:_EJ 03 (C(l++i+)) 5
E.xI

5We have assumed that since the redefinition (284) is linear, the measure is invariant. There is an additional
assumption in the following. In Euclidean signature all fields are complexified and barred and unbarred fields are
independent. In the path integral there is a choice of middle dimensional contour in field space for the bosonic
fields, the canonical choice relating bar and unbarred fields by complex conjugation: F = F'. Then the term f FF
is positive definite in the action. The redefinition (284) deforms away from this contour. To retain a positive
definite action we assume the contour can be deformed back to the canonical choice without changing the answer.

5These references include couplings for NS-NS boundary conditions on E.: the analogous results for the R-R
sector are obtained from dropping the dependence on E_ coordinates in the boundary conditions and spinors, and
taking the curvature of HS? to infinity.
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so that Sg; is supersymmetric under Q, provided Neumann boundary conditions for the vector
multiplet (implying A, = A, = 0) are prescribed at both boundaries. In passing to the second
line we have dropped the total derivatives in the x? directions, as A and A obey R-R boundary
conditions. For Dirichlet boundary conditions one must add boundary Chern-Simons terms to
preserve supersymmetry, as in [20]. We will not consider this case.

Under a variation {(x%) — {(x2) + 8¢ (x?), the variation is Q-exact up to boundary terms:

5Sp = f i50(D—1050) — 85(6¢0)
E . xI

:Q.U lig(x —A )} J 35(5¢ o).
E.xI E.xI

Thus the path integral is independent of the interior profile of the FI parameter {(x?%). If o is
fixed to a non-zero boundary 2d FI parameter o| = to4, as is the case for the enriched Neu-
mann boundary conditions encountered in this work, then the above shows that the partition
function does depend on the terminal value(s) of the FI Janus {(££).

(288)

7.2 Mass Parameter Janus

Let us first reconsider the boundary amplitudes of exceptional Dirichlet and enriched Neumann
boundary conditions. Both sets of boundary conditions are defined in the presence of mass
parameters in some chamber €. As we now keep track of chamber structure let us write the
left boundary conditions compatible with mass parameters this chamber as (Dgl, (N fl, and
right boundary conditions as |D§), IN(f).

We considered the boundary amplitudes representing equivariant cohomology classes on
X by taking overlaps with the supersymmetric ground states |a) defined at vanishing mass
parameters. We would previously have denoted such boundary amplitudes as ($|DS), (BINS).
However, in light of the discussion above, it is more appropriate to regard them as correlation
functions

(a|Jo,¢|D/§) = ®(¢§,+)5aﬁ ) (Dg|TeolB) = 9(4’;’_)511/5 ,

¢ ¢ (289)
<a|j0’¢|Nﬁ) = Stab(ﬂ)@,g{a > (Na |«7¢,0|ﬂ) = Stab(a)@pp,gfl \,5 >

where Jy ¢ and Jg( are Janus interfaces interpolating between vanishing mass parameters
and mass parameters in the chamber €, from left to right and vice versa. In the above we
have emphasised the chamber dependence in the sets of positive and negative weights @S’i.
Additionally we have used the shorthand where if W is a set of weights, then

O(£W) = )!_V[Vﬁ(a*)ﬂ : (290)

It will also be convenient to define the matrix of boundary amplitudes
S = Stab(B)e.| (291)
af &ela-

We may then use the orthogonality of exceptional Dirichlet and enriched Neumann bound-
ary conditions to write

(alJoe = (DElO(2SH) JeolB) = @(‘I’g’_)|D€)
=D (NSISTE, =S5 & NG, (292)
r=a r>p
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where in the second line we recall for example that S%Y is lower triangular with respect to the
partial ordering induced by the Morse flow with respect to mass parameters in the chamber €.

The first line for exceptional Dirichlet is the correct interpretation of the relationship be-
tween supersymmetric ground states with m = 0 and m € € derived using the infinite-
dimensional quantum mechanics model in section 3. Namely, in transporting the supersym-
metric ground states from m = 0 to m € €, the supersymmetric ground states are related by a
factor (69).

The second equation shows that the elliptic stable envelope provides the matrix elements
that express how to decompose the supersymmetric ground states at m = 0 in terms of states
generated by enriched Neumann boundary conditions when transported to m € €.

Let us go one step further and apply these equations to a general boundary condition com-
patible with mass parameters in the chamber €. We first consider a right boundary condition,
which we denote at m = 0 by B and at m € ¢ by B®. We find immediately:

(alB) = ©(21)(Dy|B®),
(alB) = > S5 (NSIBY). (293)
B

Note that both of these equations relate quantities on the right, {{D$|B%)} and {(N%|B)},
which transform as sections of holomorphic line bundles on E;({a}) = |, E(T‘;) to boundary

amplitudes on the left that glue to a section of a line bundle on E;(X).
This is the physical realisation of the construction in [5] which realises the stable envelope
as map of sections of holomorphic line bundles on | |, E%f) to those on E;(X).

7.3 R-matrices

. . . . . / .
Correlation functions of particular interest are the overlap of enriched Neumann N g R N/f in
a pair of distinct chambers. Following the discussion above, we regard this as a correlation
function

Ri,’f = (NS |Je e INg) - (294)

Note that if we choose € = ¢’ then Ri% = 04p, as the enriched Neumann boundary conditions

are orthonormal.

These correlation functions obey an important property as a consequence of the indepen-
dence of the profile m(x®) connecting the chambers ¢, ¢’. Suppose that ¢, ¢’ are not neigh-
bouring chambers, meaning they are not separated by a single hyperplane W, g C t;. Then by
deforming the profile m(x?®), we can decompose

Jee=Jee Te e, Tepe (295)

as a composition of elementary Janus interfaces connecting neighbouring chambers. By ex-
panding in enriched Neumann boundary conditions in each of the intermediate chambers
¢, 0, ¢, we find

RGS= > RUSROG . ROY. (296)

ary T riva Ynf
Y1,Y25+5Yn

Moreover, different decompositions must yield the same result due to invariance under defor-
mations of the profile m(x®). Special cases of this relation include the Yang-Baxter equation
and unitarity condition obeyed by R-matrices of quantum integrable models. Therefore, fol-
lowing [71], we refer to these correlation functions as chamber R-matrices.

The chamber R-matrices can be computed directly using supersymmetric localisation on
E. x[0,£] with the left and right enriched Neumann boundary conditions. However, it is also
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convenient to decompose the result in terms of boundary amplitudes. For this purpose, we
decompose the Janus interface as

Jere =T 0doe (297)
where we think about smooth deforming the profile m(x2) as illustrated in figure 21. This

m
A

mee’

Figure 21
allows us to decompose the chamber R-matrices as follows
e:/,@ o/
R,y = Ny [T eINg)
= (NS |«7¢/,0u70,¢|N/5€>

/ 2
=Z®(—<I>Y)(N§ |Ter ol M| To.eINg) (298)
-

— (c¥y—1¢gC
which reproduces the construction of chamber R-matrices in terms of elliptic stable envelopes
introduced in [5]. We have used the orthogonality of enriched Neumann boundary conditions:

O(—p)(NE|Te ol B) = O(—2p)S} < = (SS4)1, (299)

as discussed in section 6.4.
Note that one could have instead proceeded here by decomposing into wavefunctions to
get an integral formula:

/ ds /
e _ ¢ ¢
Ry = § 5eis 2vZc ()N, IDr () (Dr(s)INg ) - (300)
One could also arrive at the same integral formula by collapsing the interval directly and eval-
uating the elliptic genus of the effective 2d theory consisting of boundary C* chiral multiplets
and surviving bulk matter, as in section 4. Of course, evaluating the residues decomposes this
into boundary amplitudes.

7.3.1 Example: Supersymmetric QED

Let us specialise to our example of supersymmetric QED. Let €y = {m; > m, > ... > my} be
our initial choice of chamber. A generic chamber ¢ can therefore be expressed as € = 7 - &,
where © € Sy. In a way analogous to the arguments in section 6.4, it is not hard to see that
the wavefunction of a right enriched Neumann boundary condition in the chamber € is:

(Dp(s)INS) = Stab(r ™ - a)€0’§|vﬂﬁvn'ﬁ ) (301)

It is of course also possible to derive this directly by using the mirror symmetry interface.
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Let us now compute the chamber R-matrix explicitly for supersymmetric QED with N = 2.

The default chamber is € = {m; > m,}. The only non-trivial chamber R-matrix RS[;€ comes
from choosing the opposite chamber ¢’ = {m; < m,}.
Using the boundary amplitudes, obtained via (272) and (301),
BeHHE32) 2V
e _ gt lce ﬂ(l“—z) TE ) o ) 0
R-"~=8S8 ST = V1 vi v] ﬁ(t_z)l‘}( % ,ﬁ vy B (302)
0 ey 5) )

which may be simplified by the 3-term theta function identity #(ab)®(a/b)9(c)? + cyclic =0
to recover the sl, R-matrix

BECIE)IL)  0(DET2)
OEPI2R)  AEDI2R)

e _
REm=1 o) e | (303)
HEW(22) 92 2)
as in [5]. Similarly, by computing Stab(a), ’ p the R-matrix in the opposite direction is given
by
0(:2) A 2)OER)
T G AE(27L)
R =1 seneety o 2oeoc) (304)
BENIE2E) ORI 2)
Then using the same cyclic identity as before, we recover the unitarity condition
RYCRYY =1, , (305)

obeyed by R-matrices, as expected.
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A Gluing Property

In this appendix we demonstrate the gluing property of line bundles {£/ } required in section
3.5.1. First, we recall some canonical results on line bundles over elliptic curves [82], using
the rephrasing in [83, 84] of these results in the language of factors of automorphy.

It will be convenient to regard the background flat connections z; = (2¢, 2y, %) as coordi-
nates on t? = t; ®g C. Then global background gauge transformations z; — 2y + vf + us7
form a group A¢ of deck transformations so that we have a universal covering:
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A factor of automorphy is a holomorphic function F : Ay x t;? — C* obeying

F(zp, v+ usT + v} +,u}77) =F(zf+ vp + s, v} +M}T)F(Zf, Ve UsT). (307)

There is an equivalence relation on factors of automorphy, where F ~ F’ if there exists a
holomorphic function H : tj? — C* obeying

H(Zf + 'Vf +MfT)F(Zf, 'Vf +MfT) = F/(Zf, Vf +MfT)H(Zf) (308)

Importantly, isomorphism classes of line bundles over E, are in 1-1 correspondence with
equivalence classes [F]. Sections of a line bundle associated to F are 1-1 with holomorphic

functions s : t? — C satisfying

s(zp+ve+upt) =F(zp, ve +upt)s(zy). (309)
In our set-up, the line bundles £/, have factors of automorphy
Folzp, vy + iy ) = e 2P (KaGrm) K (g 2+ T Kolhpig) (310)

where K/, are the shifted supersymmetric Chern-Simons couplings as in equation (85). It is
not difficult to check that F, obeys property (307).

Now consider a weight A € &,U(—®;) labelling an interior edge of the GKM diagram. Mass
parameters x lying on the hyperplane W, = {1 -x = 0} generate a codimension 1 subtorus T*
of T, which leaves point-wise fixed the irreducible curve %, = P! connecting the fixed points
a and 3. The weight A then defines a doubly-periodic array of hyperplanes in t}c where

Az2€Z+7TT, (311)

recalling that z = (2, %,). Let us suppose A -z =a+ bt for a, b € Z. This breaks the group of
large background gauge transformations to A)’}, whose elements obey A - v = A - u =0, where
u = (ug, u,) etc. Then we may define

E%f = {z; et?|7t'z=a+br}/AJ’} — Er,, (312)

a codimension-one subtorus of Er,, where we have left the a, b dependence implicit. Analo-
gous definitions to the above can be made for line bundles over E%f.

The result required in section 3.5.1 is that for all such A, the restriction (more accurately
the pull-back under the above inclusion) of the line bundles E; and E;j to E %f (foranya, b € Z)
are isomorphic. We demonstrate this using their factors of automorphy.

On E’%f (the pull-back of) £, L’k have factors of automorphy given by restricting F,, Fg

to A-z=a+bt and A to A}‘. In the remainder of this appendix, we use |;2 to denote these
T

¥
restrictions. Then isomorphism of Efx and E;j on the locus is equivalent to the existence of a

holomorphic function H(zy) such that
H(Zf'i‘Vf +‘MfT)F/5(Zf,Vf +‘U,fT):Fa(Zf,’Vf +‘U,fT)H(Zf) . (313)
Ty

To demonstrate this, we first collect the following two results.

83


https://scipost.org
https://scipost.org/SciPostPhys.13.1.005

Scil SciPost Phys. 13, 005 (2022)

1. First consider the contribution from x, + K‘g to the ratio F,/Fj of factors of automorphy

e—Zﬂi((Kaﬁ K0 )@ )+ (Kap i )W,z )+T (kg x5 )bag g )) , (314)

where we have used the shorthand k.5 = k, — K. Note the relation on critical points
of Morse flows

where ( is identified as an element of H2(X,R). From equation (20), one has that (314)
equals
6—27“'(“0[21])(1'2) — e—2m’b(uc,[2}l])r (316)

on restriction to E%f. We have used (uc,[Z,]) € Z.

2. Now consider the contribution from the sum over ®,. By construction the T*-weight
of T3, C TeX (and thus TgX,) is 0. Since T? fixes point-wise the curve %,, the
(quantised) weights of T* are constant over X, by continuity, and in particular coincide
at a and f3. Thus there is a pairing of weights A/, € $, and )L;j € &4 such that

(A, = Ap) 2= Cop(A-2). (317)

The constants {C,pz} are integer, as the characters of the isotropy representations of
ToX, TpX agree when ™% — 1 in particular when A -z € Z\{0}. Note that (317) also
. . / _ a7 A
implies A, - u = Aﬁ uforall ve +ust € Af.
The contribution from &, ®g in the ratio F,/Fy is:
—mi{ X QeARem+s X Qowl= B (g3 X Qg
(xge% Zlfxe@a Agedg p P ZA’ cop p ) (3]—8)

e B B

Using (317), on restriction to E%f this equals
e—ﬂizl/(l;—lé)'z(l/'ﬂ) — e—nib D Cap(X )T , (319)

where the sum is over &, or ®g, the answer is the same. The a-dependence drops out
as the symplectic pairing of weights in &, (or &) implies % D Cap(A - 1) €Z.

Using these results in conjunction, we have

Falzp, v H P omib((aedma)+d S Cap W) (320)
Fﬁ(zfz Vf +‘U,f’L') E%f
Then the function
H(Zf) — 627rib((zc,[21])+% Zk’ CaﬁA/'Z) (321)

obeys (313), where the v;-dependence drops out by using (v¢,[%,]) € Z for all v, and the
symplectic pairing of the weights A’ in &, or ®5. We have therefore established the isomor-
phism of £/, and E’ﬁ on E%f.
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B Elliptic Genus of C* Chiral Multiplets

In this appendix we give the computation of the contribution to the wavefunction of the mirror
duality interface, i.e. the mother function in section 6.3.1, from the C*-valued (2,2) chiral
multiplets ¢4 which appear in interface. Our strategy is to first compute it in the NS-NS
sector. In this sector the contribution takes the form of an elliptic genus which coincides with
the superconformal index, and therefore it is possible to use an operator counting argument
to compute it. We then perform a spectral flow to R-R sector. We will stick to our example of
supersymmetric QED, the generalisation to arbitrary abelian theories is straightforward.

In the NS-NS sector, g = ™" grades the operator counting by the left-moving Hamiltonian
H;, which by unitary bound arguments is equivalent to a grading by J; + %(U(l)v +U(1),).
We claim that the contribution from the C* matter is given in NS-NS sector by:

[ WUCHPLICT)
W scpomy

(322)

where we have identified:

* Cp= q‘IT t(sv,;l)_gﬁ as the charge of e %6 which creates translation modes of ¢ B

* Dg= q% t7(s 5/3p—1)°F as the charge of e? ‘5/5, the T-dual, which creates winding modes
To prove this, using the identity

1 9(CgDp) 1 (Cp)"
—q P~ N P (323)
H(Cp)(Dg)  (¢:9)% 55 1—9"Dp
we rewrite the (322) as
N 1 1
(22t* 900 (@7 t7* @)oo "
[l Lo S gmnicy) g™, (324)
p=1 (4;9)50 n€Z,mez>0

and justify the contribution from each component in turn.

The description for the duality interface is non-Lagrangian and involves both the N = (2, 2)
chiral ¢4 and its T-dual 5/5. To perform the operator counting, we choose the duality frame
of 7. One then counts the operators in Q-cohomology in &g, as well as the twist operators

e#%%. Due to the superpotential in (211), only positive powers of the twist operator emepds
survive [70,85], i.e. m > 0.
Note that ¢ is the bottom component of a N = (2,2) chiral $4 which transforms as a
supermultiplet under vector and axial R-symmetries as:
vV e_iaFV<I>/5(z,2, 0%, 0%)el*v = ®4(2,2, e 90%, e 0%) + iega,
—iaF, - nt g+y,iaF - Fiapt tiagt (325)
A e %APg(3,5,07,07)e' A = Bp(z,2,eT707,e707).

The gauge-covariant operators which contribute in Q-cohomology are:

Operator Index
e cpPr Cp
Dzn¢2/5, nx=1 qn
D¢y, n>1 q"
| e | D
D;%/Jfﬁ, n>0|qzte2
Dznlﬁfﬁ, n>0| qztne?
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Here D, are gauge-covariant holomorphic derivatives on E ., and zpf” s qﬁfﬁ are fermions in ®g.
Notice that the gauge-covariant derivatives of the C*-valued scalars are

Dzd)[j = aqufa’ + iAz ) (326)

where A, acts in the appropriate representation, and are gauge neutral since the gauge trans-
formation acts as a shift ¢g — ¢p + ia(z,2). Similarly D,¢4 is neutral under flavour and
R-symmetries. We now match the formulae (324):

e The fermions D;zpfﬁ, and Dgzﬁfﬁ for n > 0 contribute (q2 t2; @)oo (€2t 2 @)oo
* The covariant derivatives D]'¢g and ng; p for n =1 contribute (g; Q2.

* We interpret the sum in (324) as the contribution of translation modes from e ¢#?# and
winding modes from e®# %5 Recall the BPS operators are arbitrary powers of e 696, but

only positive powers of e 9. Inserting m powers of the twist operator ¢“#%# means that
any operator with charge n under the translation symmetry (which is a gauge symmetry
here) acquires a spin mn. Thus we have the contribution of composite operators

e—n£ﬁ¢ﬁ em£ﬁ$ﬁ = qmn(cﬁ)n(D/3 )m. (327)

A nice consistency check for this calculation is that the contribution (322) is symmetric
under t « t7 1, Cp < Dpg, although we chose to expand it asymmetrically in (324). One
could alternatively expand as

[ (€277 9)00(q?t%59) ST g™ (CH™ (328)
1

. 1)2
(q ? q)°° neZ,mez>0

This exchanges translation and winding modes, and reflects the fact that physically one can
choose to count operators in either the 7 or T duality frame: in the T frame ¢ p are translation
modes and ¢4 are winding modes.

In order to obtain the result in R-R sector, and to match onto the mother function, we
perform a spectral flow. To do so, the operators must have 27 quantised left and right R-
charges (concretely, in their character they must have even powers of t). Noting that q‘lt t*!
the U(1)y and U(1), fugacities respectively, we use gauge and flavour symmetries to redefine
the R-charges so that

s—>sq‘l*t, $p —>§ﬁ(q%t_1)ﬂ. (329)

We can then perform the spectral flow in the genus by substituting t — tq~'/4, redefining back
the R-charges'” by s — st~ and §p—3p t# and then normalising by a monomial to ensure the
result has the correct quasi-periodicities to reflect the contribution to mixed anomalies coming
from the dynamical 8-angles in (211). The contribution in R-R sector is thus:

N B(E)O((svy )8 (5 /5p-1)%)
i1 (v ) )B( (Bp /5p-1)%)

(330)
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